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DISCLAIMER 
 
This report was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor any agency thereof, nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, 
product, or process disclosed, or represents that its use would not infringe privately owned rights. 
Reference herein to any specific commercial product, process, or service by trade name, 
trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States Government or any agency thereof. The views 
and opinions of authors expressed herein do not necessarily state or reflect those of the United 
States Government or any agency thereof. 
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ABSTRACT 
 
The project supported graduate students working on experimental and numerical modeling of 
rock fracture, with the following objectives: (a) perform laboratory testing of fluid-saturated rock; 
(b) develop predictive models for simulation of fracture; and (c) establish educational 
frameworks for geologic sequestration issues related to rock fracture.  These objectives were 
achieved through (i) using a novel apparatus to produce faulting in a fluid-saturated rock; (ii) 
modeling fracture with a boundary element method; and (iii) developing curricula for training 
geoengineers in experimental mechanics, numerical modeling of fracture, and poroelasticity.   
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EXECUTIVE SUMMARY 
 

Carbon storage technologies offer a means of reducing CO2 emissions and mitigating climate 
change. These new technologies will require a workforce educated in geomechanics.  To this end, 
the project supported graduate students working on geomechanical simulation of fluid-driven 
fractures with the following objectives: 

1. Measure elastic and inelastic response of fluid-saturated rock 
2. Develop predictive models for simulation of fluid-driven fractures 
 

1. Deformation and damage of a porous, fluid-saturated rock under drained and undrained 
conditions were investigated.  A plane-strain apparatus was modified in order to conduct tests 
with water-saturated rock specimens and to measure the pore pressure within the rock.  
Transducers within the apparatus were calibrated at the various loading states and the 
compliances of the system were determined.  Plane strain compression and conventional triaxial 
compression tests were performed at different confining pressures under air-dry, drained, and 
undrained conditions.  The behavior of the rock was evaluated within the framework of linear 
poroelasticity.  Dilatant hardening and contractant softening was investigated from undrained 
experiments, where pore pressure was measured throughout the failure process.  The parameters 
that govern the inelastic deformation of fluid-saturated rock, i.e. dilatancy angle β, friction 
coefficient µ, poroelastic coefficient Keff, shear modulus G, and inelastic hardening modulus H, 
were calculated for the drained response.  The constitutive model predicts the undrained inelastic 
response of the rock fairly well, almost up to the peak load if compared with the undrained test 
that had the same effective mean stress at the onset of inelasticity.  Knowledge of dilatant 
hardening behavior is essential for the proper assessment of underground structures, such as 
long-term CO2 storage facilities. 

 
2. The boundary element method (BEM) is based on the boundary integral representation 
equivalent to the differential equation governing a specific physical problem.  Such 
representation is possible when the so-called fundamental solution of the governing differential 
equation is available.  The fundamental solution satisfies the differential equation everywhere in 
the domain except one point where it is singular.  In the case of linear isotropic and 
homogeneous elasticity, the fundamental solution is that of a point force applied to an infinite 
domain, the so-called Kelvin solution. Thus, in the BEM, unlike in the finite element method 
(FEM), the fields are already exactly self-equilibrated inside the computational domain, perhaps 
except for the boundary.  This makes possible resolving high stress gradients and intrinsic 
singularities that are difficult to handle with FEM.  Another significant feature of BEM is the 
absence of the volume mesh, which makes it possible to solve infinite medium problems.  These 
features of BEM make it a powerful and versatile tool for various applications.  The 
displacement discontinuity method consists of representing a crack by a set of displacement 
discontinuity elements.  Knowing the analytical solution for the fields for a single element, the 
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numerical solutions for those in the computational domain can be obtained by the standard 
superposition.  Mathematically, this method is equivalent to the solution of a hypersingular 
integral equation with displacement discontinuity being the unknown density function. This 
approach requires a rigorous treatment of hypersingular integrals.  BEM provides stable results 
even with the simplest piecewise-constant approximations of unknowns.  However, to improve 
accuracy, large numbers of elements are required and, consequently, the computational cost 
could be high.  To reduce this cost, quadratic approximations of unknowns are planned to be 
introduced.  In this procedure, analytical integration can still be used. In fact, all integral terms 
involved in the present (constant approximation) scheme will still be included in the final 
expressions for quadratic approximations. Additional integrals related to the higher order terms 
are expected to be handled analytically. 
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INTRODUCTION 
 
The characterization of elastically and inelastically deforming rock under well-controlled 
drainage conditions is required in order to understand the coupling between rock deformation 
and pore fluid diffusion, and for the interpretation of premonitory events in the Earth’s crust 
prior to faulting (e.g. Nur 1972; Scholz et al. 1973; Rice and Cleary 1976).  This consideration is 
particularly important when analyzing the stability of long-term underground storage facilities, 
such as the storage of CO2. 
 
Terzaghi (1936) was one of the first to recognize the role of the pore pressure in soil and he 
suggested the “effective” stress law: the effect of the pore fluid on some aspect of the mechanical 
behavior can be incorporated by replacing the normal stress by the effective normal stress, the 
difference between the normal stress and pore fluid pressure. Terzaghi’s empirical expression 
turns out to be very good description for soil, and nearly correct for highly porous and cracked 
rock, but it is not true as a general rule for all porous media. 
 
Biot (1941) developed the first rational theory for the mechanical behavior of porous materials, 
and later (Biot 1973) extended poroelasticity to the case of nonlinear behavior. Based on Biot’s 
work, Nur and Byerlee (1971) rederived the expression for the effective stress by multiplying the 
pore pressure by the so-called Biot’s coefficient. 
 
The inelastic deformation of many geological materials is inhibited by an increase of hydrostatic 
compression, thus, an increase in pore fluid pressure decreases the effective compressive stress 
and promotes further inelastic deformation; conversely, a decrease in pore fluid pressure tends to 
inhibit further inelastic deformation (Rice 1975). Coupling of deformation with pore fluid 
diffusion also introduces time dependence into the response of an otherwise rate-independent 
solid. An elastic fluid-infiltrated solid responds more stiffly to deformations that are rapid 
compared to the time scale of diffusion, than for deformations that are slow compared to the 
diffusion time (Rice 1975; Brace and Martin 1968). However, some experimental work (Aldrich 
1969) does not support this statement. 
 
If the time scale of deformation is rapid in comparison to that for diffusion so that the fluid mass 
in a material element remains constant, then the response is termed “undrained.”  The long-time 
or “drained” response is the one for which the local pore fluid pressure is constant. Both elastic 
and inelastic material parameters differ under drained and undrained conditions (Rice and Cleary 
1976; Rice 1975). Laboratory measurements that provide estimates of poroelastic parameters and 
consider the rate dependent effects of coupling of deformation with pore fluid diffusion are 
needed to describe these effects. 
 
 
OBJECTIVES 
 
The proposed study deals experiments and numerical modeling.  Drained and undrained tests of 
porous rock were performed with the University of Minnesota Plane-Strain Apparatus, modified 
for this purpose. The device allowed application of three different principal stresses and 
measurement of principal strains, as well as the ability to apply and measure pore pressure within 
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the rock. Post-failure displacements and loads were measured in the plane of deformation, and 
friction and dilatancy characteristics of the naturally formed failure plane were determined. 
Moreover, eight acoustic emission (AE) sensors were used for monitoring damage in the 
specimen and measuring velocities. 
 
The objective of the numerical part of the research was to develop a three-dimensional analytical 
and computational basis for realistic modeling of behavior of rock masses under various loading 
conditions and physical effects (e.g. fluid flow, pore pressure).  The goal was to create a 
computational model implemented in a general purpose code capable of accurate modeling of 
three-dimensional problems of multiple propagating fractures in piecewise homogeneous rocks 
that account for various loading conditions.   The code structure allowed for incorporation of 
coupled problems of poroelasticity.  Significant features of the code include using MATLAB as 
the programming tool. MATLAB is a high-level language for numerical computations that 
features built-in linear algebra functions, graphics for data visualization, and could be easily 
integrated with external applications and languages.  
 
 
EXPERIMENTAL METHODS 
 
Poroelastic response 
 
Drained and undrained material parameters can be obtained by using a compression test with 
pore pressure involved (Fig. 1). A barrier allows flow of the pore fluid out of the specimen 
during loading and, hence, constant pore pressure (drained test); the barrier prevents flow and 
allows pore pressure build-up (undrained test), or the equilibration of increments of pore and 
confining pressures (unjacketed test). Also, a dry test, when air in the pores is the only pore fluid, 
can be considered as the drained test (e.g. Green and Wang 1986; Rudnicki 1985), where the 
influence of the pore fluid on the rock constituents is neglected. 

 
Figure 1. Rock compression with pore pressure measurements (Wang 2000). 
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Generalized Hooke’s law for the incremental behavior of an isotropic linearly elastic solid in 
plane strain takes the following form for principal strains and stresses (ε2=0): 
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Assuming constant confining pressure throughout the test (Δσ3=0) and taking the sign 
convention of compression positive, Young’s modulus E and Poisson’s ratio ν are  
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For plane problems, it is convenient to introduce the invariants named (i) average stress s, (ii) 
shear stress τ, (iii) volume strain εV, and (iv) shear strain γ: 
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Bulk modulus K and shear modulus G are 
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For undrained elastic behavior in terms of total stresses, undrained Young’s modulus Eu and 
undrained Poisson’s ratio νu are introduced. Then, generalized Hooke’s law for undrained plane-
strain loading can be written in terms of equations (5) and (6), but for undrained elastic 
parameters: 
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where undrained bulk and shear moduli are 
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In case of undrained testing, the pore pressure u must be considered and Terzaghi’s effective 
stresses take the following form: 

u−= 11' σσ  
u−= 33 ' σσ                                                                                                                     (13) 

( ) 2/''' 31 σσ +=s  
( ) ( ) τσσσστ =−=−= 2/2/''' 3131  

Furthermore, because ττ ∆=∆ ' ,  
'GGu =                                                                                                                           (14) 

where G' is the drained shear modulus, which will be denoted as G for convenience.  
Therefore, once νu and Eu are obtained from an undrained plane-strain test, other parameters such 
as Ku and G can be determined. 
 
Coupling between pore pressures and external stresses in deformation of rock is described by 
theories of Biot (1941) and Gassman (1951).  The compression of fluid-saturated rock was 
examined theoretically by Biot and Willis (1957), Nur and Byerlee (1971) and Brown and 
Korringa (1975), and experimentally by Geertsma (1957) and Fatt (1959), among others.  
Analyses of the problems involving interaction between fluid and rock are greatly facilitated by 
the work of Rice and Cleary (1976), with no special assumptions regarding the fluid and solid 
compressibilities. The coupled stress and fluid-flow fields are formulated as an extension of the 
Biot (1941) theory. The Biot moduli are written in terms of parameters related to the drained and 
undrained response of fluid-saturated material.  
 
Drained and undrained bulk moduli (K and Ku) refer to boundary conditions in which there are 
no changes in pore fluid pressure (du=0) and pore fluid mass (dmf=0), respectively. They can be 
written in terms of changes of the external mean stress P with specimen volume V: 
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The Skempton coefficient B can be defined as 
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and measured experimentally. Rice and Cleary (1976) introduced two new material constants – 
unjacketed (dP=du) bulk modulus Ks' and unjacketed pore volume bulk modulus Ks": 
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where Vφ=φV and φ = porosity. 
The coefficients Ks' and Ks" are two bulk moduli, which under certain conditions can be both 
identified with the bulk modulus Ks of the solid constituent.  Assuming that the rock has fully 
connected pore space, all points of the solid phase may be taken as elastically isotropic with the 
same local bulk modulus Ks, and both fluid and solid are chemically inert for the time scale of 
the tests, it can be shown that (Rice and Cleary 1976): 

"' sss KKK ==                                                                                                                (20)  
However, this assumption may not be valid for sedimentary rocks where intergranular cements 
and pore linings have different elastic properties (Green and Wang 1986). 
 
Detournay and Cheng (1993) summarized the dependence of bulk continuum constants B, K, Ku, 
and α (Biot coefficient) on bulk moduli of the fluid (Kf), solid and pores: 
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and the following inequalities must be satisfied: 

uKK ≤<0                                                                                                                     (22) 
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The interstitial water of a nearly saturated (S > 90%) soil is a mixture of water and gas that has a 
fluid bulk modulus Kf  (Verruijt 1969): 

u
S

KK wf

−
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111                                                                                                           (24) 

where S is the degree of saturation, and Kw = 2.2GPa is the bulk modulus of pure water.  
Equation (24) shows that even a small variation in the degree of saturation strongly influences 
the bulk modulus of the fluid. For rock, where drained testing for some reason may not be 
possible and only Ku  is available from the undrained test (e.g. shale), certain assumptions Ks 
=Ks' = Ks"  and the known value of S must be made to calculate the poroelastic parameters 
(Makhnenko et al. 2011).  

If both drained and undrained bulk moduli are available from the test data, then (21) has three 
equations and four unknowns.  It can be assumed that Ks = Ks' = Ks", and then α, Ks, and Kf, and 
hence S from equation (24), can be calculated. Also, if the assumption is made on the value of 
saturation S and no restrictions imposed on Ks' and Ks", then the solution of (21) provides the 
values of α, Ks', and Ks". 
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Plane-strain apparatus 
 

An apparatus for determining the constitutive response of soft rock, named the University of 
Minnesota Plane-Strain Apparatus, was designed and built based on a passive stiff-frame concept 
(Labuz et al. 1996).  The biaxial device (U.S. Patent 5,063,785) is unique because it allows the 
failure plane to develop and propagate in an unrestricted manner.  By placing the upper platen on 
a low friction linear bearing, the prismatic specimen, subjected to confining pressure and 
compressed axially, has the freedom to translate in the lateral direction if the deformation has 
localized.  In addition, the apparatus was modified to allow pore pressure to be applied and 
monitored during an experiment. 

The design of the plane-strain apparatus is illustrated in Fig. 2; a brief explanation of the various 
parts of the device follows.  A prismatic specimen (1) of height h = 75-100 mm, thickness t = 30-
44 mm, and width w = 100 mm, is covered with an impermeable polyurethane coating to isolate 
the rock from the confining fluid.  For the specimens   to be water-saturated, a viton membrane is 
used to prevent polyurethane penetration into the rock. The specimen is placed on a lower 
loading platen (2) and confined laterally by a biaxial frame (3) in the form of a thick-walled 
cylinder.  A pair of equally angled wedges allowing a tolerance of 0.5 mm in specimen width is 
used for fitting the specimen within the biaxial frame (Fig. 3).  The lower loading plate is 
connected through a load cell (4) to the base unit (5) of the apparatus.  The biaxial frame sits on 
the base unit guided by three pins, which ensures precise alignment.  Another loading plate (6) 
rests on top of the specimen; it is fixed with bolts to a linear bearing (7) sliding over a trackway 
(8).  The trackway is connected through bolts to a loading piston (9).  The apparatus is placed 
inside a large pressure cell to induce confining (lateral) stress.  The cell consists of a base pot 
(10), a pressure vessel (11) rated to 24 MPa, and an upper cap (12).  Low friction teflon O-rings 
are used for sealing the loading piston and the upper caps, as well as the other connecting 
members of the pressure cell.  The cell is filled with hydraulic oil and the confining pressure is 
applied with a microprocessor-based hydraulic pump that maintains cell pressure at a constant 
value, within a tolerance of 0.1 MPa.  

The apparatus is internally instrumented with LVDTs for determining lateral and axial 
displacements of the specimen and movement of the linear bearing, a load cell for measuring the 
axial force, and strain gages for determining the plane-strain stress. The confining pressure is 
recorded by a pressure transducer within the hydraulic system; two pressure transducers measure 
the pore pressure both at the bottom and top of the specimen. 

The axial force is measured below and above the specimen.  A 1 MN load cell, with a sensitivity 
of 50 kN/mV, is mounted permanently to the cross head of the load frame and provides the axial 
force above the specimen.  A confining pressure-compensated load cell, with a sensitivity of 5 
kN/mV, is placed below the specimen, between the lower loading platen and the base unit. 

Five RDP-Electrosense type D5/100/90, pressure resistant LVDTs with a linear range of 2.5 mm 
and a sensitivity of 0.25 mm/mV measure the displacements of the specimen and the linear 
bearing. Two LVDTs are attached to the lower load cell and rest against the upper loading platen 
for measuring axial displacement. A pair of LVDTs are placed horizontally on opposite sides of 
the specimen exposed to confining pressure at 5 mm above and below the specimen's mid-height 
for measuring lateral displacement. The four LVDTs are mounted in place through LVDT 
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holders attached with two aluminum posts to the lower load cell (Fig. 2). One LVDT is attached 
to the linear bearing to record its horizontal displacement. 

 

 

 
Figure 2. University of Minnesota Plane-Strain Apparatus. 

 

 

 

Figure 3. Specimen and wedge-spacer assembly.  a. Plan view.  b. Elevation view. 
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Figure 4. Principal stresses and strains. 
 
Figure 4 illustrates principal stresses acting on the rock specimen and the corresponding strains. 
The direction of major principal stress σ1 is the direction of axial loading, which is measured by 
the upper and lower load cells. Minor principal stress σ3 is applied by confining fluid (hydraulic 
oil) and is measured by the pressure transducer in the hydraulic system. The intermediate 
principal stress σ2 acts in the direction of plane strain. According to the generalized Hooke’s law, 

)( 3122 σσνεσ ++= E                                                                                                     (25) 
During the assembly, the specimen is pre-stressed in the frame with the matching wedges to 
guarantee σ2 >σ3.  
 
Displacements of the specimen in major and minor principal directions are measured by the axial 
and lateral LVDTs. However, part of the measured displacement is related to the deformation of 
various components (Fig. 5), and this is called system displacement,, which is estimated from 
calibration tests with materials of known elastic properties such that specimen strains ε1 and ε3 
can be accurately calculated. In addition, strain gages attached to the biaxial frame parallel to the 
σ2 direction provide a measure of the specimen strain ε2, and the intermediate principal stress is 
determined from eq. (25).  
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Figure 5. System displacements. 
 
Prismatic specimens of (i) PMMA with E = 3.2 GPa, ν = 0.37, and (ii) lead with E = 15.7 GPa, 
ν = 0.40, similar in size to the rock specimens, were placed within the plane-strain apparatus and 
loaded elastically at confining pressures of 0, 5, 10, and 15 MPa.  
As shown by Labuz et al. (1996), the frame strain is linearly proportional to ε2 (Fig. 6):  

23 ),( εσκε Af
f =                                                                                                             (26) 

but the coefficient of proportionality κ f(σ3,A) is dependent on confining pressure σ3 and 
specimen size A.   
 
The magnitude of axial system displacement sysu1  is 

huu gageLVDTsys
111 ε−=                                                                                                        (27) 

where LVDTu1  and hgage
1ε  are the displacement measured with the axial LVDT and the specimen 

displacement determined from the axial strain gage respectively. It was observed that at low 
axial loads, a fourth order polynomial is the best fit function to characterize the axial system 
compliance (Fig. 7).  However, at higher loads (> 30 kN), the dependence of axial system 
displacement from the load F1 becomes linear and can be written as  

( ) 131 , FACu A
sys σ=                                                                                                            (28) 

where CA(σ3,A) is the axial system compliance. 
Lateral strain cannot be determined from strain gages, as the surfaces of a specimen parallel with 
the lateral LVDTs are in contact with the biaxial frame (Fig. 3). The lateral specimen strain was 
calculated with generalized Hooke’s law: 

))((1
2133 σσνσε +−=

E
                                                                                                (29) 

Lateral displacement of the system is the difference between the elastic lateral displacement of 
half of the specimen and the average displacement of two lateral LVDTs: 

2/333 tuu LVDTsys ε−=                                                                                                         (30a) 
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Figure 6. Relationship between frame and specimen strain for “medium” specimen. 
 

 
Figure 7. Axial system displacement for “small” biaxial specimen. 
 
The lateral system displacement was linearly related to the load F1 (Fig. 8). The average lateral 
compliance CL(σ3,A) was described with  

133 ),( FACu L
sys σ=                                                                                                            (30b) 
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Figure 8. Lateral system displacement for “small” biaxial specimen. 
 
CA and CL were calculated to be in the range of 0.23-0.73 micron/kN and 0.14-0.38 micron/kN 
respectively; they were found to be decreasing with increasing confining pressure, also, they 
increased with increasing specimen size 
 
 
Saturation and B-check 
 
After the rock specimen was prepared and placed inside the plane-strain apparatus, a small axial 
seating load was applied. Then, the specimen was stressed axially and laterally to 3-5 MPa, 
depending on desired pore pressured to be applied later in the test. Because of the plane-strain 
condition, hydrostatic loading cannot be achieved.  Once the confining pressure was applied, the 
process of water saturation of the specimen started.  Water was pumped from downstream into 
the specimen with the upstream valve open (Fig. 9).  For each step of water injection (5-10 
ml/step), the upstream pressure increased to approximately 0.4 MPa and decreased in a minute or 
so to about 0.2 MPa before the next step of injection.  The water started flowing from the 
upstream valve after injecting about 80 ml, the estimated volume of pore space in the specimen.  
Further pumping of 50 ml of water through the specimen showed that a mass balance was 
approximately satisfied.   
 
The technique of back-pressure saturation was used next.  The purpose of back pressure is to 
achieve 100% saturation by forcing any gas into solution of the pore water.  Increase of the pore 
pressure in a partially saturated specimen affects the volume of the gas in the pores in two ways:   
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Figure 9. Setup for testing with pore pressure. 
 
(1) by direct compression, the gas is reduced in volume according to Boyle’s law; (2) by 
application of a higher pressure, additional amounts of gas are dissolved in the pore water in 
accordance with Henry’s law of solubility (Lowe and Johnson 1960).  Pore pressure u was 
increased in the specimen by pumping water in and having the drainage valve closed; a 
maximum back pressure of u = 2-3 MPa was applied.  During this procedure, the axial and 
lateral stresses were always kept 5-6 MPa higher that the pore pressure.  After each new increase 
in back pressure, the pore pressure was allowed to equilibrate, meaning that upstream pressure 
would be equal to the downstream pressure and the drop of pressure would not exceed 1 
kPa/min. During this process the remaining gas was dissolved into the pore fluid. When the 
equilibration of pressure was achieved, the Skempton’s coefficient B was measured; this 
procedure is called a B-check.   

For undrained triaxial tests on soils, Skempton (1954) introduced the pore-pressure coefficient B 
to express the pore pressure change ∆u that occurs due to a change in the all-round pressure ∆σ. 
For soils,  

fK
K

uB
φσ +

=
∆
∆

=
1

1                                                                                                             (31) 

and is approximately equal to 1.0, since the bulk modulus of the soil structure (on the order of a 
few MPa) is negligible with respect to that of the fluid (Kf = 2.2 GPa for water). 
Bishop (1973) extended this relation to include the influence of the bulk modulus of the solid 
material of the skeleton Ks for any porous mass with interconnecting pores. In terms of bulk 
moduli, it can be written as:  
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In addition to the interconnectivity of pores, it is assumed that the skeleton and solid material are 
elastic and isotropic and the pore fluid is linearly compressible. Also, for this case, the change in 
pressure can be replaced with the change in the mean stress ∆P (Bishop 1973): 

3/)( 321 σσσ ∆+∆+∆=∆P                                                                                          (33) 
The increment of the intermediate principal stress can be written as   

)( 3122 σσνεσ ∆+∆+∆=∆ E                                                                                        (34) 
For the tests with pore pressure, the specimen size was chosen in way that when equal increment 
in axial ∆σ1 and confining ∆σ3 pressures (∆σ1=∆σ3=∆p) were applied, the frame deformation 
due to the stress increment applied by the specimen is compensated by the negative strain on the 
inner side of the frame due to the increase in cell pressure (according to Lame’s solution for a 
cylinder, the inner part compresses due to equal pressures applied on the inside and outside of 
the cylinder). So, ∆ε2=0 in the equation (34) and the expression for measured B takes form: 
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                                                                                               (35) 

where ν~ is current Poisson’s ratio of the rock and it changes from ν  in dry condition to uν  upon 
saturated. When the undrained elastic loading performed on the saturated specimen, uν  
independent of B-values can be calculated from the test data. 
 
While performing an undrained test in the laboratory, the specimen is connected to the drainage 
system of the cell and also to the pore pressure transducer. As the drainage system has a non-zero 
volume filled with water, it experiences volume changes due its compressibility. Bishop (1976) 
modified expression to include terms representing the compressibility of the pore-pressure 
measuring system. The following equation was obtained for the corrected value of Skempton’s 
coefficient Bcor: 
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where V is the volume of the specimen, VL is the volume of the fluid in the pore-water lines, CL 
is the compressibility of the pore-water lines, and CM is the compressibility of the pore-pressure 
measuring element. However, several researchers (Bishop 1976; Mesri et al. 1976; Ghabezloo 
and Sulem 2009) noticed that for modern high-pressure tubes and pressure transducers, the main 
contribution (more than 90%) to the correction term comes from the extra fluid volume in the 
system VL.  So, only the first two terms in the denominator of the right hand side of (36) are 
considered.  The final equation for calculating Bcor, which should be used while solving the 
system of poroelastic equations (34), becomes 
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The parameters measured in two drained tests (BxBS-6d and BxBS-11d) and in three undrained 
tests (BxBS-2u, BxBS-3u, and BxBS-12u) are presented in Table 1. 
 

Table 1. Results of two drained tests (BxBS-6d and BxBS-11d) and three undrained tests 
(BxBS-2u, BxBS-3u, and BxBS-12u). 

 
Test # P  [MPa] u [MPa] E [GPa] ν K, Ku [GPa] G [GPa] 

BxBS-6d 6 0 10.9 0.31 9.6 4.2 
BxBS-11d 5 0 10.8 0.32 10.0 4.1 
BxBS-2u 8 2.6 13.2 0.34 13.8 4.9 
BxBS-3u 10 3.8 13.5 0.35 15.0 5.0 
BxBS-12u 10 3.4 15.3 0.34 15.9 5.9 
 
 
Acoustic emission 
 
Failure of rock involves microcracking, which generates elastic waves known as acoustic 
emission (AE). The AE system used in the plane strain tests consisted of eight sensors at known 
positions, four on each side of the prismatic specimen subjected to confining pressure. By 
recording the time histories and identifying the arrival time of the P-wave, it is possible to locate 
the event with an error of a few mm.  The AE signals were recorded by a computer automated 
measurement and control data acquisition system, equipped with four DAQ cards (National 
Instruments model PCI-5112).  Each card has two individual 8-bit analog to digital converters, 
and a sampling rate of 20 MHz was set to record AE signals that are conditioned by bandpass 
filters from 0.1 – 1.2 MHz and 40dB gain.  The transducers have a diameter of approximately 3 
mm, with the frequency response from 0.1 – 1 MHz.  All channels were triggered when the 
signal amplitude exceeded a threshold on the anchor sensor.  A program coded with LabView 
controls the signal acquisition over a 200 µs window, with a 100 µs pretrigger. 
 
A common type of source location algorithm involves the arrival time of the P-wave.  
Microseismic activity due to a change in stress or environment is recorded by each sensor with a 
known position at a given time.  From the relative arrival times of the P-wave and the measured 
P-wave velocity of the material, the event hypocenter can be estimated with a minimum of five 
sensors.  The problem contains four unknowns: the spatial coordinates x, y, z of the event and the 
time at which the event occurred, but a fifth sensor (or other information) is needed to remove 
ambiguities arising from the quadratic nature of the distance equation.  Because some error is 
associated with arrival-time detection (it is not always clear when a low amplitude signal arrives) 
and with the P-wave velocity (as damage accumulates material properties may change or become 
anisotropic), the number of sensors should be increased so that the location problem becomes 
over-determined.  Then a solution scheme can be developed whereby the error is minimized to 
obtain a best-fit type of solution, and statistical methods can be used to evaluate the fit. 
 
The distance ri between the source and the ith sensor is related to the P-wave velocity cp by 

( ) iipi ttcr ε+−=                                                                                                           (38) 
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where t = time at which the event occurs, ti = arrival time at the ith sensor, and εi = residual of 
computed distances.  From (38), it can be seen that a time shift does not affect the source 
location, so an arbitrary time base can be selected. The travel distance ri can be expressed by the 
unknown source coordinates (x, y, z) and the known sensor coordinates (xi, yi, zi) by 

( ) ( ) ( )222 zzyyxxr iiii −+−+−=                                                                             (39) 
 
The sum of the squares of the residuals εi  can be written 

∑
=

=
N

i
iI

1

2ε                                                                                                                        (40) 

where N = the number of sensors.  The unknowns x, y, z and t can be determined using a least-
squares method by minimizing I.  However, the equations are nonlinear in the source coordinates 
x, y, z, so the minimization is carried out numerically using the Levenberg-Marquardt algorithm.  
The first estimate of x, y, z is obtained by a linearization of the equations (40). 
 
Acoustic emission locations were determined for specimens BxBS-6d and BxBS-7. For more 
accurate determination of AE locations, P-wave velocity was measured at different effective 
stresses. For the tests described, cp at 5 MPa effective pressure was found to be 2700 m/s, 
compared to 2100 m/s for a dry specimens at atmospheric pressure.  Processing of the AE data 
recorded for BxBS-7 test provided 1834 locations with error less than 3 mm, out of 9254 total 
events. Before the peak load was reached, AE events were scattered in the specimen (Fig. 10a). 
However, in the post peak response, located events closely follow the failure mechanism (Fig. 
10b and 10c). 
 
 

                     
            (a)                                (b)                                     (c) 

Figure 10. Fracture and the location of AE events for BxBS-7 specimen. 
 
 
The significant difference between drained and undrained compression in terms of the change of 
AE rate with loading was observed. For the test where the pore pressure inside the rock was 
constant, the number of AE events per load step remarkably increased when the axial load on the 
specimen reached approximately 70% of peak load (Fig. 11), which is also the case for air-dry 
experiments. However, in an undrained test, only a few microseismic events were recorded prior 
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to failure of the specimen (Fig. 12). The abrupt change in the slope of AE rate curve happens 
only when the pore pressure in the rock drops significantly due to localization of deformation 
and appearance of a macrocrack. This effect could be explained by the delayed tendency to dilate 
for the rock under an undrained condition and the fact that an increase in specimen volume is 
usually accompanied by the intense microcracking, hence the AE rate should be increasing. 
 

 
Figure 11. AE data for drained plane strain test. 
 
 

 
Figure 12. AE data for undrained plane strain test. 
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RESULTS AND DISCUSSION 
 
Performing experiments with the UMN plane strain apparatus, we are limited in the magnitude 
of maximum principal stress (< 115 MPa) and effective confinement (< 10 MPa) that we can 
apply to fail the specimen of a particular size.  Also, under these conditions, the failure planes are 
still quite tortuous, so the fracture inclination angle varies along the specimen height.   
 
The constitutive model chosen for describing the inelastic response of brittle rock, including the 
effects of the pore fluid, was formulated by Rice (1975) for the special deformation state of 
confined shearing.  It illustrates the hardening effect of dilatancy-induced pore pressure 
reductions.  The model was reformulated by Rudnicki (1985) in terms of poroelastic parameters 
(Rice and Cleary 1976) for rock subjected to pore pressure p, shear stress τ, and hydrostatic 
(mean) stress σ.  

For a stress increment dτ, d(σ−p) that involves continued inelastic deformation, the increment of 
total shear strain dγ  is  

γτγ pdGdd +=                                                                                                             (41) 

where d pγ  is the inelastic (plastic) increment of shear strain.  An increase in hydrostatic 
compression inhibits inelastic deformation in brittle rock.  Thus, the inelastic increment of shear 
strain takes the following form: 

( ) Hpddd p )-(σµτγ −=                                                                                               (42) 

where H is an inelastic hardening modulus (Fig. 13a) and µ is a friction parameter.  It represents 
the effect of effective normal stress in inhibiting failure and can be measured as the local slope of 
the yield surface (separating elastic and inelastic states) in the plane of τ and (σ−p), as shown in 
Fig. 13b.  

 
Figure 13. Stress-strain data for saturated rock (Rice 1975). (a) Shear stress-strain relation under drained 
conditions, σ and p being constant. (b) Effect of effective compressive stress on shear stress required for 
continuing inelastic deformation. 

 

For the case when there is no change in pore pressure during the deformation (dp = 0 or drained 
response) and the hydrostatic stress is constant, dγ can be written as  

H
d

G
dd ττγ +=                                                                                                                   (43) 
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The inelastic volume strain arises from processes that accompany inelastic shear and its 
increment is assumed to be given by β, the dilatancy factor (β < 0 for compaction).  For 
applications to rock, it is assumed that µ, β, and G are constant over some range of loading. 

For dilatant inelastic deformation (β > 0) under undrained condition, the pore fluid pressure p 
tends to decrease and the following expression was obtained (Rudnicki 1985) for the increment 
of shear strain (dσ  = 0 for convenience): 

( )effKHdGdd µβττγ ++=                                                                                         (44) 

where Keff  can be written as follows: 

( )( ) KKKK sfeff αφφ +−∆+= "111                                                                            (45) 

The expression obtained for ∆φ (change of porosity in the stressed state) by Detournay and 
Cheng (1993) is 

( )( ) ( )pKKKu ss "1'/1 −−−−−=∆ φσφαφ                                                                   (46) 

The hardening modulus in equation (44) has been augmented by the term µβKeff > 0, hence the 
response is stiffer and the rock is said to be dilatantly hardened (Fig. 14).  

 
Figure 14. Dilatant hardening due to undrained conditions (Rudnicki 1985). 

 

Experimental observations  
In the Rice-Rudnicki model, dilatant hardening is described for the condition of constant mean 
stress. This condition is not usually preserved in tests, where the prismatic specimens are loaded 
axially at constant confining pressure σ3.  For example, volumetric strain ε = ε1 + ε3   is plotted as 
a function of shear stress γ = ε1 - ε3 for drained and undrained tests (Fig. 15 and 16).  Because of 
the initial stress state for both experiments, the specimens compact (the sign convention is 
compression positive) before they dilate.  It can also be seen that in the undrained test, Fig. 16, 
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pore pressure is increasing from 2.8 to 7.2 MPa when the sandstone is compacting, and it starts 
decreasing only when the deformation of the specimen becomes inelastic (volumetric strain 
response deviates from linearity).  
 

 
Figure 15. Volumetric strain for the drained test (BxBS-4d). 
 

     
Figure 16. Volumetric strain (dark blue) and pore pressure (red) for the undrained test (BxBS-12u). 
 
Because of the significant amount of compaction experienced by the rock prior to dilatancy, 
other conditions need to be implemented into the constitutive model.  We will compare a pair of 
drained and undrained experiments conducted where the effective (Terzaghi) mean stress is the 
same when the response of the rock becomes inelastic.  As an example, two plane strain 
experiments are compared: BxBS-4d – drained test, which was performed with σ3 = 5.1 MPa and 
initial pore pressure p = 0.6 MPa, and BxBS-12u – undrained test with σ3 = 10.0 MPa and initial 
pore pressure p = 2.8 MPa (Fig. 16).  Plane strain deformation allows us to consider plane shear 
stress τ = (σ1 - σ3)/2 and plane mean stress s = (σ1 + σ3)/2, and effective mean stress s′ = s - p for 
the drained and undrained tests (Fig. 17 and 18).  Note that the collection of the data in the 
drained test has started from a non-zero shear stress. 
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Figure 17. Shear stress - mean stress for drained and undrained tests (BxBS-4d and BxBS-12u). 
 

 
Figure 18. Shear stress - effective mean stress for drained and undrained tests (BxBS-4d and BxBS-12u). 

It can be seen that even though the mean stresses are different for these two tests, the effective 
mean stresses behave similarly (Fig. 18), which makes their comparison in terms of dilatant 
hardening appropriate.  The effective mean stress at the beginning of undrained shearing is 
slightly larger than that in the drained test (for the same level of shear stress).  However for τ = 
12 MPa, drained and undrained effective  stresses become equal and then further in loading the 
latter one becomes slightly smaller than the corresponding effective stress for the drained test.  It 
happens because pore pressure increases at the initial stage of undrained shearing, and then 
decreases because of the dilatancy, but the pore pressure is still larger at the peak load than its 
initial value (Fig. 16). 
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Shear stress - shear strain response for BxBS-4d and BxBS-12u is presented in Fig. 19.  It can be 
seen that the undrained response is stronger, as predicted by the Rice-Rudnicki model, starting 
from a value of γ = 2.2×10-3. 

 
Figure 19. Shear stress - shear strain for drained and undrained tests (BxBS-4d and BxBS-12u). 

 
Measurements of hardening parameters 
The measured principal strains contain both the elastic and plastic components.  The onset of the 
nonlinear response was used as a benchmark signifying when plastic deformation initiated (Fig. 
15).  The plastic strains were determined by removing the calculated elastic response from the 
measured deformation assuming no change in elastic parameters (Riedel and Labuz 2007): 

emeasp ddd εεε −=                                                                                                           (47) 
emeasp ddd γγγ −=                                                                                                           (48) 

For the drained test (BxBS-4d) conducted at 4.5 MPa effective confinement, plastic deformation 
was only associated with a dilatant response (Fig. 20).  The increase of plastic volumetric strain 
was fairly linear from the onset of inelasticity up to the peak.  The dilatancy angle ψ is defined 
by 

p

p

d
d
γ
εψ −=sin                                                                                                                   (49)                                                                         

Dilatancy angle calculated for the drained test is presented in Fig. 21.  It can be seen that even 
though the data are scattered, for γ p > 0.5×10-3 the dilatancy angle of the sandstone becomes 
approximately constant and equal to 24°.  Hence, the dilatancy factor β  

ψβ sin=                                                                                                                        (50)    

is taken as a constant value β = sin 24° ≈ 0.41. 
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 Figure 20. Dilatancy behavior for the drained test (BxBS-4d). 
 

   
Figure 21. Development of dilatancy angle after the onset of inelastic deformation (BxBS-4d). 
 

For in-plane shear stress τ and mean stress s, the Mohr-Coulomb linear yield function can be 
written as (Riedel and Labuz 2007) 

Qs −
=

τξ                                                                                                                         (51) 

ξ = sin (ϕ)                      (52) 

and ϕ is the friction angle. The parameter Q is the intercept at τ = 0; for the tested Berea 
sandstone with the linear failure envelope, Q = -3.8 MPa (Fig. 22). 
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Figure 22. Failure envelope for drained Berea sandstone in τ-s plane. 

Friction coefficient µ, which is used in the dilatant hardening model, can be written as 

ϕµ tan=                                                                                                                           (53) 

We are interested in behavior of µ only for inelastic deformation. Calculating µ from ξ , we can 
present it as a function of plastic shear strain γ p (Fig. 23).  It appears that the friction coefficient 
µ is approximately constant throughout the inelastic deformation process, and it is taken as µ = 
1.2 in the calculation of dilatantly hardened response. 

 

  
Figure 23. Friction parameter µ for the drained test (BxBS-4d). 
 
 
Keff is the parameter that links the poroelastic response of the material with the dilatant hardening 
model. To be able to calculate Keff, the change in the porosity ∆φ during deformation needs to be 
estimated. From equation (46), it can be seen that ∆φ has “stress” in the numerator with order of 
MPa, and poroelastic bulk modulus in the denominator with order of GPa. Hence ∆φ ~ 0.01 and 

τ  = 0.8015s'  + 3.0421
R2 = 0.9782

0

10

20

30

40

50

-10 0 10 20 30 40 50 60

Effective mean stress [MPa]

Sh
ea

r s
tr

es
s 

[M
Pa

]

Q =-3.8

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.5 1 1.5 2 2.5
γp [10-3]

µ



 30 

is on the order of the accuracy of our porosity measurements, so it can be neglected.  The 
poroelastic parameters measured and calculated from drained and undrained experiments 
(Makhnenko and Labuz 2012) are the following: 

GPaKGPaK s 7.5",10,66.0,23.0 ==== αφ                                                       (54) 

The bulk modulus of the fluid can be taken as that of pure water (Kf = 2.24 GPa), because we 
assume that the specimen is fully saturated prior to shear loading (Makhnenko and Labuz 2013).  
Substituting the values, we obtain 

Keff  = 7.8 GPa                    (55) 

 

Shear modulus of Berea sandstone is calculated from the initial part of loading in Fig. 19: 

GPa
d
dG e 6.4==
γ
τ                                                                                                         (56) 

The inelastic hardening modulus H can be calculated for each new increase of shear strain γ due 
to increasing shear stress τ: 

Gd
dH 1

1

−
=

τ
γ                                                                                                                    (57) 

The data were recorded every one second, which means that H can be calculated for each 

∆γ = 0.007×10-3                    (58) 

increment of shear strain (the shear strain rate was approximately constant during the test).  To 
describe the corresponding undrained response, increments of shear stress are   

( ) GKH
KH

d
d

eff

eff

/1 µβ
µβ

γ
τ

++
+

=                                                                                                 (59) 

Substituting the previously calculated values of G, µ, β, Keff (constants), the undrained response 
predicted by dilatant hardening model can be obtained from the corresponding drained data.  The 
results of the drained and undrained tests (BxBS-4d and BxBS-12u, respectively), along with the 
model prediction, are presented in Fig. 24. 

The response predicted by the model is slightly stiffer than the experimental undrained response 
at the beginning of loading (γ  < 3.8×10-3).  At higher shear stresses, the model predicts 
undrained behavior fairly well almost up to the point when the specimen starts to fracture.  In the 
last region of undrained inelastic deformation, increase of axial stress “tries” to facilitate failure 
but the increase of the effective confinement due to dilatancy delays it. The presence of these 
two competing factors explains why it takes about the half of the total shear strain (∆γ  ~ 8×10-3) 
to bring the specimen from 90% of the peak stress to failure. 
 



 31 

 
Figure 24. Results of drained and undrained tests (BxBS-4d and BxBS-12u) and dilatant hardening 
model. 

 
 
Similar behavior is observed for another pair of drained (BxBS-11d) and undrained (BxBS-8u) 
experiments (Fig. 25).  The drained test was conducted at 5.5 MPa confinement and 0.1 MPa 
pore pressure, while the undrained test had σ3 = 8 MPa and started from 1.6 MPa pore pressure.  
Here, the dilatant hardening model closely predicts the undrained inelastic behavior almost up to 
the peak load. 

 
Figure 25. Shear stress - shear strain for drained and undrained tests (BxBS-11d and BxBS-8u). 
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NUMERICAL METHOD 
 
Consider a finite or an infinite isotropic elastic domain characterized by the shear modulus and 
the Poisson’s ratio  and containing fractures of arbitrary shapes (Fig. 26 a,b). The load in the 
domain may be applied either locally (in the form of point forces), or via the boundaries of the 
domain including those of the fractures (in the form of boundary tractions). In case of an infinite 
domain, the load may be also applied via the far field stress. In addition, the medium could be 
subject to constant body forces (e.g. gravity). The load at the fractures' surfaces could be due to 
various physicals effects e.g. fluid pressure. The elastic fields inside of the domain are to be 
defined. 

 
Figure 26. Problem formulation. Finite and infinite computational domain. 
 
 
In the present work, the boundaries are approximated by a set of planar triangular elements.  The 
piecewise constant approximations of the boundary unknowns are employed.  Approximations of 
higher order will be used in future work.  For each boundary element, a local Cartesian 
coordinate system is introduced.  The boundary unknowns are defined from the system of 
algebraic equations set up to satisfy the boundary conditions at the defined set of points 
(collocation points).  Due to the use of constant approximations, the centers of the triangles are 
the natural choice for the collocation points.  The details are contained in the Appendix. 
 
The approach has been tested on a number of analytical and numerical benchmark problems:  
• the problem of a single penny-shaped crack in infinite medium subject to either normal or 
shear far-field stress, 
• the plane strain problem of a half-circular crack in the infinite domain with biaxial far-field 
load. 
The latter problem can be simulated by considering a three-dimensional crack shaped as a long 
half-cylinder with dimension in the axial direction much larger as compared to the other 
directions and loaded perpendicularly to its axis. The results for the benchmark problems as well 
as the comments on the reference solutions are given in the Appendix. 
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CONCLUSION 
 
Deformation and damage of a porous, fluid-saturated rock under drained and undrained 
conditions were investigated.  A plane-strain apparatus was modified in order to conduct tests 
with water-saturated rock specimens and to measure the pore pressure within the rock.  
Transducers within the apparatus were calibrated at the various loading states and the 
compliances of the system were determined.  Plane strain compression and conventional triaxial 
compression tests were performed at different confining pressures under air-dry, drained, and 
undrained conditions.  The behavior of the rock was evaluated within the framework of linear 
poroelasticity.  Dilatant hardening and contractant softening was investigated from undrained 
experiments, where pore pressure was measured throughout the failure process.  The parameters 
that govern the inelastic deformation of fluid-saturated rock, i.e. dilatancy angle β, friction 
coefficient µ, poroelastic coefficient Keff, shear modulus G, and inelastic hardening modulus H, 
were calculated for the drained response.  The constitutive model predicts the undrained inelastic 
response of the rock fairly well, almost up to the peak load if compared with the undrained test 
that had the same effective mean stress at the onset of inelasticity.  Knowledge of dilatant 
hardening behavior is essential for the proper assessment of underground structures, such as 
long-term CO2 storage facilities. 
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1 Introduction

Understanding the mechanisms of rock fracture is of key importance to the mining and petroleum industries.
Rock masses feature complicated geometry and structure including joints, heterogeneities of different scales (e.g.
grains, pores, macroscopic inhomogeneities, etc.) and may be subject to various effects (e.g. fluid pressure,
temperature gradient, etc.). Although many aspects of rock behavior have been extensively studied, there is still
a strong demand for comprehensive computational models that would allow to accurately treat complex behavior
of rock masses. Among the numerical methods used for geomechanical modelling, the Boundary Element Method
(BEM) deserves special attention due to its capability of effi cient treatment of problems that include large (infinite)
heterogeneous domains containing fractures of arbitrary shapes. It allows for accurate resolution of extreme stress
gradients inherent to the fracture front (crack tip). While two-dimensional Boundary Element computational
models are widely available, comprehensive three-dimensional models are still lacking.

2 Objectives of research

The objective of this research is to develop a three-dimensional analytical and computational basis for realistic
modeling of behavior of rock masses under various loading conditions and physical effects (e.g. fluid flow, pore
pressure). The goal is to create a computational model implemented in a general purpose code capable of accurate
modeling of three-dimensional problems of multiple propagating fractures in piecewise homogeneous rocks that
account for various loading conditions Rock mechanics applications may include hydraulic fracture problems
characterized by coupling between the fracture mechanism and fluid flow. Thus, the code structure should allow
for incorporation of coupled problems of this kind.
Significant features of the code include using MATLAB as the programming tool. MATLAB is a high-level

language for numerical computations that features built-in linear algebra functions, graphics for data visualization,
and could be easily integrated with external applications and languages. This would constitute a significant
advantage over specific available Fortran-based codes.
The novel elements of the approach include the following:

• the use of complex variables to create various combinations of the fields, e.g. in-plane components of
tractions, displacement discontinuities, as well as geometric parameters;

• analytical evaluation of complex integrals;

• enforcing the boundary conditions after the discretization and analytical handling of the internal fields, by
allowing the field point to reach the boundaries.

The use of complex variables (e.g. the certain complex-valued combinations of the elastic fields) simplifies
the analytical integration over the boundary elements and reduces the number of integral terms, as compared to
real variables-based approaches. Since the limit (as the field point approaches the boundary) is taken after the
approximation of the boundary and the unknown functions, no singular integrals are involved. Furthermore, there
is no need for an additional procedure for evaluation of the elastic fields inside the domain; they are evaluated
by the same procedure as the one used to set up the system of linear algebraic equations for the boundary
unknowns. Analytical integration leads to higher accuracy of calculations and allows for saving computational
time. In addition, it helps to facilitate the use of fast solving techniques, e.g. the Fast Multipole Method (see, e.g
, Liu, 2009). The proposed mathematical model features triangular elements for boundary approximations and
treatment of body forces via the equivalent boundary integrals.

3 Literature review

The problems of cracks and crack propagation in three-dimensional media have been first studied analytically.
The analytical solutions of Sack (1946), Sneddon (1946), Green (1949), Segedin (1951), and Fabrikant (1987) were
suggested for the problem of a penny-shaped crack in an infinite domain under different loading modes at infinity.
Later on, the semi-analytical solutions for multiple penny-shaped cracks were proposed by several authors (see
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Kushch, 1998, Kushch and Sangani, 1999). The problems of fracture of more complex geometry, as well as for
multiple cracks, could only be solved numerically. BEM represents one of the most popular tools for solving
Fracture Mechanics problems.
Boundary Element Method (BEM) is based on the boundary integral representation equivalent to the dif-

ferential equation governing a specific physical problem. Such representation is possible when the so-called
fundamental solution of the governing differential equation is available. The fundamental solution satisfies the
differential equation everywhere in the domain except one point where it is singular. In the case of linear isotropic
and homogeneous elasticity, the fundamental solution is that of a point force applied to an infinite domain, the
so-called Kelvin’s solution. Thus, (see Cruse, 1988), in the BEM, unlike in the Finite Element Method (FEM),
the fields are already exactly self-equilibrated inside the computational domain, perhaps except for the boundary.
This makes possible resolving high stress gradients and intrinsic singularities that are diffi cult to handle with
FEM. Another significant feature of BEM is the absence of the volume mesh, which makes it possible to solve
infinite medium problems. These features of BEM make it a powerful and versatile tool for various applications.
The detailed description of the BEM formulations as well as the applications of the method can be found in
various books (e.g. Gaul et al. 2003; Aliabadi 2002; Wrobel 2002; Cruse 1988). BEM is an effi cient tool for
solving fracture mechanics problems.
The BEM formulations for the fractures (see e.g. Aliabadi, 2002) can be classified as follows:

• Multi-region method (Lachat and Watson ) that consists in subdividing the domain along the crack surface
to create two artificial subdomains for each crack. In this procedure, displacement continuity and equilibrium
of tractions are enforced across the artificial boundaries of the subdomains. The need to create additional
boundaries leads to increase in computational costs and makes the method ineffi cient for multiple cracks.

• Dual BEM (Aliabadi) that consists in separate treatment of each side of the crack; the displacement integral
equation is applied on one side of the crack and the tracton integral equation is applied on the other side.
This also leads to increase in computational costs related to extra unknowns (displacements on each side of
the crack are used).

• Displacement Discontinuity method (Crouch 1976) that consists in representing a crack by a set of dis-
placement discontinuity elements. Knowing the analytical solution for the fields for a single element, the
numerical solutions for those in the computational domain can be obtained by the standard superposition.
Mathematically, this method is equivalent to the solution of a hypersingular integral equation with displace-
ment discontinuity being the unknown density function. This approach requires a rigorous treatment of
hypersingular integrals.

Although most BEM-based papers dealt with two-dimensional fractures, three-dimensional solutions are also
available, e.g. Bui (1977), Weaver (1977), Lin’kov and Mogilevskaya (1986), Luchi and Rizzuti (1987), Kuriyama
and Mizuta (1993), Chen and Gross (1997), Chen and Lee (2001), Frangi et al. (2002), Lo et al. (2005). There
are also various papers on three-dimensional crack propagation, e.g. Mi and Aliabadi (1994), Kolk et al. (2005),
Meng et al. (2013). Comprehensive lists of references on three-dimensional fracture problems could be found in
the books by Cruse (1988) and Aliabadi (2002).
However, the results reported in the cited papers were related to the problems of fractures in homogeneous

medium and simple loading conditions. The computational model that would include treatment of inhomo-
geneities, propagating cracks of arbitrary shape under complex loading conditions incorporating physical effects
(e.g. fluid flow, pore pressure, temperature gradient, etc.) is still lacking.

4 Preliminary work: Three dimensional modeling of fractured elastic
solid using the Boundary Element Method

The preliminary work is limited to the elastostatic problems. However, it would constitute the core part of
a compuational technique to model three-dimensional problems of multiple propagating fractures in piecewise
homogeneous rocks, which is the long term goal of the ongoing research.
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Figure 1: Problem formulation. Finite and infinite computational domain.

4.1 Problem formulation

Consider a finite or an infinite isotropic elastic domain characterized by the shear modulus µ and the Poisson’s
ratio ν and containing N fractures of arbitrary shapes (Fig.1 a,b). The load in the domain may be applied either
locally (in the form of point forces), or via the boundaries of the domain including those of the fractures (in the
form of boundary tractions). In case of an infinite domain, the load may be also applied via the far field stress. In
addition, the medium could be subject to constant body forces (e.g. gravity). The load at the fractures’surfaces
could be due to various physicals effects e.g. fluid pressure. The elastic fields inside of the domain are to be
defined.

4.2 Basic equations

The governing differential equation for the problem is the Navier-Cauchy (Lamé) equilibrium equation of elasticity:

λuk,ki + µ (ui,jj + uj,ij) + bi = 0 (1)

where λ = 2µν/ (1− 2ν) is Lamé constant of the medium, ui and bi (i = 1 . . . 3) are the components of displace-
ment vector u, and body force vector b, respectively. Here and in the following, standard indicial notation is
used (i.e. repeated indices imply summation and f,i = ∂f/∂xi). The fields in a finite domain can be alternatively
represented by the integral expressions, the so-called Somigliana’s identities.

4.2.1 Integral representations

The Somigliana’s identity for displacements at a certain point x inside the elastic body has the following form:

ui (x) =

∫
∂Ω

Uij (x, ξ) tj (ξ) dSξ +

∫
∂Ω

Tji (ξ, x)uj (ξ) dSξ +

∫
Ω

Uij (x, η) bjdVη (2)

where Ω and ∂Ω indicate the domain and its boundary, tj are the components of the traction vectors t at the
point ξ ∈ ∂Ω, η ∈ Ω, U and TT are the kernels of so-called single and double layer potentials that correspond to
Kelvin’s fundamental solution for displacements and tractions due to the point force applied at the point x (need
ref.)
The tractions at the point x on the plane characterized by the normal vector n (x) can be obtained by appling

Hooke’s law to Eq. (2):
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ti (x) =

∫
∂Ω

Tij (x, ξ) tj (ξ) dSξ +

∫
∂Ω

Hij (x, ξ)uj (ξ) dSξ +

∫
Ω

Tij (x, η) bjdVη (3)

where H is the so-called hypersingular kernel.
The components of the kernels U , T , and H denoted as Uij (x, ξ), Tij (x, ξ), and Hij (x, ξ) are as follows:

Uij (x, ξ) =
1

16π (1− ν) r

[
(3− 4ν) δij +

rirj
r2

]
Tij (x, ξ) =

1− 2ν

8π (1− ν) r3
[ni (x) rj − rknk (x) δij − rinj (x)]− 3

8π (1− ν) r5
rirknk (x) rj

Hij (x, ξ) = −µ
{

1− 2ν

4π (1− ν) r3
[nk (x)nk (ξ) δij + ni (ξ)nj (x)]− 1− 4ν

4π (1− ν) r3
ni (x)nj (ξ) +

+
3 (1− 2ν)

4π (1− ν) r5
[rknk (ξ)ni (x) rj + rknk (x) rinj (ξ)] +

3ν

4π (1− ν) r5
rlnl (ξ) [rknk (x) δij+

+rinj (x)] +
3ν

4π (1− ν) r5
rj [nk (x)nk (ξ) ri + rknk (x)ni (ξ)]−

− 15

4π (1− ν) r7
rknk (x) rlnl (ξ) rirj

}
where δij is Kronecker’s symbol, rk = xk − ξk and r = |x− ξ|, n (ξ) is the outward normal at the point ξ.
For an infinite domain with cavities Eqs. (2) and (3) remain true under restrictions at infinity (regularity

conditions) (see Aliabadi 2002). A fracture is treated as a cut (slot) of zero thickness. It can be represented by
considering two adjacent subdomains with the fracture being the common part of the boundary. By summing up
the traction identities for both sides of the fracture, one can obtain identities similar to Eqs. (2) and (3) with u
substituted by the displacement discontinuity ∆u = u+−u− where ”+” and ”−” mean the opposite sides of the
crack. Unlike in Multi-domain BEM, the conditions on the artificial boundaries (the boundaries complementary
to the fracture surfaces) are prescribed in such a way that the integrals over these complementary boundaries
cancel out in the process of summation and those boundaries do not need to be discretized. For a single crack,
a similar identity could be obtained using the indirect formulation with hypersingular kernel; in this case the
unknown density function could be shown to coinside with ∆u (see Aliabadi 2002).
For the external boundaries where n is an outward normal (note that n should point inside the cavities if any

are present), one may assume that ∆u = u+ = u and u− = 0. The direction of the normal for the fracture (that
is perceived as a cut) may be chosen arbitrarily. This direction indicates the outward normal for the ” + ” side
and the inward one for the ” − ” side of the crack. In the following, Eqs. (2) and (3) are used for the fracture
with u = u+−u−.

4.2.2 Treatment of body integrals

The volume integrals representinbg the constant body force b are treated by the standard technique based on the
following Galerkin vector representation:

Uik = Gik,ll −
1

2 (1− ν)
Gil,lk

Using the divergence theorem the volume integrals in Eqs.(2) and (3) are transformed to the following surface
integrals:
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∫
Ω

Uij (x, ξ) bjdVξ =

∫
∂Ω

Pi (ξ) dSξ∫
Ω

Tij (x, ξ) bjdVξ =

∫
∂Ω

Bij (ξ)nj (x) dSξ

where

Pi (ξ) =
1

8πµ

[
bink (ξ) r,k −

1

2 (1− ν)
bkni (ξ) r,k

]
(4)

Bij (ξ) =
1

8π (1− ν) r
δij [(bknk (ξ)− bkr,knl (ξ) r,l)] +

1− 2ν

16π (1− ν) r
[(binj (ξ) + bjni (ξ))]−

− 1

8πr
nk (ξ) r,k [bir,j + bjr,i] +

1

16π (1− ν) r
bkr,k [ni (ξ) r,j + nj (ξ) r,i]

Here r,k =
rk
r
; rk = xk − ξk; r = |x− ξ|. Thus,

ti (x) =

∫
∂Ω

Tij (x, ξ) tj (ξ) dSξ +

∫
∂Ω

Hij (x, ξ)uj (ξ) dSξ +

∫
∂Ω

Bij (ξ)nj (x) dSξ (5)

4.3 Numerical solution

4.3.1 Basic assumptions

In the present work, the boundaries are approximated by a set of planar triangular elements. Up to date, the
piecewise constant approximations of the boundary unknowns are employed. The approximations of the higher
order would be used in the future research.
For each boundary element, the following "local" cartesian coordinate system is introduced (Fig. 2). The

basis vector ê1 of the system is chosen to be parallel to the edge between the two vertices of the element. The
basis vector ê3 is chosen to be equal to −n, and the basis vector ê2 = ê3 × ê1 is chosen in such a way that the
basis ê1ê2ê3 is right-handed. In the following subsections the contribution of the element Eξ to the fields at some
internal point x will be considered. It is convenient to set the origin of the local coordinate system at the point
x′, which is defined as the projection of the field point x onto the element’s plane.

The boundary unknowns will be defined from the system of algebraic equations set up to satisfy the boundary
conditions at the defined set of points (collocaion points). Due to the use of constant approximations, the centers
of the triangles are the natural choice for the collocation points.

4.3.2 Complex variable notations

Let us introduce the following complex combinations of traction and displacement components, as well as the
representation of a source point ξ ∈ Eξ:

t = t1 + it2; tn = t3 (6)

u = u1 + iu2; un = u3

z = (ξ1 − x1) + i (ξ2 − x2) ; h = ξ3 − x3

Consider a plane containing the point x and characteraised by the normal vector n (x) and introduce the
following complex combination of in-plane components of n (x):

n (x) = n1 (x) + in2 (x) ; nn = n3

5



Figure 2: Boundary element. Local coordinate system.

The surface area element dSξ can be expressed as follows:

dSξ = − i
4

z

z
d (zz) d

(z
z

)
= − i

4ζ2 dρ
2dζ2

where z is the complex conjugate of z and new independent complex variables, ρ and ζ are as follows:

ρ = |z| ; ζ2 =
z

z
; z = ρζ; z =

ρ

ζ

Now let us express tangential and normal components of the traction at the point x in terms of ρ and ζ,
assuming that u and t are constant on the surface element (b is assumed constant in the domain). For the stress
components associated with out-of-plane component of normal nn (x) one has

t(n) (x) = σ13 (x) + iσ23 (x) = (7)
iµ

32π (1− ν)

{
u
(

(ν − 2) I022 − 3νh2I023 + 15h2I224

)
−u
(

3νI203 − 15h2I204

)
+ un

(
6hI113 − 30h3I114

)}
+

i

64π (1− ν)

{
2 (1− 2ν) (thI022 − tnI112)− 3

(
thI203 + thI223 − 2tnh

2I113

)}
−

− i

64π (1− ν)

{
(1− 2ν) (bI021 + bnhI112) + 2 (1− ν) bh2I022 +

1

2

(
bI202 + bI222

)}

t(n)
n (x) = σ33 (x) = (8)

iµ

32π (1− ν)

{
u
(

3hI133 − 15h3I134

)
+ u

(
3hI113 − 15h3I114

)
+un

(
2I022 − 12h2I023 − 30h4I024

)}
+

i

64π (1− ν)

{
(1− 2ν)

(
tI112 + tI132 + 2tnhI022

)
− 3

(
th2I113 + th2I133 − 2tnh

3I023

)}
+

+
i

64π (1− ν)

{
(1− ν)

(
bhI112 + bhI132 − 2bnI021

)
+ 2(1 + ν)bnh

2I022

}
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where u, t, and b are the complex conjugate of u, t, and b, respectively.
For the other three components of the stress tensor associated with in-plane components of n, one has

t(p) (x) = (σ11 (x) + σ22 (x))n (x) + (σ11 (x)− σ22 (x) + iσ12 (x))n (x) = (9)
iµ

16π (1− ν)

{
n (x)

[
u

(
3

2
(1− ν)hI133 −

15

4
hI334

)
+u

(
3

2
(1− ν)hI113 −

15

4
hI314

)
+un

(
(1− 4ν) I022 −

3

2
(1− 2ν)

(
h2I023 + I223

)
+

15

2
h2I224

)]
+n (x)

[
u

(
3νhI113 −

15

4
hI314

)
+ u

(
−15

4
hI3−14

)
+un

(
−3

2
(1− 2ν)hI203 +

15

2
h2I204

)]}
+

i

64π (1− ν)

{
n (x)

[
2 (1− 2ν) tnhI022 −

3

2

(
tI313 + tI333 + 2tnhI223

)]
+n (x)

[
−2 (1− 2ν) tI112 −

3

2

(
tI3−13 + tI313 + 2tnhI203

)]}
+

i

64π (1− ν)

{
n (x)

[
νbn

(
I011 − 2h2I012

)
− (1 + ν)h

(
bI102 + bI122

)]
+n (x) [−2hbI102]}

where n (x) is the complex conjugate of n (x).
Integrals Iijk involved in Eqs. (7) - (9) are of the following general form

Iijk =

3∑
m,n=1

n=(m+1) mod 3

ζ2n∫
ζ2m

ρ2(ζ)∫
0

ρi

ζjr2k−1
dρ2dζ2 (10)

where i,j,and k are integer numbers.
The limits of integration in Eq. (10) are the same for all terms and determined by the shape of the boundary

element Eξ. For a planar triangular element it is easy to perform integration separately for each edge. Due to
the fact that ρ on every edge is easily expressed through ζ = ei arg z, the integration over ρ between the origin
x′ and an edge is performed first. After the second integration over ζ, the contributions from all edges must be
added together.

4.3.3 Integrals in complex notations

All integrals involved in Eqs. (7) - (9) have the common form (10). There is no need, however, to directly evaluate
all of the integrals because most of them could be found by the differentiation of the basic integrals with respect
to the parameter h defined in Eq. (6) (see the following subsections). It is natural to express each of the basic
integrals as the sum of three integrals associated with each edge of the triangle:
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Figure 3: Integration scheme. Complex notations.

I021 =

3∑
m,n=1

I(1)
mn; I(1)

mn =

ζ2n∫
ζ2m

ρ2(ζ)∫
0

1

ζ2r
dρ2dζ2 (11)

I112 =

3∑
m,n=1

I(2)
mn; I(2)

mn =

ζ2n∫
ζ2m

ρ2(ζ)∫
0

ρ

ζr3
dρ2dζ2

I132 =

3∑
m,n=1

I(3)
mn; I(3)

mn =

ζ2n∫
ζ2m

ρ2(ζ)∫
0

ρ

ζ3r3
dρ2dζ2

I202 =

3∑
m,n=1

I(4)
mn; I(4)

mn =

ζ2n∫
ζ2m

ρ2(ζ)∫
0

ρ2

r3
dρ2dζ2

I222 =

3∑
m,n=1

I(5)
mn; I(5)

mn =

ζ2n∫
ζ2m

ρ2(ζ)∫
0

ρ2

ζ2r3
dρ2dζ2

I3−12 =

3∑
m,n=1

I(6)
mn I(6)

mn =

ζ2n∫
ζ2m

ρ2(ζ)∫
0

ρ3ζ

r3
dρ2dζ2

I312 =

3∑
m,n=1

I(7)
mn I(7)

mn =

ζ2n∫
ζ2m

ρ2(ζ)∫
0

ρ3

ζr3
dρ2dζ2

I332 =

3∑
m,n=1

I(8)
mn I(8)

mn =

ζ2n∫
ζ2m

ρ2(ζ)∫
0

ρ3

ζ3r3
dρ2dζ2

where indices m and n denote the vertices of the triangle and n = (m+ 1) mod 3. Thus, the order in the subscript
indices reflects the order of integration along the perimeter of the triangle, i.e 1 to 2, 2 to 3, 3 to 1.
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The parameter h is involved in Eqs. (10) via the expression for r. Neither of the integration variables (ρ and
ζ), nor the integration limits depend on h. Thus, one can directly differentiate Eqs. (11) with respect to h under
the integral sign. Thus, for any i and j, other integrals can be found via recursive formulae

Iij2 = −2
∂

∂ (h2)
Iij1; Iij3 = −2

3

∂

∂ (h2)
Iij2 =

4

3

∂2

∂ (h2)
2 Iij1 (12)

Iij4 = −2

5

∂

∂ (h2)
Iij3 =

4

15

∂2

∂ (h2)
2 Iij2 = − 8

15

∂3

∂ (h2)
3 Iij1

The detail on analytical integration of basic terms can be found in the following subsection.

4.3.4 Analytical expressions for the basic integrals

As could be clearly seen, the integration variables are separated in each term, and the integration over ρ2 is
performed first.
This integration involves only the following four types of integrands.

ρ2(ζ)∫
0

1

r
dρ2 = 2r (ζ)− 2h

ρ2(ζ)∫
0

ρ

r3
dρ2 = −2

[
ρ (ζ)

r (ζ)
+ i arctan

(
i
ρ (ζ)

r (ζ)

)]
ρ2(ζ)∫
0

ρ2

r3
dρ2 = 2

[
r (ζ) +

h2

r (ζ)
− 2h

]
ρ2(ζ)∫
0

ρ3

r3
dρ2 = ρ (ζ) r (ζ) + 2h2 ρ (ζ)

r (ζ)
− 3ih2 arctan

(
iρ (ζ)

r (ζ)

)

Here r (ζ) =
√
ρ2 (ζ) + h2 and ρ (ζ) is given by the following equation of a straight line:

ρ (ζ) =
2
∣∣d(mn)

∣∣
ζ

d̂(mn)
+ d̂(mn)

ζ

(13)

where d(mn) =
∣∣d(mn)

∣∣ d̂(mn) is related to the vector perpendicular to the line passing through m-th and n-th
vertices starting from the origin (x′) (see Fig. 3).
Integrating over ζ along some edge involves the following integrals (Gradsteyn and Ryzhik, 2000):

J1 =

un∫
um

du

u
√
R(2du−d̂2)

=
1

d̂
arctan

(
ζ2 − d̂2

)
2d̂
√
R (ζ)

∣∣∣∣∣∣
ζn

ζm

; uk =
1

2 |d|

(
ζ2
k

d̂
+ d̂

)

J2 =

ζ2n∫
ζ2m

dζ2√
R(ζ)

=
2d

h
ln

(
h

d

√
R (ζ) +

h2

2d2 ζ
2 +

h2

2 |d|2
+ 1

)∣∣∣∣∣
ζn

ζm

J3 =

ζ2n∫
ζ2m

dζ2

ζ2
√
R(ζ)

= −2d∗

h
ln

h
d∗

√
R (ζ) +

(
1 + h2

2|d|2

)
ζ2 + h2

2d∗2

ζ2

∣∣∣∣∣∣
ζn

ζm
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ζ2n∫
wm

arctan

(
iζ√
R (ζ)

)
dζ2

ζ
= 2ζ arctan

iζ√
R (ζ)

∣∣∣∣∣
ζn

ζm

+ iJ2 − 2id̂2J1

ζ2n∫
ζ2m

arctan

(
iζ√
R (ζ)

)
dζ2

ζ3 =
2

ζ
arctan

iζ√
R (ζ)

∣∣∣∣∣
ζn

ζm

− iJ3 + 2iJ1

where

R (ζ) =
r2 (ζ)

ρ2 (ζ)
ζ2 = ζ2 +

h2

4
∣∣d(mn)

∣∣2
(
ζ2

d̂
+ d̂(mn)

)2

=
h2

4d(mn)
2 +

(
h2

2
∣∣d(mn)

∣∣2 + 1

)
ζ2 +

h2

4d(mn)2
ζ4

Note that(
ζ(k)2 − d̂(mn)2

)
2d̂(mn)

√
R
(
ζ(k)

) =
ρ(k)

2r(k)

(
ζ(k)

d̂(mn)
− d̂(mn)

ζ(k)

)
=
iρ(k) sin

(
arg z(k) − arg d(mn)

)
r(k)

=
ia(kmn)

r(k)

(see the notations below). Finally, the closed form expressions for I(1)
mn − I(8)

mn are

I(1)
mn = 4

[∣∣∣d(mn)
∣∣∣H(kmn)

0 (h) + i |h|
(
G

(kmn)
0 (h)− χ(kmn)

)]k=n

k=m
(14)

I(2)
mn = −4

[
d̂(mn)H

(kmn)
0 (h) + iζ(k)J

(kmn)
0 (h)

]k=n

k=m

I(3)
mn = 4

[
i

ζ(k)
J

(kmn)
0 (h)− 1

d̂(mn)
H

(kmn)
0 (h)

]k=n

k=m

= −I(2)
mn

I(4)
mn = 4

[
2
d(mn)r(k)ζ(k)

ρ(k)
−
∣∣∣d(mn)

∣∣∣ d̂(mn)2H
(kmn)
0 (h)

]k=n

k=m

I(5)
mn = 4

[∣∣∣d(mn)
∣∣∣H(kmn)

0 (h) + 2i |h|
(
G

(kmn)
0 (h)− χ(kmn)

)]k=n

k=m

I(6)
mn = 2

[
−d̂(mn)3

(
h2 + 3

∣∣∣d(mn)
∣∣∣2)H(kmn)

0 (h)

+
∣∣∣d(mn)

∣∣∣ d̂(mn)3r(k)
(

1 + 4K
(kmn)
0

)]k=n

k=m

I(7)
mn = 2

[
d̂(mn)

(
3h2 +

∣∣∣d(mn)
∣∣∣2)H(kmn)

0 (h)− d(mn)r(k)

]k=n

k=m

I(8)
mn = 2

[
1

d̂(mn)

(
3h2 +

∣∣∣d(mn)
∣∣∣2)H(kmn)

0 (h) + d
(mn)

r(k)

]k=n

k=m

= −I(7)
mn

where
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G
(kmn)
0 (h) = arctan

(
|h|
r(k)

tanχ(kmn)

)
, χ(kmn) = arg z(k) − arg d(mn)

H
(kmn)
0 (h) = arctan

ia(kmn)

r(k)
, a(kmn) = ρ(k) sinχ(kmn)

J
(kmn)
0 (h) = arctan

iρ(k)

r(k)
, r(k) =

√
ρ(k)2 + h2

K
(kmn)
0 = eiχ

(kmn)

cosχ(kmn)

The expressions (14) need to be summed up over all edges of the triangle (11).

4.3.5 Evaluation of the remaining integrals

The rest of the integral terms can be evaluated using Eq. (12). The expressions for the derivatives of G0, H0,
and J0 are as follows:

G
(kmn)
1 (h) =

∂

∂ (h2)
G

(kmn)
0 (h) =

|h|
r(k)

Ψ tanχ(kmn) (15)

G
(kmn)
2 (h) =

∂2

∂ (h2)
2G

(kmn)
0 (h) =

|h|
r(k)

[
−2Ψ2 +

(
1 +

h2

r(k)2

)
Ψ

]
tanχ(kmn)

G
(kmn)
3 (h) =

∂3

∂ (h2)
3G

(kmn)
0 (h) =

|h|
r(k)

[
4Ψ3 −

(
7 + 2

h2

r(k)2

)
Ψ2 +

3

2

(
1 +

h2

r(k)2
+

h4

r(k)4

)
Ψ

]
tanχ(kmn)

H
(kmn)
1 (h) =

∂

∂ (h2)
H

(kmn)
0 (h) = − i

2

a(kmn)

r(k)
Φ

H
(kmn)
2 (h) =

∂2

∂ (h2)
2H

(kmn)
0 (h) =

i

4

a(kmn)

r(k)
Φ2

(
3− a(kmn)2

r(k)2

)
H

(kmn)
3 (h) =

∂3

∂ (h2)
3H

(kmn)
0 (h) = − i

8

a(kmn)

r(k)
Φ3

(
15− 10

a(kmn)2

r(k)2
+ 3

a(kmn)4

r(k)4

)
J

(kmn)
1 (h) =

∂

∂ (h2)
J

(kmn)
0 (h) = − iρ(k)

2h2r(k)
; J

(kmn)
2 (h) =

∂2

∂ (h2)
2 J

(kmn)
0 (h) =

iρ(k)

4h4r(k)

(
2 +

h2

r(k)2

)
where

Ψ =
ρ(k)2

r(k)2 + h2 tan2 χ(kmn)
, Φ =

1

r(k)2 − a(kmn)2
=

1

h2 +
∣∣d(mn)

∣∣2
It is convenient to introduce the following notations:

G̃(kmn)
s (h) =

1

|h|
∂s

∂ (h2)
sG

(kmn)
0 (h) , J̃ (kmn)

s (h) = −i ∂s

∂ (h2)
s J

(kmn)
0 (h) , s = 1 . . . 3 (16)

H̃
(kmn)
1 (h) = 2i

∂

∂ (h2)
H

(kmn)
0 (h) =

a(kmn)

r(k)
Φ

H̃
(kmn)
2 (h) = −4i

∂2

∂ (h2)
2H

(kmn)
0 (h) =

a(kmn)

r(k)
Φ2

(
3− a(kmn)2

r(k)2

)
H̃

(kmn)
3 (h) = 8i

∂3

∂ (h2)
3H

(kmn)
0 (h) =

a(kmn)

r(k)
Φ3

(
15− 10

a(kmn)2

r(k)2
+ 3

a(kmn)4

r(k)4

)
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4.3.6 Expressions for the stresses (for hypersingular kernel)

The basic integrals and their derivatives can be substituted to Eqs. (7) - (9) to find the stress or traction
components at the point x. It should be noted that the terms containing only vertex coordinates ρ(k), r(k), and
ζ(k) and not containing a(kmn), or d(mn), or χ(kmn) eventually cancel out after the summation over the perimeter
of the triangle (thus, the terms with J1 and J2 can be omitted). This holds true for any value of h. Finally, for
the stress tensor components in the coordinate systrem associated with the element Eξ, one has

σ11 (x) + σ22 (x) = (17)

µ

4π (1− ν)

3∑
m,n=1

[
u

(
−1

8

i

d̂(mn)

h
∣∣d(mn)

∣∣
r(k)3

+
ν + 2

2

h

d̂(mn)
H̃

(kmn)
1 (h)

−1

8

h

d̂(mn)

(
3h2 +

∣∣∣d(mn)
∣∣∣2) H̃(kmn)

2 (h)

)
+u

(
1

8
id̂(mn)h

∣∣d(mn)
∣∣

r(k)3
+
ν + 2

2
hd̂(mn)H̃

(kmn)
1 (h)

−1

8
hd̂(mn)

(
3h2 +

∣∣∣d(mn)
∣∣∣2) H̃(kmn)

2 (h)

)
+un

(
−2νG̃

(kmn)
1 (h) + 2νG̃

(kmn)
2 (h)

−1− 6ν

2

∣∣∣d(mn)
∣∣∣ H̃(kmn)

1 (h) +
1− 4ν

2
h2
∣∣∣d(mn)

∣∣∣ H̃(kmn)
2 (h)

)]∣∣∣∣k=n

k=m

σ11 (x)− σ22 (x) + iσ12 (x) = (18)

µ

4π (1− ν)

3∑
m,n=1

[
u

(
1

8
id̂(mn)h

∣∣d(mn)
∣∣

r(k)3
+

3− 2ν

2
hd̂(mn)H̃

(kmn)
1 (h)

−1

8
hd̂(mn)

(
3h2 +

∣∣∣d(mn)
∣∣∣2) H̃(kmn)

2 (h) + 2νhζ(k)J̃
(kmn)
1 (h)

)
+u

(
−1

2
hd̂(mn)3H̃

(kmn)
1 (h) +

1

8
hd̂(mn)3

(
h2 + 3

∣∣∣d(mn)
∣∣∣2) H̃(kmn)

2 (h)

− i
8
hd̂(mn)3

∣∣d(mn)
∣∣

r(k)3

(
1 + 4K

(kmn)
0

))

+un

(
2ν − 1

2

∣∣∣d(mn)
∣∣∣ d̂(mn)2H̃

(kmn)
1 (h) +

1

2

∣∣∣d(mn)
∣∣∣ d̂(mn)2H̃

(kmn)
2 (h)

+

(
1− 2ν − h2

r(k)2

)
d̂(mn)2

r(k)
iK

(kmn)
0

)]∣∣∣∣∣
k=n

k=m
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σ33 (x) = (19)

µ

4π (1− ν)

3∑
m,n=1

{
u

(
− h

2d̂(mn)
H̃

(kmn)
1 (h) +

h3

2d̂(mn)
H̃

(kmn)
2 (h)

)

+u

(
−hd̂

(mn)

2
H̃

(kmn)
1 (h) +

h3d̂(mn)

2
H̃

(kmn)
2 (h)

)
+un

[
G̃

(kmn)
1 (h)− 2G̃

(kmn)
2 (h) + 2G̃

(kmn)
3 (h)

+
∣∣∣d(mn)

∣∣∣ (H̃(kmn)
1 (h) + 2h2H̃

(kmn)
2 (h)− h4H̃

(kmn)
3 (h)

)]}∣∣∣k=n

k=m

σ13 (x) + iσ23 (x) = (20)

µ

4π (1− ν)

3∑
m,n=1

{
u

(
ν − 2

2
G̃

(kmn)
1 (h)− ν − 2

2
G̃

(kmn)
2 (h)

−ν − 2

2

∣∣∣d(mn)
∣∣∣ H̃(kmn)

1 (h) +
ν − 1

2

∣∣∣d(mn)
∣∣∣h2H̃

(kmn)
2 (h)

)
+u

(
−ν

2

∣∣∣d(mn)
∣∣∣ d̂(mn)2H̃

(kmn)
1 (h) +

1

2

∣∣∣d(mn)
∣∣∣ d̂(mn)2h2H̃

(kmn)
2 (h)

+

(
ν − h2

r(k)2

)
d̂(mn)2

r(k)
iK

(kmn)
0

)
un

(
−hd̂(mn)H̃

(kmn)
1 (h) + h3d̂(mn)H̃

(kmn)
2 (h)

−2hζ(k)J̃
(kmn)
1 (h) + 4h3ζ(k)J̃

(kmn)
2 (h)

)}∣∣∣k=n

k=m

These expressions can be used to recover the stress field at the internal points of the domain.

4.3.7 Limit values of tractions (for hypersingular kernel)

To obtain the traction vector at the point x on the plane defined by the normal (n (x) , nn (x)), one can combine
the stress components as follows (note that all vector and tensor components are given with respect to the local
element coordinates):

t (x) = t(p) (x) + t(n) (x)nn (x) (21)

= (σ11 (x) + σ22 (x))n (x) + (σ11 (x)− σ22 (x) + iσ12 (x))n (x)

+ (σ13 (x) + iσ23 (x))nn (x)

tn (x) = σ33 (x)nn (x) +
1

2
(σ13 (x) + iσ23 (x))n (x) +

1

2
(σ13 (x) + iσ23 (x))n (x)

To meet the boundary conditions, one should evaluate the limits of the above expressions as the field point
x approaches some collocation point x′ at the boundary. The evaluation of limits is straightforward for non-
singular expressions (i.e. when the collocation point does not belong to the element). The evaluation of singular
expressions that represent the influence of each element to the total traction on the same element is equivalent
to taking the limits of tractions as h −→ 0. It could be done using the following relations:
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r(k) −→
h−→0

ρ(k) (22)

G̃
(kmn)
1 (h) −→

h−→0

tanχ(kmn)

ρ(k)
=

sinχ(kmn)∣∣d(mn)
∣∣

G̃
(kmn)
2 (h) −→

h−→0
− tanχ(kmn)

ρ(k)
= − sinχ(kmn)∣∣d(mn)

∣∣
G̃

(kmn)
3 (h) −→

h−→0
−3

2

tanχ(kmn)

ρ(k)
= −3

2

sinχ(kmn)∣∣d(mn)
∣∣

H̃
(kmn)
1 (h) −→

h−→0

sinχ(kmn)∣∣d(mn)
∣∣2

H̃
(kmn)
2 (h) −→

h−→0

sinχ(kmn)∣∣d(mn)
∣∣4 (

3− sin2 χ(kmn)
)

H̃
(kmn)
3 (h) −→

h−→0

sinχ(kmn)∣∣d(mn)
∣∣6 (

15− 10 sin2 χ(kmn) + 3 sin4 χ(kmn)
)

The limit values of tractions (21) are as follows:

t(n)
n (x′) =

µ

4π (1− ν)
un

3∑
m,n=1

n=(m+1) mod 3

1∣∣d(mn)
∣∣ sinχ(kmn)

∣∣∣∣∣
k=n

k=m

(23)

t(n) (x′) =
µ

4π (1− ν)
u

3∑
m,n=1

n=(m+1) mod 3

(ν − 2)

2
∣∣d(mn)

∣∣ sinχ(kmn)

∣∣∣∣∣
k=n

k=m

− µ

4π (1− ν)
u

3∑
m,n=1

ν

2
∣∣d(mn)

∣∣ [sinχ(kmn)(cos 2β(mn) + i sin 2β(mn))

+2 cos2 χ(kmn)
(

sinβ(mn) − i cosβ(mn)
)(

cosϕ(kmn) + i sinϕ(kmn)
)]∣∣∣k=n

k=m

t(p) (x′) = − µ

4π (1− ν)
n (x)un

3∑
m,n=1

n=(m+1) mod 3

(1 + 2ν)

2
∣∣d(mn)

∣∣ sinχ(kmn)

∣∣∣∣∣
k=n

k=m

− µ

4π (1− ν)
n (x)un

3∑
m,n=1

n=(m+1) mod 3

(1− 2ν)

2
∣∣d(mn)

∣∣ [sinχ(kmn)(cos 2β(mn) + i sin 2β(mn))

+2 cos2 χ(kmn)
(

sinβ(mn) − i cosβ(mn)
)(

cosϕ(kmn) + i sinϕ(kmn)
)]∣∣∣k=n

k=m

where

χ(kmn) = arg z(k) − arg d(mn)

β(mn) = arg d(mn)

ϕ(kmn) = χ(kmn) + β(mn)

Note that the first two of these expressions coincide with those obtained by Linkov and Mogilevskaya (1986)
who fomulated a boundary hypersingular integral equation for a planar crack.
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4.3.8 System of linear equations

The total traction t (x′) could be obtained by summing up the contributions from all boundary elements repre-
sented by Eqs. (21) and (23). Before the summation, the stress tensor should be transformed to the "global"
coordinate system using the rotation tensor Rξ associated with the "local" element coordinate system (standard
coordinate transformation). The system of equations is set up by the collocation method. The expessions for the
tractions exactly represent the known values of those at the points that coincide with the centers of the bound-
ary elements. This procedure results in the system of linear equations to determine the unknown displacement
discontinuities u (ξ). The right-hand side of the system represents the boundary conditions for tractions and the
specified far-field stress (load at infinity).

4.3.9 Postprocessing

The stress tensor components at any chosen point in the domain can be recovered using Eqs. (17) - (20) or, if
necessary, their limit values, and substituting the calculated displacement discontinuities u (ξ). The particular
interest is rather in calculation of the stress intensity factors, which determine the stability or the direction and
rate of growth of cracks. At the present stage it is already possible to obtain those by using the distribution
of the crack displacement discontinuity. However, the accuracy of the estimates may be insuffi cient, even with
relatively fine mesh (see subsection 4.4). This issue is planned to be addressed by using the special approximations
accounting for specific crack tip opening (or sliding) asymptotics (see subsection 5.2).

4.4 Validation

4.4.1 Comparison with existing benchmark results

The approach has been tested on a number of analytical and numerical benchmark problems. Those include

• the problem of a single penny-shaped crack in infinite medium subject to either normal or shear far-field
stress,

• the plane strain problem of a half-circular crack in the infinite domain with biaxial far-field load.

The latter problem can be simulated by considering a three-dimensional crack shaped as a long half-cylinder
with dimension in the axial direction much larger as compared to the other directions and loaded perpendicularly
to its axis. The results for the benchmark problems as well as the comments on the reference solutions are given
in the following subsections.

4.4.2 Penny-shaped crack

Since the main interest at this stage is in accurate calculation of the crack opening (or sliding) and the stress field,
it would be useful to have some closed-form analytical solutions for both displacement discontinuities and stresses.
The problem of a single planar crack of circular shape (penny-shaped crack) in an infinite elastic medium loaded in
tension at infinity has been first solved analytically by Sack (1946) and Sneddon (1946). Green (1947) suggested
an alternative method of solution by reducing the problem to an equivalent one for a axisymmetric harmonic
potential. The solution of the analogous problem of a penny-shaped crack under shear loading was suggested
by Segedin (1951). The closed-form expressions for the stresses in both loading cases (σzz = S or σxz = S)
can be found in the paper by Kachanov (1994). Fig. 4 shows an example of the meshes used in the numerical
test performed with the present approach. Figures 5 (a) and (b) show the calculated displacement discontinuity
(scaled by the factor 1

4π(1−ν) ) components compared to the analytical solutions for the cases of normal and shear
loading, respectively. Figures 6 and 7 show the stress tensor components (numerical vs. analytical solution) along
two straight lines: y = 0, z = 0.5a and y = z = 0.5a, where a is the radius of the crack.
From these plots one can see good agreement with the analytical results with accuracy increasing with the mesh

density. However, near the crack tip the method accuracy is insuffi cient due to the use of constant approximations
for displacement discontinuity.
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Figure 4: Boundary mesh for the penny-shaped crack problem

Figure 5: Scaled displacement discontinuity for a penny-shaped crack under normal (a) and shear (b) loading.
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Figure 6: Stresses around a penny shape crack under normal tension. Comparison with the analytical solution.
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Figure 7: Stresses around a penny-shaped crack under shear. Comparison with the analytical solution.
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Figure 8: The boundary mesh and the evaluated displacement discontinuities for a semi-cylindrical crack.

4.4.3 Plane strain problems

Consider the two-dimensional plane strain problem of a semi-circular crack in an infinite medium under biaxial
tension at infinity. This problem can represent an approximate solution (in the appropriate cross-section) of the
three-dimensional problem of a long semi-cylindrical crack loaded in the directions perpendicular to the axis of
the cylinder (see Fig. 8).
The analytical solution for the corresponding plane strain problem can be found in the book by Muskhelishvili

(1963).
Fig. 8 shows the mesh used in the three-dimensional test performed with the present approach as wellas

the calculated displacement discontinuity vectors at the collocation points. Fig. 9 shows the stress field (stress
components along different straight lines) in the middle cross-section (y = 0.5L, where L = 10a is the crack
length, a is the curvature radius) compared to the plane strain solution.

5 Future work

5.1 Higher order approximations

BEM provides stable results even with the simplest piecewise-constant approximations of unknowns. Hovever,
to improve accuracy, large number of elements is required and, consequently, the computational cost could be
high. To reduce this cost, quadratic approximations of unknowns are planned to be introduced. In this procedure,
analytical integration can still be used. In fact, all integral terms involved in the present (constant approximation)
scheme will still be included in the final expressions for quadratic approximations. Additional integrals related
to the higher order terms are expected to be handled analytically.

5.2 Crack tip elements

Although stress intensity factors can be estimated using constant approximations for the unknowns, those estimtes
would lack the required accuracy. Accurate treatment of the crack front singularities requires the implementation
of specific shape functions for the unknowns on the elements adjacent to the crack front. It is well known that
the leading terms in the power series expansion of the displacement discontinuity on the crack near its front are
proportional to

√
r, where r is the distance from the crack front. For the stress components, the leading term

is proportional to 1/
√
r. This leads to the idea of including an additional multiplier of

√
r in the approximating

(shape) functions for the displacement discontinuity at the elements adjacent to the crack front. Additional
integrals that include the crack front approximations are again expected to be handled analytically.
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Figure 9: Stresses in the central cross-section of a semi-cylindrical crack under biaxial tension. Comparison with
plane strain results.
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5.3 Treatment of inhomogeneities

Inhomogeneities can be described using standard Multi-region formulation (see Aliabadi 2002). In this formula-
tion, the system of boundary equations for each subdomain (including inhomogeneities) are supplemented by the
boundary conditions for the interfaces between the subdomains (e.g. perfect bond). Then various techniques to
effi ciently assemble the final system of linear equations will be analyzed and implemented.

5.4 Treatment of body forces

Body forces involved in the described formulation are assumed constant for each subdomain (inhomogeneity or
the rock matrix), which may not be the general case. In general, the techniques such as Dual Reciprocity Method
(see Gaul et al. 2003) could be used to reduce the volume integrals to the boundary ones. However, it is planned
to explore different approaches including that based on the representation of the body forces via a set of vector
spherical harmonics.

5.5 Modelling crack propagation

The approach developed up to date can be used in straightforward manner to model quasistatic crack propagation.
The present elastostatic model can be used on each step in combination with the appropriate crack propagation
criteria. Various criteria are available (see e.g. Meng et al., 2013); it is planned to explore and analyze those
criteria for further use in crack growth simulations.
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