
Project 09-815 

A New 2D-Transport, 1D-
Diffusion Approximation of the 
Boltzmann Transport Equation 

Integrated University Programs 
 

Dr. Edward W. Larsen 
University of Michigan 

 
 
 

In collaboration with: 
Argonne National Laboratory 

James Sterbentz, Technical POC 



Final Report

DOE Contract Number: DE-AC07-05ID14517

Project Number: NEUP 09-815

A New 2D-Transport, 1D-Diffusion

Approximation of the

Boltzmann Transport Equation

Edward W. Larsen

Department of Nuclear Engineering and Radiological Sciences

University of Michigan

Ann Arbor, Michigan 48109-2104 USA

edlarsen@umich.edu

1



(a) ABSTRACT

The work performed in this project consisted of the derivation, implementation,

and testing of a new, computationally advantageous approximation to the 3D Boltz-

mann transport equation. The solution of the Boltzmann equation is the neutron flux

in nuclear reactor cores and shields, but solving this equation is difficult and costly.

The new “2D/1D” approximation takes advantage of a special geometric feature of

typical 3D reactors to approximate the neutron transport physics in a specific (ax-

ial) direction, but not in the other two (radial) directions. The resulting equation

is much less expensive to solve computationally, and its solutions are expected to

be sufficiently accurate for many practical problems. In this project we formulated

the new equation, discretized it using standard methods, developed a stable itera-

tion scheme for solving the equation, implemented the new numerical scheme in the

MPACT code, and tested the method on several realistic problems. All the hoped-

for features of this new approximation were seen. For large, difficult problems, the

resulting 2D/1D solution is highly accurate, and is calculated about 100 times faster

than a 3D discrete ordinates simulation.

(b) OBJECTIVES AND ACCOMPLISHMENTS

The overall objective of this project was to develop, implement, and test a mathe-

matically consistent and implementationally superior version of the “2D/1D” method

in the DeCART code, written about 10 years ago as an INERI project involving Ar-

gonne National Laboratory (ANL) and the Korea Atomic Energy Research Institute

(KAERI). The original 2D/1D method in DeCART simulated 3D transport problems

in typical light water reactors (LWRs) by using a clever approximation based on a

special feature of the geometry of LWRs: the spatial dependence of the cross sections

in LWRs is very strong in the radial directions x and y, but typically is weak in the

axial direction z. DeCART took advantage of this by means of a numerical method

that utilized (i) the correct (but expensive) transport physics in the radial directions,

and (ii) an approximate (but simpler and less expensive) diffusion solver in the axial

direction. The resulting code worked well for problems having an optically thick axial

grid (∆z > 6 inches).

At the time this NEUP project was initiated, the CASL project (centered at

Oak Ridge National Laboratory) had begun, and the CASL staff were using an early

version of DeCART (based here at the University of Michigan) to perform certain

3D reactor core simulations. It was discovered that this version of DeCART failed
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to converge for problems with small axial grids. Because of this, it was not possible

to refine the DeCART spatial grids axially to obtain detailed solutions. Moreover,

because the numerical method in DeCART used one type of transport physics for the

radial spatial variables and an approximate type of transport physics (diffusion) for

the axial variable, it was not evident what the DeCART solution would converge to

even if the code did iteratively converge.

The objective of this project was to develop a new, mathematically consistent

2D/1D methodology in which these deficiencies (lack of iterative convergence for

small ∆z, lack of a theoretical understanding of what the solution should converge

to for small spatial grids) were overcome. Overall, we proposed that the 2D/1D

methodology should be modified and put on a sound mathematical footing, that

mathematically consistent discretization and iteration strategies be developed, and

that the resulting method should be implemented and tested.

The central idea that allowed us to accomplish this task was the realization

that the new 2D/1D computational method should be derived from a fundamentally

new “2D/1D” approximation to the 3D Boltzmann transport equation. This new 3D

equation should be intermediate in accuracy between 3D transport and 3D diffusion.

Specifically, it should preserve transport physics in the radial directions x and y, and

use diffusion physics in the axial direction z. If this equation were formulated, and

if it could be shown to have a unique solution, then in principle both of the major

objections to the 2D/1D method in DeCART could be overcome. (The new 2D/1D

equation could be consistently discretized, using standard methods, and iteration

methods to solve the discrete equations could be studied by a standard Fourier anal-

ysis. In principle, the Fourier analysis would predict which iteration methods would

be stable, and which would not be stable. Also, in the limit of small spatial grids, the

numerical solution would converge to the analytic solution of the 2D/1D equation.)

All this, including the implementation and testing of the new method, and the

publication of preliminary results, has been accomplished. The list of specific objec-

tives, with a discussion of the effort performed and the accomplishments achieved, is

given next.

1. ITERATION METHODOLOGIES

Very early in this work, we realized that the Coarse Mesh Finite Difference

(CMFD) iteration method was being used in DeCART, and we also knew that

CMFD had been used with success in other reactor physics codes during the

past 20 years. CMFD had been systematically linearized and Fourier-analyzed,

to theoretically assess its range of stability, but this method had not been shown
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to be related to another method in use, Diffusion Synthetic Acceleration (DSA).

In our theoretical investigation of CMFD, we discovered that when this method

is linearized, it becomes algebraically equivalent to a “coarse mesh” version of

DSA. This clarified the (surprising) theoretical relationship between CMFD and

DSA, and it made it possible for us to think of using these methods somewhat

interchangeably, i.e. we could use one where it was advantageous, and the other

where it was advantageous, and we knew that the methods would perform in the

same way. (Previously, most researchers were unaware that DSA and CMFD

were related in any way.)

We also developed and tested (in 1D) a new acceleration method for

domain-decomposed transport problems. The idea here was to design a CMFD-

based method in which individual computer processors could be assigned an

individual assembly of a reactor, and the acceleration method would take the

results from the individual (coarse grid) assemblies and efficiently produce a

global fine grid solution. Our intent was to use this method for the eventual

implementation of the new 2D/1D method.

These two tasks were successfully completed, and they led to two conference

papers presented at the 2012 PHYSOR conference [1, 2].

2. THE 2D/1D EQUATION: THEORY

Concurrent with the work on iteration methods described above, we also

worked on the definition and theoretical basis of the new 2D/1D equation. The

detailed derivation of this equation is given in an attached conference paper [3].

We will just state the results here.

The 3D Boltzmann transport equation for monoenergetic, isotropically-

scattering problems can be written as

√
1 − µ2

(
cosω

∂ψ

∂x
+ sinω

∂ψ

∂y

)
+ µ

∂ψ

∂z
+ Σtψ =

1

4π

(
Σsφ+Q

)
, (1)

where the notation is standard:

ψ(x, y, z, µ, ω) = angular flux , (2)

φ(x, y, z) =

∫ 1

−1

∫ 2π

0

ψ(x, y, z, µ′, ω′)dµ′dω′ = scalar flux . (3)

In the problems under consideration, the cross sections are assumed to be strong

functions of the radial variables x and y, and weak functions of the axial variable

z. The solution ψ is also assumed to have the same properties.
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In the 2D/1D approximation, the (weak) axial derivative in Eq. (1) is

replaced using a 1D diffusion approximation, resulting in:√
1 − µ2

(
cosω

∂ψ

∂x
+ sinω

∂ψ

∂y

)
− ∂

∂z

D

4π

∂φ

∂z
+ Σtψ =

1

4π

(
Σsφ+Q

)
. (4)

This is the new “2D/1D” equation on which our work is based. Again, the

derivation of Eq. (4) and its boundary conditions is discussed in greater detail

in [3].

In the standard 3D diffusion equation, all the derivatives in Eq. (1) are

replaced using their 1D diffusion approximation. The resulting equation is in-

tegrated over µ and ω, yielding:

− ∂

∂x
D
∂φ

∂x
− ∂

∂y
D
∂φ

∂y
− ∂

∂z
D
∂φ

∂z
+ Σtψ = Σsφ+Q . (5)

In 3D problems having no z-dependence, the 2D/1D Eq. (4) and the Boltz-

mann Eq. (1) become identical. (This is not true for the 3D diffusion equation.)

For this reason, it is expected that the solution of Eq. (4), if it exists, should

be intermediate in both accuracy and cost between the 3D Boltzmann Eq. (1)

and the 3D diffusion Eq. (5).

The proposed 2D/1D Eq. (4) does not have a standard mathematical form,

and we have not been able to reformulate this equation as an integral equation

for which an existence proof could be easily derived. Consequently, we have been

unable to mathematically prove that Eq. (4) with suitable boundary conditions

has a solution. We can, however, prove that if a solution of Eq. (4) exists,

it is unique. In all our subsequent work, we have assumed that a (unique)

solution of the 2D/1D equation exists; nothing in our experience suggests that

this assumption is incorrect.

After formulating the 2D/1D equation and boundary conditions, we began

the process of systematically discretizing this equation. First, we discretized the

new (diffusion) axial derivative term, using a standard 1D diffusion discretiza-

tion in which the unknowns are the cell-averaged flux. The resulting discrete-

in-z equation is a 2D transport equation defined on each axial “slice,” coupled

in a simple way with the directly-above and directly-below slices. These 2D

equations were then discretized in x, y, µ, and ω using the standard 2D Method

of Characteristics (MOC).

Next, we began formulating and studying (by Fourier analysis) iteration

methods for solving the axially-discrete equations. We first considered a method

5



that was similar to that used in the original DeCART, and we showed that it

was unstable for small ∆z (in agreement with observations). However, we also

showed that a straightforward relaxation method was capable of stabilizing

the scheme for arbitrarily small ∆z. We also considered more elaborate (and

faster-converging) schemes using CMFD, and we showed theoretically that these

methods would rapidly converge for large ∆z, but would be unstable for small

∆z. However, a straightforward relaxation again stabilized the CMFD method,

producing faster convergence than the relaxed method without CMFD.

The basic theoretical work had thus been done: the 2D/1D equation

had been (i) formulated, (ii) shown to have desirable accuracy properties, and

(iii) systematically discretized; and (iv) theoretically stable, efficient iteration

schemes had been developed for solving the discrete equations. (Again, see [3]

for details.) It remained to implement and test the new method.

3. THE 2D/1D EQUATION: IMPLEMENTATION AND TESTING

Partly because of the difficulties encountered with DeCART, the CASL

research group here at UM decided to build a new reactor physics code to

(eventually) replace DeCART for CASL applications. The new code would

employ the new 2D/1D method – which was theoretically shown to be accurate,

stable, and to converge with sufficient efficiency. Graduate student Blake Kelley,

who did much of the 2D/1D work, was part of the team that built new code

(called MPACT). Blake spent considerable time working on basic features of the

code that had to be in place before his 2D/1D method could be implemented.

Finally, in January 2013, Blake began implementing 2D/1D. His implementation

was able to solve simple problems by the end of February 2013, and in May 2013

it was solving some standard 3D benchmark problems.

The numerical results seen from the new MPACT code are fully consis-

tent with the pre-existing theories. The iteration scheme encoded in MPACT

converges just as the theory predicts, and the 2D/1D solutions generated by

MPACT converge for all choice of spatial grids. These 2D/1D solutions are

surprisingly accurate for many 3D problems. (As expected, the weaker the z-

dependence, the more accurate is the 2D/1D solution.) For complex 3D prob-

lems, the cost of solving the 2D/1D equations is about a factor of 100 less than

the cost of solving 3D discrete ordinates calculations. Early numerical results

from February 2013 are described in the attached conference paper [4].

Finally, we wish to emphasize that the work performed in this NEUP

project has been extremely important for the neutronics portion of the CASL
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project. The new 2D/1D method was not implemented in a small, limited test

code; it was implemented in MPACT – a new, 3D, multigroup code capable of

solving realistic problems of interest to CASL. The encoded new 2D/1D method

will be used by CASL staff at several universities, national laboratories, and

commercial vendors for much of the 3D neutronics CASL simulations. (This is

discussed in further detail in Section (d) below.)

(c) PUBLICATIONS

Thus far, five publications have been generated by this work. The first two were

full-length conference papers (and presentations) given at the 2012 American Nuclear

Society PHYSOR conference in Knoxville, TN. These papers were concerned with the

first “iteration” part of the project. The third and fourth papers were connected full-

length conference papers (and presentations) given at the 2013 American Nuclear So-

ciety Mathematics and Computation Topical Conference in Sun Valley, Idaho. These

papers both dealt with the theory and implementation of the new 2D/1D equation.

The fifth paper is an expanded version of the first paper on the relationship between

DSA and CMFD; it was recently submitted to the journal Nuclear Science and En-

gineering. During the next year, after Blake completes his PhD dissertation, we plan

to publish several other journal articles on the new 2D/1D method.

[1] E.W. Larsen and B.W. Kelley, “CMFD and Coarse-Mesh DSA,” Proc.

PHYSOR 2012, Advances in Reactor Physics Linking Research, Industry, and

Education, Knoxville, Tennessee, April 15-20, 2012, on CD-ROM, American

Nuclear Society, LaGrange Park, IL (2012).

[2] B.W. Kelley and E.W. Larsen, “CMFD Acceleration of Spatial Domain-

Decomposed Neutron Transport Problems,” Proc. PHYSOR 2012, Advances

in Reactor Physics Linking Research, Industry, and Education, Knoxville, Ten-

nessee, April 15-20, 2012, on CD-ROM, American Nuclear Society, LaGrange

Park, IL (2012).

[3] B.W. Kelley and E.W. Larsen, “2D/1D Approximations to the 3D Neutron

Transport Equation. I: Theory,” Proc. Int. Conf. on Math. & Comp. Methods

Applied to Nucl. Sci. & Eng., Sun Valley, Idaho, May 5-9, 2013, on CD-ROM,

American Nuclear Society, Lagrange Park, IL (2013).

[4] W. Kelley, B. Collins, and E.W. Larsen, “2D/1D Approximations to the 3D

Neutron Transport Equation. I: Theory,” Proc. Int. Conf. on Math. & Comp.
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Methods Applied to Nucl. Sci. & Eng., Sun Valley, Idaho, May 5-9, 2013, on

CD-ROM, American Nuclear Society, Lagrange Park, IL (2013).

[5] E.W. Larsen and B.W. Kelley, “The Relationship Between the CMFD and the

Coarse-Mesh DSA Methods,” Nucl. Sci. Eng., submitted.

(d) OTHER RELATED INFORMATION

The NEUP project that supported this work ended in December 2012, but be-

cause of the work’s importance to CASL, it has been continued, and it will be con-

tinued beyond the filing of this report. Currently, graduate student Blake Kelley is

implementing several theoretically-improved variants of the “basic” 2D/1D method

now in MPACT. We expect this work to continue for several more months, and for

Blake to defend his PhD thesis during the latter part of the fall semester, 2013. After

that, Blake is expected to stay on at UM as a postdoc, to implement several other

refinements in the 2D/1D method that should significantly enhance the method, but

that go beyond the work necessary for his PhD dissertation.

In recent years, KAERI and ANL have generated a new version of DeCART, and

currently, ANL is writing a new PROTEUS code. Both codes use the 2D/1D concept,

but with certain refinements. For example, the new DeCART uses a Simplified P3

approximation for the axial derivative, rather than P1 (diffusion). Also, the codes

use a form of CMFD iteration that is reported to be more stable than the original

DeCART. However, the existing documentation of all this work is very sketchy. Based

on what is available, it is not possible to tell whether (i) the new CMFD-based

iteration scheme is theoretically stable, or (ii) the solution of the discrete equations

has a proper limit as the spatial grid is refined.

In conclusion, we believe that the new 2D/1D method developed in this project

represents an advantageous and mathematically consistent way to simulate realistic

3D light water reactors. Also, we anticipate that a significant amount of future

research – aimed at refining the “diffusion” approximation to the axial derivative –

will be undertaken.

(e) APPENDIX

In the remainder of this report, we include copies of the five publications that

have thus far arisen from this NEUP project.
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CMFD AND COARSE-MESH DSA

Edward W. Larsen and Blake W. Kelley
Department of Nuclear Engineering and Radiological Sciences

University of Michigan
Ann Arbor, Michigan 48109-2104 USA
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ABSTRACT

The Coarse Mesh Finite Difference (CMFD) and Diffusion Synthetic Acceleration (DSA) methods
are two widely-used, independently-developed acceleration methods for iteratively solving
deterministic particle transport simulations. In this paper we show that these methods are related in
the following way: if the standard notion of DSA as a “fine mesh” method is generalized to that of
a coarse mesh method, then the linearized form of CMFD is algebraically equivalent to a coarse
mesh form of DSA. Also, we demonstrate theoretically (via Fourier analysis) and computationally
that CMFD and coarse mesh DSA have nearly the same convergence properties.

Key Words: Deterministic Transport, Iteration Methods, Acceleration Methods

1. INTRODUCTION

For many years, deterministic neutral particle transport codes have used the Source Iteration
(SI) method with an acceleration scheme to iteratively converge the numerical solution [1]. Early
acceleration methods included Fine and Coarse-Mesh Rebalance; these were later superseded by
various forms of Diffusion Synthetic Acceleration (DSA) [1–5]. Still later, the Coarse Mesh
Finite Difference (CMFD) method was independently developed [6–9]. In this paper, we show
that the DSA and CMFD methods have a surprisingly close theoretical relationship.

Outwardly, the DSA and CMFD methods are similar. In both, a single iteration consists of a
“high order” transport sweep followed by a “low-order” diffusion calculation. However, the
diffusion calculations in the two methods are fundamentally different. DSA is usually
implemented as a “fine grid” method (the spatial grids for the transport and diffusion calculations
are the same), whereas CMFD is usually implemented as a “coarse grid” method (the spatial grid
for the diffusion equation is coarser than the spatial grid for the transport equation). Also, the
DSA diffusion calculation is linear and the resulting solution is an additive correction to the most
recent fine-grid scalar flux estimate; the CMFD diffusion calculation is nonlinear and the resulting
solution is a coarse-grid scalar flux estimate.

In 2003, Cho and Park showed by a linearized Fourier analysis and numerical experiments
that the CMFD method converges rapidly when the coarse cells are less than one mean free path
thick; but as the coarse cells become thicker, the method quickly degrades in performance and
then diverges [8]. Cho and Park commented that this qualitatively describes the convergence
properties of an “inconsistent” DSA method, in which (i) the transport and diffusion grids are the
same, and (ii) a standard discretization of the diffusion equation, not chosen to be “consistent”
with the transport discretization, is used [1, 4].
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In this paper we make use of these various ideas and show that the DSA and CMFD
methods have the following relationship:

1. The linearized form of CMFD is algebraically equivalent to a “coarse mesh DSA” (or
CMDSA) method.

2. A Fourier analysis accurately predicts the convergence properties of the CMDSA method.
(This extends the previous work by Cho and Park [8].)

3. In numerical simulations, the (linear) CMDSA and (nonlinear) CMFD methods have nearly
the same convergence properties. Thus, the Fourier analysis results accurately describe both
the linear CMDSA and the nonlinear CMFD methods.

Therefore, rather than being two unrelated methods, DSA and CMFD have close theoretical
ties. Of course, the methods have differences. Because of its nonlinearities, CMFD is easier than
DSA to apply to the outer iterations of eigenvalue problems (an advantage); but CMFD can fail to
converge if any angular flux iterate becomes negative (a disadvantage). However, for problems on
which both methods can be successfully used, our theory predicts – and our numerical results
confirm – that the two methods have nearly the same convergence properties.

The remainder of this paper is organized as follows. In Section II a 1-D SN fixed-source
problem is described, and for this problem the (linear) CMDSA and (nonlinear) CMFD methods
are formulated. In Sec. III the CMFD method is linearized, and the resulting “linearized CMFD”
(LCMFD) equations are shown to be algebraically equivalent to the CMDSA equations. Section
IV presents the results of numerical experiments showing that the (linear) CMDSA and
(nonlinear) CMFD methods have nearly the same convergence properties. Section V concludes
this paper with a brief discussion.

2. THE CMFD AND CMDSA METHODS

Here we describe the CMFD and CMDSA methods for a planar geometry fixed-source
problem on the system 0 ≤ x ≤ X:

µ
∂ψ

∂x
(x, µ) + σt(x)ψ(x, µ) =

σs(x)

2

∫ 1

−1

ψ(x, µ′)dµ′ +
q(x)

2
, (1a)

ψ(0, µ) = ψb(µ) , 0 < µ ≤ 1 , (1b)

ψ(X,µ) = ψb(µ) , −1 ≤ µ < 0 . (1c)

Using the familiar discrete ordinates approximation in angle and an arbitrary weighted diamond
approximation in space, we discretize Eqs. (1) as follows:

µn

hj

(
ψn,j+1/2 − ψn,j−1/2

)
+ σt,jψn,j =

σs,j

2

N∑
m=1

ψm,jwm +
qj
2
, (2a)

ψn,j =

(
1 + αn,j

2

)
ψn,j+1/2 +

(
1− αn,j

2

)
ψn,j−1/2 , (2b)

ψn,1/2 = ψb
n , µn > 0 , (2c)

ψn,J+1/2 = ψb
n , µn < 0 . (2d)
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The notation in Eqs. (1) and (2) is standard. The subscript j, running from 1 ≤ j ≤ J ,
denotes the (fine) spatial cell, which has width hj , cross sections σt,j and σs,j , and constant
internal source qj . The subscript n, running from 1 ≤ n ≤ N , denotes the direction cosine of
flight. The constants αn,j determine the specific spatial discretization method, e.g.

αn,j =

{
0 , Diamond Difference ,

1+e−σt,jhj/µn

1−e−σt,jhj/µn
− 2µn

σt,jhj
, Step Characteristic .

(3)

The CMFD and CMDSA methods begin each iteration with a standard fine-mesh transport
sweep. At the beginning of the `th iteration, the fine-mesh cell-averaged scalar fluxes

φ
(`)
0,j =

N∑
n=1

ψ
(`)
n,jwn , 1 ≤ j ≤ J (4)

are assumed known, either from the previous iteration or from the initial guess if ` = 0. Then the
following version of Eqs. (2):

µn

hj

(
ψ

(`+1/2)
n,j+1/2 − ψ

(`+1/2)
n,j−1/2

)
+ σt,jψ

(`+1/2)
n,j =

σs,j

2
φ

(`)
0,j +

qj
2
, (5a)

ψ
(`+1/2)
n,j =

(
1 + αn,j

2

)
ψ

(`+1/2)
n,j+1/2 +

(
1− αn,j

2

)
ψ

(`+1/2)
n,j−1/2 , (5b)

ψ
(`+1/2)
n,1/2 = ψb

n , µn > 0 , (5c)

ψ
(`+1/2)
n,J+1/2 = ψb

n , µn < 0 , (5d)

is solved by a standard transport sweep for the ψ(`+1/2) unknowns. During this sweep, the
cell-averaged fluxes and (for CMFD) the cell-edge currents are computed and stored:

φ
(`+1/2)
0,j =

N∑
n=1

ψ
(`+1/2)
n,j wn , (6a)

φ
(`+1/2)
1,j+1/2 =

N∑
n=1

µnψ
(`+1/2)
n,j+1/2wn . (6b)

In the classic Source Iteration (SI) method, the fine-mesh scalar fluxes for iteration `+ 1 are
defined simply from Eqs. (6) by

φ
(`+1)
0,j = φ

(`+1/2)
0,j , 1 ≤ j ≤ J . (7)

However, this method is very slowly converging for problems in which the system is optically
thick and highly scattering. The CMDSA and CMFD methods retain Eqs. (5) and (6), but Eq. (7)
is replaced by a more sophisticated calculation that can greatly reduce the total number of
iterations.

To proceed, we introduce the notation for the coarse spatial grid. This grid contains K ≤ J
disjoint “coarse” spatial cells, each consisting of a contiguous union of fine-mesh cells. If

2012 Advances in Reactor Physics Linking Research, Industry, and Education (PHYSOR 2012)
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pk = the number of fine cells in coarse cell k (ordered from left to right as k increases), then for
0 ≤ k ≤ K:

P0 = 0 , (8a)

Pk =
k∑

k′=1

pk′ = the number of fine cells in the first k coarse cells , (8b)

PK = J = the total number of fine cells , (8c)

and
Xk+1/2 = xPk+1/2

= the right edge of the kth coarse cell

= the left edge of the (k + 1)st coarse cell . (9)

The fine and coarse spatial cells are depicted in Figure 1:

  1
st

 coarse cell
  2

nd
 coarse cell

      
0 = X

1 / 2   
X

3 / 2   
X

5 / 2

     
0 = x

1 / 2
  
x

P
1
+1 / 2

  
x

P
2
+1 / 2

  
x

P
k−1

+1 / 2
  
x

P
k
+1 / 2

  
x

P
J−1

+1 / 2

  
X

K +1 / 2
= X

  
X

K −1 / 2  
X

k −1 / 2   
X

k +1 / 2

  j
th

 coarse cell   k

 

  
  

th
 coarse cell K

  
x

I +1 / 2
= X

Figure 1. Fine and Coarse Spatial Grids

Next, we introduce the notation:∑
j∈k

=

Pk∑
j=Pk−1+1

= the sum over all fine cells j in coarse cell k , (10)

and for 1 ≤ k ≤ K we define the coarse cell quantities:

∆k =
∑
j∈k

hj = width of coarse cell k , (11a)

Φ0,k =
1

∆k

∑
j∈k

φ0,jhj = volume-averaged scalar flux in coarse cell k , (11b)

Qk =
1

∆k

∑
j∈k

qjhj = volume-averaged source in coarse cell k , (11c)

Φ1,k+1/2 = φ1,Pk+1/2 = current on the right edge of coarse cell k , (11d)

Σu,k =
1

∆k

∑
j∈k

σu,jhj

= volume-averaged cross section in coarse cell k (u = t, s, γ) , (11e)

Σ
(`+1/2)
u,k =

∑
j∈k σu,jφ

(`+1/2)
0,j hj∑

j∈k φ
(`+1/2)
0,j hj

= flux-weighted cross section in coarse cell k (u = t, s, γ) . (11f)
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In these definitions, fine-cell quantities are denoted by lower-case letters; coarse-cell quantities
are denoted by upper-case letters.

2.1. The Coarse Mesh Finite Difference (CMFD) Method

To derive the CMFD method, we operate on Eq. (5a) by
∑N

n=1(·)wn and get

1

hj

(
φ

(`+1/2)
1,j+1/2 − φ

(`+1/2)
1,j−1/2

)
+ σt,jφ

(`+1/2)
0,j = σs,jφ

(`)
0,j + qj . (12)

Next we operate on Eq. (12) by
∑

j∈k(·)hj . Using the definitions (11), we obtain for each coarse
cell k:

Φ
(`+1/2)
1,k+1/2 − Φ

(`+1/2)
1,k−1/2 + Σ

(`+1/2)
t,k Φ

(`+1/2)
0,k ∆k = Σ

(`)
s,kΦ

(`)
0,k∆k +Qk∆k . (13)

Also, we define D̂(`+1/2)
k+1/2 at each interior coarse cell edge (1 ≤ k ≤ K − 1) by:

Φ
(`+1/2)
1,k+1/2 = −2

3

(
Φ

(`+1/2)
0,k+1 − Φ

(`+1/2)
0,k

Σ
(`+1/2)
t,k+1 ∆k+1 + Σ

(`+1/2)
t,k ∆k

)
+ D̂

(`+1/2)
k+1/2

(
Φ

(`+1/2)
0,k+1 + Φ

(`+1/2)
0,k

)
. (14)

(Note that D̂(`+1/2)
k+1/2 is a transport correction to Fick’s Law.) In addition, at the left edge of the

system, we define B(`+1/2)
1/2 by

2Φ+
1,1/2 = 2

∑
µn>0

µnψ
b
nwn =

N∑
n=1

(
µn + |µn|

)
ψ

(`+1/2)
n,1/2 wn

= Φ
(`+1/2)
1,1/2 +

(∑N
n=1 |µn|ψ(`+1/2)

n,1/2 wn∑N
n=1 Ψ

(`+1/2)
n,1 wn

)
Φ

(`+1/2)
0,1

= Φ
(`+1/2)
1,1/2 +

(
B

(`+1/2)
1/2

)
Φ

(`+1/2)
0,1 , (15a)

and at the right edge of the system, we define B(`+1/2)
K+1/2 by

2Φ+
1,K+1/2 = 2

∑
µn<0

|µn|ψb
nwn =

N∑
n=1

(
− µn + |µn|

)
ψ

(`+1/2)
n,J+1/2wn

= −Φ
(`+1/2)
1,K+1/2 +

(∑N
n=1 |µn|ψ(`+1/2)

n,J+1/2wn∑N
n=1 Ψ

(`+1/2)
n,K wn

)
Φ

(`+1/2)
0,K

= −Φ
(`+1/2)
1,K+1/2 +

(
B

(`+1/2)
K+1/2

)
Φ

(`+1/2)
0,K . (15b)

At the conclusion of the transport sweep, (i) the ψ(`+1/2) quantities have been determined, (ii)
Eqs. (13) are satisfied for each coarse cell k, (iii) Eq. (14) defines D̂(`+1/2)

k+1/2 at interior coarse cell

edge, and (iv) Eqs. (15) define B(`+1/2)
1/2 and B(`+1/2)

K+1/2 at the left and right edges of the system. It is
now possible to define, in terms of these equations, acceleration equations for the coarse
cell-averaged scalar fluxes and the coarse cell-edge currents.
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In the CMFD method, Φ
(`+1)
0,k and Φ

(`+1)
1,k+1/2 are defined to be the solution of the following

altered versions of Eqs. (13)-(15):

Φ
(`+1)
1,k+1/2 − Φ

(`+1)
1,k−1/2 + Σ

(`+1/2)
t,k Φ

(`+1)
0,k ∆k = Σ

(`+1/2)
s,k Φ

(`+1)
0,k ∆k +Qk∆k , (16a)

Φ
(`+1)
1,k+1/2 = −2

3

(
Φ

(`+1)
0,k+1 − Φ

(`+1)
0,k

Σ
(`+1/2)
t,k+1 ∆k+1 + Σ

(`+1/2)
t,k ∆k

)
+ D̂

(`+1/2)
k+1/2

(
Φ

(`+1)
0,k+1 + Φ

(`+1)
0,k

)
, (16b)

2Φ+
1,1/2 = Φ

(`+1)
1,1/2 +

(
B

(`+1/2)
1/2

)
Φ

(`+1)
0,1 , (16c)

2Φ+
1,K+1/2 = −Φ

(`+1)
1,K+1/2 +

(
B

(`+1/2)
K+1/2

)
Φ

(`+1)
0,J . (16d)

The coarse cell-edge currents in these equations, Φ
(`+1)
1,k+1/2, can be algebraically eliminated,

yielding a tri-diagonal system of K equations for the coarse cell-averaged scalar fluxes Φ
(`+1)
0,k ,

1 ≤ k ≤ K. After Φ
(`+1)
0,k are obtained, the accelerated fine-cell scalar fluxes are defined as

φ
(`+1)
0,j = φ

(`+1/2)
0,j

(
Φ

(`+1)
0,k

Φ
(`+1)
0,k

)
, j ∈ k , 1 ≤ k ≤ K . (17)

This completes the description of the CMFD method.

2.2. The Coarse Mesh Diffusion Synthetic Acceleration (CMDSA) Method

To derive the CMDSA method, we define the exact fine-mesh iteration errors after the `th

transport sweep:

f1,j+1/2 = φ1,j+1/2 − φ
(`+1/2)
1,j+1/2 , (18a)

f0,j = φ0,j − φ
(`+1/2)
0,j . (18b)

These can easily be shown, using Eq. (12), to satisfy:

1

hj

(
f1,j+1/2 − f1,j−1/2

)
+ σa,jf0,j = σs,j

(
φ

(`+1/2)
0,j − φ

(`)
0,j

)
, 1 ≤ k ≤ K .

Equivalently, for each j ∈ k,

1

hj

(
f1,j+1/2 − f1,j−1/2

)
+ Σa,kf0,j = σs,j

(
φ

(`+1/2)
0,j − φ

(`)
0,j

)
+
(
Σa,k − σa,j

)
f0,j . (19)

Operating on this result by
∑

j∈k(·)hj and defining the coarse cell quantities

F0,k =
1

∆k

∑
j∈k

f0,jhj , (20a)

F1,k+1/2 = f1,Pk+1/2 , (20b)
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we get:

F1,k+1/2 − F1,k−1/2 + Σa,kF0,k∆k =
∑
j∈k

σs,j

(
φ

(`+1/2)
0,j − φ

(`)
0,j

)
hj

+
∑
j∈k

(
Σa,k − σa,j

)
f0,jhj . (21)

Eqs. (21) are K equations for the 2K + 1 quantities F0,k and F1,k+1/2. (Also, the fine-mesh
quantities f0,j on the right side of these equations are not known.)

In the CMDSA method, F (`+1)
0,k and F (`+1)

1,k+1/2 are determined by the following approximation
to Eqs. (21):

F
(`+1)
1,k+1/2 − F

(`+1)
1,k−1/2 + Σa,kF

(`+1)
0,k ∆k =

∑
j∈k

σs,j

(
φ

(`+1/2)
0,j − φ

(`)
0,j

)
hj , 1 ≤ k ≤ K , (22a)

together with the “diffusion” assumptions:

F
(`+1)
1,k+1/2 = −2

3

(
F

(`+1)
0,k+1 + F

(`+1)
0,k

Σt,k+1∆k+1 + Σt,k∆k

)
, 1 ≤ k ≤ K − 1 , (22b)

0 = F
(`+1)
1,1/2 + βF

(`+1)
0,1 , (22c)

0 = −F (`+1)
1,K+1/2 + βF

(`+1)
0,K , (22d)

where

β ≡ 1

2

(
N∑

n=1

|µn|wn

)
≈ 1

2
. (23)

The cell-edge current corrections F (`+1)
1,k+1/2 in Eqs. (22) can be algebraically eliminated, yielding a

tridiagonal system of K equations for F (`+1)
0,k , 1 ≤ k ≤ K. After these quantities are calculated,

the accelerated fine-cell scalar fluxes are defined as

φ
(`+1)
0,j = φ

(`+1/2)
0,j + F

(`+1)
0,k , j ∈ k , 1 ≤ k ≤ K . (24)

This completes the description of the CMDSA method.

3. THE LINEARIZED COARSE MESH FINITE DIFFERENCE (LCMFD) METHOD

To describe the new linearization procedure, we consider the transport problem defined by
Eqs. (2), with

qj = Σa,jΛ + εq̃j , (25a)

ψb
n =

Λ

2
+ εψ̃b

n , (25b)

where Λ is an arbitrary constant and ε� 1. For ε = 0, the resulting problem has the exact “flat”
solution

ψn,j = ψn,j+1/2 =
Λ

2
.
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If we set

ψn,j =
Λ

2
+ εψ̃n,j , (26a)

ψn,j+1/2 =
Λ

2
+ εψ̃n,j+1/2 , (26b)

then Eqs. (2) for ψn,j and ψn,j+1/2 easily reduce to

µn

hj

(
ψ̃n,j+1/2 − ψ̃n,j+1/2

)
+ σt,jψ̃n,j =

σs,j

2

N∑
m=1

ψ̃m,jwm +
q̃j
2
, (27a)

ψ̃n,j =

(
1 + αn,j

2

)
ψ̃n,j+1/2 +

(
1− αn,j

2

)
ψ̃n,j−1/2 , (27b)

ψ̃n,1/2 = ψ̃b
n , µn > 0 , (27c)

ψ̃n,J+1/2 = ψ̃b
n , µn < 0 . (27d)

These equations are identical to (2), except that ψ and q have been replaced by ψ̃ and q̃. (Of
course, this happens because Eqs. (2) are linear.)

Because the CMDSA method is linear, the CMDSA equations obtained by introducing Eqs.
(25) and (26) are also the same as the original equations, but with ψ’s, φ’s, and q’s replaced by
ψ̃’s, φ̃’s, and q̃’s. Explicitly, the fine-mesh transport sweep (5) becomes:

µn

hj

(
ψ̃

(`+1/2)
n,j+1/2 − ψ̃

(`+1/2)
n,j−1/2

)
+ σt,jψ̃

(`+1/2)
n,j =

Σs,j

2
φ̃

(`)
0,j +

q̃j
2
, (28a)

ψ̃
(`+1/2)
n,j =

(
1 + αn,j

2

)
ψ̃

(`+1/2)
n,j+1/2 +

(
1− αn,j

2

)
ψ̃

(`+1/2)
n,j−1/2 , (28b)

ψ̃
(`+1/2)
n,1/2 = ψ̃b

n , µn > 0 , (28c)

ψ̃
(`+1/2)
n,J+1/2 = ψ̃b

n , µn < 0 , (28d)

the “updated” scalar fluxes are:

φ̃
(`+1/2)
0,j =

N∑
n=1

ψ̃
(`+1/2)
n,j wn , (29)

the low-order coarse-grid “diffusion” Eqs. (22) (with F̃ = εF ) become:

F̃
(`+1)
1,k+1/2−F̃

(`+1)
1,k−1/2 + Σa,kF̃

(`+1)
0,k ∆k =

∑
j∈k

σs,j

(
φ̃

(`+1/2)
0,j − φ̃

(`)
0,j

)
hj ,

1 ≤ k ≤ K , (30a)

F̃
(`+1)
1,k+1/2 = −2

3

(
F̃

(`+1)
0,k+1 − F̃

(`+1)
0,k

Σt,k+1∆k+1 + Σt,k∆k

)
, 1 ≤ k ≤ K − 1 , (30b)

0 = F̃
(`+1)
1,1/2 + βF̃

(`+1)
0.1 , (30c)

0 = −F̃ (`+1)
1,K+1/2 + βF̃

(`+1)
0,K , (30d)
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and the fine-grid, accelerated scalar flux equation (24) becomes:

φ̃
(`+1)
0,j = φ̃

(`+1/2)
0,j + F̃

(`+1)
0,k , j ∈ k , 1 ≤ k ≤ K . (31)

To repeat, these equations are identical to the original equations, except that all quantities scaled
by ε now have a tilde. This occurs because, like the original transport problem, the CMDSA
equations are linear.

The CMFD method however is nonlinear, and this method is altered when Eqs. (25) and
(26) are introduced and the resulting equations are expanded in powers of ε. For the CMFD
method, the (linear) fine-mesh transport sweep and “update” equations are the same as with
CMDSA, and are described by Eqs. (28) and (29).

Introducing Eqs. (25) and (26) into (16) and expanding in ε, we obtain a different set of
low-order diffusion equations for Φ̃

(`+1)
0,k . A key identity is:

Σ
(`+1/2)
a,k Φ

(`+1)
0,k =

∑
j∈k σa,j

(
Λ + εφ̃

(`+1/2)
0,j

)
hj∑

j∈k

(
Λ + εφ̃

(`+1/2)
0,j

)
hj

[
Λ + εΦ̃

(`+1)
0,k

]

=
ΛΣa,k∆k + ε

∑
j∈k σa,jφ̃

(`+1/2)
0,j hj

Λ∆k + ε
∑

j∈k φ̃
(`+1/2)
0,j hj

[
Λ + εΦ̃

(`+1)
0,k

]
= · · ·

= Σa,kΛ + ε

[
1

∆k

∑
j∈k

(σa,j − Σa,k)φ̃
(`+1/2)
0,j hj + Σa,kΦ̃

(`+1)
0,k

]
. (32)

Eq. (16a) becomes:

Φ̃
(`+1)
1,k+1/2 − Φ̃

(`+1)
1,k−1/2 + Σa,kΦ̃

(`+1)
0,k ∆k = Q̃k∆k +

∑
j∈k

(
Σa,k − σa,j

)
φ̃

(`+1/2)
0,j hj . (33)

Also, Eq. (14) for D̂(`+1/2)
k+1/2 yields

D̂
(`+1/2)
k+1/2 =

ε

2Λ

[
Φ̃

(`+1/2)
1,k+1/2 +

2

3

(
Φ̃

(`+1/2)
0,k+1 − Φ̃

(`+1/2)
0,k

Σt,k+1∆k+1 + Σt,k∆k

)]
+O(ε2) . (34)

Using this result in Eq. (16b), we obtain for 1 ≤ k ≤ K − 1:

Φ̃
(`+1)
1,k+1/2 = −2

3

(
Φ̃

(`+1)
0,k+1 − Φ̃

(`+1)
0,k

Σt,k+1∆k+1 + Σt,k∆k

)
+ Φ̃

(`+1/2)
1,k+1/2 +

2

3

(
Φ̃

(`+1/2)
0,k+1 − Φ̃

(`+1/2)
0,k

Σt,k+1∆k+1 + Σt,k∆k

)
. (35)

Introducing Eqs. (25) and (26) into Eq. (16c), we get

2
∑
µn>0

µn

(
Λ

2
+ εψ̃b

n

)
wn = εΦ̃

(`+1)
1,1/2 +

∑N
n=1 |µn|

(
Λ
2

+ εψ̃
(`+1/2)
n,1/2

)
wn

Λ + εΦ̃
(`+1/2)
0,1

(
Λ + εΦ̃

(`+1)
0,1

)
.
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Expanding this equation in ε and discarding the O(ε2) terms, we obtain

Φ̃
(`+1)
1,1/2 + βΦ̃

(`+1)
0,1 = Φ̃

(`+1/2)
1,1/2 + βΦ̃

(`+1/2)
0,1 . (36a)

At the right edge of the system, a similar result holds:

−Φ̃
(`+1)
1,K+1/2 + βΦ̃

(`+1)
0,J = −Φ̃

(`+1/2)
1,K+1/2 + βΦ̃

(`+1/2)
0,K . (36b)

Finally, the fine-grid acceleration Eq. (17) becomes, for j ∈ k:

Λ + εφ̃
(`+1)
0,j =

(
Λ + εφ̃

(`+1/2)
0,j

)( Λ + εΦ̃
(`+1)
0,k

Λ + εΦ̃
(`+1/2)
0,k

)
. (37)

Expanding this result in powers of ε and dropping terms of O(ε2), we obtain

φ̃
(`+1)
0,j = φ̃

(`+1/2)
0,j +

(
Φ̃

(`+1)
0,k − Φ̃

(`+1/2)
0,k

)
, j ∈ k , 1 ≤ k ≤ K . (38)

To summarize, the linearized CMFD method is defined by:

1. Transport sweep: Eqs. (28)
2. Updated scalar flux: Eq. (29)
3. Low-order coarse-grid diffusion equation: Eqs. (33), (35), (36)
4. Accelerated fine-grid scalar fluxes: Eq. (38)

The first two (transport sweep) steps [Eqs. (28) and (29)] are identical for the CMDSA and
LCMFD methods. The low-order CMDSA Eqs. (22) and (24) are for F̃ (`+1)

0,k and F̃ (`+1)
1,k+1/2, while

the low-order LCMFD Eqs. (33), (35), (36), and (38) are for Φ̃
(`+1)
0,k and Φ̃

(`+1)
1,k+1/2. The low-order

LCMFD equations are equivalent to the low-order CMDSA equations if:

F̃
(`+1)
0,k = Φ̃

(`+1)
0,k − Φ̃

(`+1/2)
0,k , (39a)

F̃
(`+1)
1,k+1/2 = Φ̃

(`+1)
1,k+1/2 − Φ̃

(`+1/2)
1,k+1/2 . (39b)

To confirm these identities, we show that by assuming them, the low-order LCMFD equations
(which contain F̃ (`+1)) become algebraically equivalent to the low-order CMDSA equations
(which contain Φ̃(`+1)).

At the conclusion of a transport sweep, Eq. (28a) holds, so

1

hj

(
φ̃

(`+1/2)
1,j+1/2 − φ̃

(`+1/2)
1,j−1/2

)
+ σt,jφ̃

(`+1/2)
0,j = σs,jφ̃

(`)
0,j + q̃j .

Equivalently,

1

hj

(
φ̃

(`+1/2)
1,j+1/2 − φ̃

(`+1/2)
1,j−1/2

)
+ Σa,kφ̃

(`+1/2)
0,j = σs,j

(
φ̃

(`)
0,j − φ̃

(`+1/2)
0,j

)
+ q̃j

+ (Σa,k − σa,j) φ̃
(`+1/2)
0,j . (40)
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Operating on this result by
∑

j∈k(·)hj , we obtain

Φ̃
(`+1/2)
1,k+1/2 − Φ̃

(`+1/2)
1,k−1/2 + Σa,kΦ̃

(`+1/2)
0,k ∆k =

∑
j∈k

σs,j

(
φ̃

(`)
0,j − φ̃

(`+1/2)
0,j

)
hj + Q̃k∆k

+
∑
j∈k

(Σa,k − σa,j) φ̃
(`+1/2)
0,j hj . (41)

Subtracting Eq. (41) from the LCMFD balance Eq. (33) and using the definitions (39), we get

F̃
(`+1)
1,k+1/2 − F̃

(`+1)
1,k−1/2 + Σa,kF̃

(`+1)
0,k ∆k =

∑
j∈k

σs,j

(
φ̃

(`+1/2)
0,j − φ̃

(`)
0,j

)
hj . (42)

This is the CMDSA balance Eq. (30a).

Next, Eqs. (35) and (39) immediately give

F̃
(`+1)
1,k+1/2 = −2

3

(
F̃

(`+1)
0,k+1/2 − F̃

(`+1)
0,k

Σt,k+1∆k+1 + Σt,k∆k

)
. (43)

This is the CMDSA Fick’s Law, Eq. (30b).

Next, Eqs. (36) and (39) immediately give

0 = F̃
(`+1)
1,1/2 + βF̃

(`+1)
0,1 , (44a)

0 = −F̃ (`+1)
1,K+1/2 + βF̃

(`+1)
0,K . (44b)

These are the CMDSA boundary conditions, Eqs. (30c) and (30d).

Finally, Eqs. (38) and (39) become

φ̃
(`+1)
0,j = φ̃

(`+1/2)
0,j + F̃

(`+1)
0,k , j ∈ k , 1 ≤ k ≤ K . (45)

This is the CMDSA acceleration Eq. (31).

Eqs. (42)-(45) confirm that the LCMFD and CMDSA methods are algebraically equivalent.

Previously, linearizations of nonlinear transport acceleration methods have been obtained
only for homogeneous systems with flat sources and uniform grids [8,10–13]. In the more general
linearization performed in this paper, the physical system does not need to be homogeneous, the
sources do not need to be flat, and the spatial grid does not need to be uniform. This establishes a
much closer theoretical link between the nonlinear CMFD and the linear CMDSA methods –
these methods are nearly equivalent over a larger class of problems.

The details of the CMDSA discretization method discussed in this paper were chosen to
exactly match the linearized CMFD discretization method. However, there are choices in how
these discretizations can be done (particularly in the choice of boundary conditions), and these
choices determine whether there is exact algebraic equivalence between the LCMFD and
CMDSA methods. The main theme of this paper is that for any specific CMFD method, the
linearization of this method (in the manner shown above) is algebraically equivalent to a specific
CMDSA method.
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4. NUMERICAL RESULTS

We have performed a Fourier analysis of the LCMFD and CMDSA methods, but we do not
present this work here because of its similarity to the previous work of Cho and Park [8].
However, we do include several figures depicting spectral radii obtained by (i) Fourier analysis
predictions, and (ii) direct numerical simulations of the CMFD and CMDSA methods.

The planar geometry problem for measuring the spectral radius of the CMDSA method has
a vacuum boundary on the left edge and a reflecting boundary on the right edge with no interior
source. The solution of this problem is ψ = 0. We initialize the iterative CMDSA method with a
step function (to seed a large number of Fourier modes) and observe the solution’s convergence to
zero. For this problem, the spectral radius (defined as the asymptotic rate of convergence) is
estimated as:

ρ =

∣∣∣∣φ(`+1)
∣∣∣∣

||φ(`)||
. (46)

If ρ ≥ 1, the method diverges; but if ρ < 1, the method converges, and the smaller the value of ρ,
the faster the convergence.

Unfortunately, this problem cannot measure the spectral radius of CMFD because the lack
of an interior and boundary source causes the low-order problem to produce the correct zero
solution in a single iteration. Instead, we choose the same boundary conditions but with a step
function source within the system. The CMFD spectral radius can then be estimated as:

ρ =

∣∣∣∣φ(`+1) − φ(`)
∣∣∣∣

||φ(`) − φ(`−1)||
. (47)

The following figures present theoretical and experimental estimates of ρ for various coarse
cell optical thicknesses, scattering ratios, and numbers of fine cells per coarse cell.

Figure 2. p = 1 and c = 0.9 Figure 3. p = 1 and c = 0.99

Figures 2 and 3 describe fine mesh acceleration (each coarse spatial cell contains p = 1 fine
spatial cell). In this case, the CMDSA method is the same as the standard DSA method. For small
scattering ratios c, the CMDSA and CMFD methods are seen to be stable for all coarse spatial
cells and efficient for most coarse spatial cells. However, as c increases, the methods become
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unstable for coarse spatial cells greater than about one mean free path thick. The CMDSA and
CMFD methods have almost identical spectral radii, and the agreement between theory (Fourier
analysis) and experiment (numerical simulation) is seen to be excellent.

Figures 4 and 5 describe coarse mesh acceleration in which each coarse spatial cell
contains p = 2 fine mesh cells. Qualitatively, the results are similar to fine mesh acceleration: the
CMDSA and CMFD methods converge rapidly for coarse spatial cells less than about one mean
free path thick, but for scattering ratios near unity, the methods become unstable for coarse spatial
cells greater than about one mean free path. The p = 2 spectral radii are higher than the p = 1
spectral radii, as should be expected because the same coarse mesh calculation is now
accelerating twice as many fine-mesh unknowns. As before, the CMDSA and CMFD methods
have almost the same spectral radii; the agreement between theory and experiment is excellent.

Figure 4. p = 2 and c = 0.9 Figure 5. p = 2 and c = 0.99

Figures 6 and 7 describe coarse mesh acceleration with p = 4 fine cells per coarse spatial
cell. The trends noted previously are continued in these figures, including the excellent agreement
between theory and experiment.

Figure 6. p = 4 and c = 0.9 Figure 7. p = 4 and c = 0.99

Finally, we note that our numerical results are consistent with the results obtained previously by
Cho and Park [8].
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5. CONCLUSIONS

We have shown and demonstrated numerically a close theoretical relationship between the
DSA and CMFD methods for accelerating the iterative convergence of particle transport
calculations. These two iteration methods were developed independently and have been used for
many years in production neutron transport codes.

To the reader who has patiently followed the detailed mathematics in the earlier part of this
paper, a reasonable question is: why does the algebraic equivalence hold between CMFD and
CMDSA? The answer is that the two methods are, at their root, sufficiently similar. Both methods
employ a fine grid transport sweep, a low-order diffusion equation containing “consistency” terms
from the transport sweep, and an update equation in which the low-order solution is used to
improve the fine-grid scalar fluxes. The basic difference between the two methods (CMFD is
nonlinear, DSA is linear) has obfuscated the two methods’ otherwise close theoretical
relationship.

To the reader who is familiar with the history of DSA and the long (and only partly
successful) effort to derive unconditionally stable versions of this method for specified transport
discretization schemes, another natural question is: if CMFD is stable only for coarse spatial cells
less than about one mean free path thick, then how could this method be so successful (i.e. stable)
in practical problems? The answer seems to have two parts:

1. For practical multigroup problems, CMFD is observed to be more stable than for one-group
problems; the “practical” borderline of instability becomes 2-3 mean free paths [14].

2. In practice, CMFD is used to accelerate the convergence of multigroup reactor core
simulations in which a coarse spatial cell is chosen to be a single pin cell – which is roughly
1-2 mean free paths across, and hence within multigroup CMFD’s “practical” range of
stability. The fine spatial cells (within a coarse cell) are used to resolve the fuel, cladding,
and moderator regions inside a pin cell. CMFD has been highly successful for reactor
physics problems in which a coarse cell is a single pin cell, but it is not widely understood
that if the coarse grid is sufficiently enlarged to include multiple pin cells, the method will
become divergent.

The results in this paper facilitate the following prediction: if a CMDSA method were
implemented to accelerate the inner iterations of a k-eigenvalue problem (in which the fission
source and eigenvalue estimate are fixed), it would have the same convergence properties as
CMFD for problems in which CMFD converges. However, if CMFD fails to converge the inner
iterations because the inner iterations produce a negative estimate of the scalar flux en route to
convergence, the CMDSA method will converge. Thus: CMDSA, because of its linearity, should
be advantageous for accelerating the inner iterations, while CMFD, because of its nonlinearity,
should be advantageous for accelerating the outer iterations. We plan to test this prediction in
future work.
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ABSTRACT

A significant limitation to parallelizing the solution of neutron transport problems is the need for
sweeps across the entirety of the problem domain. Angular domain decomposition is common
practice, as the equations for each direction are independent aside from their shared
scattering/fission source. Accordingly, spatial domain decomposition does not naturally arise in the
transport equations and is therefore less frequent in practice. In this paper, we show that a neutron
transport domain can be straightforwardly divided into independent, parallelizable sweep regions,
globally linked with the standard CMFD method, with an additional update equation. We verify,
theoretically (via Fourier analysis) and computationally, that the convergence properties of this
method are stable and nominally as rapid as standard CMFD.

Key Words: CMFD, spatial domain decomposition, Fourier Analysis

1. INTRODUCTION

High performance computing requires that algorithms be parallel. For the method of
characteristics and discrete ordinates, it is standard practice to parallelize the angular modes of
the sweeps using multiple threads and message passing. However, this is often done such that
each distributed memory process has to retain information about the global problem. By
decomposing in space, it is possible to distribute rather than replicate the problem information
over distributed memory architectures.

Azmy [1] parallelizes the whole-core sweeps by distributing computation effort following a
wave-front sweeping progression; this method still requires that some of the sub-domain sweeps
must be solved sequentially. Meanwhile, Van Criekingen [2] parallelizes the sweeps by
implementing overlapping domain decomposition on the even parity transport equations;
however, the overlapping domain decomposition repeats problem information in the sub-domains
and has no explicit acceleration other than the overlapping regions.

Adams [3] and Zhang [4] both implement domain decomposition through algebraic means, while
Santandrea [5] does this by making careful approximations to the sub-domain boundaries.
Previously, Yavuz and Larsen [6] implemented a non-overlapping spatial domain decomposition
for transport problems in which the scattering source and sub-domain boundary quantities were
accelerated with DSA [7–11]; unfortunately, DSA is only well-suited for problems with a
rectilinear mesh and cannot directly accelerate eigenvalue problems.
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In this paper we introduce an algorithm based on the well known CMFD method [12–15] with
slight modifications for effectively sweeping and accelerating MOC and SN methods on parallel
frameworks. We provide experimental and theoretical estimates of the spectral radius to verify
these claims.

2. THE SPATIAL DOMAIN DECOMPOSITION CMFD (SDD-CMFD) METHOD

Here we describe the SDD-CMFD method for a planar geometry fixed-source problem on the
system 0 ≤ x ≤ X , with a vacuum boundary condition on the left side of the problem and a
reflecting boundary condition on the right side:

µ
∂ψ

∂x
(x, µ) + σt(x)ψ(x, µ) =

σs(x)

2

∫ 1

−1

ψ(x, µ′)dµ′ +
q(x)

2
, (1a)

ψ(0, µ) = 0 , 0 < µ ≤ 1 , (1b)
ψ(X,µ) = ψ(X,−µ) , −1 ≤ µ < 0 . (1c)

Before discretizing the system, we wish to orient the reader with the three levels of spatial
discretization referred to in the paper. At the broadest level are the sweep regions–these can be
thought of as having dimensions like an assembly. Zooming in on a sweep region reveals several
coarse cells–these can be thought of as having dimensions like a pin cell or quarter pin cell.
Zooming in on a coarse cell reveals several fine cells–these can be thought of as having
dimensions to describe the material regions within a pin cell. This is illustrated below in Fig. (1).

· · ·
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Figure 1: Geometry Scales used for SDD-CMFD

The algorithm begins with independent transport sweeps over the L spatially decoupled sweep
regions. These sweeps generate fine cell-averaged scalar fluxes, coarse cell-edge partial currents,
and angular fluxes on the sweep region boundaries–these are the primary unknowns in the
discrete problem. This information is used to develop the coarse cell-homogenized coefficients
for the CMFD solution. The CMFD acceleration occurs on the global system and provide updates
to both the fine cell-averaged scalar fluxes and the angular fluxes on the sweep region boundaries.
In this system, there are J fine cells, K ≤ J coarse cells, and L ≤ K sweep regions. Each coarse
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cell 1 ≤ k ≤ K contains pk fine cells. Each sweep region 1 ≤ l ≤ L contains ul coarse cells and
sl fine cells. To relate the indices we use the conventions:

U0 = S0 = P0 = 0 , (2a)

Ul =
l∑

l′=1

ul′ = the number of coarse cells in the first l sweep regions , (2b)

Sl =
l∑

l′=1

sl′ = the number of fine cells in the first l sweep regions , (2c)

Pk =
k∑

k′=1

pk′ = the number of fine cells in the first k coarse cells , (2d)

UL = K = the total number of coarse cells , (2e)
SL = PK = J = the total number of fine cells . (2f)

Using the familiar discrete ordinates approximation in angle and an arbitrary weighted diamond
approximation in space on the fine cells, we discretize Eqs. (1) as follows:

µn
hj

(
ψn,j+1/2 − ψn,j−1/2

)
+ σt,jψn,j =

σs,j
2

N∑
m=1

ψm,jwm +
qj
2
, (3a)

ψn,j =

(
1 + αn,j

2

)
ψn,j+1/2 +

(
1− αn,j

2

)
ψn,j−1/2 , (3b)

ψn,1/2 = 0 , µn > 0 , (3c)
ψn,J+1/2 = ψn′,J+1/2 , −µn′ = µn < 0 . (3d)

The notation in Eqs. (3) is standard. The subscript j, running from 1 ≤ j ≤ J , denotes the (fine)
spatial cell, which has width hj , cross sections σt,j and σs,j , and constant internal source qj . The
subscript n, running from 1 ≤ n ≤ N , denotes the direction cosine of flight. The constants αn,j
determine the specific discretization method, e.g.

αn,j =

 0 , Diamond Difference ,

coth
(
σt,jhj
2µn

)
−
(
σt,jhj
2µn

)−1

, Step Characteristic .
(4)

The SDD-CMFD method begins each iteration with L independent parallel transport sweeps
within each sweep region. At the beginning of the `th iteration, the fine-mesh cell-averaged scalar
fluxes φ(`)

0,j and sweep region boundary angular fluxes Ψ
(`)
n,l+1/2 are assumed to be known, either

from the previous iteration or from the initial guess if ` = 0. Then the following version of Eqs.
(3):

µn
hj

(
ψ

(`+1/2)
n,j+1/2 −Ψ

(`)
n,l−1/2

)
+ σt,jψ

(`+1/2)
n,j =

σs,j
2
φ

(`)
0,j +

qj
2
,

{
µn > 0 , j = Sl−1 + 1 ,

2 ≤ l ≤ L ,

µn
hj

(
Ψ

(`)
n,l+1/2 − ψ

(`+1/2)
n,j−1/2

)
+ σt,jψ

(`+1/2)
n,j =

σs,j
2
φ

(`)
0,j +

qj
2
,

{
µn < 0 , j = Sl ,

1 ≤ l ≤ L− 1 ,

µn
hj

(
ψ

(`+1/2)
n,j+1/2 − ψ

(`+1/2)
n,j−1/2

)
+ σt,jψ

(`+1/2)
n,j =

σs,j
2
φ

(`)
0,j +

qj
2
,
{

otherwise ,

(5a)
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ψ
(`+1/2)
n,j =

(
1 + αn,j

2

)
ψ

(`+1/2)
n,j+1/2 +

(
1− αn,j

2

)
Ψ

(`)
n,l−1/2 ,

{
µn > 0 , j = Sl−1 + 1 ,

2 ≤ l ≤ L ,

ψ
(`+1/2)
n,j =

(
1 + αn,j

2

)
Ψ

(`)
n,l+1/2 +

(
1− αn,j

2

)
ψ

(`+1/2)
n,j−1/2 ,

{
µn < 0 , j = Sl ,

1 ≤ l ≤ L− 1 ,

ψ
(`+1/2)
n,j =

(
1 + αn,j

2

)
ψ

(`+1/2)
n,j+1/2 +

(
1− αn,j

2

)
ψ

(`+1/2)
n,j−1/2 ,

{
otherwise ,

(5b)

ψ
(`+1/2)
n,1/2 = 0 , µn > 0 , (5c)

ψ
(`+1/2)
n,J+1/2 = ψ

(`+1/2)
n′,J+1/2 , −µn′ = µn < 0 , (5d)

is solved by L independent, parallel transport sweeps for the ψ(`+1/2) unknowns. During these
sweeps, the sweep region boundary angular fluxes ψ(`+1/2)

n,Sl+1/2, cell-averaged fluxes and cell-edge
currents are computed and stored:

φ
(`+1/2)
0,j =

N∑
n=1

ψ
(`+1/2)
n,j wn , (6a)

φ
(`+1/2)
1,Pk+1/2 =

N∑
n=1

µnψ
(`+1/2)
n,Pk+1/2wn . (6b)

If we choose to implement no acceleration scheme, we implement a spatially-decomposed source
iteration (SI) with the update equations:

φ
(`+1)
0,j = φ

(`+1/2)
0,j , (7a)

Ψ
(`+1)
n,l+1/2 = ψ

(`+1/2)
n,Sl+1/2 . (7b)

Later, we show that this method has convergence properties that are at best like SI (i.e. not rapid,
but unconditionally stable). Instead, the method greatly benefits from the CMFD acceleration
scheme. In fact, we can define our low-order equation identically to standard CMFD. To proceed,
we introduce the notation∑

j∈k

=

Pk∑
j=Pk−1+1

= the sum over all fine cells j in coarse cell k , (8)

and we define the coarse cell quantities:

Hk =
∑
j∈k

hj = width of coarse cell k , (9a)

Φ0,k =
1

Hk

∑
j∈k

φ0,jhj = volume-averaged scalar flux in coarse cell k , (9b)

Qk =
1

Hk

∑
j∈k

qjhj = volume-averaged source in coarse cell k , (9c)

Φ1,k+1/2 = φ1,Pk+1/2 = current on the right edge of coarse cell k , (9d)
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Σ(·),k =
1

Hk

∑
j∈k

σ(·),jhj = volume-averaged cross section in coarse cell k , (9e)

Σ
(`+1/2)
(·),k =

∑
j∈k

σ(·),jφ
(`+1/2)
0,j hj∑

j∈k
φ

(`+1/2)
0,j hj

= flux-weighted cross section in coarse cell k . (9f)

The coarse cell balance equation is:

Φ
(`+1)
1,k+1/2 − Φ

(`+1)
1,k−1/2 + Σ

(`+1/2)
a,k Φ

(`+1)
0,k Hk = QkHk . (10)

The relation between the edge current and coarse cell fluxes is:

Φ
(`+1)
1,k+1/2 = −D̃(`+1/2)

k+1/2

(
Φ

(`+1)
0,k+1 − Φ

(`+1)
0,k

)
+ D̂

(`+1/2)
k+1/2

(
Φ

(`+1)
0,k+1 + Φ

(`+1)
0,k

)
, (11a)

D̃
(`+1/2)
k+1/2 =

2

3
(

Σ
(`+1/2)
t,k+1 Hk+1 + Σ

(`+1/2)
t,k Hk

) , (11b)

D̂
(`+1/2)
k+1/2 =

Φ
(`+1/2)
1,k+1/2 + D̃

(`+1/2)
k+1/2

(
Φ

(`+1/2)
0,k+1 − Φ

(`+1/2)
0,k

)
Φ

(`+1/2)
0,k+1 + Φ

(`+1/2)
0,k

. (11c)

The boundary conditions for this system are:

Φ
(`+1)
1,1/2 = −D̃(`+1/2)

1/2 Φ
(`+1)
0,1 + D̂

(`+1/2)
1/2 Φ

(`+1)
0,1 , (12a)

D̃
(`+1/2)
1/2 =

2

3Σ
(`+1/2)
t,1 H1 + 4

, (12b)

D̂
(`+1/2)
1/2 =

Φ
(`+1/2)
1,1/2 + D̃

(`+1/2)
1/2 Φ

(`+1/2)
0,1

Φ
(`+1/2)
0,1

, (12c)

Φ
(`+1)
1,K+1/2 = 0 . (12d)

With the standard CMFD implementation, the only change is now in the update equation. The
update for the coarse cell is the standard update, but an additional update is defined for the sweep
region boundaries:

φ
(`+1)
0,j = φ

(`+1/2)
0,j

(
Φ

(`+1)
0,k

Φ
(`+1/2)
0,k

)
, ∀ j ∈ k, 1 ≤ k ≤ K , (13a)

Ψ
(`+1)
n,l+1/2 = ψ

(`+1/2)
n,Sl+1/2

(
Φ

(`+1)
0,Ul+1/2 + 3µnΦ

(`+1)
1,Ul+1/2

Φ
(`+1/2)
0,Ul+1/2 + 3µnΦ

(`+1/2)
1,Ul+1/2

)
, 1 ≤ l ≤ L− 1 . (13b)

Here, the coarse cell edge scalar fluxes are approximated from the coarse cell scalar fluxes in a
sensible manner. The choice of the update ratio comes from the fact that the angular flux will
have a P1-like distribution in angle for diffusive problems. Alternative update options would
include simply scaling with the scalar flux, or scaling with the appropriate partial current for left
or right-going directions of flight.
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3. LINEARIZATION AND FOURIER ANALYSIS

The method outlined in the previous section is non-linear and therefore cannot be Fourier
analyzed directly. To determine the theoretical convergence properties of the method, it is
necessary to first linearize it. We perform the linearization with the assumption of an infinite
homogeneous system with the isotropic flat solution ψ(x, µ) = Λ

2
. The linearization terms are

then:

σt,j → σ , σs,j → cσ , qj → σaΛ + εqj

ψn,j+1/2 →
Λ

2
+ εψn,j+1/2 , ψn,j →

Λ

2
+ εψn,j

φ0,j → Λ + εφ0,j , Φ0,k → Λ + εΦ0,k , Φ1,k → εΦ1,k

Applying this to Eqs.(5a,5b,10,11,13), and choosing a uniform spatial grid (for the Fourier
analysis),

hj → h , ul → u , sl → s , pk → p ,

results in the following linearized form of the method:

µn

(
ψ

(`+1/2)
n,j+1/2 −Ψ

(`)
n,l−1/2

)
+ σhψ

(`+1/2)
n,j =

cσh

2
φ

(`)
0,j +

qj
2
,

{
µn > 0 ,

j = s(l − 1) + 1 ,

µn

(
Ψ

(`)
n,l+1/2 − ψ

(`+1/2)
n,j−1/2

)
+ σhψ

(`+1/2)
n,j =

cσh

2
φ

(`)
0,j +

qj
2
,

{
µn < 0 ,

j = sl ,

µn

(
ψ

(`+1/2)
n,j+1/2 − ψ

(`+1/2)
n,j−1/2

)
+ σhψ

(`+1/2)
n,j =

cσh

2
φ

(`)
0,j +

qj
2
,
{

otherwise ,

(14a)

ψ
(`+1/2)
n,j =

(
1 + αn

2

)
ψ

(`+1/2)
n,j+1/2 +

(
1− αn

2

)
Ψ

(`)
n,l−1/2 ,

{
µn > 0 ,

j = s(l − 1) + 1 ,

ψ
(`+1/2)
n,j =

(
1 + αn

2

)
Ψ

(`)
n,l+1/2 +

(
1− αn

2

)
ψ

(`+1/2)
n,j−1/2 ,

{
µn < 0 ,

j = sl ,

ψ
(`+1/2)
n,j =

(
1 + αn

2

)
ψ

(`+1/2)
n,j+1/2 +

(
1− αn

2

)
ψ

(`+1/2)
n,j−1/2 ,

{
otherwise ,

(14b)

− 1

3pσh

(
δΦ

(`+1)
0,k+1 − 2δΦ

(`+1)
0,k + δΦ

(`+1)
0,k−1

)
+ (1− c) pσhδΦ(`+1)

0,k

= cσh
∑
j∈k

(
φ

(`+1/2)
0,j − φ(`)

0,j

)
+ Υ+

k + Υ−k ,
(14c)

Υ+
k =


∑
µn>0

|µn|
(
ψ

(`+1/2)
n,(s−1)l+1/2 −Ψ

(`)
n,l−1/2

)
wn , k = u(l − 1) + 1 ,

0 , otherwise ,
(14d)

Υ−k =


∑
µn<0

|µn|
(
ψ

(`+1/2)
n,sl+1/2 −Ψ

(`)
n,l+1/2

)
wn , k = ul ,

0 , otherwise ,
(14e)
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φ
(`+1)
0,j = φ

(`+1/2)
0,j + δΦ

(`+1)
0,k , ∀ j ∈ k, 1 ≤ k ≤ K , (14f)

Ψ
(`+1)
n,l+1/2 = ψ

(`+1/2)
n,sl+1/2 +

1

2

(
δΦ

(`+1)
0,Ul+1/2 + 3µnδΦ

(`+1)
1,Ul+1/2

)
, 1 ≤ l ≤ L− 1 , (14g)

where the sweep region edge acceleration terms are:

Φ
(`+1)
0,Ul+1/2 =

1

2

(
Φ

(`+1)
0,Ul+1 + Φ

(`+1)
0,Ul

)
, Φ

(`+1)
1,Ul+1/2 = − 1

3σhp

(
Φ

(`+1)
0,Ul+1 − Φ

(`+1)
0,Ul

)
.

We choose the following ansatz, which eliminates aliasing between the fine cell and coarse cell
modes and results in a system of equations with substantially fewer exponential terms. Let j′

denote the (integer) label for any cell in the infinite system; −∞ < j′ <∞. Also, let j be a
positive integer satisfying 1 ≤ j ≤ p, let k be a positive integer satisfying 1 ≤ k ≤ u, and let l be
an integer such that

j′ = (k′ − 1) p+ j ,

k′ = (l − 1)u+ k .

Then for each j′, (i) j, k, and l are unique, (ii) l labels the sweep region and k labels the coarse
cell within which cell j′ resides, and (iii) j labels the position within coarse cell k and sweep
region l at which fine cell j′ resides. The Fourier ansatz can now be stated as:

qj = 0 ,

ψ
(`+1/2)
n,j′+1/2 = ω`dn,j+(k−1)pe

iλσxl , µn > 0 ,

ψ
(`+1/2)
n,j′−1/2 = ω`dn,j+(k−1)pe

iλσxl , µn < 0 ,

ψ
(`+1/2)
n,j′ = ω`an,j+(k−1)pe

iλσxl ,

φ
(`)
0,j′ = ω`gj+(k−1)pe

iλσxl ,

Ψ
(`)
n,l+1/2 = ω`Dne

iλσxl , µn < 0 ,

Ψ
(`)
n,l−1/2 = ω`Dne

iλσxl , µn > 0 ,

δΦ
(`+1)
0,k′ = ω`Fke

iλσxl ,

Inserting this ansatz into Eqs. (14), we obtain:

µn (dn,j −Dn) + σhan,j =
cσh

2
gj , µn > 0 , j = 1 ,

µn (Dn − dn,j) + σhan,j =
cσh

2
gj , µn < 0 , j = s ,

µn (dn,j+1 − dn,j) + σhan,j =
cσh

2
gj , 1 ≤ j ≤ s− 1 ,

(15a)

an,j =

(
1 + αn

2

)
dn,j +

(
1− αn

2

)
Dn , µn > 0 , j = 1 ,

an,j =

(
1 + αn

2

)
Dn +

(
1− αn

2

)
dn,j , µn < 0 , j = s ,

an,j =

(
1 + αn

2

)
dn,j+1 +

(
1− αn

2

)
dn,j , 1 ≤ j ≤ s− 1 ,

(15b)
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− 1

3pσh

(
(1− δk,u)Fk+1 + δk,uF1e

iλsσh − 2Fk + (1− δk,1)Fk−1 + δk,1Fue
−iλsσh)

+ (1− c) pσhFk = cσh

pk∑
j=p(k−1)+1

(
N∑
n=1

wnan,j − gj

)
+δk,1

∑
µn>0

|µn|
(
dn,se

−iλsσh −Dn

)
wn + δk,u

∑
µn<0

|µn|
(
dn,1e

iλsσh −Dn

)
wn .

(15c)

Here, δk,k′ is the Kronecker delta. The Fourier modes of the update equation are:

ωgj =
N∑
n=1

wnan,j + Fk , p(k − 1) + 1 ≤ j ≤ pk, 1 ≤ k ≤ u , (15d)

ωDn = dn,se
−iλsσh +

1

2

(
F1 + Fue

−iλsσh

2
− µn
pσh

(
F1 − Fue−iλsσh

))
, µn > 0 , (15e)

ωDn = dn,1e
iλsσh +

1

2

(
F1e

iλsσh + Fu
2

− µn
pσh

(
F1e

iλsσh − Fu
))

, µn < 0 . (15f)

The eigenvalues 1 ≤ ωt ≤ s+N of this system of equations are solved numerically; the spectral
radius is then calculated as

ρ = sup
λ

sup
1≤t≤s+N

∣∣ωt(λ)
∣∣ . (16)

4. RESULTS

The following figures show the spectral radius as determined by Fourier Analysis and numerical
implementation of the method. Figures (2)-(4) show that without SDD-CMFD acceleration, this
style of spatial domain decomposition is as rapid as source iteration at best.

(a) p = 1 (b) p = 2

Figure 2: Spectral Radius of SDD-SI with u = 1

The spectral radius is estimated experimentally by fitting a trend-line to the residuals of a few
iterates after the initial estimate.
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From the results shown in Fig. (2), it is clear that this kind of spatial domain decomposition
requires acceleration of not only the scattering source but also the sweep region boundary fluxes.
When the sweep regions are optically thick, the scattering source is the iteration bottleneck,
whereas when they are optically thin, the sweep region boundary fluxes limit the convergence
rate. We also note that the Fourier Analysis matches the computational results very well.

(a) p = 1 (b) p = 2

Figure 3: Spectral Radius of SDD-SI with u = 4

Here, we see that by increasing the number of coarse cells in a sweep region (and thereby the
optical thickness), the sweep region boundaries become less dominant as the iterative quantity
limiting convergence.

(a) p = 1 (b) p = 2

Figure 4: Spectral Radius of SDD-SI with u = 16

Again increasing u reduces the spectral radius when the sweep region boundaries limit
convergence.
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In Figures (5) - (9), SDD-CMFD is enabled, including the sweep region boundary angular flux
update of Eq. (13b). Although not required, this update does reduce the spectral radius of the
method by a value of about 0.1 when the coarse cells are less than one mean free path thick. For
brevity, we do not include plots of the spectral radius with the scattering source acceleration
enabled and the sweep region boundary angular flux acceleration disabled.

(a) p = 1 (b) p = 2

Figure 5: Spectral Radius of SDD-CMFD with u = 1

With SDD-CMFD enabled, the problems converge at a substantially improved rate. When the
coarse cells are at least one mean free path thick, the convergence rate of the method is essentially
identical to CMFD. However, when optically thin, the fluxes on the sweep boundaries limit the
rapidity of convergence. The Fourier Analysis adequately predicts the convergence properties; the
experimental estimates are smaller than the theoretical estimates of the spectral radius due to both
finite problem size and the solution not quite reaching the asymptotic mode of convergence.

(a) p = 1 (b) p = 2

Figure 6: Spectral Radius of SDD-CMFD with u = 4
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By increasing the number of coarse cells in a sweep region for a given coarse cell optical
thickness, we automatically increase the sweep region optical thickness. This has the effect of
increasing the spectral radius when the sweep region boundary fluxes limit the convergence.

(a) p = 1 (b) p = 2

Figure 7: Spectral Radius of SDD-CMFD with u = 16

Once more, increasing u decreases the spectral radius when the coarse cells are optically thin.
Some of the computational spectral radii are estimated as being larger than the Fourier Analysis
estimates, but this is again due to the means of estimated the spectral radius described earlier.

From the results thus far presented, it is clear that the method performs well when the coarse cells
do not exceed one mean free path, and it performs best when the sweep region is optically thick.
The following figures show that the benefits of increasing the sweep region optical thickness
reach an asymptotic limit.

(a) p = 1 (b) p = 2

Figure 8: Spectral Radius of SDD-CMFD with σhp = 0.1

According to these results, the SDD-CMFD method reaches an asymptotic spectral radius when
the sweep region optical thickness is at least approximately two mean free paths.
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(a) p = 1 (b) p = 2

Figure 9: Spectral Radius of SDD-CMFD with σhp = 1.0

Again, a sweep region of two mean free paths or larger yields the best results. In comparison,
standard CMFD has rapid convergence if the coarse cells are less than one mean free path thick.
The SDD-CMFD method has the same rapid convergence rate as standard CMFD if coarse cells
are also less than one mean free path thick and, additionally, the sweep regions are greater than
two mean free paths thick. In practice, SDD-CMFD will converge if a coarse cell is a pin cell or
quarter pin cell and the sweep regions contain two or more pin cells.

5. CONCLUSIONS

In this paper, we have presented a spatial domain decomposition method that utilizes CMFD to
accelerate both the scattering source and sub-domain boundary angular fluxes. We have analyzed
this method both theoretically and computationally to determine that it is an efficient acceleration
method (similar to standard CMFD) with the added benefit of a clear path to introduce parallelism
to the sweeping process. Like standard CMFD, this method is non-linear and can be adapted to
solve eigenvalue problems in addition to fixed source problems. In contrast, this method requires
the additional storage of angular fluxes on sub-domain boundaries. However, on a distributed
memory system (to take advantage of the parallelism) this should be a minor issue.

The SDD-CMFD method can also be expanded upon by allowing for internal acceleration on
each of the sweep regions. This would further improve parallelization by minimizing message
passing for the global problem. For multi-group problems, this approach would also help
independently converge the energy spectrum locally. Our future work includes implementing this
method in a three-dimensional, multi-group framework for realistic reactor problems.
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ABSTRACT

A new class of “2D/1D” approximations is proposed for the 3D linear Boltzmann equation. These
approximate equations preserve the exact transport physics in the radial directions x and y and diffusion
physics in the axial direction z. Thus, the 2D/1D equations are more accurate approximations of the
3D Boltzmann equation than the conventional 3D diffusion equation. The 2D/1D equations can be
systematically discretized, to yield accurate simulation methods for 3D reactor core problems. The
resulting solutions will be more accurate than 3D diffusion solutions, and less expensive to generate than
standard 3D transport solutions. In this paper, we (i) show that the simplest 2D/1D equation has certain
desirable properties, (ii) systematically discretize this equation, and (iii) derive a stable iteration scheme
for solving the discrete system of equations. In a companion paper [1], we give numerical results that
confirm the theoretical predictions of accuracy and iterative stability.

Key Words: 3D neutron transport simulations, diffusion approximation, Fourier analysis

1. INTRODUCTION

The term “2D/1D” has been used to describe recently-developed computational methods for solving
3D whole-core neutronics problems in which the (1D) axial and (2D) radial derivative terms are approxi-
mated differently. These methods were originally proposed and implemented by two groups in Korea during
2002-2007 [2–12]. One group, located at KAIST (N.Z. Cho, G.S. Lee, C.J. Park, and colleagues), developed
the “2D/1D Fusion” method for the CRX code [3–5, 8, 9, 12]. In this method, the 3D Boltzmann transport
equation is solved by discretizing the radial derivative terms on a “fine” radial grid and the axial deriva-
tive term on a “coarse” radial grid. The other group, located at at KAERI (J.Y. Cho, H.G. Joo, K.S. Kim,
and S.Q. Zee and colleagues), developed a different “planar MOC solution-based 3D heterogeneous core
method” for the DeCART code [2, 6, 10, 11]. This method also discretizes the axial derivative term using a
“coarse” radial grid, but most importantly, it simplifies this term in a way that (i) is accurate for problems
in which the axial leakage can be represented by Fick’s Law, and (ii) offers major advantages for parallel-
architecture computers. In some publications, the KAERI method was simply called “2D/1D” [6]. In the
present paper, we refer to the KAIST method in CRX by its original “2D/1D Fusion” name, and we refer to
the KAERI method in DeCART by its abbreviated “2D/1D” name. The purpose of this paper is to outline a
systematic mathematical theory for the 2D/1D methodology developed at KAERI for DeCART.

DeCART (Deterministic Core Analysis Based on Ray Tracing) was originally developed under an
I-NERI project between KAERI and ANL. An early version of DeCART was acquired by the University
of Michigan (UM), where it has been extensively used in the DOE CASL project. This version has certain
deficiencies – in particular, a failure to converge for small axial cell widths ∆z . In more recent versions of
DeCART, the staff at KAERI and ANL have “suppressed” these instabilities. However, in these revisions,
the cause of the original iterative instabilities and other basic questions were not answered.

The use of (the UM version of) DeCART has demonstrated that for problems in which DeCART
converges, it has major computational advantages over other 3D Discrete Ordinates (DO) or Method of
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Characteristics (MOC) codes. Unfortunately, the failure of DeCART to converge for small ∆z and the
lack of a mathematical foundation for the 2D/1D methodology have been major concerns. Nonetheless,
discussions took place at UM on the desirability of developing a new 3D reactor physics code that would
employ a more robust (but then nonexistent) 2D/1D methodology. To accomplish this, we decided to try to
develop a mathematical foundation for the 2D/1D methodology in DeCART – in order to better understand
this methodology, and to suggest systematic ways to improve it. This paper is the first public statement of
our results – for monoenergetic problems in classically “diffusive” media. (Our theoretical results cover a
wider and more interesting range of lattice problems. However, our implementation and testing of the 2D/1D
method in the new MPACT (Michigan Parallel Characteristics Transport Code) code [13] is ongoing. In the
present paper, we only discuss problems for which numerical results can now be given; these results are
presented in a companion paper [1].)

Our goal in this paper and [1] is to demonstrate that stable and accurate 2D/1D methods similar to
the DeCART method can be systematically derived from a new second-order, integrodifferential “2D/1D
equation.” The proposed 2D/1D equation and the classic 3D diffusion equation have a similar status: both
approximate (simplify) the 3D linear Boltzmann equation. The 2D/1D equation is (i) less expensive to
solve than the 3D transport equation, (ii) more complicated and expensive to solve than the 3D diffusion
equation, and (iii) well-approximates the 3D Boltzmann equation over a much larger range of problems
than the diffusion equation. Specifically: the 2D/1D equation preserves exact transport physics in the radial
directions (x and y), but it uses approximate diffusion physics in the axial direction z.

We systematically discretize the 2D/1D equation to obtain a system of discrete equations whose solu-
tion converges to the exact 2D/1D solution as the grid (of all independent variables) becomes increasingly
fine. We also derive iterative methods for solving the discrete system and analyze these methods by Fourier
analysis techniques. This analysis makes it possible to predict the performance of an iterative method before
it is implemented, and to avoid iteration methods that are unstable.

In this paper, we (i) derive the “simplest” 2D/1D equation, (ii) systematically discretize this equation
in a straightforward manner, and (iii) develop a simple stable iteration strategy for solving the discretized
equations. (All aspects of the work presented here are as “simple” as possible.) In our companion paper, we
present numerical results that validate the theoretical predictions, and that demonstrate the accuracy of the
2D/1D solutions by comparing them to 3D transport and 3D diffusion solutions [1].

The remainder of this paper is organized as follows. In Section 2 we propose several 2D/1D equations
that approximate the linear Boltzmann equation in a manner consistent with the spirit of the method in
DeCART. In Section 3 we show some basic properties of this “simplest” 2D/1D equation.

In Section 4 we systematically discretize the simplest 2D/1D equation, and in Section 5 we propose
an iteration method to solve the discrete equations. This method is related to the original iterative method in
DeCART, but the new method has a modification that renders it stable. Section 6 concludes this paper with a
discussion, covering (i) the generalization of the “simplest” 2D/1D equation discussed here to more accurate
approximations, (ii) the generalization of 2D/1D equations to realistic reactor core lattices, and finally, (iii)
the relationship between the “KAERI-like” 2D/1D methods described in this paper and the KAIST 2D/1D
Fusion method implemented in CRX.

2. THE 2D/1D EQUATION

The derivation of the 2D/1D equation begins with the linear 3D Boltzmann transport equation formu-
lated on a “cylindrical” system V , consisting of points x = (x, y, z) with the radial variables (x, y) ∈ R
(a convex 2D region), and the axial variable z in the interval 0 ≤ z ≤ Z. (Aside from being convex, R is
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arbitrary; in [1], R is taken to be a square.)

x

y

z

0

Z

V

R

Figure 1: The Cylindrical System V

For simplicity, we assume monoenergetic transport with isotropic scattering and vacuum boundaries.
Using the standard notation:

Ω = (Ωx,Ωy,Ωz) = (
√

1− µ2 cosω,
√

1− µ2 sinω, µ) , (1)

we have the fixed-source transport equation:

Ω ·∇ψ(x,Ω) + Σt(x)ψ(x,Ω) =
Σs(x)

4π

∫
4π
ψ(x,Ω′)dΩ′ +

Q(x)

4π
, x ∈ V , Ω ∈ 4π , (2a)

with the vacuum boundary condition:

ψ(x,Ω) = 0 , x ∈ ∂V , Ω · n < 0 . (2b)

In typical light water reactors, the cross sections are highly complicated functions of the radial vari-
ables x and y, but are relatively simple (almost constant) functions of the axial variable z. This suggests that
the z-dependence of ψ is weak, and that the axial leakage term µ∂ψ/∂z in Eq. (2a) can be approximated
advantageously, with a minimal loss of accuracy. Thus, we write Eq. (2a) as:√

1− µ2

(
cosω

∂ψ

∂x
+ sinω

∂ψ

∂y

)
+
∂F

∂z
+ Σtψ =

1

4π

(
Σsφ+Q

)
, (3)

where
F (x,Ω) = µψ(x,Ω) , (4a)

φ(x) =

∫
4π
ψ(x,Ω′)dΩ′ , (4b)

and we consider various approximations to F .

If ψ on the right side of Eq. (4a) is approximated by its classic diffusion approximation, the axial
leakage term becomes:

∂F

∂z
≈ ∂

∂z

µ

4π

[
φ− 1

Σt

(
Ωx

∂φ

∂x
+ Ωy

∂φ

∂y
+ µ

∂φ

∂z

)]
. (5a)
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In a simpler approximation, the radial derivative terms in Eq. (5a) are discarded, yielding:

∂F

∂z
≈ ∂

∂z

µ

4π

(
φ− µ

Σt

∂φ

∂z

)
. (5b)

In an even simpler approximation, the right side of Eq. (5b) is replaced by its zero-th angular moment,
giving:

∂F

∂z
≈ − ∂

∂z

D

4π

∂φ

∂z
, (5c)

where D = 1/3Σt. The progression from Eq. (5a) to Eq. (5b) to Eq. (5c) becomes increasingly simple and
(presumably) less accurate. In this paper we consider the simplest of these approximations, Eq. (5c). Using
this in Eq. (3), we obtain the following “simplest” 2D/1D equation:

√
1− µ2

(
cosω

∂ψ

∂x
+ sinω

∂ψ

∂y

)
− ∂

∂z

D

4π

∂φ

∂z
+ Σtψ =

1

4π

(
Σsφ+Q

)
. (6)

The vacuum boundary conditions for Eq. (6) remain the standard transport vacuum boundary condition on
the “sides” of ∂V :

ψ(x,Ω) = 0 , (x, y) ∈ ∂R , 0 < z < Z , Ω · n < 0 , (7a)

but become “diffusion” boundary conditions on the “top” and “bottom” of V :

φ(x, y, 0)− 2D
∂φ

∂z
(x, y, 0) = 0 , (x, y) ∈ R , (7b)

φ(x, y, Z) + 2D
∂φ

∂z
(x, y, Z) = 0 , (x, y) ∈ R . (7c)

The second-order integrodifferential 2D/1D Eq. (6) approximates the linear Boltzmann equation only
in its axial derivative term; here this is done using the standard diffusion approximation. The radial derivative
terms in Eq. (6) are not approximated, and – unlike the standard diffusion equation – the angular variable is
not eliminated from the 2D/1D equation.

3. BASIC PROPERTIES OF THE 2D/1D EQUATION

Here we discuss some basic properties of the 2D/1D Eq. (6).

1. Conjecture: The 2D/1D equation with vacuum boundary conditions [Eqs. (6) and (7)] has a unique,
positive solution. Eq. (6) is an unfamiliar (second-order integrodifferential) equation which, to our
knowledge, has not been studied previously. Our work has shown theoretically and experimentally
that discrete versions of Eqs. (6) and (7) have unique solutions, which (experimentally) are positive.
Unfortunately, proving the stated conjecture for the continuous 2D/1D equation is beyond our capa-
bility at this time. To proceed, we assume that the conjecture is true. (Nothing in our analysis or our
numerical simulations suggests that the conjecture is untrue.)

2. The 2D/1D equation preserves 2D radial transport. If any problem is considered in which the cross
sections and source are independent of z, and the boundary conditions (7b) and (7c) are replaced by
reflecting boundary conditions:

∂φ

∂z
(x, y, 0) = 0 =

∂φ

∂z
(x, y, Z) , (x, y) ∈ R ,
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then ψ is independent of z. In this case, the 2D/1D Eq. (6) directly reduces to the 2D Boltzmann
equation. Thus, for problems with no axial dependence, the 2D/1D equation and the 2D Boltzmann
equation are identical.

3. The 2D/1D equation preserves 1D axial diffusion. If any problem is considered in which the cross
sections and source are independent of x and y, and the boundary condition (7a) is replaced by a
reflecting boundary condition, then ψ is independent of x and y. In this case, Eqs. (6), (7b), and (7c)
reduce to:

− ∂

∂z

D

4π

∂φ

∂z
+ Σtψ =

1

4π

(
Σsφ+Q

)
, (8a)

φ(0)− 2D
dφ

dz
(0) = 0 , (8b)

φ(Z) + 2D
dφ

dz
(Z) = 0 . (8c)

Operating on Eq. (8a) by
∫

(·)dΩ, we immediately get

− ∂

∂z
D
∂φ

∂z
+ Σaφ = Q . (9)

Thus, for problems with no radial dependence, the 2D/1D equation reduces to the standard 1D axial
diffusion equation.

4. The 2D/1D equation preserves the standard 3D P1 approximation. Operating on Eq. (6) by∫
(·) dΩ ,

∫
Ωx(·) dΩ ,

∫
Ωy(·) dΩ , and

∫
Ωz(·) dΩ ,

and defining

Jx =

∫
Ωxψ dΩ , Jy =

∫
Ωyψ dΩ , and Jz =

∫
Ωzψ dΩ ,

we obtain:

∂Jx
∂x

+
∂Jy
∂y
− ∂

∂z
D
∂φ

∂z
+ Σaφ = Q , (10a)

∂

∂x

∫
Ω2
xψ dΩ +

∂

∂y

∫
ΩxΩyψ dΩ + ΣtJx = 0 , (10b)

∂

∂x

∫
ΩxΩyψ dΩ +

∂

∂y

∫
Ω2
yψ dΩ + ΣtJy = 0 , (10c)

∂

∂x

∫
ΩxΩzψ dΩ +

∂

∂y

∫
ΩyΩzψ dΩ + ΣtJz = 0 . (10d)

Assuming the standard P1 approximation for ψ:

ψ ≈ 1

4π

[
φ+ 3

(
ΩxJx + ΩyJy + ΩzJz

)]
,

Eqs. (10b) and (10c) reduce to:
∂

∂x

φ

3
+ ΣtJx = 0 , (11a)

∂

∂y

φ

3
+ ΣtJy = 0 . (11b)

Using Eqs. (11) to eliminate Jx and Jy from Eq. (10a), we obtain the standard diffusion equation.
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The above results show that the 2D/1D equation (i) preserves the correct transport physics in the radial
variables x and y, and (ii) uses diffusion physics in the axial variable z, in such a way that (iii) the standard
3D (x, y, z) diffusion approximation is preserved. (Applying the standard asymptotic analysis to Eq. (6)
also yields the standard diffusion equation.)

These favorable results hold for the “simplest” 2D/1D equation, derived in Sec. 2 from Eqs. (3) and
(5c). The same results also hold for more complicated 2D/1D equations, obtained using Eq. (5b) or (5a).

4. DISCRETIZATION OF THE 2D/1D EQUATION

An axial discretization for the 2D/1D Eq. (6) can be derived by integrating the equation over axial
“slices” zk−1/2 < z < zk+1/2 of width ∆k = zk+1/2 − zk−1/2, and using a standard finite difference
approximation for the axial leakage term. Assuming that the cross sections are independent of z on each
slice and defining:

1

∆k

∫ zk+1/2

zk−1/2

ψ(x,Ω)dz = ψk(x, y,Ω) , (12a)

1

∆k

∫ zk+1/2

zk−1/2

φ(x)dz = φk(x, y) =

∫
ψk(x, y,Ω)dΩ , (12b)

1

∆k

∫ zk+1/2

zk−1/2

∂

∂z
D(x)

∂φ(x)

∂z
dz =

1

∆k

[
Dk+1/2(x, y)

∂φk+1/2(x, y)

∂z
−Dk−1/2(x, y)

∂φk−1/2(x, y)

∂z

]
≈ 1

∆k

[
Dk+1/2(x, y)

∆k+1/2

(
φk+1(x, y)− φk(x, y)

)
−
Dk−1/2(x, y)

∆k−1/2

(
φk(x, y)− φk−1(x, y)

)]
, (12c)

where:
Dk+1/2 =

∆k + ∆k+1

∆k
Dk

+
∆k+1

Dk+1

, ∆k+1/2 =
1

2
(∆k + ∆k+1) , (13)

the axially-discretized 2D/1D equation becomes:(
Ωx

∂

∂x
+ Ωy

∂

∂y
+ Σt,k

)
ψk(x, y,Ω) =

1

4π

{
Σs,kφk(x, y) +Qk(x, y)

+
1

∆k

[
Dk+1/2(x, y)

∆k+1/2

(
φk+1(x, y)− φk(x, y)

)
−
Dk−1/2(x, y)

∆k−1/2

(
φk(x, y)− φk−1(x, y)

)]}
. (14)

For each 1 ≤ k ≤ K, this is a 2-D transport equation, which is coupled in a simple way (requiring
minimal storage and passage of information) to the neighboring slices k − 1 and k + 1. The special cases
k = 1 and K are handled using the boundary conditions (7b), (7c) in the standard manner. For example, Eq.
(7c) can be written

φK+1/2(x, y)− 2JK+1/2(x, y) = 0 .

This result, coupled with

JK+1/2 = − DK

∆K/2

(
φK+1/2(x, y)− φK(x, y)

)
= −

DK+1/2

∆K+1/2

(
φK+1(x, y)− φK(x, y)

)
gives:

JK+1/2(x, y) = −
DK+1/2(x, y)

∆K+1/2

(
φK+1(x, y)− φK(x, y)

)
=

(
2DK(x, y)

∆K + 4DK(x, y)

)
φK(x, y) .
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This (boxed) result enables the term containing φK+1, in Eq. (14) with k = K, to be replaced by an
equivalent term containing only DK , ∆K , and φK .

In our numerical simulations, we employed the 2D Method-of-Characteristics (MOC) [14] to dis-
cretize the radial and angular variables in Eq. (14). The only feature of these discretizations requiring com-
ment is that in DeCART, the axial leakage terms [the second line of Eq. (14)] are discretized on a coarse
radial grid, while the remaining terms are discretized on a fine radial grid. Typically, a coarse spatial cell
consists of a pin cell (which is about one mean free path in width), and the fine spatial cells resolve the
inner structure of a pin cell (and are small fractions of a mean free path in width). In practice, the radially
discretized φ’s in the axial leakage terms in Eq. (14) are volume-averaged over a coarse cell, and the axial
diffusion coefficients Dk±1/2 are homogenized over a coarse cell.

The restriction of the axial leakage terms to coarse mesh scalar fluxes implies that the resulting 2D/1D
equation can be parallelized, in such a way that each processor performs sweeps on one slice, and only
minimal information (coarse grid scalar fluxes) need to be passed between processors. (If spatially fine-grid
or angularly fine-grid information had to be transmitted between processors, the method would have much
less parallel efficiency.)

For highly-scattering homogeneous medium problems in which classic diffusion theory is valid, the
axial diffusion coefficients do not need to be radially homogenized, and the prescription D = 1/3Σt in
Eq. (14) is valid. These are the types of problems considered in this paper, and discussed in our numerical
results [1]. However, for reactor cores, in which ψ is a strong function of x, y, and Ω, classic diffusion
theory is not valid, and a more sophisticated approximation to the axial leakage term becomes necessary for
optimum accuracy. This is discussed in more detail in Section 6.

5. ITERATIVE METHODS

Next, we consider what is likely the simplest possible iteration scheme for solving Eq. (14) that can
be made stable for all ∆z > 0. Noting that the right side of Eq. (14) depends only on the scalar flux φ, we
consider a simple 2D sweep on each slice to update the scalar flux:(

Ωx
∂

∂x
+ Ωy

∂

∂y
+ Σt,k

)
ψ

(`+1/2)
k (x,Ω) =

1

4π

{
Σs,kφ

(`)
k (x) +Qk(x)

+
1

∆k

[
Dk+1/2

∆k+1/2

(
φ

(`)
k+1(x)− φ(`)

k (x)
)
−
Dk−1/2

∆k−1/2

(
φ

(`)
k (x)− φ(`)

k−1(x)
)]}

, (15a)

φ
(`+1/2)
k (x) =

∫
ψ

(`+1/2)
k (x,Ω′)dΩ′ , (15b)

followed by a (nonstandard) relaxation step to define the end-of-iteration scalar flux:

φ
(`+1)
k (x) = θφ

(`+1/2)
k (x) + (1− θ)φ(`)

k (x) . (15c)

In analyzing this method, we do not treat Eq. (15) with any angular or radial spatial discretizations; our
experience is that these although these choices affect the accuracy of the discrete solution, they do not affect
the iterative performance in converging to this solution. The relaxation parameter θ in Eq. (15c) is to be
determined; if θ = 1, the method defined by Eqs. (15) is basically Source Iteration (and is very similar,
if not identical, to the original iteration method encoded in DeCART). We note that in each iteration, the
numerical solutions in slice k are directly coupled only to the numerical solutions in the neighboring slices
k + 1 and k − 1. Therefore, many iterations may be required for the numerical fluxes in all the axial slices
1 ≤ k ≤ K to sufficiently “communicate.”
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For an infinite, homogeneous medium with uniform ∆k = ∆z , the iterative performance of the above
method can be assessed by a Fourier analysis. The standard Fourier ansatz is:

Qk(x) = 0 , (16a)

φ
(`)
k (x) = ω`eiΣt(λ·x) , (16b)

ψ
(`+1/2)
k (x,Ω) = ω`a(Ω)eiΣt(λ·x) , (16c)

φ
(`+1/2)
k (x) = ω`AeiΣt(λ·x) , (16d)

where λ = (λx, λy, λz) is an arbitrary fixed 3-vector. Introducing Eqs. (16) into (15), we easily obtain

[
i
(
Ωxλx + Ωyλy

)
+ 1
]
a(Ω) =

1

4π

[
c− 2

3

(
1− cos Σtλz∆z

(Σt∆z)2

)]
, (17a)

A =

∫
a(Ω) dΩ , (17b)

ω = θA+ 1− θ . (17c)

Introducing Eq. (17a) into Eq. (17b), we get

A =

[
c− 2

3

(
1− cos Σtλz∆z

(Σt∆z)2

)]
I0 , (18)

where c = Σs/Σt is the scattering ratio, and

I0 =
1

4π

∫
dΩ

1 + i(Ωxλx + Ωyλy)

=
1

2

∫ 1

−1

dµ

1 + (λrµ)2

(
λr =

√
λ2
x + λ2

y

)
,

=
1

λr
tan−1 λr .

I0 monotonically decreases from 1 to 0 as λr increases from 0 to∞. Thus, since I0 > 0, Eq. (18) gives[
c− 4

3(Σt∆z)2

]
I0 ≤ A ≤ cI0 .

This implies
Amax = c , (19a)

which is attained for “flat” radial and axial modes (λr ≈ 0 and λz ≈ 0). Also,

Amin =

{
0 , Σt∆z ≥ 2√

3c
, ( “large” ∆z) ,

c− 4
3(Σt∆z)2

, Σt∆z <
2√
3c
, ( “small” ∆z) ,

(19b)

which is attained (i) for “large” ∆z by λr ≈ ∞ (radially oscillatory modes), and (ii) for “small” ∆z by
λr ≈ 0 (radially flat modes) and λz ≈ π/Σt∆z (axially oscillatory modes).

By Eq. (17c), we have for 0 ≤ θ ≤ 1

θAmin + 1− θ ≤ ω ≤ θAmax + 1− θ . (20)
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For θ = 1 (the “Source Iteration” method originally in DeCART), Eqs. (19) and (20) give

Amin ≤ ω ≤ Amax ,
and therefore

ρ = |ω|max =

 c ,
√

2
3c < Σt∆z ,

4
3(Σt∆z)2

− c , Σt∆z ≤
√

2
3c .

(21)

This method is stable for
Σt∆z >

2√
3(1 + c)

,

but for small ∆z it becomes unstable, similar to the original method in DeCART.

Since Amax > 0, it can be shown that the optimum value of θ in Eq. (20) is the value for which the
left and right sides are equal in magnitude but opposite in sign:

θoptAmin + 1− θopt = −
[
θoptAmax + 1− θopt

]
. (22a)

Thus,
θopt =

2

2− (Amax +Amin)
, (22b)

and then

ρ = |ω|max = θoptAmax + 1− θopt

=
Amax −Amin

2− (Amax +Amin)
. (22c)

Combining Eqs. (19) and (22), we obtain:

θopt =


2

2−c , 2√
3c
< Σt∆z ,

3(Σt∆z)2

2+3(1−c)(Σt∆z)2
, Σt∆z ≤ 2√

3c
,

(23a)

ρ =

{
c

2−c , 2√
3c
< Σt∆z ,

2
2+3(1−c)(Σt∆z)2

, Σt∆z ≤ 2√
3c
.

(23b)

Eq. (23b) shows that the iterative method defined by Eqs. (15) with θ defined by Eq. (23a) is stable
for all scattering ratios 0 ≤ c ≤ 1 and all axial grids ∆z > 0. (See Fig. 2 on the next page.) Like standard
Source Iteration applied to the SN equations, this method become slowly converging as c → 1. It also
becomes slowly converging as ∆z → 0. However, like Source Iteration, it does not become unstable.

6. DISCUSSION

In this paper we have proposed a basic mathematical foundation for the 2D/1D methodology in De-
CART. The starting point of our analysis is a 2D/1D equation – a second-order integrodifferential equation
that approximates the linear 3D Boltzmann equation only in its axial leakage term. Many approxima-
tions to the axial leakage are possible; in this paper we have treated only the simplest. By systematically
discretizing this “simplest” 2D/1D equation in all its independent variables, and then by formulating and
Fourier-analyzing an iterative method for solving the discrete equations, we obtain a computational method
that (i) iteratively converges for each fixed grid, and (ii) also converge as the grid is refined – to the ana-
lytic solution of the original 2D/1D equation. Numerical results, presented and discussed in [1], confirm
these theoretical predictions and show that for 3D problems in which the standard diffusion approximation
is valid, the 2D/1D and linear Boltzmann equations yield highly similar solutions.
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Figure 2: Spectral Radius ρ vs Axial Optical Thickness Σt∆z for c = 0.9

The theory presented in this paper fulfills two goals:

1. By using the 2D/1D equation as the starting point, numerical 2D/1D solutions can be interpreted in the
limit as the numerical grids become fine: these solutions will consistently limit to the analytic solution
of the continuous 2D/1D equation – which approximates the Boltzmann equation more accurately than
the standard diffusion equation. (Without an underlying approximate transport equation as a starting
point, it is not evident that a discretization method will possess a limiting solution as the grids are
refined.)

2. By using a standard Fourier analysis, stable iteration methods can be developed for solving the
consistently-discretized 2D/1D equations.

Both of these goals are illustrated in our companion (numerical comparisons) paper [1].

The theory presented here applies only to the simplest 2D/1D equation, using a standard finite-
difference approximation for the 1D axial diffusion discretization, and a relatively simple “Source Iteration”
method with under-relaxation. For the theory to become applicable to realistic reactor core problems, it
must be generalized in several ways:

1. It must include multigroup energy dependence with anisotropic scattering.

2. Eq. (14) can be directly applied to problems with radial spatial variation of the type found in reac-
tor cores. This basic procedure is followed in DeCART, and useful numerical results are obtained.
However, in these problems classic diffusion theory is not valid, and the logic that leads to Eq. (5c)
with D = 1/3Σt is also not valid. Therefore, although the 2D/1D Eq. (14) with D = 1/3Σt can be
solved, there is no theoretical reason why the classic diffusion coefficient D = 1/3Σt should yield
the most accurate solution. Fortunately, an asymptotic theory has been developed that provides the
logic needed to specify D [15, 16]. This approach will be used in our future work.

3. Currently, DeCART uses a nodal (not a finite difference) axial diffusion discretization in z. The option
of a nodal discretization in z is being implemented and tested in MPACT.

4. More sophisticated iteration schemes should be considered, in order to solve the 2D/1D equation
more efficiently. Unlike standard Source Iteration for the SN equations, for which the most slowly
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converging modes are “flat” or “diffusive,” the most slowly converging modes for the simple “Source
Iteration” method developed here for the 2D/1D equations are oscillatory if ∆z is “small.” Thus, using
a low-order diffusion equation to accelerate the iterative convergence of the 2D/1D equations may not
perform in the same way, or as well, as it does for the SN equations.

5. It should be determined how much more accurate Eq. (5a) is than Eq. (5b), and how much more
accurate Eq. (5b) is than Eq. (5c). Other angular approximations to the axial leakage term, more
accurate than the P1 representation in Eq. (5a), should be also considered. The following issues
should be kept in mind:

(a) If the angular discretizations of F and ψ satisfy Eq. (4a), then the angularly-discretized 2D/1D
Eq. (3) becomes identical to the angularly-discretized linear Boltzmann equation. Thus, by
systematically increasing the accuracy of the angular dependence of the axial leakage term, the
solution of the continuous 2D/1D equation should systematically limit to the solution of the
continuous Boltzmann equation.

(b) As the angular complexity of the transverse leakage term increases, the amount of information
that must be passed between processors will increase, and the parallel efficiency of the resulting
method will decrease. Thus, there is a tradeoff between accuracy and parallelizability.

(c) An extra degree of complexity occurs because of the fine and coarse radial spatial grids: no
amount of angular refinement will cause the discrete 2D/1D solution to limit to the discrete
Boltzmann solution unless all the spatial grids are refined.

The difference between the 2D/1D method in DeCART, and the 2D/1D Fusion method in CRX can
now be explained. Both methods employ a coarse radial grid (in which one cell = one pin cell) and a fine
radial grid (to resolve the inner structure of a pin cell). Both methods (i) use MOC to discretize the 2D
transport operator on the fine radial grid, and (ii) discretize the axial leakage terms on the coarse radial
grid, using homogenized data in the axial leakage terms. However, the DeCART method uses Eq. (5c)
to approximate F , while the CRX method uses the exact Eq. (4a) for F . Thus: the CRX method is an
unconventional discretization of the 3D Boltzmann equation (not the 2D/1D equation!) – in which fine and
coarse radial spatial grids occur, the radial derivative terms are evaluated on the fine mesh using 2D MOC,
and the axial derivative term is evaluated on the coarse radial mesh using a standard 1D SN discretization
method (diamond difference, step or linear characteristic, or nodal).

Since the 2D/1D Fusion method in CRX uses the exact Eq. (4a) for F , it should be more accurate than
the 2D/1D method in DeCART. However, because of the full angular dependence of the axial leakage terms
in CRX, much more information must be calculated, stored, and passed between processors; this method
will be more costly and less parallelizable than the DeCART method. Also, the CRX 1D axial equation
is a transport – not a diffusion – equation, and accurately discretizing this equation for coarse ∆z is more
problematic than discretizing the diffusion equation for coarse ∆z . Thus, although the 2D/1D Fusion method
in CRX should be more accurate, it should also be more complex, more costly, and less parallelizable.

To summarize: we have presented in this paper the beginning of a mathematical theory for the 2D/1D
methodology in DeCART, so that this methodology can be systematically developed and improved for prac-
tical reactor core problems. We plan to continue this effort in our future work.
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ABSTRACT

In a companion paper [1], (i) several new “2D/1D equations” are introduced as accurate approximations
to the 3D Boltzmann transport equation, (ii) the simplest of these approximate equations is systematically
discretized, and (iii) a theoretically stable iteration scheme is developed to solve the discrete equations.
In this paper, numerical results are presented that confirm the theoretical predictions made in [1].

Key Words: 3D neutron transport simulations, diffusion approximation, Fourier analysis

1. INTRODUCTION

In a companion paper [1], new 2D/1D approximations to the 3D neutron transport equation are pro-
posed in which the exact transport physics is preserved for the radial directions x and y, but is approximated
by classic diffusion physics for the axial direction z. The purpose of the 2D/1D equations is to provide a
mathematical basis for accurate, efficient methods for simulating 3D reactor cores, in which the spatial vari-
ation of the neutron flux is usually much more complex in the radial directions than in the axial direction.
In the present paper, we provide numerical evidence showing that for geometrically simple 3D problems,
the theoretical predictions of (i) the accuracy of the simplest 2D/1D solutions, and (ii) the stability of the
“source iteration with under-relaxation” iterative method (described in [1]) are valid. More specifically, we
show the following:

• Numerical solutions of the 2D/1D equation exist and can be obtained iteratively, in accordance with
the theory developed in [1].

• For 3D problems that are “classically diffusive” (optically thick and highly scattering), the 2D/1D and
diffusion solutions both well-approximate the transport solution.

• For problems which are diffusive axially, but not radially, the 2D/1D solutions are more accurate
(closer to the solution of the Boltzmann equation) than the standard diffusion solution.

• The “source iteration with under-relaxation” iteration scheme for solving the 2D/1D equation is ex-
perimentally stable, and the performance (spectral radius) of this scheme is accurately predicted by
the Fourier analysis.

To demonstrate these properties of the 2D/1D equations, we consider the 3D fixed-source homogeneous-
medium transport equation with a flat source:

Ω ·∇ψ(x,Ω) + Σtψ(x,Ω) =
Σs

4π

∫

4π
ψ(x,Ω′)dΩ′ +

Q

4π
, x ∈ V , Ω ∈ 4π , (1)

defined on a hexahedral domain V consisting of points x = (x, y, z), with (x, y) ∈ the square R consisting
of points 0 < x, y < L, and 0 ≤ z ≤ Z . The boundary conditions (i) on the “inner” three sides of V
touching the point (0, 0, 0) are reflecting, and (ii) on the “outer” three sides of V are vacuum.
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We discretize z by a uniform grid 0 = z1/2 < · · · < zk−1/2 < zk+1/2 < · · · zK+1/2 = Z , with
zk+1/2 − zk−1/2 = ∆z. For each axial “slice,” we define

ψk(x, y,Ω) =
1

∆z

∫ zk+1/2

zk−1/2

ψ(x, y, z′,Ω)dz′ , 1 ≤ k ≤ K . (2)

In [1], we derived for this (homogeneous medium, uniform axial grid) problem, the following axially-
discretized 2D/1D approximation to Eqs. (1):

(

Ωx
∂

∂x
+Ωy

∂

∂y
+Σt

)

ψk(x, y,Ω) =
1

4π

[

Σsφk(x, y) +Q

+
D

∆2
z

(

φk+1(x, y)− 2φk(x, y) + φk−1(x, y)
)

]

, (3)
where

φk(x, y) =

∫

4π
ψk(x, y,Ω

′) dΩ′ , D =
1

3Σt
. (4)

The boundary of V has six planar surfaces. The boundary conditions on the four “radial” bounding
surfaces of V (whose normal vectors point in the radial directions) are the usual transport reflecting or
vacuum boundary conditions. On the two “axial” bounding surfaces of V , whose normal vectors point in
the ± axial directions, the reflecting and vacuum boundary conditions can be formulated as (see [1])

φ0(x, y) = φ1(x, y) , (x, y) ∈ R (reflecting) , (5a)

φK+1(x, y) =

(

4D −∆z

4D +∆z

)

φK(x, y) , (x, y) ∈ R (vacuum) . (5b)

These conditions specify φ0 and φK+1 and thus make Eq. (3) valid for all 1 ≤ k ≤ K .
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In the MPACT code [2], we have discretized the 2D/1D equation in x, y, and Ω using the method of
characteristics [3]. In Section 2 of this paper we discuss the accuracy of the resulting 2D/1D solutions (by
showing plots of the scalar flux on the four rows of spatial cells shown in Figure 1), and in Section 3 we
discuss the performance of the iterative “source iteration with under-relaxation” iteration scheme (described
in [1]). Section 4 concludes this paper with a discussion.

2. ACCURACY OF THE 2D/1D SOLUTIONS

To test the accuracy of the 2D/1D solutions, we consider six homogeneous, purely-scattering problems,
defined as follows:

Z = 10 cm ,

X = Y = L = 10, 5, and 2.5 cm (3 cases) ,

Σt = Σs = 1.0 cm−1 ,

Q = 1.0 cm−3 sec−1 ,

∆x = ∆y = 0.05L ,

∆z = 0.5 and 1.0 cm (2 cases) .

The problems differ by their values of ∆z and L, with ∆x = ∆y scaled proportional to L. For L = 10 cm,
the system is a cube of width, height, and depth equal to 20 mean free paths. This problem is reasonably
“diffusive,” so the 3D MOC, 2D/1D and standard diffusion solutions should agree reasonably well. Figure
2 plots the cell-averaged scalar fluxes along the four rows of cells depicted in Figure 1: the “Inner Radial”
row, which adjoins the center of the system and extends to the outer boundary in the radial (y) direction, the
“Inner Axial” row, which adjoins the center of the system and extends to the outer boundary in the axial (z)
direction, and the “Outer Radial” and “Outer Axial” rows, which adjoin the outer boundary of the system.
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Figure 2: Scalar Flux Plots for L = 10 cm and ∆z = 0.5 cm

Top Left: Inner Radial Top Right: Inner Axial
Bottom Left: Outer Radial Bottom Right: Outer Axial
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The 3D MOC and 2D/1D solutions agree closely on the inner radial, inner axial, and outer axial rows
of cells. Along these rows, the axial derivative (diffusion) term in the 2D/1D equation does not dominate
the radial derivative (transport) term – and the resulting approximation should be accurate. The accuracy
is not as good on the outer radial row of cells, in which an axial transport boundary layer occurs. Here the
diffusion axial derivative term of the 2D/1D equation dominates the transport radial derivative terms, and
the axial transport boundary layer is treated with diffusion (not transport) accuracy.

In all four subplots of Figure 2, the diffusion solution has the correct qualitative shape, but its ampli-
tude is consistently about 6% high. The reason for the reasonable but not tight accuracy of the diffusion
approximation is that the L = 10 problem is not sufficiently large (optically thick).

Overall, the 2D/1D solution agrees closely with the 3D MOC solution (i.e. has “transport accuracy”)
in the interior of V , and on the parts of ∂V where the axial derivative does not dominate the radial deriva-
tive. On the parts of ∂V where the axial derivative dominates the radial derivative, the 2D/1D solution has
“diffusion accuracy.” (Where this happens – on the outer radial row of cells – the 2D/1D error is about half
that of the diffusion solution.)

As L = width = depth of V is reduced, V becomes more “leaky” (and hence more transport-like) in the
radial directions x and y. However, V remains optically thick in the z-direction, and the scalar flux should
continue to vary smoothly and slowly in z. The 2D/1D solutions for smaller L should continue to have
transport accuracy – except possibly on the outer radial row of cells, where at worst it should have diffusion
accuracy. Figure 3 depicts similar plots as in Figure 2, but instead for the L = 5 problem.

Figure 3 shows that indeed, the 2D/1D solution has transport accuracy away from the outer radial rows
of cells, and in this row it is more accurate than before! The likely reason for this is that the axial derivatives
in this row are similar to those in the previous problem, but the radial derivatives are larger. Thus, the axial
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Figure 3: Scalar Flux Plots for L = 5.0 cm and ∆z = 0.5 cm

Top Left: Inner Radial Top Right: Inner Axial
Bottom Left: Outer Radial Bottom Right: Outer Axial
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derivatives in this problem do not dominate to the same extent that they did in the previous problem. In this
problem, the diffusion solution is about 10% low in the center of the problem, 20% high on the outer radial
row, and reasonably accurate on the outer axial row of cells.

Next, Figure 4 depicts the same types of plots as in Figure 2, for the L = 2.5 problem:
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Figure 4: Scalar Flux Plots for L = 2.5 cm and ∆z = 0.5 cm

Top Left: Inner Radial Top Right: Inner Axial
Bottom Left: Outer Radial Bottom Right: Outer Axial

These plots continue the same basic trends seen – and discussed – in Figures 2 and 3. Overall, Figures
2-4 show that the 2D/1D solutions treat “radial” boundary layers (along surfaces whose normals point in a
radial direction) with transport accuracy, and “axial” boundary layers (along surfaces whose normals point
in an axial direction) with at worst diffusion accuracy. (If the axial boundary layers contain significant radial
derivative terms, the 2D/1D accuracy increases.)

The next three figures present the same three problems depicted in Figures 2-4, but now calculated
with a coarser axial grid size of ∆z = 1.0 cm. We include these results to give evidence that – provided the
solution varies slowy in z – the 2D/1D solution will remain accurate if ∆z is chosen to be on the order of
(or smaller than) a diffusion length. The discretization of the transport part of the 2D/1D equation generally
requires the radial variables x and y to be discretized on a grid which is small compared to a mean free path.
Thus: for the 3D problems in which the 2D/1D approximation is valid, it should be possible to discretize the
2D/1D equations on a coarser axial grid than the 3D transport equation. (This is another advantage of the
2D/1D approximation.) We note that DeCART is routinely run in this manner – with an axial grid which is
much coarser than the radial grid.

The results in Figures 5-7 are similar to those in Figures 2-4. Overall, the diffusion solution is
less accurate than before, due to the transport boundary layer on the outer radial surface, which is now
even less resolved by the diffusion solution on the coarser axial grid. In all cases, 2D/1D solution has
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Figure 5: Scalar Flux Plots for L = 10 cm and ∆z = 1.0 cm

Top Left: Inner Radial Top Right: Inner Axial
Bottom Left: Outer Radial Bottom Right: Outer Axial
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Figure 6: Scalar Flux Plots for L = 5.0 cm and ∆z = 1.0 cm

Top Left: Inner Radial Top Right: Inner Axial
Bottom Left: Outer Radial Bottom Right: Outer Axial
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Figure 7: Scalar Flux Plots for L = 2.5 cm and ∆z = 1.0 cm

Top Left: Inner Radial Top Right: Inner Axial
Bottom Left: Outer Radial Bottom Right: Outer Axial

transport accuracy at points where axial boundary layers do not occur, and at worst diffusion accuracy at
points where axial boundary layers do occur. This property of the 2D/1D solutions should continue to hold
in heterogeneous reactor cores – which possess a multitude of radial boundary layers, but few axial boundary
layers.

3. EFFICIENCY AND STABILITY OF THE 2D/1D ITERATIVE SCHEME

To test the stability and convergence rates of the “source iteration with under-relaxation” scheme
described in [1], we considered a total of 35 different problems, defined by:

X = Y = Z = 10 cm ,

Σt = 1.0 cm−1 ,

Σs = c = 0.0, 0.25. 0.5, 0.75, and 0.95 (5 cases) ,

Q = 0.0 cm−3 sec−1 ,

∆x = ∆y = 0.5 cm ,

∆z = 10.0, 5.0, 2.0, 1.0, 0.5, 0.2, and 0.1 cm (7 cases) .

These problems differ by their 5 values of the scattering ratio c and their 7 values of the axial cell width ∆z,
but they all have the solution φk(x, y) = 0. To estimate the spectral radius ρ for each of the 35 cases, we
started the iterations with a noisy initial guess and monitored the rate at which the solutions converged to 0.
The spectral radius ρ was estimated as

ρ =
||φ(n+1)||

||φ(n)||
,
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where || · || denotes the L2 norm over all three spatial dimensions, and n (the iteration count) is sufficiently
high that the estimate of ρ is stable.

When the iterations are run with θ = 1, there is no under-relaxation, and the iteration method becomes
very similar to the original iteration method in DeCART. The estimated and predicted (via Fourier analysis)
values of ρ are:

Figure 8: ρ vs Σt∆z for θ = 1

We see that the estimated values of ρ (symbols) and the theoretical values of ρ (lines) agree quite well, with
ρ = c = scattering ratio for Σt∆z sufficiently large, and ρ > 1 (unstable) for roughly Σt∆x < 1.

Figure 9: θopt vs Σt∆z
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In Figure 9, the optimal relaxation factor θopt is plotted as a function of Σt∆z, for 5 different values
of the scattering ratio c. As expected, this figure shows that for small Σt∆z we have θopt < 1, which
corresponds to under-relaxation. Interestingly, for large Σt∆z , we have θopt > 1, which corresponds to
over-relaxation. For large Σt∆z , it is not necessary to over-relax; if one simply uses θ = 1, the theoretical
spectral radius ρ = c results. However, the use of θ = θopt does reduce the theoretical spectral radius to
ρ = c/(2 − c).

For θ = θopt, Figure 10 shows the theoretical (solid lines) and the observed (symbols) estimates of the
spectral radius ρ:

Figure 10: ρ vs Σt∆z for θ = θopt

Again, the agreement between theory and experiment is very good. We have determined that the reason
for the faster-than-theoretically-predicted rates of convergence observed experimentally for larger values of
Σt∆z are due to the vacuum boundary conditions. (For large values of ∆z , the most slowly converging
Fourier modes are flat, and these modes are not present unless the system becomes very optically thick.)
Overall, the most significant result is that the inclusion of under-relaxation stabilizes the method, and the
convergence rates are well- (and conservatively- ) predicted by the Fourier analysis.

4. DISCUSSION

We have presented results of 2D/1D and 3D calculations for some geometrically simple problems,
showing that (i) the 2D/1D solutions exist and are more accurate than standard diffusion, and (ii) the iterative
method described in [1] is stable and behaves as predicted by the Fourier analysis.

To summarize the results of our numerical simulations, they show that the 2D/1D solutions treat “ra-
dial” boundary layers (along surfaces whose normals point in a radial direction) with transport accuracy,
and “axial” boundary layers (along surfaces whose normals point in an axial direction) with at worst diffu-
sion accuracy. If an axial boundary layer contains strong radial derivatives, then the accuracy of the 2D/1D
solution actually increases. This is all that one would hope for, from solving an equation that preserves the
correct transport physics in the radial directions and the approximate diffusion physics in the axial direction.
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Our simulations also confirm that a key element of stability of the 2D/1D iteration scheme is the
under-relaxation step described in [1]. Under-relaxation is never used for iteratively solving standard SN
calculations; the necessary inclusion of this step for solving the 2D/1D equation demonstrates a fundamental
difference between this equation and the Boltzmann transport equation.

If the under-relaxation step is not performed, the iteration method used in our simulations becomes
quite similar to the original iteration method used in DeCART – and it becomes unstable for sufficiently
small ∆z . Currently, we are considering an accelerated version of the “source iteration with under-relaxation”
method that include a low-order 3D “diffusion” calculation, based on the concepts that underly the CMFD
and the Coarse Mesh DSA methods [4].

The 2D/1D simulations in this paper were performed on a single radial spatial grid, whereas practical
2D/1D simulations on reactor lattices employ a coarse radial grid (one cell = one pin cell) and a fine radial
grid (to resolve the inner structure of a pin cell). Almost certainly, the 2D/1D equation itself should be
discretized on the fine radial grid, and the low-order “diffusion” equation in the proposed CMFD method
(see the previous paragraph) should be discretized consistently on the coarse radial grid. This important
practical issue cannot be discussed in detail here.

The accuracy of the 2D/1D solution depends strongly on the use of the correct diffusion coefficient in
the approximate axial derivative term. For problems that are classically diffusive, such as the ones tested
here, the our numerical results show that the standard diffusion coefficient D = 1/3Σtr is correct. However,
for a reactor lattice, where classic diffusion theory is not valid (because the angular dependence of the neu-
tron flux is much more complicated than linear), the classic formula D = 1/3Σtr (or a homogenized version
of this formula) is not justified theoretically. Fortunately, for lattice problems, a systematic asymptotic the-
ory does predict an axial diffusion coefficient [5, 6], and for reactor lattice problems we plan to implement
and test that approach.

We intend to move rapidly in the direction of systematically developing, implementing (in MPACT),
and testing the necessary generalizations to the 2D/1D method presented here, so that the resulting method
will be applicable to reactor lattices. We anticipate that when these generalizations are in place, the resulting
2D/1D method will be an accurate and efficient tool for many 3D reactor simulations.

The resulting 2D/1D solutions will not be identical to solutions of the 3D Boltzmann transport equa-
tion, because the 2D/1D transport physics in the axial direction is approximated (by diffusion physics).
However, more accurate approximations to the axial derivative term can be envisioned, as was discussed
in [1]. In particular, approximations more sophisticated than P1 (for example, P3) can be used. In fact, the
current KAERI version of DeCART now uses an SP3 approximation to the transverse leakage term [7].

The main point to emphasize is that many different possibilities exist for approximating the axial
leakage term in the 3D Boltzmann transport equation, so that the resulting “2D/1D” equation (i) models
practical reactor core problems with sufficient accuracy, and (ii) can be solved more efficiently than the
standard 3D Boltzmann transport equation.
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ABSTRACT

The Coarse Mesh Finite Difference (CMFD) and Diffusion Synthetic Acceleration

(DSA) methods are widely-used, independently-developed methods for accelerating the it-

erative convergence of deterministic neutron transport calculations. In this paper we show

that these methods have the following theoretical relationship: if the standard notion of DSA

as a “fine mesh” method is straightforwardly generalized to a “coarse mesh” method, then

the linearized form of the CMFD method is algebraically equivalent to a coarse-mesh DSA

method. We also show theoretically (via Fourier analysis) and experimentally (via simula-

tions) that for fixed-source problems, the coarse mesh DSA and CMFD methods have nearly

identical convergence rates. Our numerical results confirm the close theoretically-predicted

relationship between these methods.

KEYWORDS: neutron transport, iteration methods, acceleration methods
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I. INTRODUCTION

For many years, large-scale deterministic neutron transport codes have used Source

Iteration (SI) with an acceleration scheme to iteratively converge the scattering and fission

sources [1]. The SI method alone converges rapidly only for problems having high absorp-

tion or high leakage probabilities; when the absorption and leakage probabilities are both

small (and neutron histories are long), the SI scheme converges extremely slowly. Early

acceleration methods included Fine and Coarse-Mesh Rebalance; these were superseded by

various forms of Diffusion Synthetic Acceleration (DSA) [1–5]. Still later, the Coarse Mesh

Finite Difference (CMFD) method was developed independently [6–9].

Outwardly, the DSA and CMFD methods have certain similarities: both methods

define a single iteration to consist of a “high order” transport sweep, followed by a “low-

order” diffusion calculation. However, the two methods have significant differences: (i) DSA

is linear, and CMFD is nonlinear, (ii) DSA is traditionally used as a “fine grid” method in

which the spatial grids for the transport and diffusion calculations are the same, whereas

CMFD is normally used as a “coarse grid” method in which the spatial grid for the diffusion

equation is coarser than the spatial grid for the transport equation, and (iii) in DSA, the

low-order solution is a fine-grid linear correction to the high-order scalar flux, whereas in

CMFD, the low-order solution is a coarse-grid volume-averaged scalar flux.

In 2003, Cho and Park Fourier-analyzed a linearized CMFD method [8]. They showed,

theoretically and experimentally, that the CMFD method converges rapidly when the coarse

cells are less than one mean free path thick; but as the coarse cells become thicker, the

method degrades in performance and ultimately diverges. Cho and Park observed that this

behavior is qualitatively similar to the convergence properties of an “inconsistent” DSA

method, in which (i) the transport and diffusion grids are the same, and (ii) a standard

discretization of the diffusion equation is used, which is not “consistent” with the transport

discretization [1, 4].

DSA is commonly viewed as a “fine mesh” method (in which the spatial grids for the

high order transport and the low-order diffusion equations are the same), but it is easy

to allow the low-order diffusion problem to be discretized on a coarser spatial grid. The

resulting “Coarse Mesh DSA” (CMDSA) method is usually “inconsistent” – the diffusion

discretization is not related to the transport discretization in a way that ensures rapid

convergence for all fine or coarse mesh thicknesses. Nonetheless, if the “consistency” issue

is put aside, there is no conceptual difficulty implementing the DSA method using a coarser

spatial mesh for the low-order diffusion calculation than for the higher-order transport

equation.

In this paper we apply the above ideas to show that the CMDSA and CMFD methods

have the following theoretical relationship:
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1. The linearized form of the CMFD method is algebraically equivalent to a “coarse-mesh

DSA” method.

2. A Fourier analysis accurately predicts the convergence properties of the CMDSA

method. (This extends the previous work by Cho and Park [8].)

3. In numerical simulations of fixed-source problems, the (linear) CMDSA and (nonlin-

ear) CMFD methods have nearly the same convergence properties. Hence, the Fourier

analysis results accurately describe both the linear CMDSA (= linearized CMFD) and

the nonlinear CMFD methods.

Thus, rather than being two unrelated methods, DSA and CMFD have close theoretical

ties. Of course, there are significant differences – the main one being that the low-order

DSA and CMDSA problems are linear, while the low-order CMFD problem is nonlinear.

(Because of its nonlinearity, CMFD is easier to apply to the outer iterations of eigenvalue

problems – an advantage to CMFD. However, the linear CMDSA method will not become

unstable if an angular flux iterate becomes zero or negative – an advantage to CMDSA.)

Nonetheless, for problems on which both methods can be used, the Fourier analysis predicts

and our numerical results confirm that the two methods have nearly the same convergence

properties.

This paper is a revised version of a recent conference paper [10]. The remainder of the

paper is summarized as follows. In Section II a 1-D SN fixed-source problem is described,

for which the (linear) CMDSA and (nonlinear) CMFD methods are formulated. In Sec. III

the CMFD method is linearized, and the resulting “linearized CMFD” (LCMFD) method

is shown to be algebraically equivalent to a CMDSA method. In Section IV the Fourier

analysis for the CMDSA method is developed for the Step Characteristic spatial discretiza-

tion method with p fine spatial cells per coarse cell; and the Fourier analysis is used to

predict the spectral radius of this method. (This section reviews the previous work of Cho

and Park [8].) Section V presents the results of numerical experiments, confirming the the-

oretical predictions from Section III and showing that the (linear) CMDSA and (nonlinear)

CMFD methods have nearly the same convergence properties. Section VI concludes the

paper with a brief discussion.

II. THE CMFD AND CMDSA METHODS

Here we describe the CMFD and CMDSA methods for a planar geometry fixed-source

problem on the system 0 ≤ x ≤ X:

µ
∂ψ

∂x
(x, µ) + σt(x)ψ(x, µ) =

σs(x)

2

∫ 1

−1
ψ(x, µ′)dµ′ +

q(x)

2
, (2.1a)

ψ(0, µ) = ψb(µ) , 0 < µ ≤ 1 , (2.1b)

ψ(X,µ) = ψb(µ) , −1 ≤ µ < 0 . (2.1c)
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The notation here is standard.

Using the familiar discrete ordinates approximation in angle and an arbitrary weighted

diamond approximation in space, we discretize Eqs. (2.1) as follows:

µn
hj

(
ψn,j+1/2 − ψn,j+1/2

)
+ σt,jψn,j =

σs,j
2

N∑
m=1

ψm,jwm +
qj
2
, (2.2a)

ψn,j =

(
1 + αn,j

2

)
ψn,j+1/2 +

(
1− αn,j

2

)
ψn,j−1/2 , (2.2b)

ψn,1/2 = ψbn , µn > 0 , (2.2c)

ψn,J+1/2 = ψbn , µn < 0 . (2.2d)

The notation in Eqs. (2.2) is also standard. The subscript j, running over 1 ≤ j ≤ J ,

denotes the (fine) spatial cell, which has width hj , cross sections σt,j and σs,j , and constant

internal source qj . The subscript n, running from 1 ≤ n ≤ N , denotes the direction cosine

of flight. The constants αn,j determine the specific spatial discretization method, e.g.

αn,j =

{
0 , Diamond Difference ,

1+e−σt,jhj/µn

1−e−σt,jhj/µn
− 2µn

σt,jhj
, Step Characteristic .

(2.3)

The CMFD and CMDSA methods begin each iteration with a standard fine-mesh

transport sweep. At the beginning of the `th iteration, the fine-mesh cell-averaged scalar

fluxes

φ
(`)
0,j =

N∑
n=1

ψ
(`)
n,jwn , 1 ≤ j ≤ J (2.4)

are assumed to be known, either from the previous iteration or from the initial guess if

` = 0. Then the following version of Eqs. (2.2):

µn
hj

(
ψ

(`+1/2)
n,j+1/2 − ψ

(`+1/2)
n,j−1/2

)
+ σt,jψ

(`+1/2)
n,j =

σs,j
2
φ

(`)
0,j +

qj
2
, (2.5a)

ψ
(`+1/2)
n,j =

(
1 + αn,j

2

)
ψ

(`+1/2)
n,j+1/2 +

(
1− αn,j

2

)
ψ

(`+1/2)
n,j−1/2 , (2.5b)

ψ
(`+1/2)
n,1/2 = ψbn , µn > 0 , (2.5c)

ψ
(`+1/2)
n,J+1/2 = ψbn , µn < 0 , (2.5d)

is solved by a standard transport sweep for the ψ(`+1/2) unknowns. During this sweep, the

cell-averaged fluxes and (for CMFD) the cell-edge currents are computed and stored:

φ
(`+1/2)
0,j =

N∑
n=1

ψ
(`+1/2)
n,j wn , (2.6a)

φ
(`+1/2)
1,j+1/2 =

N∑
n=1

µnψ
(`+1/2)
n,j+1/2wn . (2.6b)
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In the classic Source Iteration (SI) method, the fine-mesh scalar fluxes for iteration

`+ 1 are defined simply from Eqs. (2.6) by

φ
(`+1)
0,j = φ

(`+1/2)
0,j , 1 ≤ j ≤ J . (2.7)

However, this method converges slowly for problems in which the system is optically thick

and highly scattering. The CMDSA and CMFD methods retain Eqs. (2.5) and (2.6) but

not Eq. (2.7); this definition of φ
(`+1)
0,j is replaced by a more sophisticated calculation that

can significantly reduce the total number of iterations.

To proceed, we introduce the notation for the coarse spatial grid. This grid contains

K ≤ J disjoint “coarse” spatial cells, each consisting of a contiguous union of fine-mesh

cells. If pk = the number of fine cells in coarse cell k (ordered from left to right as k

increases), then for 0 ≤ k ≤ K:

P0 = 0 , (2.8a)

Pk =

k∑
k′=1

pk′ = the number of fine cells in the first k coarse cells , (2.8b)

PK = J = the total number of fine cells , (2.8c)

and

Xk+1/2 = xPk+1/2

= the right edge of the kth coarse cell

= the left edge of the (k + 1)st coarse cell . (2.9)

The fine and coarse spatial cells are depicted in Figure 1:

Insert Figure 1 about here.

To proceed, we introduce the notation

∑
j∈k

=

Pk+1∑
j=Pk+1

= the sum over all fine cells j in coarse cell k , (2.10)

and we define the coarse cell quantities:

∆k =
∑
j∈k

hj = width of coarse cell k , (2.11a)

Φ0,k =
1

∆k

∑
j∈k

φ0,jhj = volume-averaged scalar flux in coarse cell k , (2.11b)

Qk =
1

∆k

∑
j∈k

qjhj = volume-averaged source in coarse cell k , (2.11c)
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Φ1,k+1/2 = φ1,Pk+1/2 = current on the right edge of coarse cell k , (2.11d)

Σu,k =
1

∆k

∑
j∈k

σu,jhj

= volume-averaged cross section in coarse cell k (u = t, s, γ) , (2.11e)

Σ
(`+1/2)
u,k =

∑
j∈k σu,jφ

(`+1/2)
0,j hj∑

j∈k φ
(`+1/2)
0,j hj

= flux-weighted cross section in coarse cell k (u = t, s, γ) . (2.11f)

(Fine-cell quantities are denoted by lower-case letters; coarse-cell quantities are denoted by

upper-case letters.)

2.1 Coarse Mesh Finite Difference (CMFD)

To derive the CMFD method, we operate on Eq. (2.5a) by
∑N

n=1(·)wn and get

1

hj

(
φ

(`+1/2)
1,j+1/2 − φ

(`+1/2)
1,j−1/2

)
+ σt,jφ

(`+1/2)
0,j = σs,jφ

(`)
0,j + qj . (2.12)

Then we operate on Eq. (2.12) by
∑

j∈k(·)hj . Using the definitions (2.11), we obtain:

Φ
(`+1/2)
1,k+1/2 − Φ

(`+1/2)
1,k−1/2 + Σ

(`+1/2)
t,k Φ

(`+1/2)
0,k ∆k = Σ

(`)
s,kΦ

(`)
0,k∆k +Qk∆k . (2.13)

Next, we define D̂
(`+1/2)
k+1/2 at each interior coarse cell edge (1 ≤ k ≤ K − 1) by:

Φ
(`+1/2)
1,k+1/2 = −2

3

 Φ
(`+1/2)
0,k+1 − Φ

(`+1/2)
0,k

Σ
(`+1/2)
t,k+1 ∆k+1 + Σ

(`+1/2)
t,k ∆k


+ D̂

(`+1/2)
k+1/2

(
Φ

(`+1/2)
0,k+1 + Φ

(`+1/2)
0,k

)
. (2.14)

(We note that D̂
(`+1/2)
k+1/2 can be calculated at the conclusion of each transport sweep, and

that this quantity is a transport correction to Fick’s Law – which vanishes if Fick’s Law

exactly relates the current to the derivative of the scalar flux.) At the left edge of the

system, we define B
(`+1/2)
1/2 by

2Φ+
1,1/2 = 2

∑
µn>0

µnψ
b
nwn

=
N∑
n=1

(
µn + |µn|

)
ψ

(`+1/2)
n,1/2 wn

= Φ
(`+1/2)
1,1/2 +

∑N
n=1 |µn|ψ

(`+1/2)
n,1/2 wn∑N

n=1 Ψ
(`+1/2)
n,1 wn

Φ
(`+1/2)
0,1

= Φ
(`+1/2)
1,1/2 +

(
B

(`+1/2)
1/2

)
Φ

(`+1/2)
0,1 , (2.15a)

and at the right edge of the system, we define B
(`+1/2)
K+1/2 by
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2Φ+
1,K+1/2 = 2

∑
µn<0

|µn|ψbnwn

=

N∑
n=1

(
− µn + |µn|

)
ψ

(`+1/2)
n,J+1/2wn

= −Φ
(`+1/2)
1,K+1/2 +

∑N
n=1 |µn|ψ

(`+1/2)
n,J+1/2wn∑N

n=1 Ψ
(`+1/2)
n,K wn

Φ
(`+1/2)
0,K

= −Φ
(`+1/2)
1,K+1/2 +

(
B

(`+1/2)
K+1/2

)
Φ

(`+1/2)
0,K . (2.15b)

At the conclusion of the transport sweep, (i) the ψ(`+1/2) quantities have been deter-

mined, (ii) Eqs. (2.13) are satisfied for each coarse cell k, (iii) Eq. (2.14) defines D̂
(`+1/2)
k+1/2

at interior coarse cell edge, and (iv) Eqs. (2.15) define B
(`+1/2)
1/2 and B

(`+1/2)
K+1/2 at the left

and right edges of the system. It is now possible to define, in terms of these equations,

acceleration equations for the coarse cell-averaged scalar fluxes and the coarse cell-edge

currents.

In the CMFD method, Φ
(`+1)
0,k and Φ

(`+1)
1,k+1/2 are defined to be the solution of the fol-

lowing altered versions of Eqs. (2.13)-(2.15):

Φ
(`+1)
1,k+1/2 − Φ

(`+1)
1,k−1/2 + Σ

(`+1/2)
t,k Φ

(`+1)
0,k ∆k = Σ

(`+1/2)
s,k Φ

(`+1)
0,k ∆k +Qk∆k , (2.16a)

Φ
(`+1)
1,k+1/2 = −2

3

 Φ
(`+1)
0,k+1 − Φ

(`+1)
0,k

Σ
(`+1/2)
t,k+1 ∆k+1 + Σ

(`+1/2)
t,k ∆k

+ D̂
(`+1/2)
k+1/2

(
Φ

(`+1)
0,k+1 + Φ

(`+1)
0,k

)
, (2.16b)

2Φ+
1,1/2 = Φ

(`+1)
1,1/2 +

(
B

(`+1/2)
1/2

)
Φ

(`+1)
0,1 , (2.16c)

2Φ+
1,K+1/2 = −Φ

(`+1)
1,K+1/2 +

(
B

(`+1/2)
K+1/2

)
Φ

(`+1)
0,J . (2.16d)

The coarse cell-edge currents in these equations, Φ
(`+1)
1,k+1/2, can be algebraically eliminated,

yielding a tri-diagonal system ofK equations for the coarse cell-averaged scalar fluxes Φ
(`+1)
0,k ,

1 ≤ k ≤ K. After these quantities are obtained, the accelerated fine-cell scalar fluxes are

defined as

φ
(`+1)
0,j = φ

(`+1/2)
0,j

 Φ
(`+1)
0,k

Φ
(`+1/2)
0,k

 , j ∈ k , 1 ≤ k ≤ K . (2.17)

This completes the description of the CMFD method. The logic underlying this

method is that if the transport corrections to diffusion D̂
(`+1/2)
k+1/2 are small, then these quan-

tities can be lagged in Eq. (2.16b), and the resulting iterative method will converge rapidly.

For problems in which the coarse cells are not optically thick, this logic is valid, as we show

below.
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2.1 Coarse Mesh Diffusion Synthetic Acceleration (CMDSA)

To derive the CMDSA method, we define the exact fine-mesh iteration errors after the

`th transport sweep:

f1,j+1/2 = φ1,j+1/2 − φ
(`+1/2)
1,j+1/2 , (2.18a)

f0,j = φ0,j − φ(`+1/2)
0,j . (2.18b)

These can easily be shown, using Eq. (2.5a), to satisfy:

1

hj

(
f1,j+1/2 − f1,j−1/2

)
+ σa,jf0,j = σs,j

(
φ

(`+1/2)
0,j − φ(`)

0,j

)
, 1 ≤ k ≤ K .

Equivalently,

1

hj

(
f1,j+1/2 − f1,j−1/2

)
+ Σa,kf0,j = σs,j

(
φ

(`+1/2)
0,j − φ(`)

0,j

)
+
(
Σa,k − σa,j

)
f0,j . (2.19)

Operating on this result by
∑

j∈k(·)hj and defining the coarse cell quantities

F0,k =
1

∆k

∑
j∈k

f0,jhj , (2.20a)

F1,k+1/2 = f1,Pk+1/2 , (2.20b)

we get:

F1,k+1/2 − F1,k−1/2 + Σa,kF0,k∆k =
∑
j∈k

σs,j

(
φ

(`+1/2)
0,j − φ(`)

0,j

)
hj

+
∑
j∈k

(
Σa,k − σa,j

)
f0,jhj . (2.21)

Eqs. (2.21) are J equations for the 2J + 1 quantities F0,k and F1,k+1/2. (Also, the fine-mesh

quantities f0,j on the right side of these equations are not known.)

In the CMDSA method, F
(`+1)
0,k and F

(`+1)
1,k+1/2 are determined by the following version

of Eq. (2.21):

F
(`+1)
1,k+1/2 − F

(`+1)
1,k−1/2 + Σa,kF

(`+1)
0,k ∆k =

∑
j∈k

σs,j

(
φ

(`+1/2)
0,j − φ(`)

0,j

)
hj ,

1 ≤ k ≤ K , (2.22a)

together with the “diffusion” approximation:

F
(`+1)
1,k+1/2 = −2

3

 F
(`+1)
0,k+1 + F

(`+1)
0,k

Σt,k+1∆k+1 + Σt,k∆k

 , 1 ≤ k ≤ K − 1 , (2.22b)

0 = F
(`+1)
1,1/2 + βF

(`+1)
0,1 , (2.22c)

0 = −F (`+1)
1,K+1/2 + βF

(`+1)
0,K , (2.22d)
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where

β ≡ 1

2

(
N∑
n=1

|µn|wn

)
≈ 1

2
. (2.23)

The cell-edge current corrections F
(`+1)
1,k+1/2 in Eqs. (2.22) can be algebraically eliminated,

yielding a tridiagonal system of K equations for F
(`+1)
0,k , 1 ≤ k ≤ K. After these quantities

are calculated, the accelerated fine-cell scalar fluxes are defined as

φ
(`+1)
0,j = φ

(`+1/2)
0,j + F

(`+1)
0,k , j ∈ k , 1 ≤ k ≤ K . (2.24)

This completes the description of the CMDSA method. The logic underlying this

method is that if (i) the second term on the right side of Eq. (2.21) is sufficiently small that

it can be neglected, and (ii) the discrete Fick’s Law in Eq. (2.22b) is sufficiently accurate,

then the solution of Eqs. (2.22) should yield a sufficiently accurate coarse-grid correction

to the fine-grid scalar fluxes that the resulting iteration scheme will converge rapidly. For

problems in which the coarse cells are not optically thick, this logic is valid, as we show

below.

III. THE LINEARIZED COARSE MESH FINITE DIFFERENCE

(LCMFD) METHOD

To describe the linearization procedure, we consider the transport problem defined by

Eqs. (2.2), with

qj = σa,jΛ + εq̃j , (3.1a)

ψbn =
Λ

2
+ εψ̃bn , (3.1b)

where Λ is an arbitrary constant and ε� 1. For ε = 0, the resulting problem has the exact

“flat” solution

ψn,j = ψn,j+1/2 =
Λ

2
.

If we set

ψn,j =
Λ

2
+ εψ̃n,j , (3.2a)

ψn,j+1/2 =
Λ

2
+ εψ̃n,j+1/2 , (3.2b)

then Eqs. (2.2) for ψn,j and ψn,j+1/2 easily become

µn
hj

(
ψ̃n,j+1/2 − ψ̃n,j+1/2

)
+ σt,jψ̃n,j =

σs,j
2

N∑
m=1

ψ̃m,jwm +
q̃j
2
, (3.3a)

ψ̃n,j =

(
1 + αn,j

2

)
ψ̃n,j+1/2 +

(
1− αn,j

2

)
ψ̃n,j−1/2 , (3.3b)

10



ψ̃n,1/2 = ψ̃bn , µn > 0 , (3.3c)

ψ̃n,J+1/2 = ψ̃bn , µn < 0 . (3.3d)

These equations are identical to (2.2), except that ψ and q have been replaced by ψ̃ and q̃.

(Of course, this happens because Eqs. (2.2) are linear.)

Because the CMDSA method is linear, the CMDSA equations obtained by introducing

Eqs. (3.1) and (3.2) are also the same as the original equations, but with ψ’s, φ’s, and q’s

replaced by ψ̃’s, φ̃’s, and q̃’s. Explicitly, the fine-mesh transport sweep (2.5) becomes

µn
hj

(
ψ̃

(`+1/2)
n,j+1/2 − ψ̃

(`+1/2)
n,j−1/2

)
+ σt,jψ̃

(`+1/2)
n,j =

σs,j
2
φ̃

(`)
0,j +

q̃j
2
, (3.4a)

ψ̃
(`+1/2)
n,j =

(
1 + αn,j

2

)
ψ̃

(`+1/2)
n,j+1/2 +

(
1− αn,j

2

)
ψ̃

(`+1/2)
n,j−1/2 , (3.4b)

ψ̃
(`+1/2)
n,1/2 = ψ̃bn , µn > 0 , (3.4c)

ψ̃
(`+1/2)
n,J+1/2 = ψ̃bn , µn < 0 , (3.4d)

the “updated” scalar fluxes are

φ̃
(`+1/2)
0,j =

N∑
n=1

ψ̃
(`+1/2)
n,j wn , (3.5)

the low-order coarse-grid “diffusion” Eqs. (2.22) (with F̃ = εF ) become

F̃
(`+1)
1,k+1/2−F̃

(`+1)
1,k−1/2 + Σa,kF̃

(`+1)
0,k ∆k =

∑
j∈k

σs,j

(
φ̃

(`+1/2)
0,j − φ̃(`)

0,j

)
hj , 1 ≤ k ≤ K , (3.6a)

F̃
(`+1)
1,k+1/2 = −2

3

 F̃
(`+1)
0,k+1 − F̃

(`+1)
0,k

Σt,k+1∆k+1 + Σt,k∆k

 , 1 ≤ k ≤ K − 1 , (3.6b)

0 = F̃
(`+1)
1,1/2 + βF̃

(`+1)
0.1 , (3.6c)

0 = −F̃ (`+1)
1,K+1/2 + βF̃

(`+1)
0,K , (3.6d)

and the fine-grid, accelerated scalar flux equation (2.24) becomes

φ̃
(`+1)
0,j = φ̃

(`+1/2)
0,j + F̃

(`+1)
0,k , j ∈ k , 1 ≤ k ≤ K . (3.7)

To repeat, these equations are identical to the original equations, except that all quantities

scaled by ε now have a tilde. This occurs because, like the original transport problem, the

CMDSA equations are linear.

The CMFD method however is nonlinear – this method is altered when Eqs. (3.1)

and (3.2) are introduced and the resulting equations are expanded in powers of ε. For

the CMFD method, the fine-mesh transport sweep and the resulting updated scalar flux

equations are the same as with CMDSA, and are described by Eqs. (3.4) and (3.5).
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However, introducing Eqs. (3.1) and (3.2) into (2.16) and expanding in ε, we obtain a

different set of low-order diffusion equations for Φ̃
(`+1)
0,k . A key identity is:

Σ
(`+1/2)
a,k Φ

(`+1)
0,k =

∑
j∈k σa,j

(
Λ + εφ̃

(`+1/2)
0,j

)
hj∑

j∈k

(
Λ + εφ̃

(`+1/2)
0,j

)
hj

[
Λ + εΦ̃

(`+1)
0,k

]

=
ΛΣa,k∆k + ε

∑
j∈k σa,jφ̃

(`+1/2)
0,j hj

Λ∆k + ε
∑

j∈k φ̃
(`+1/2)
0,j hj

[
Λ + εΦ̃

(`+1)
0,k

]
= · · ·

= Σa,kΛ + ε

 1

∆k

∑
j∈k

(σa,j − Σa,k)φ̃
(`+1/2)
0,j hj + Σa,kΦ̃

(`+1)
0,k

 . (3.8)

Thus, Eq. (2.16a) becomes:

εΦ̃
(`+1)
1,k+1/2 − εΦ̃

(`+1)
1,k−1/2 + Σa,kΛ∆k + ε

∑
j∈k

(
σa,j − Σa,k

)
φ̃

(`+1/2)
0,j hj + Σa,kΦ̃

(`+1)
0,k ∆k


=
∑
j∈k

(
σa,jΛ + εq̃j

)
hj

=
(
Σa,kΛ + εQ̃k

)
∆k ,

or:

Φ̃
(`+1)
1,k+1/2 − Φ̃

(`+1)
1,k−1/2 + Σa,kΦ̃

(`+1)
0,k ∆k

= Q̃k∆k +
∑
j∈k

(
Σa,k − σa,j

)
φ̃

(`+1/2)
0,j hj . (3.9)

Next, Eq. (2.14) for D̂
(`+1/2)
k+1/2 yields

εΦ̃
(`+1/2)
1,k+1/2 = −2

3

 ε
(
Φ̃

(`+1/2)
0,k+1 − Φ̃

(`+1/2)
0,k

)
Σt,k+1∆k+1 + Σt,k∆k +O(ε)

+ D̂
(`+1/2)
k+1/2

(
2Λ +O(ε)

)
or:

D̂
(`+1/2)
k+1/2 =

ε

2Λ

Φ̃
(`+1/2)
1,k+1/2 +

2

3

 Φ̃
(`+1/2)
0,k+1 − Φ̃

(`+1/2)
0,k

Σt,k+1∆k+1 + Σt,k∆k

+O(ε2) . (3.10)

Using this result in Eq. (2.16b), we obtain for 1 ≤ k ≤ K − 1:

Φ̃
(`+1)
1,k+1/2 = −2

3

 Φ̃
(`+1)
0,k+1 − Φ̃

(`+1)
0,k

Σt,k+1∆k+1 + Σt,k∆k


+ Φ̃

(`+1/2)
1,k+1/2 +

2

3

 Φ̃
(`+1/2)
0,k+1 − Φ̃

(`+1/2)
0,k

Σt,k+1∆k+1 + Σt,k∆k

 . (3.11)
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Next, introducing Eqs. (3.1) and (3.2) into Eq. (2.16c), we get

2
∑
µn>0

µn

(
Λ

2
+ εψ̃bn

)
wn = εΦ̃

(`+1)
1,1/2

+

∑N
n=1 |µn|

(
Λ
2 + εψ̃

(`+1/2)
n,1/2

)
wn

Λ + εΦ̃
(`+1/2)
0,1

(
Λ + εΦ̃

(`+1)
0,1

)
.

Expanding this equation in ε and discarding the O(ε2) terms, we obtain

Φ̃
(`+1)
1,1/2 + βΦ̃

(`+1)
0,1 = Φ̃

(`+1/2)
1,1/2 + βΦ̃

(`+1/2)
0,1 . (3.12a)

At the right edge of the system, a similar result holds:

−Φ̃
(`+1)
1,K+1/2 + βΦ̃

(`+1)
0,J = −Φ̃

(`+1/2)
1,K+1/2 + βΦ̃

(`+1/2)
0,K . (3.12b)

Finally, the fine-grid acceleration Eq. (2.17) becomes, for j ∈ k:

Λ + εφ̃
(`+1)
0,j =

(
Λ + εφ̃

(`+1/2)
0,j

) Λ + εΦ̃
(`+1)
0,k

Λ + εΦ̃
(`+1/2)
0,k

 . (3.13)

Expanding in powers of ε and dropping terms of O(ε2), we get

φ̃
(`+1)
0,j = φ̃

(`+1/2)
0,j +

(
Φ̃

(`+1)
0,k − Φ̃

(`+1/2)
0,k

)
, j ∈ k , 1 ≤ k ≤ K . (3.14)

Thus, the linearized CMFD method is defined by:

1. Transport sweep: Eqs. (3.4)

2. Updated scalar flux: Eq. (3.5)

3. Low-order coarse-grid diffusion equation: Eqs. (3.9), (3.11), (3.12)

4. Accelerated fine-grid scalar fluxes: Eq. (3.14)

The first two (transport sweep) steps [Eqs. (3.4) and (3.5)] are identical for the CMDSA

and LCMFD methods. To establish the connection between the acceleration steps of the

two methods, we shall show that:

F̃
(`+1)
0,k = Φ̃

(`+1)
0,k − Φ̃

(`+1/2)
0,k , (3.15a)

F̃
(`+1)
1,k+1/2 = Φ̃

(`+1)
1,k+1/2 − Φ̃

(`+1/2)
1,k+1/2 . (3.15b)

More precisely, the low-order CMDSA Eqs. (2.22) and (2.24) are defined for F̃
(`+1)
0,k and

F̃
(`+1)
1,k+1/2, while the low-order LCMFD Eqs. (3.9), (3.11), (3.12), and (3.14) are defined for

Φ̃
(`+1)
0,k and Φ̃

(`+1)
1,k+1/2. We use Eqs. (3.15) to show that the LCMFD low-order acceleration

equations are algebraically equivalent to the CMDSA low-order acceleration equations.
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At the end of a transport sweep, Eq. (3.4a) holds, so

1

hj

(
φ̃

(`+1/2)
1,j+1/2 − φ̃

(`+1/2)
1,j−1/2

)
+ σt,jφ̃

(`+1/2)
0,j = σs,jφ̃

(`)
0,j + q̃j .

Equivalently,

1

hj

(
φ̃

(`+1/2)
1,j+1/2 − φ̃

(`+1/2)
1,j−1/2

)
+ Σa,kφ̃

(`+1/2)
0,j = σs,j

(
φ̃

(`)
0,j − φ̃

(`+1/2)
0,j

)
+ q̃j

+ (Σa,k − σa,j) φ̃
(`+1/2)
0,j . (3.16)

Operating by
∑

j∈k(·)hj , we obtain

Φ̃
(`+1/2)
1,k+1/2 − Φ̃

(`+1/2)
1,k−1/2 + Σa,kΦ̃

(`+1/2)
0,k ∆k =

∑
j∈k

σs,j

(
φ̃

(`)
0,j − φ̃

(`+1/2)
0,j

)
hj + Q̃k∆k

+
∑
j∈k

(Σa,k − σa,j) φ̃
(`+1/2)
0,j hj . (3.17)

Subtracting this result from the LCMFD balance Eq. (3.9) and using the definitions (3.15),

we get

F̃
(`+1)
1,k+1/2 − F̃

(`+1)
1,k−1/2 + Σa,kF̃

(`+1)
0,k ∆k =

∑
j∈k

σs,j

(
φ̃

(`+1/2)
0,j − φ̃(`)

0,j

)
hj . (3.18)

This is the CMDSA balance Eq. (3.6a).

Next, Eqs. (3.11) and (3.15) immediately give

F̃
(`+1)
1,k+1/2 = −2

3

 F̃
(`+1)
0,k+1/2 − F̃

(`+1)
0,k

Σt,k+1∆k+1 + Σt,k∆k

 . (3.19)

This is the CMDSA Fick’s Law, Eq. (3.6b).

Next, Eqs. (3.12) and (3.15) immediately give

0 = F̃
(`+1)
1,1/2 + βF̃

(`+1)
0,1 , (3.20a)

0 = −F̃ (`+1)
1,K+1/2 + βF̃

(`+1)
0,K . (3.20b)

These are the CMDSA boundary conditions, Eqs. (3.6c) and (3.6d).

Finally, Eqs. (3.14) and (3.15) become

φ̃
(`+1)
0,j = φ̃

(`+1/2)
0,j + F̃

(`+1)
0,k , j ∈ k , 1 ≤ k ≤ K . (3.21)

This is the CMDSA acceleration Eq. (3.7).

These results show that the CMDSA and LCMFD methods are algebraically equivalent.

Remarks: 1. In previous publications, linearizations of nonlinear transport acceleration

methods were derived only for homogeneous systems with flat sources and uniform grids

[8, 11–14]. In the more general linearization performed in this paper, the physical system
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does not need to be homogeneous, the sources do not need to be flat, and the spatial grid

does not need to be uniform. Thus, the linearization in this paper establishes a much

broader theoretical link between the nonlinear CMFD and the linear CMDSA methods –

these methods are essentially equivalent over a larger class of problems. (However, the

restriction to a homogeneous system with a uniform spatial grid is necessary for the Fourier

analysis presented in Section IV.)

2. The details of the CMDSA discretization method discussed in this paper were

chosen to exactly match the linearized CMFD discretization method. However, there are

choices in how these discretizations can be done (particularly in the choice of boundary con-

ditions), and these choices determine whether there is exact algebraic equivalence between

the LCMFD and CMDSA methods. A main result of this paper is that for any specific

choice of a CMFD method, the linearization of this method (in the manner shown in this

paper) is algebraically equivalent to a specific CMDSA method.

IV. FOURIER ANALYSIS

To proceed with the Fourier analysis, the equations of CMDSA/LCMFD are simplified

by assuming an infinite homogeneous medium with a uniform spatial grid and a specified

number p of fine cells per coarse cell:

µn

(
ψ

(`+1/2)
n,j+1/2 − ψ

(`+1/2)
n,j−1/2

)
+ σthψ

(`+1/2)
n,j =

cσth

2
φ

(`)
0,j +

qj
2
, (4.1a)

ψ
(`+1/2)
n,j =

1 + αn
2

ψ
(`+1/2)
n,j+1/2 +

1− αn
2

ψ
(`+1/2)
n,j−1/2 , (4.1b)

− 1

3pσth

(
F

(`+1)
0,k+1 − 2F

(`+1)
0,k + F

(`+1)
0,k−1

)
+ (1− c) pσthF (`+1)

0,k

= cσth
∑
j∈k

(
φ

(`+1/2)
0,j − φ(`)

0,j

)
,

(4.1c)

φ
(`+1)
0,j = φ

(`+1/2)
0,j + F

(`+1/2)
0,k , j ∈ k . (4.1d)

We choose the following ansatz, which eliminates aliasing between the fine cell and

coarse cell modes and results in a system of equations with substantially fewer exponential

terms. Let j′ denote the (integer) label for any cell in the infinite system; −∞ < j′ < ∞.

Also, let j be a positive integer satisfying 1 ≤ j ≤ p and let k be an integer such that

j′ = (k − 1)p+ j .

Then for each j′, (i) j and k are unique, (ii) k labels the coarse cell within which cell j′

resides, and (iii) j labels the position within coarse cell k at which fine cell j′ resides. The

Fourier ansatz can now be stated as:

qj = 0 ,
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ψ
(`+1/2)
n,j′−1/2 = ω`dn,je

iλσtxk ,

ψ
(`+1/2)
n,j′ = ω`an,je

iλσtxk ,

φ
(`)
0,j′ = ω`gje

iλσtxk ,

F
(`+1)
0,k = ω`Feiλσtxk .

Inserting this ansatz into Eqs. (4.1), we obtain:

µn (dn,j+1 − dn,j) + σthan,j =
cσth

2
gj 1 ≤ j ≤ p− 1 ,

µn

(
dn,1e

iλPσth − dn,j
)

+ σthan,j =
cσth

2
gj j = p ,

(4.2a)

an,j =
1 + αn

2
dn,j+1 +

1− αn
2

dn,j 1 ≤ j ≤ p− 1 ,

an,j =
1 + αn

2
dn,1e

iλpσth +
1− αn

2
dn,j j = p ,

(4.2b)

− F

3pσth

(
eiλpσth − 2 + e−iλpσth

)
+ (1− c) pσthF

= cσth

p∑
j=1

(
N∑
n=1

wnan,j − gj

)
,

(4.2c)

ωgj =

N∑
n=1

wnan,j + F . (4.2d)

Eqs. (4.2c) and (4.2d) can be combined, yielding:

an,j +
µn
σth

dn,j+1 −
µn
σth

dn,j −
c

2
gj = 0 , 1 ≤ j ≤ p− 1 ,

an,j +

(
µn
σth

eiλpσth
)
dn,1 −

µn
σth

dn,j −
c

2
gj = 0 , j = p ,

(4.3a)

an,j −
1 + αn

2
dn,j+1 −

1− αn
2

dn,j = 0 , 1 ≤ j ≤ p− 1 ,

an,j −
(

1 + αn
2

eiλpσth
)
dn,1 −

1− αn
2

dn,j = 0 , j = p ,
(4.3b)

N∑
n=1

wn

an,j + F̂

p∑
j′=1

an,j′

− F̂ p∑
j′=1

gj′ − ωgj = 0 , (4.3c)

F̂ =
cσth

2
3pσth

[1− cos(λpσth)] + (1− c) pσth
.

Representing this system of equations (4.3) in block matrix form, we obtain:[
A B
C D− ωI

] [
f
g

]
=

[
0
0

]
. (4.4)

Here the entries of the 2Np × 2Np matrix A are the coefficients of an,j and dn,j in Eqs.

(4.3a) and (4.3b). The entries of the 2Np × p matrix B are the coefficients of gj in Eqs.

(4.3a) and (4.3b). The entries of the p × 2Np matrix C are the coefficients of an,j in Eq.
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(4.3c). The entries of the p×p matrix D are the coefficients of gj in Eq. (4.3c). The entries

of the 2Np column vector f are the terms an,j and dn,j . The entres of the p column vector

g are the terms gj .

The block matrix can be decomposed as follows:[
A B
C D− ωI

]
=

[
A 0
C I

] [
I A−1B
0 D−CA−1B− ωI

]
. (4.5)

The determinant of the original matrix can then be found via:∣∣∣∣A B
C D− ωI

∣∣∣∣ =

∣∣∣∣A 0
C I

∣∣∣∣ ∣∣∣∣I A−1B
0 D−CA−1B− ωI

∣∣∣∣
= |A|

∣∣D−CA−1B− ωI
∣∣ . (4.6)

From Eq. (4.4), we know that

∣∣∣∣A B
C D− ωI

∣∣∣∣ = 0. Also, from inspection of Eqs. (4.3a) and

(4.3b), we know that the rows of matrix A are linearly independent, implying |A| 6= 0.

Therefore

|D−CA−1B− ωI| = 0 , (4.7)

and thus ωj , 1 ≤ j ≤ p are the eigenvalues of the p× p matrix D−CA−1B. We compute

these eigenvalues numerically as functions of λ, and then we calculate the spectral radius

ρ = sup
λ

sup
1≤j≤p

|ωj (λ)| . (4.8)

V. NUMERICAL RESULTS

The spectral radius is predicted theoretically by the Fourier analysis described above.

To confirm that the behavior of CMFD and CMDSA matches this analysis, we estimate

the spectral radii of these methods experimentally. The problem used to estimate the

spectral radius of the CMDSA method consists of a system with a vacuum boundary on

the left side of the slab and a reflecting boundary on the right side with no interior source.

The solution of this problem is zero throughout the system, and we initialize the iterative

CMDSA method with a step function and observe its convergence to the zero solution. (By

choosing a step function as our initial guess, we seed the system with all Fourier modes.)

For this problem, the spectral radius can be measured as:

ρ =

∣∣∣∣φ(`+1)
∣∣∣∣∣∣∣∣φ(`)
∣∣∣∣ . (5.1)

This problem cannot be used to estimate the spectral radius of CMFD, because the

lack of an interior and boundary source causes the low-order problem to produce the exact

zero solution in a single iteration. Instead, we choose the same boundary conditions but
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with a step function source within the system. The CMFD spectral radius can then be

estimated as:

ρ =

∣∣∣∣φ(`+1) − φ(`)
∣∣∣∣∣∣∣∣φ(`) − φ(`−1)
∣∣∣∣ . (5.2)

The following figures show comparison between the experimental results of these two meth-

ods for various coarse cell optical thicknesses, scattering ratios, and numbers of fine cells

per coarse cell.

First, Figures 2-5 describe fine mesh acceleration (each coarse spatial cell contains

p = 1 fine spatial cell). In this case, the CMDSA method is the same as the standard fine-

mesh DSA method. For small scattering ratios c, the CMDSA and CMFD methods are seen

to be stable for all coarse spatial cells and efficient for most coarse spatial cells. However,

as c increases, the methods are stable and efficient for coarse cells less than about one mean

free path thick, but become unstable for coarse spatial cells greater than about one mean

free path thick. The CMDSA and CMFD methods have almost identical spectral radii, and

the agreement between theory (Fourier analysis) and experiment (numerical simulation) is

seen to be excellent.

Insert Figures 2 through 5 about here.

Next, Figures 6-9 describe coarse mesh acceleration in which each coarse spatial cell

contains p = 2 fine mesh cells. Qualitatively, the results are similar to fine mesh acceleration:

the CMDSA and CMFD methods are stable and efficient for coarse spatial cells less than

about one mean free path thick, but for scattering ratios near unity, the methods become

unstable for coarse spatial cells greater than about one mean free path. The p = 2 spectral

radii are higher than the p = 1 spectral radii, as should be expected because the same coarse

mesh calculation is now being asked to accelerate twice as many fine mesh unknowns. As

before, the CMDSA and CMFD methods have almost the same spectral radii, and the

agreement between theory and experiment is excellent.

Insert Figures 6 through 9 about here.

Figures 10-13 describe coarse mesh acceleration with p = 3 fine cells per coarse cell.

The results here are qualitatively similar to the p = 2 results. The p = 3 spectral radii are

higher than the p = 2 spectral radii, as expected from the reasons noted previously. Also,

as in the previous simulations, the agreement between theory and experiment is excellent.

Insert Figures 10 through 13 about here.
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Finally, Figures 14-17 describe coarse mesh acceleration with p = 4 fine cells per coarse

spatial cell. All the trends noted previously are continued in these figures, including the

excellent agreement between theory and experiment.

Insert Figures 14 through 17 about here.

In all these figures, the Fourier analysis yields an upper bound to the spectral radius.

This is because the experimental neutron systems are finite, and neutron leakage from

these systems reduces the theoretical (infinite medium) spectral radius slightly. Also, the

spectral radius describes the asymptotic trend of the method after many iterations. Thus,

small spectral radii ρ can be difficult to measure experimentally, as the solution converges

so rapidly that round-off error can present itself before a good estimate of ρ is achieved.

(This issue is most significant with our estimates of the CMFD ρ using Eq. (5.2), which is

more sensitive to roundoff errors than Eq. (5.1). In particular, for small ρ the measured

CMFD ρ are often slightly lower than the Fourier analysis predictions. The likely reason

for this is that the CMFD numerical experiments could not be run to a sufficiently large

number of iterations.)

Finally, we note that the numerical results shown above are consistent with the CMFD

results obtained previously by Cho and Park [8].

VI. CONCLUSIONS

We have derived – and demonstrated numerically – a close theoretical relationship

between the DSA and CMFD methods for accelerating the iterative convergence of particle

transport calculations. These two methods were developed independently and have been

used for many years in production neutron transport codes.

To the reader who is familiar with the history of DSA and the long (and only partly

successful) effort to derive unconditionally stable versions of this method for specified trans-

port discretization schemes, a natural question is: if CMFD is stable only for spatial cells

less than about one mean free path thick, then how could this method be used successfully

in practical problems? The answer seems to have two parts:

1. In practical multigroup reactor core simulations, CMFD is observed to be somewhat

more stable than for one-group problems; the “practical” borderline of instability

becomes 2-3 mean free paths [15].

2. In the same simulations, CMFD is commonly used with a coarse spatial cell defined

to be a single pin cell – which is roughly 1-2 mean free paths across, and hence within
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multigroup CMFD’s “practical” range of stability. The fine spatial cells (within a

coarse cell) are used to resolve the fuel, cladding, and moderator components inside a

pin cell. Although CMFD has been successful for reactor physics problems in which

a coarse cell is a single pin cell, it is not commonly understood that if the coarse grid

is enlarged to include multiple pin cells, the method can become divergent.

The results in this paper make possible the following prediction: if an inconsistent

coarse-mesh version of DSA were implemented to solve the same reactor core problems as

CMFD, it would have the same convergence properties as CMFD. Such a code would have

advantages and disadvantages compared to a CMFD code. The DSA-based code would be

linear, and thus would be insensitive to the appearance of negative angular fluxes in the

numerical solution (or in iterates leading to the converged solution); the CMFD method,

being nonlinear, could fail if negative angular fluxes ever occur. Conversely, the nonlin-

earities in CMFD make this method more attractive than CMDSA for the outer iterations

in eigenvalue calculations; the additive residual terms in DSA act like an inhomogeneous

source, which is not permitted in outer iterations.

Thus, for reactor core k-eigenvalue calculations, the CMDSA method could be used to

accelerate the convergence of inner iterations (since these are essentially fixed-source prob-

lems with a “known” fission source), while the CMFD method could be used to accelerate

the convergence of the outer iterations (since these are not driven by a fixed source). The

resulting method would have essentially the same convergence properties as a CMFD code

for problems in which CMFD converges. However, because the CMFD/CMDSA method

would be insensitive to the occurrence of negative fluxes during inner iterations, it would

also be more likely to converge for such problems than a code using CMFD for both outer

and inner iterations.

In conclusion, the authors wish to express the hope that the contents of this paper will

improve the theoretical understanding of the DSA and CMFD methods for reactor physics

problems, and that this will lead to practical improvements in the methods.
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FIGURE TITLES

Figure 1: Fine and Coarse Spatial Grids

Figure 2: Spectral Radius for p = 1 and c = 0.8

Figure 3: Spectral Radius for p = 1 and c = 0.9

Figure 4: Spectral Radius for p = 1 and c = 0.99

Figure 5: Spectral Radius for p = 1 and c = 0.9999

Figure 6: Spectral Radius for p = 2 and c = 0.8

Figure 7: Spectral Radius for p = 2 and c = 0.9

Figure 8: Spectral Radius for p = 2 and c = 0.99

Figure 9: Spectral Radius for p = 2 and c = 0.9999

Figure 10: Spectral Radius for p = 3 and c = 0.8

Figure 11: Spectral Radius for p = 3 and c = 0.9

Figure 12: Spectral Radius for p = 3 and c = 0.99

Figure 13: Spectral Radius for p = 3 and c = 0.9999

Figure 14: Spectral Radius for p = 4 and c = 0.8

Figure 15: Spectral Radius for p = 4 and c = 0.9

Figure 16: Spectral Radius for p = 4 and c = 0.99

Figure 17: Spectral Radius for p = 4 and c = 0.9999
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Figure 1: Fine and Coarse Spatial Grids
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Figure 2: Spectral Radius for p = 1 and c = 0.8

Figure 3: Spectral Radius for p = 1 and c = 0.9
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Figure 4: Spectral Radius for p = 1 and c = 0.99

Figure 5: Spectral Radius for p = 1 and c = 0.9999
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Figure 6: Spectral Radius for p = 2 and c = 0.8

Figure 7: Spectral Radius for p = 2 and c = 0.9
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Figure 8: Spectral Radius for p = 2 and c = 0.99

Figure 9: Spectral Radius for p = 2 and c = 0.9999
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Figure 10: Spectral Radius for p = 3 and c = 0.8

Figure 11: Spectral Radius for p = 3 and c = 0.9
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Figure 12: Spectral Radius for p = 3 and c = 0.99

Figure 13: Spectral Radius for p = 3 and c = 0.9999
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Figure 14: Spectral Radius for p = 4 and c = 0.8

Figure 15: Spectral Radius for p = 4 and c = 0.9
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Figure 16: Spectral Radius for p = 4 and c = 0.99

Figure 17: Spectral Radius for p = 4 and c = 0.9999
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