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Abstract

The Department of Homeland Security (DHS) and the Transportation Security
Administration (TSA) are interested in developing a standardized testing procedure for
determining the performance of candidate detection systems. This document outlines
a potential method for judging detection system performance as well as determining if
combining the information from a legacy system with a new system can signi�cantly
improve performance. In this document, performance corresponds to the Neyman-
Pearson criterion applied to the Receiver Operating Characteristic (ROC) curves of
the detection systems in question. A simulation was developed to investigate how
the amount of data provided by the vendor in the form of the ROC curve e¤ects the
performance of the combined detection system. Furthermore, the simulation also takes
into account the potential e¤ects of correlation and how this information can also
impact the performance of the combined system.

1 Introduction

The Department of Homeland Security (DHS) is currently searching for methods that
are capable of determining the quality and e¢ ciency of potential explosives detection sys-
tems. Suppose that system A represents a legacy x-ray machine currently employed by
Transportation Security Administration (TSA) in airports. The x-ray machine is designed
to classify the atomic number/density of the material being examined. Suppose further that
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company �B�develops a separate x-ray detection system. Denote this system by B. Com-
pany B is claiming that their system considerably outperforms the legacy system A, however,
the proposed cost of development is a concern. Furthermore, Company B is protected by
law from disclosing their proprietary information concerning how results were obtained and
the data that was used in their algorithms. Given these constraints, the question becomes
whether or not Company B�s detection system is some pre-determined threshold better than
the legacy system A, or, if using the information generated by both systems will produce
results worthy of operating both systems simultaneously.

1.1 Research Goals

When detecting events of interest, a combination of detection systems is believed to
perform better than individual detection systems. Intuitively, the performance of the com-
bined detection system is reliant on several factors including the nature of the individual
systems, the method in which the systems are fused together, and how the systems relate, or
correlate, with each other. Because of these factors, the combined system may or may not
perform better than an individual system operating at its optimal parameter values. The
research goals are:

1. Develop a method for evaluating potential fusion of detection systems.

2. Develop an optimization problem that will generate viable solutions.

3. Examine how correlation e¤ects the fused system performance.

1.2 Research Scope

We consider a set of scenarios that could help to determine the potential e¤ectiveness of
a proposed detection system. The �rst scenario involves Company B sharing their Receiver
Operating Characteristic (ROC) curve along with an explanation of how and what the
system is designed to detect. In the second scenario, Company B provides three points on
their ROC curve. We examine the data when the company does and does not provide details
regarding the detection system. In the �nal scenario, Company B gives a single point on
their ROC curve, without any explanation of how their sensor/detection system determines
targeted explosive material. Using these scenarios, we attempt to determine bounds for the
performance of the combined systems.

1.3 Research Report

The remainder of this report is divided into the following sections: Methods, Results,
Simulation, and Conclusions. The methods section presents mathematical background. The
results section contains the new mathematical methods derived for use in the simulation
section. The simulation section will walk the reader through the three scenarios. The
conclusion section discusses the results and highlights future research that have potential to
aid in the detection of explosives-related threats.
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2 Methods

The mathematical background needed is presented in this section. Detection systems
will be discussed in generic terms to illustrate how they can be modeled as a composition of
measurable mappings.

2.1 Detection System Theory

Let � to be a population set of outcomes, i.e., the underlying event set. Within � are
outcomes that can be labeled as �explosive material present� and �no explosive material
present�. For brevity, let t denote �explosive material present�, i.e., t is short for �target�,
and let n denote �no explosive material present�, i.e., n is short for �non-target�. De�ne the
label set � = ft; ng. Suppose there exists a truth mapping T : �! � such that T partitions
the population set with f�t;�ng where

�t = fx 2 � : T(x) = tg and �n = fx 2 � : T(x) = ng

That is,
�t [ �n = � and �t \ �n = ?

In this context, a detection system is designed to be the truth mapping T, or approximate
it as close as possible. To do this one constructs a sensor, denoted by s, that produces (raw)
datum. Let � denote this data set. We assume the sensor is a function, producing a single
datum for a given outcome x, that is, s : � ! �. The raw data is re�ned, or processed,
with a processor p that extracts features f 2 �. In most circumstances the feature f is a
vector of real numbers. The processor is assumed to be a function so p : �! �. Next one
designs a classi�er a that inputs a feature vector and outputs a label, t or n; thus, a : �! �
is a function. Typically, a classi�er has parameters that can be varied. Let � be a set of
parameters for the classi�er, therefore, for each � 2 � let a� denote a classi�er, and the
collection fa� : � 2 �g is called a family of classi�ers. The graphical representation of these
mappings is given in the following diagram

�
s�! �

p�! �
a��! �

The composition of these mappings creates a detection system, that is, for every � 2 �,
de�ne the composition of the mappings to be

A� = a� � p � s

The collection of detection systems A = fA� : � 2 �g is called a family of detection systems,
or simply a detection system family (DSF). Suppose A represents a legacy x-ray detection
system family currently employed by TSA. The x-ray system is designed to classify the
atomic number/density of the material being examined. Suppose further that Company B
develops a separate x-ray detection system. This system may also be modeled as discussed
above.
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2.2 Performance of Detection Systems

The Receiver Operating Characteristic (ROC) curve quantitatively assesses detection
system performance. The ROC curve is useful as it graphically depicts the di¤erence between
false positive rate and true positive rate for each parameter threshold of the detection system.
The detection system registers a true positive (TP) when it labels an element from the
explosive population event set to which it is tuned as an �explosive.�The detection system
registers a false positive (FP) when it labels an element from the non-explosive population
event set as an �explosive.�A ROC curve is created by graphing FP rates along the horizontal
(X) axis and TP rates along the vertical (Y) axis. The detection system approximates the
true ROC curve using empirical data produced during the composition of mappings.
Consider a detection system family A. Denote the event set composed of explosives that

system A� is designed to classify as �t. Denote the event set composed of non-explosives
system B� is tuned to classify as �n. Let PTP (B�) denote the probability that B� correctly
labels an outcome t 2 �t as an �explosive.� This is the de�nition of a true positive de-
tection by system B� as the system correctly labeled an explosive with the correct label.
Mathematically, this can be modeled using conditional probability

PTP (B�) = PfB�(x) = t : x 2 �tg =
P (B�1� (ftg) \ �t)

P (�t)

Let PFP (B�) denote the probability that B� incorrectly labels an outcome x 2 �n as an
�explosive.�This is an instance of a false positive classi�cation by system B� as it falsely
labeled the non-explosive event with an explosive label. This, too, may be modeled using
conditional probability

PFP (B�) = PfB�(x) = t : x 2 �ng =
P (B�1� (ftg) \ �n)

P (�n)

Note that these probabilities are dependent upon the parameters of the detection system.
A single probability value is associated with each speci�c parameter. These probabilities
change as the parameter values change. With these two value de�ned, it is possible to de�ne
the receiver operating characteristic for system B�. De�ne � to be the parameter set for
system B�. Formally, the ROC function and ROC curve are de�ned as

De�nition 1 (ROC function, ROC curve) Let A = fA� : � 2 �g be a detection system
family de�ned on �. The ROC function for A is denoted by fA and is de�ned as follows: for
every false positive value p 2 [0; 1]

fA(p) = maxfPTP (A�) : � 2 � and PFP (A�) � pg:

The ROC curve is the graph of the ROC function [5].

2.3 Combining Detection Systems

Let B denote a detection system family with a di¤erent sensor s2, processor p2, and
classi�er b� , for each � 2 �. The diagram for this detection system is

�
s2�! �2

p2�! �2
b��! �2
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and the composition of the mappings is

B� = b� � p2 � s2

with B = fB� : � 2 �g denoting the DSF. Note that the sensor, s2, processor, p2, and
classi�er b� are di¤erent from those de�ned for DSF A above.

3 Label Rules

Now that a method is in place to create the ROC curve for individual detection systems,
it is important to consider how to combine these systems in an attempt to increase predictive
power. In order to use the performance of the individual detection systems to quantify the
performance of the combined system, there must be a method that accounts for the di¤erent
explosive and non-explosive partitions that the detection systems are tuned to label. These
partitions are addressed using the concepts of within and across label rules.

This diagram depicts the label rule r that combines the two systems into a new single system.

3.1 Within Label Rule

The within label rule applies to situations where two detection systems are designed to
classify the same target and non-target partitions. The rigorous de�nition follows.

De�nition 2 (Within Label Rule) Suppose � = f�1; �2; : : : ; �Mg is a �nite label set and �
is its power set such that (�, �) is a measurable space. Let G� = f��1 ;��2 ; : : : ;��Mg be
the truth partition of � with respect to �. Let G be a �-algebra on � that contains G� then
(�; G) is a measurable space. If the detection systems B1; B2; : : : ; BN : �! � are measurable
mappings designed to map ��m to the label �m for each m = 1; : : : ;M , then the label rule r
that combines the collection of detection system produces the new detection system
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B0 = r(B1; B2; : : : ; BN)

is said to be a within-label rule [5].

3.2 Across Label Rules

There are three pre-de�ned scenarios that may be de�ned as across type fusion
1) Case I �Each detection system labels mutually disjoint target types.
2) Case II �One detection system labels a subset of targets of the other detection system.
3) Case III �The targets of two detection systems overlap, creating a subset of targets

labeled by both systems.
The rigorous de�nition follows.

De�nition 3 (Across Label Rule) Suppose � = f�1; �2; : : : ; �Mg is a �nite label set and
� is its power set such that (�, �) is a measurable space. Let G� = f��1 ;��2 ; : : : ;��Mg
be the truth partition of � with respect to �. Let G be a �-algebra on � that contains
G� then (�; G) is a measurable space. The partitions �(0), �(1), : : : ;�(N) � �. For each
n = 0; : : : ; N , the integer M (n) = card(�(n)) � M , and the partition �(n) is congruent
to the label set �(n) = fw(n)1 ; : : : ; w

(n)

M(n)g. For each n = 0; : : : ; N , the partition G(n) � G

is the true partition of � with respect to �(n). If the detection systems B1 : � ! �(1),
B2 : � ! �(2); : : : ; BN : � ! �(N)are designed to map each event set �w 2 G(n) to the
corresponding w 2 �(n), then for every n = 1; 2; : : : ; N , the fusion rule r that combines the
collection of detection systems yielding the new detection system system

B0 = r(B1; B2; : : : ; BN)

is said to be an across-label rule [5].

3.3 Boolean AND Label Rule

The AND rule is a binary operation that is de�ned on the label set, �. This operator
will be de�ned using the logical AND symbol, ^. It is de�ned in the following table.

^ t n
t t n
n n n

Now, consider detection systems A� and B�. The Boolean AND detection system CAND(�;�) may
be de�ned as the following.

CAND(�;�) (x) = A�(x) ^B�(x) for all x 2 �
That is, the combined detection system returns a "t" label (meaning "explosive") only when
both detection systems A and B label the same outcome as being an explosive.
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3.4 Boolean OR Label Rule

The Boolean OR rule is also a binary operation de�ned on �. The OR operator will be
de�ned using the logical OR symbol, _. It is de�ned in the following truth table:

_ t n
t t t
n t n

Consider systems A and B. The Boolean OR label-fused detection system is de�ned as the
following

COR(�;�)(x) = A�(x) _B�(x) for all x 2 �:
Using the truth table as a reference, notice that the combined OR detection system labels
an element x 2 � as an explosive if either one or both detection systems labels the element
as an explosive.

3.5 Within and Across Label Rules

Let "t" denote the pre-determined explosives outcome and let "n" denote the pre-
determined non-explosive outcome that A and B are tuned to classify. The following table
outlines the combined system response depending on the label designation of detection sys-
tems A and B for two Boolean rules of interest.

Fused Labels Decision if x 2 �t Decision if x 2 �n
A
�1
� (ftg) ^B

�1
� (ftg) TP FP

A
�1
� (ftg) ^B

�1
� (fng) FN TN

A
�1
� (fng) ^B

�1
� (ftg) FN TN

A
�1
� (fng) ^B

�1
� (fng) FN TN

A
�1
� (ftg) _B

�1
� (ftg) TP FP

A
�1
� (ftg) _B

�1
� (fng) TP FP

A
�1
� (fng) _B

�1
� (ftg) TP FP

A
�1
� (fng) _B

�1
� (fng) FP TP

Regardless of fusion scheme (within/across), these outcomes remain true.

3.6 Correlation

In [5], the functions for the ROC curves associated with the di¤erent types of label
rules were derived under the assumption that detection systems had some �xed level of
correlation. Using the results of [5,7], correlation between two detection systems takes the
functional form below.

� (A�; B�) =
CA�^B� � CA�CB�p

CA�(1� CA�)
p
CB�(1� CB�)

where
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CA� = P (�t)PTP (A�) + P (�n)PFP (A�)

CB� = P (�t)PTP (B�) + P (�n)PFP (B�)

CA�^B� = P (�t)PTP (A� ^B�) + P (�n)PFP (A� ^B�)

The formulas CA� , CB� , CA�^B� are weighted functions involving the false positive and true
positive rates corresponding to detection systems A and B. They arise naturally from the
expressions for the expected value of detection systems A and B. When the two detection
systems are uncorrelated, the correlation term goes to zero, i.e., when CA�^B� = CA�CB� .
When these functions are maximized over their respective parameter sets, the values from
the ROC curves for detection systems A and Bmay then be used. These maximized functions
will be referred to as TA(p) and TB(q) for detection systems A and B, respectively. These
functions take the same general form regardless of choice of within or across label rule,
however the prior probability weighting changes with choice of label rule. It is further
derived in [5,7] that the ROC function for any AND label fused system where the correlation
remains constant for any combination of parameters � and � takes the following form for
every false positive value r 2 [0; 1].

fANDC (r) =
1

P (�t)
max
pq=r

[g�(TA(p); TB(q))� P (�n)r]

The function g� is derived from the correlation expression and takes the following form

g�(�; �) = �
p
�(1� �)

p
�(1� �) + ��:

In a similar fashion, the ROC function for the OR label-rule system under the assumption
of constant correlation between the detection systems may be de�ned for every false positive
value r 2 [0; 1]

fORC (r) =
1

P (�t)
max

p+q�pq=r
[h�(TA(p); TB(q))� P (�n)r] :

The function h� is also derived from the correlation expression and is de�ned as the following.

hp(�; �) = � + � � �
p
�(1� �)

p
�(1� �)� ��:

For a more in depth discussion of the derivation of these terms, the reader is directed to [3,
5, 6, 7, 9].

4 Results

The goal of this research is to develop a framework for testing how information from
detection systems should be combined and the necessary constraints that make the combined
system the optimal choice. Assume that detection system family A corresponds to the legacy
system currently employed by the TSA. The competing detection system family and fusion
candidate has been modeled by system family B. Given the ROC functions associated with
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these two families, consider the simple Neyman-Pearson optimization criterion for the ROC
function of the combined system fC

�
NP
(fC) = max

0�p�a
fC (p) = fC (a) :

The false positive value of a is �xed and usually chosen between 0:01 and 0:20. The constraint
associated with the optimization problem is the following

�
NP
(fC) > max

�
�
NP
(fA) ; �NP (fB)

	
:

This de�nes label fusion with respect to the quanti�er �
NP
. The label rule r that combines

the two detection system families A and B to produce the family C = r(A;B) is called �label
fusion�with respect to the quanti�er �

NP
if

�
NP

�
fr(A;B)

�
> max

�
�
NP
(fA) ; �NP (fB)

	
:

4.1 Simulations

In this section, three scenarios are considered to demonstrate the theory. Consider �rst a
scenario where company B supplies a description of the targets that system B is built to
detect and a complete ROC curve. In this instance, company B has developed a detection
system that estimates the density and atomic number of the object in question. The legacy
detection system currently in use performs the same operation and is therefore designed to
�nd the same type of target. Therefore the within label rule will be used to combine the
data. Suppose that the ROC function associated with system A

fA(p) = p
1=7

where p 2 S = f0; 0:01; 0:02; :::; 1g and the ROC function associated with system B is

fB(q) =

�
2

�
arcsin (q)

� 1
10

where q 2 S. These ROC functions were used so that the two individual ROC curves
would cross. Company B is given the bene�t of the doubt of being the superior detection
system when the false positive rate is low. The variable � = P (�t) corresponds to the prior
probability of observing a target event. The fusion of these two ROC curves is outlined in
the following algorithm.

Algorithm 4 Fusion of two ROC Curves

Let p = q = [0 0:01 0:02 ::: 1] ;
� = 1

50
;

TA (p) = �f (p) + (1� �)p;
TB(q) = �f (q) + (1� �)q;
function [AND=OR] = AND=OR(�; r; TA (p) ; TB(q); �)
n = 1;
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while n � length(�);
for i = 1 : length (TA (p))

for j = 1 : length(TB(q))
for k = 1 : length(�)

AND(i; j; k) = g� (� (k) ; TA (p (i)) ; TB(q (j)); r (i; j) ; �)
OR(i; j; k) = h� (� (k) ; TA (p (i)) ; TB(q (j)); r (i; j) ; �)

end
end

end
pg = AND=OR(:; :; n); % i x j x 1 array containing true positive and false positive estimates evaluated

with constant correlation � (n)
roc = sortrows(cat(2; r(:); pg(:)); 1); %creates (i x j) x 2 matrix of false positive and true positive

pairs and sorts by false positive value.

c2 = roc(:; 2); %resets true positive rate estimates < 0 = 0 (This can occur depending on correlation

value)

btp = find(c2 < 0);
if isempty(btp) s= 1;
c2(btp) = 0;
end
ind = find(c2 > 1);%resets values >1 = 1
if isempty(ind) s= 1;
c2(ind) = 1;
end
for i = 2 : length(roc)
c2(i) = max(c2(i� 1); c2(i));
end
AND=OR(:; :; n) = cat(2; roc(:; 1); c2); %Frontier/ROC curve corresponding to � (n) where cat

is the function that concatenates vectors roc(:; 1) and c2 along the column
n = n+ 1;
end

Suppose in particular that a = 0:10. If it is assumed that the two detection systems are
uncorrelated, then the following values of performance may be computed.
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Figure 1: ROC curves for individual and combined system.

System Performance (a = 0:10)

A 0:7197
B 0:7594

A ^ B 0:7594
A _ B 1

Under the assumption systems are uncorrelated.
Combining the two systems under the Boolean AND rule produces a performance that

is only as good as detection system B and therefore does not meet the constraint. Fusing
under the OR rule produces an estimate of perfect classi�cation. Using the results of [5,6],
this same estimate can accommodate for varying levels of correlation between individual
detection systems A and B.
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Figure 2: Performance estimates at di¤erent levels of constant correlation.

Fusion Rule min max

AND 0:7594 1
OR 0:7594 1

min and max over �2[� 1
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Negatively correlated detection systems combined under the AND rule have decreased
performance while the opposite is true of negatively correlated systems combined under
the OR rule. Similarly, positively correlated detection systems combined under the AND
rule received a boost to performance while the same systems combined under the OR rule
demonstrate decreased performance.
Now consider a situation where company B begins to restrict the amount of data they are

willing to submit for testing. Company B will no longer provide a complete ROC curve, but
rather three points surrounding the optimal point. It is assumed that the points (0; 0) and
(1; 1) constitute two points on the ROC curve. In particular, consider the "ROC curve"

fpr tpr

0 0
0:09 0:7514
0:10 0:7594
0:11 0:7667
1 1

fB

Given that the performance provided by company B is comprised of only three points, then
technically any non-decreasing curve that passes through these points is a valid candidate
for the ROC curve corresponding to detection system B. If company B is further willing
to disclose that their detection system is designed to detect a set of explosives and legacy
system A is designed to detect a speci�c subset of those explosives, then there is enough
information to suggest that across type II fusion is most appropriate.
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Figure 3: Resultant curves when company B provides only three data points.

System Performance (a = 0:10)

A 0:7197
B 0:7594

A ^ B 0:7594
A _ B 0:9816

Under the assumption systems are uncorrelated.
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As a reference, consider the resultant ROC curves if more data were present.
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Figure 4: The across II fused ROC curves when company B provides a full ROC curve.

System Performance (a = 0:10)

A 0:7197
B 0:7594

A ^ B 0:7594
A _ B 1

Under the assumption systems are uncorrelated.

Figure 4 represents the "complete" ROC curves corresponding to combination under the
across II rule. Notice that the estimate for the performance under the AND rule remains the
same regardless of the whether a complete curve or only three data points are present. Inter-
estingly the estimate of performance under the OR decreases marginally when the amount
of information becomes restricted.
Suppose now that information regarding the type of explosive outcome detection system

B has been designed to detect is no longer available. Seeing as the partitioning of target
events could be di¤erent for legacy system A as compared to system B, all of the within and
across fusion scenarios must be tested exhaustively.

Fusion Rule Boolean Rule Performance min max

Within AND 0:7594 0:7594 1
Across I AND 0:4297 0:4297 1
Across II AND 0:7594 0:7594 1
Across III AND 0:5131 0:5131 1
Within OR 1 0:7594 1
Across I OR 0:6559 0:4297 1
Across II OR 0:9816 0:7594 1
Across III OR 0:6240 0:5131 1

Performance calculated under the assumption systems are uncorrelated. Min and max over �2[� 1
2
; 1
2 ]:
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Knowing nothing about the type of fusion that should be applied, it is unclear which
output should be regarded as the best estimate of fused performance. Across I and across
III label rules can be ignored in this instance as both produce performances which are less
than either individual system. If performance was the only consideration, then it is clear that
within OR fusion would be the rule of choice. However, It could be that detection system B
has been designed to detect the chemical signature of RDX while detection system A has been
speci�cally designed to detect nitro-based explosives. This would be categorized as an across
I scenario and hence the within label rule would not be applicable. Incorrectly applying the
wrong label rule in this instance would lead to a gross overestimation of combined detection
system performance.
Finally, consider when the company developing detection system B provides only one

value for the performance of their system as well as no details regarding the targets that are
classi�ed by the detection system. It is assumed that the points (0; 0) and (1; 1) constitute
two points on the ROC curve. The curve provided by company B is now

fpr tpr

0 0
0:10 0:7594
1 1

fB

Suppose that the testing agency is considering using the within label rule to combine A
and B. Given only a single point, the combined ROC curves under the within AND and
within OR rules are the following
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Figure 5: Individual and combined ROC curves when fB is a single point.

System Performance (a = 0:10)

A 0:7197
B 0:7594

A ^ B 0:7594
A _ B 0:7594

Under the assumption systems are uncorrelated.
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This data implies that the within label rule is not applicable. This is surprising given that
with as few as three points, fusing under the within OR rule could produce considerably bet-
ter performance. Given that the most appropriate label rule is unknown, then exhaustively
testing all other types may provide at least one potential fusion candidate.

Fusion Rule Boolean Rule Performance min max

Within AND 0:7594 0:7594 1
Across I AND 0:4297 0:4297 1
Across II AND 0:7594 0:7594 1
Across III AND 0:5131 0:5131 1
Within OR 0:7594 0:7594 0:7594
Across I OR 0:4297 0:4297 0:4297
Across II OR 0:7594 0:7594 0:7594
Across III OR 0:5131 0:5131 0:5131

Performance calculated under the assumption systems are uncorrelated. Min and max over �2[� 1
2
; 1
2 ]:

Though the estimate of performance under the AND rule remains unchanged, the estimate
under the OR rule has changed for all label rules. Given only this information, the conclusion
would be that combination under any rule would not be advised. The lack of information is
not only detrimental to TSA in this instance, but also falsely suggests that detection system
B may only have limited usefulness. Recall that it is assumed in this instance that detection
system B has superior performance over the false positive interval of interest. Though every
outcome would point to potential funding for company B, it would make more sense to fund
a system if it was also a viable fusion candidate in the future.

5 Conclusions

The evidence provided by this research suggests that it is essential that the agency
testing new candidate systems collect as much information as possible from the developers.
This information is not only useful to the agency, but may also demonstrate the superiority of
a particular agencies�detection system. Knowing the type of target and non-target outcome
that the candidate system is designed to classify is arguably more important than the volume
of data concerning the performance of the system. Having as little as three ROC curve points
is potentially enough information to preserve the optimality of the combined performance of
two ROC curves.

5.1 Future Research

Potential future research could involve the development of an optimization framework
for assessing potential detection systems that meet the standards of DHS and the TSA.
Extending the capability of fusion of detection systems beyond Boolean rules as well as more
than two detection systems could also be advantageous. Finally, developing a distribution
that governs the prior probability of threats could prove useful in applications.
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