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Abstract

This report estimates inductively-coupled energy to a low-impedance load in a loop-to-loop arrangement.

Both analytical models and full-wave numerical simulations are used and the resulting fields, coupled

powers and energies are compared. The energies are simply estimated from the coupled powers through

approximations to the energy theorem.
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Loop-to-Loop Coupling

1 INTRODUCTION

This report considers coupling between wire loops to a low impedance load, which for convenience

is taken to have a normalized value of one ohm (power and energy can be scaled to other load values of

interest). The problem is carefully formulated to elucidate the basic quantities that influence the coupled

energy. The drive or transmitting antenna is taken as either a circular or rectangular loop, while the receiver

is taken to be a simple circular loop. The effect of wire leads to the circular loop are also addressed and

coupling to the common mode of the leads is considered. An analysis (including both full-wave numerical

simulations and an analytic formulation) for a rectangular loop is included since this more closely resembles

the preliminary experimental setup. The frequencies are taken to be low enough that circuit (and in some

cases transmission line) concepts can often be invoked.

2 TRANSMITTING ANTENNA

Here we consider both a circular and rectangular loop. As previously mentioned, the case of a

rectangular-loop transmitter is included to mirror the experimental setup.

2.1 Circular Loop Transmitter in Free Space

For the circular loop it is convenient to use the magnetic vector potential , where the magnetic

induction  and magnetic field intensity  are found as

 = 0 = ∇×

and 0 = 4 × 10−7 H/m is the magnetic permeability of free space. Ignoring displacement currents at low

frequencies, Ampere’s law

∇× = 

along with the vector identity ∇×∇× = ∇ (∇ ·)−∇2 and the choice of the Coulomb gauge ∇ · = 0
gives

∇2 = −0
The symmetric current case  ( ) scalarizes in cylindrical coordinates (  ) as¡∇2 − 12¢ = −0
The potential of a loop of electric current  with radius  at  = 0 is [1]

 =
0

2

s





∙µ
2

2
− 1
¶
 ()− 2

2
 ()

¸
where the complete elliptic integrals are  () =

R 2
0


p
1− 2 sin2  and  () =

R 2
0


p
1− 2 sin2 

and

 =
2
√
q

(+ )
2
+ 2

For the axial component of the magnetic field we have

 =
1

0

1






() =

−
8
√



∙
−2 () +

½
(1 + ) +

1

02
(1− )

¾
 ()

¸
(1)
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Figure 1. A rectangular loop as used in the test. For analysis, the coordinate system shown is assumed to

have an origin between the parallel plates at the center.

For → 0 (along the axis of the circular loop) we have

 (0 ) = 0

 (0 ) =
22

(2 + 2)
32

(2)

2.2 Thin Rectangular Loop in Free Space

In the initial experimental setup, a strip was bent to form a thin rectangular loop [2]. The rectangular

loop geometry is shown in Fig. 1. The motivation in this section is to arrive at a simple closed-form

expression for the magnetic field generated by the rectangular loop and ultimately understand the energy

coupling between this particular transmitter and a circular loop receiver. For this transmitter case, it is

convenient to use the magnetic scalar potential . The rectangular loop, if the gap between the two

conducting strips is taken to be quite thin, can be modeled as a pair of magnetic line charges located,

respectively, at the inlet and outlet of the thin loop. The field is then found from the gradient of the

magnetic scalar potential as

 = −∇
where a magnetic charge density  is assumed and from Gauss’s law

∇ · = 

Thus we can write

∇2 = −0
and

 () = 0

Z


 (
0)

 0

4 | − 0|
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The loop portion can be modeled by means of two magnetic line charges ± of finite length 2 and

positioned at  = ±2 to yield

 =


40
ln

⎡⎣ + +

q
( + )

2
+ (− 2)

2
+ 2

 − +

q
( − )

2
+ (− 2)

2
+ 2

 − +

q
( − )

2
+ (+ 2) + 2

 + +

q
( + )

2
+ (+ 2)

2
+ 2

⎤⎦
where  =

p
2 + 2. The  directed field is then

(40) =
(− 2)

(− 2)
2
+ 2

⎡⎣ − q
( − )

2
+ (− 2)

2
+ 2

+
+ q

( + )
2
+ (− 2)

2
+ 2

⎤⎦
− (+ 2)

(+ 2)
2
+ 2

⎡⎣ + q
( + )

2
+ (+ 2)

2
+ 2

+
− q

( − )
2
+ (+ 2)

2
+ 2

⎤⎦ (3)

Assuming the rectangular loop is thin with gap 2∆   we can calculate the magnetic flux per unit

length emanating from the twin stripline as

Φ = 0 (4)

where the stripline inductance per unit length is 0 and can be approximated as [3]

00 ≈  + 1 + ln {2 + 1 + 2 ln (2 + 4)}   ≥ 1  (05% error) (5)

where

 =  (2∆)

To be consistent with the test we take the dimensions:  ≈ 3” and a fixed average value 2∆ ≈ (175 + 1) 2”
(this is used for  = 0, but a value near 1” was used for observation positions  near the top of the

structure)  ≈ 685 so that 0 ≈ 02890. We note that this rectangular-loop inductance per unit length is
smaller than the parallel-plate inductance per-unit length of 02∆ = 04580. We used an average value

2 ≈ 115” to take into account the top circular boundary. We took the absolute observation position 

and subtracted the position 025” to place the observation point in a symmetric coordinate system (where

the structure with the circle is centered at zero) and in reporting the results we return to the absolute

coordinate system by adding back the 025” shift in . In general we used linear interpolation to select the

spacing 2∆ = 1” + (175”− 1”)(− ) (2) where here −     is the symmetric coordinate location.

Therefore in Fig. 3 we use an approximation of setting the magnetic charge density to the value at the

observation height  (). Thus, the magnetic charge per unit length is set to

 ≈ Φ (6)

For this and the remaining calculations used throughout the report, we had  = 2 +  and 2 ≈ 115”.
(The distance  corresponds to the sample position from the edge of the rectangular loop, in accordance

with the position of the receive antenna.)

As one would expect, as the distance between the transmitting and receiving antenna increases the

loop contribution to the magnetic field will decrease and other contributions (for example the feed structure

to the loop) may become more important.

2.2.1 Linear Magnetic Charge Density

To account more directly for the variable nature of the gap between conductors (2∆ as shown in Fig.

1), we can also find the field for linear variations of the charge density  (
0) in a simple form. If we add a

linear term, so that the magnetic charge per unit length is

 (
0) = 0 + 1 (− 0)

= 0 + (− ) 1 + 1 ( − 0)
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then the identity Z
( − 0) 0q
2 + ( − 0)2

= −
q
2 + ( − 0)2

can be used on the linear term to give

1
40

Z 

−

( − 0) 0q
2 + ( − 0)2

=
1
40

∙q
2 + (+ )

2 −
q
2 + (− )

2

¸
Taking two line sources with opposite signs displaced by ± 2 in this case gives

 =
0 + (− ) 1

40
ln

⎡⎣ + +

q
( + )

2
+ (− 2)

2
+ 2

 − +

q
( − )

2
+ (− 2)

2
+ 2

 − +

q
( − )

2
+ (+ 2) + 2

 + +

q
( + )

2
+ (+ 2)

2
+ 2

⎤⎦
− 1
40

∙q
(− 2)

2
+ 2 + (− )

2 −
q
(− 2)

2
+ 2 + (+ )

2

−
q
(+ 2)

2
+ 2 + (− )

2
+

q
(+ 2)

2
+ 2 + (+ )

2

¸
The  directed field is then

(40) =©
0 + (− ) 1

ª (− 2)

(− 2)
2
+ 2

⎡⎣ − q
( − )

2
+ (− 2)

2
+ 2

+
+ q

( + )
2
+ (− 2)

2
+ 2

⎤⎦
−©0 + (− ) 1

ª (+ 2)

(+ 2)
2
+ 2

⎡⎣ + q
( + )

2
+ (+ 2)

2
+ 2

+
− q

( − )
2
+ (+ 2)

2
+ 2

⎤⎦
+1 (− 2)

⎡⎣ 1q
(− 2)

2
+ 2 + (− )

2
− 1q

(− 2)
2
+ 2 + (+ )

2

⎤⎦
−1 (+ 2)

⎡⎣ 1q
(+ 2)

2
+ 2 + (− )

2
+

1q
(+ 2)

2
+ 2 + (+ )

2

⎤⎦
This direct analytic solution will also be examined below and compared to numerical simulations of the

rectangular loop.

2.2.2 Effective Line Charge

Let us examine the field strength of the stripline arrangement versus the magnetic line charge

approximation. We use conformal mapping to find the field for a half plane above a ground plane

(approximately representing the edge of the stripline arrangement). By placing the two singularities at

1 = −1 0 the appropriate Schwarz transformation [4] is


1
= 1

0−1
1 (1 + 1)

2−1
= 1 (1 + 11)

or

 = 1 (1 + ln 1) + 2
Now noting that near 1 = 0 we can substitute 1 ∼ 1

1  1 → 0 and write the transformation

asymptotically as

 = 1 (1 + 1)
1

1
∼ 11
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We want a change  ∼  (0−∆2) for a change 1 = (0− ) at the singular point 1 = 0, so that

1 =
∆

2

Matching 1 = −1 to  = ∆2 gives (note that we use 0 ≤ arg 1 ≤  in the upper half plane)

∆2 =
∆

2
(−1 + ) + 2

2 =
∆

2
Thus we have

 =
∆

2
(1 + 1 + ln 1)

Now we want a magnetic flux per unit length Φ2 = 2 between the half plane and the plane. We thus

take the magnetic scalar potential to be

 = −
1

0
Re ( )

 = −∇
and the magnetic vector potential to be

 = Im( )

 = 0 = ∇×

where

 =


2
ln (1 + 1)

Using Stokes integral theorem the magnetic flux is given by

Φ =

Z


 ·  =
I

 · 
and thus in our two-dimensional case the magnetic flux per unit length is

Φ2 =  (∆2)− ( 0)    0

Using the above representation we see that this implies

Φ2 = Im [ (+ 2)− (+ 0)] = Im [ (1 = −1− 1)− (1 = −1 + 1)]

=


2
( − 0)

The scalar potential is therefore

 = −


20
ln |1 + 1|

The  component of the field is

 = −


= − 1
0
Re

µ


1



1

¶
=



0
Re

"
1

(1 + 1)
2

#

=


0
Re

∙
1

(1 + 1)

½
1− 1

(1 + 1)

¾¸
Now taking the limit of large || and |1|, the conformal transformation

2∆ = 1 + 1 + ln 1

becomes

1 + 1 ∼ 2∆− ln (2∆− 1)
The magnetic field is then

 ∼ 

20
Re

∙
1

 − ln (2∆− 1)∆ (2)
µ
1− ∆ (2)

{ − ln (2∆− 1)∆ (2)}
¶¸

∼ 

20
Re

∙
1

 − {ln (2∆− 1)− 1}∆ (2)
¸

15



On the   0 axis we thus have

 ( 0) ∼  (20)

− {ln (2∆− 1)− 1}∆ (2)
which shows an increase relative to the magnetic line source value (for ∆→ 0 they coincide)

 ( 0)→ 

20

Thus the magnetic line charge will somewhat underestimate the mutual inductance of the rectangular loop

transmitter for closely spaced observation distances . Hence, even though it is more complicated, we

include the next subsection on the vector potential approach.

2.3 Vector Potential Approach

Although we know that a single strip has a current density that varies according to the distribution

 =
q

(2)
2 − 2

when this strip is near a strip of the same width having an opposite current the current density becomes

more uniform. Hence we consider as an approximation a strip of constant current density

 = 

of finite length having a vector potential

 =
0
4



Z 2

−2

Z 

−

00q
(− 0)2 + 2 + ( − 0)2

=
0
4



Z +2

−2

Z +

−

p
2 + 2 + 2

Now using the identity Z
√

2 + 2
= ln

³
+

p
2 + 2

´
gives

 =
0
4



Z +

−
ln

½
(+ 2) +

q
(+ 2)

2
+ 2 + 2

¾


−0
4



Z +

−
ln

½
(− 2) +

q
(− 2)

2
+ 2 + 2

¾


The field of interest is

0 =



− 


Noting that




=

0

4


Z +

−

1

(+ 2) +

q
(+ 2)

2
+ 2 + 2

q
(+ 2)

2
+ 2 + 2

−0
4



Z +

−

1

(− 2) +

q
(− 2)

2
+ 2 + 2

q
(− 2)

2
+ 2 + 2

for  +   0 and  −   0 we have




=

0

4


Z √(+2)2+2+(+)2
√
(+2)2+2

1

(+ 2) + 

q
2 − (+ 2)

2 − 2
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−0
4



Z √(+2)2+2
√
(+2)2+2+(−)2

1

(+ 2) + 

q
2 − (+ 2)

2 − 2

−0
4



Z √(−2)2+2+(+)2
√
(−2)2+2

1

(− 2) + 

q
2 − (− 2)

2 − 2

+
0

4


Z √(−2)2+2
√
(−2)2+2+(−)2

1

(− 2) + 

q
2 − (− 2)

2 − 2

Using the identity [5] Z


(+ )
√

= −

Z
p

+ (− 2) + (− + 2) 2

where

 =
1

+ 
 = + + 2

and for  = 0,  = 1,  = (± 2), and  = − (± 2)
2 − 2 and + 2 = −2 [5]Z



(+ )
√
+ 2

= −
Z

p
1− 2+ (+ 2) 2

= − 1p
− (+ 2)

arcsin

"¡
+ 2

¢
− √−

#
in general gives




(    ) = −0

4


[ (+ 2   + )−  (+ 2   − )−  (− 2   + ) +  (− 2   − )]

where

 (  ) = arcsin

⎧⎨⎩2
³
+

p
2 + 2 + 2

´
+ p

2 + 2

⎫⎬⎭ sgn () sgn ()
Now to calculate the total field of the rectangular loop we take the sum of four pieces by shifting and

rotating the coordinates

0 (  ) =



(  −∆   )− 


(  +∆   )

+



(  −   ∆)− 


(  +  ∆) (7)

One could somewhat rigorously account for the spacing variation by mapping the position of the side

strips into nonparallel arrangements, however, if we choose the normal distance to the side strips at the

appropriate distance for the observation location being investigated we should end up with a reasonable

approximation.

2.4 Comparing Rectangular Loop Numerical Simulation to Preceding Model

Results

The analytic treatment of the rectangular-loop antenna (Fig. 1) presented in the preceding section is

now compared to a numerical simulation for verification purposes. The numerical simulation is based on

EIGER, an integral-equation method-of-moments code. This numerical simulation modeled the metallic

conductors of the rectangular loop with a total current injected by four wire sources at the bottom of the

loop (the two interior wires included 100 ohm resistors in series with a 1 volt source and the two outer wires

included 200 ohm resistors in series with a 1 volt source). Note that we had to boost the frequency in the
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Figure 2. The magnitude of  generated by a rectangular loop antenna as shown in Fig. 1. The field

is sampled at z=4" (red curves) and z=0 (green curves) for various distances measured from the edge of the

rectangular loop (d).

simulation to 5.84 MHz to avoid instabilities in the electric field integral equation solution.

Figure 2 shows a comparison between the closed-form analytic expression in (3) and the numerically-

simulated result for the magnitude of  based on a rectangular transmitting loop. Reasonable agreement

between the results is observed as the sample point is varied from  = 1” to  = 10” although a slight offset

is seen between the two sets of data for each sample point . (Note that two cases for the z-coordinate are

considered in the sampling, with  = 0 corresponding to the center of the vertical section of the loop and

 = 4” corresponding to about two inches from the top of the rounded part of the loop.) Also included

in Fig. 2 is the analytic solution for the normalized magnetic field when the magnetic vector potential

associated with the rectangular loop geometry (7) is carried out. While this approach shows excellent

agreement with the numerical simulations (for both  = 0 and  = 4”), it is important to recognize that it is

a much more tedious calculation than the closed-form calculation based on the constant magnetic line charge

(3). Note that the results in Fig. 2 have been normalized by the drive-current , since the calculations

are quasistatic and thus the magnetic field of the transmitter loop is instantaneously proportional to the

current. For an additional comparison, the analytic and numerical simulation results (for the magnitude of

) are plotted in the  = 45”plane ( = 3”) in Fig. 3. In this figure an approximation for the magnetic

charge density  was taken in the analytic solution to have the value corresponding to the value of 2∆ at

the observation location , when  was in the range of −    ; outside of this interval it was set to the

value at either  = ±. Reasonable agreement between the analytic and numerical solution is observed.
We have also included Fig. 4 when the magnetic line charge has a linearly varying density  This

comparison is similar to the preceding constant line charge case even though here the spacing variation 2∆

is approximately incorporated into the model from the beginning. Fig. 5 shows the comparison when the

magnetic vector potential is used with the same varying spacing 2∆ as used for the constant magnetic line

charge. Good agreement between the analytic and numerical solution is observed in this final case.

3 RECEIVING ANTENNA

In this section we consider a simple circular-loop antenna in free-space as the receiver.
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Figure 3. || plotted across the rectangular loop transmitter along the  = 45” plane ( = 3”) for a total
drive current of  = 30 mA. Results obtained from the analytic formulation and the numerical simulation are

included. The analytic curves are from the constant magnetic charge formulas, but we allow the magnetic

charge per unit length to be selected from the width corresponding to the observation location.
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Figure 4. || plotted across the rectangular loop transmitter along the  = 45” plane ( = 3”) for a total
drive current of I=30 mA. Results obtained from the analytic formulation and the numerical simulation are

included. The analytic curves are from the linear magnetic charge formulas.
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Figure 5. || plotted across the rectangular loop transmitter along the  = 45” plane ( = 3”) for a total
drive current of I=30 mA. Results obtained from the analytic formulation and the numerical simulation are

included. The analytic curves are from the vector potential formulas.
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Figure 6. Two circular loop transmit and receive antennas.

3.1 Mutual Inductance & Circuit Picture

The transmitting and receiving circular-loop pair shown in Fig. 6 are analytically treated in this

section. The goal here is to derive a closed-form solution for the mutual inductance that can then be used

to arrive at a circuit-model expression for the power received at the circular loop due to the drive antenna.

Thus, the flux captured by a loop with radius  =  and positioned at  =  due to a transmitting loop of

current with radius  is

Φ = 2 ( )

and thus the mutual inductance is [1]

 = Φ = 0
√


∙µ
2


− 

¶
 ()− 2


 ()

¸
(8)

 =
2
√
q

2 + (+ )
2

(9)

Note that for    we can approximate the coupling by assuming the axial field of the transmitting loop

drives the receiving loop

0 = 20 (0 )  =
0
2

¡
2
¢ ¡
2

¢
(2 + 2)

32
(10)

To denote the power received by the load, we taken into account a load impedance of  =  + 

and a loop-antenna impedance equal to . Thus,

 =
1

2
 ||2 = 1

2


||2
| + |2

=
1

2


|−|2
| + |2

(11)

where a harmonic-time dependence − is assumed. If we substitute in the preceding approximation for
the mutual inductance corresponding to a small-loop receiver (10), then the power received can be written

as

 ∼ 

()
2
0

| + |2
1

2
0 | (0 )|2 = 

1 (1)
2

| + |2
0 (12)
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where  = 2 is the enclosed area by the receiving loop and

0 =
1

2
1 | (0 )|2 (13)

In (12) we have introduced the wavenumber 1 = 
√
01 = 0

√
1 in the medium surrounding the

loop, where the free space wavenumber 0 = 
√
00 = . Here  is the free space velocity of light,

1 = 10 is the permittivity of the medium (1 is the relative permittivity of the medium), and 0 = 8854

pF/m is the permittivity of free space. We have also introduced the wave impedance in the medium

1 =
p
01 = 0

√
1, where the intrinsic impedance of free space is 0 =

p
00 ≈ 120 ohms. Note

that 21
2
1 = 20

2
0 = 220. These quantities will be referred to in the antenna picture to be discussed in

Section 3.4.

3.1.1 Loop-Circuit Parameters

At low frequencies we expect the loop inductance to dominate, so the antenna impedance becomes

 ∼ −
The inductance of a circular loop of radius  and wire radius  is found by evaluating the preceding

loop-to-loop mutual inductance on the self-wire surface [1]. Thus,

 ∼ 0 [ln (8)− 2] ≈


2
0 [ln ()− 176] ≈ 0199 H (14)

where again the loop is formed by a 2 = 3” diameter with 16 gauge wire having 2 = 0051”. For the

right-hand side of (14) we have rewritten the formula in terms of the perimeter  = 2. Note that for a

square loop of perimeter  the inductance is [6]

 ≈ 

2
0 [ln ()− 216]

which yields a value similar to the circular loop (of similar area). The resistance of the loop consists of a

contribution from radiation (which is negligible at low frequencies, 
¡
10−11

¢
ohms) [7] of

 ∼ 1
6

¡
21

¢2
(15)

where again 1 =
p
01 = 0

√
1 is the impedance in the medium containing the loop, 1 = 10, and

1 = 
√
01 = 0

√
1 is the wavenumber in the medium containing the loop. In addition, the total loop

resistance includes the metallic losses of the wire making up the loop. Note that at the test frequency of 584

kHz and a copper conductivity of  ≈ 58× 107 S/m, the skin depth is (assuming the wire is nonmagnetic)
 =

p
2 (0) ≈ 00034 in

or with  ≈ 00255" we find  ≈ 0133. Hence the resistance associated with the finite wire-conductivity
is approximately

 ∼ 2 (2) ≈ 0012 ohms
which is significantly smaller than the load  = 1 Ω and can be ignored. There is also an internal inductive

reactance of the wire, which for small skin depths compared to the wire radius, is equal to , but this is

negligible compared to the external inductive reactance  =  = 073 Ω.

The capacitance of an open-circuited loop can be estimated by means of an energy argument [7]. We

imagine a current  flowing around the loop (injected near azimuth  = 0) and a slowly varying two-wire

transmission line (making up the loop) proceeding toward  = , where there is a short circuit. The

inductance is dominant at low frequencies and the inductive voltage at position  is then

 () =

Z 



 ()  () (16)
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with a two-wire line inductance per unit length of

 () =
0

Arccosh

³ 

2

´
∼ 0


ln ()

[1], [7], with a wire-to-wire spacing of

 = 2 sin

Equation (16) can thus be written as

 () ∼ 0



∙
( − ) ln (2) +

Z 



ln (sin) 

¸
≈  (0) (1− )

where we have dropped the smaller second term (for a thin wire   ) in the final expression. The stored

electric energy along the line can be written as

 =
1

2
 | (0)|2 = 1

2

Z 

0

 () | ()|2  () (17)

where the wire-to-wire capacitance per unit length is

 () =
1

Arccosh
¡

2

¢ ∼ 1

ln ()
(18)

Using (18) in (17), we can identify the loop-antenna capacitance as

 ≈
Z 

0

 () (1− )
2
 ()

If we approximate  () by a constant average value  then

 ≈ 

Z 

0

(1− )
2
 =

1

3
 (19)

Defining the average by means of averaging the inverse,

1 =
1



Z 

0



 ()

we obtain

1 ∼ 1



1

1

Z 

0

ln

µ
2


sin

¶


where the identity Z 2

0

ln (sin)  =
1

2

Z 

0

ln (sin)  = −
2
ln (2)

yields

 ∼ 1

ln ()
Substituting into (19), we end up with

 ≈ 213

ln ()
≈ 1 (0272 F)

for the wire loop of dimensions of 2 = 3” and 2 = 0051”. Here again 1 is the dielectric constant of the

medium that surrounds the loop. This capacitance (although it is a low-frequency quantity rather than

the reactive quantity near resonance) can be used to get a rough idea of the position of the loop natural

resonance  ≈
¡
2
√


¢−1
= 684

√
1 MHz); however, another probably more accurate estimate is

based on taking the half circumference to be equal to the length of a quarter-wave resonator

 ≈ 4

Thus, in air with  = 15” and  ≈ 00255”, we find  ≈ 048 m (or  ≈ 626 MHz), whereas the circuit
calculation yields 684 MHz. It is important to note that for operating frequencies significantly below

resonance this capacitance can be ignored in the circuit model (the antenna inductance dominates).

23



0.1 0.3 0.5 0.7 0.9
k

0.91

0.96

1.01

1.06

M
/M

ap
p

Figure 7. Ratio of exact to approximate expressions for mutual inductance.

3.2 Fit To Mutual Inductance

Here we examine the accuracy of some simple representations for the mutual inductance, which can

then be compared to a center-point approximation to the coupled voltage.

3.2.1 Circular Loop To Circular Loop

Fitting the asymptotic limits of the mutual inductance with respect to limits of  → 0 1 yields an

approximate expression  ≈ (8) with a maximum error of about five percent,


³
30

√

´
≈

³
30

√

´
= ln

³
4
p
1− 2

´
− 2 +

p
1− 2 (16− 2 ln 2 + 2)

where  is defined in (9).

Figure 7 shows the ratio of the exact mutual inductance (8) to the approximate fit (). With

this ratio being very close to one for the full range of  (9), this fit function for the mutual inductance

can conveniently be used in place of the more complicated exact expression given in (8). Note that both

expressions are specialized to the axial case.

3.2.2 Rectangular Loop To Circular Loop

Fixing the location of the circular receiving loop relative to the rectangular transmitter loop at

 = + 2, the magnetic field generated by the rectangular loop can be written as

(4 (00) ) =


2 + 2

⎡⎣ − q
( − )

2
+ 2 + 2

+
+ q

( + )
2
+ 2 + 2

⎤⎦
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Figure 8. Rectangular transmitter and circular receiver configuration.
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− (+ )

(+ )
2
+ 2

⎡⎣ + q
( + )

2
+ (+ )

2
+ 2

+
− q

( − )
2
+ (+ )

2
+ 2

⎤⎦
The circular loop receiver and rectangular loop transmitter are shown in Fig. 8. Here (3) has been used

together with (4) and (6) and, from Section 2.2, we have an approximation to the inductance per unit

length, given by (5)

00 ≈  + 1 + ln {2 + 1 + 2 ln (2 + 4)}
where

 =  (2∆)

The flux in the receive loop is

Φ = 2

Z +

−

Z √2−(−0)2

0

0 (  ) 

Note that this flux integral calculation is constrained to the area within the receive loop, 2+( − 0)
2 ≤ 2.

 = Φ

Assuming the dimensions 2 = 3”,  ≈ 3”,  ≈ 3”,  ≈ 575”, and fixing the observation point at the
receive loop center of  = 0 and 0 = 525” (this is in the average coordinate system, the absolute location

is 0 = 55”) gives

 ≈ 0812 nH
Note that the center-point approximation to the mutual inductance can be written as


0 ≈ 0 ( 0 0) 

We note that for the dimensions based on the experimental setup


0 ≈ 0913 nH

so the ratio of the preceding accurate integration to the center point value is 089; for  ≈ 5” this ratio
becomes 095.

The integration of the magnetic field from the preceding linear magnetic charge density approximation

gives

 ≈ 0846 nH
whereas the center point value in this case is


0 ≈ 0945 nH

The more accurate vector potential representation gives

  ≈ 117 nH
and a center point value of

 
0 ≈ 131 nH

As an additional comparison, integration of the rectangular grid of values from the EIGER simulation

using a rectangular pixel approximation gives

Φ = 0

X


  for 2 + ( − 0)
2 ≤ 2

where the rectangular pixel areas are

 = 
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Here we used  = 105” and  = 20” with  + 1 = 101 =  + 1 samples taken. The preceding

dimensions with  ≈ 3” yields (here we included the boundary terms discussed next for greater accuracy)
 = Φ  ≈ 118 nH

An interpolated center value gives


0 ≈ 0 ( 0 0)  ≈ 131 nH

so the ratio of integration to center value in the simulation is 090. Note that only absolute  values, for

example 0 = 55”, are used in the numerical simulation and the next subsection.

Boundary Terms To improve the accuracy of the EIGER integration we calculate the boundary

areas. We use an approximation by considering the normal to the circle of radius  in the direction of the

rectangular pixel center at  . The normal direction to the circle in this direction is then

 =  cos +  sin

where

cos = 

sin = ( − 0) 

 =

q
2 + ( − 0)

2

The tangent to the circle is orthogonal to the normal. If we take a vector in the tangent direction as

 = ( − 0)  + ( − 0) 
then the slope equation is

0 =  ·  = ( − 0) cos + ( − 0) sin
We take a point on this line to be the intersection with the circle of radius 

0 =  cos

0 − 0 =  sin
so the equation for the tangent line is

() cos + ( − 0) sin = 

If we have a rectangular pixel the first check to be made is whether the corresponding tangent line in

the center direction intersects the pixel or whether the pixel lies entirely inside the tangent line. Because

of the symmetry of the circle we can reflect all pixels to the first quadrant for determination of the area,

where then we have () |cos|+ ( − 0) |sin| = , and let us define

max
min

= || ± 2

max
min
− 0 = | − 0| ± 2

The pixel is contained within the circle if

(max) |cos|+ (max − 0) |sin| ≤ 

It is entirely outside the circle if

(min) |cos|+ (min − 0) |sin| ≥ 

It is on the boundary if

(min) |cos|+ (min − 0) |sin|  

(max) |cos|+ (max − 0) |sin|  

Now if the pixel is on the boundary let us differentiate between four cases. In case I the tangent line

intersects the right side boundary at  = ||+ 2 = max,  = 2 and the top of the rectangle at  = 2,

 − 0 = | − 0|+ 2 = max − 0, where

(max) |cos|+ (2 − 0) |sin| = 

(2) |cos|+ (max − 0) |sin| = 
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and here min  2  max, min  2  max. The area to be included in this case (which replaces  for

this boundary term in the sum) is

 =  − 1
2
(max − 2) [(max − 0)− (2 − 0)] =  − 1

2
(max − 2) (max − 2)

In case II the tangent line intersects the bottom boundary at  = 1,  − 0 = | − 0|− 2 = min − 0
and the top boundary at the prior location, where

(1) |cos|+ (min − 0) |sin| = 

and here min  1  max, min  2  max. The area in this case is

 =
1

2
(1 − min + 2 − min) =

∙
1

2
(1 + 2)− min

¸


In case III the tangent line intersects the left side boundary at  = ||− 2 = min,  − 0 = 1 − 0 and

the bottom boundary at the preceding location, where

(min) |cos|+ (1 − 0) |sin| = 

and here min  1  max, min  1  max. The area in this case is

 =
1

2
(1 − min) [1 − 0 − (min − 0)] =

1

2
(1 − min) (1 − min)

In case IV the tangent line intersects the left side boundary at  = ||− 2 = min,  − 0 = 1 − 0 and

the right side boundary at  = ||+ 2 = max,  = 2 where here min  1  max, min  2  max
and the area in this case is

 =
1

2
[1 − 0 − (min − 0) + 2 − 0 − (min − 0)] =

∙
1

2
(1 + 2)− min

¸


These results give  = Φ  ≈ 118 nH (
0 ≈ 131 nH) for  = 100 =  . A summary of these

values is given in Table 1.

Table 1. Mutual inductance of rectangular transmitting loop and a circular receiving loop of radius u=1.5"

shown in Figure 6. A position of z=5.5" and a distance of d=3" are assumed.

d 
0 : Center Point : Integrated Flux

3 in 0.913 nH 0.812 nH

5 in 0.393 nH 0.375 nH

7 in 0.218 nH 0.213 nH

d 
0 : Center Point : Integrated Flux

3 in 0.945 nH 0.846 nH

5 in 0.421 nH 0.403 nH

7 in 0.241 nH 0.235 nH

d  
0 : Center Point  : Integrated Flux

3 in 1.31 nH 1.17 nH

5 in 0.571 nH 0.545 nH

7 in 0.318 nH 0.310 nH

d 
0 : Center Point : Integrated Flux

3 in 1.31 nH 1.18 nH

Fig. 9 shows a comparison of the center point magnetic field values from the vector potential

representation (which agrees reasonably well with the numerical simulation) versus the magnetic field from

the constant magnetic charge model. Also included are the average field values hi defined by
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Figure 9. A comparison of the normalized magnetic field  calculation for the constant magnetic line

charge versus the magnetic vector potential approach. Calculations based on a single point evaluation of

the field versus an average (integrated) field are also provided. The field is evaluated at z=4" for various

distances measured from the edge of the rectangular loop (d).

Φ = 0 hi
where the receiver geometric area in the case of a circular loop of radius  = 15” is

 = 2

This illustrates that the use of a center point value from the constant magnetic line charge model can yield

reasonable answers for the mutual inductance, particularly when your are not too close to the transmit

loop.

3.3 Exact Flux (Or Average Magnetic Field Intensity) Versus Center Point

The open-circuit voltage is

 = −Φ


= Φ

where the magnetic flux through the receive loop is

Φ =

Z


0 =

Z 

0

Z 2

0

0 (  )  (20)

(Note here that an axial drive () field has been assumed. Since in the rectangular-loop analysis,

provided above, the drive field was conveniently taken as ,  would replace  in (20).) A center-point

approximation of (20) is

Φ0 ≈ 0 (0  )

Thus we can define a correction to the center point value in the power (or energy formulas) as

 = |ΦΦ0|2 (21)

(note that this is also equal to the square of the ratio of mutual inductances) and then

 = 0

where  is the standard antenna quantity of effective area and 0 is the source power density (or
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magnitude of the Poynting vector) evaluated along the axis (center) of the receiving antenna (13). The

quantity 0 is an average (or effective) source power density making use of the square of an integrated (or

an average) magnetic field intensity. The antenna effective area definition is discussed in the next section.

It is important to note that the ratio of the received energy computed using the integration (denoted

on the plot as ’Avg’) to the energy associated with a single-point (at the receive center) calculation is equal

to the correction factor  in (21). If we can tolerate the error associated with the approximation of using

the center value alone, this allows us to separate transmit loop and receive loop calculations and thereby

generalize the results.

3.4 Antenna Picture

As an alternative to the circuit calculation given in (11), the received power can also be written as

 = 0 (22)

where the effective area is [8]

 =
2

4
 = 

1 (1)
2

| + |2
 (23)

and where   0and  respectively represent the antenna gain , an impedance mismatch factor , the

magnitude of the incident power density 0, and a polarization mismatch factor . It is important to note

that (22) with (23) is simply a rewriting of (11) with convenient antenna quantities having been defined.

Thus, (22) will yield the same result to the preceding circuit formula for the received power when the

center-point value of the transmitter magnetic field is used (12). This restriction can be removed by use

of the average discussed in the previous section. If it becomes desirable to estimate coupling at higher

frequencies, the antenna picture may sometimes be more convenient as a starting point.

The quantities used for computing the effective area are defined by

 =
4

| + |2
(24)

0 =
1

2
1 | (0 )|2

0 ≤  = | (0 )  (0 )|2 ≤ 1
where, for an electrically small receiving loop [7], we have

 ∼ 3
2

 ∼ 1
6

¡
21

¢2
3.4.1 Example Antenna Calculation

To calculate the power received for the case of a circular receive loop of 2 = 3”(of 16 gauge wire) at

1 MHz in free space we have

 =
2

4
0 ∼ 2

4
(32) 0

where the receiving antenna properties are given by

 ≈ 80× 10−11ohms
(15) and for a single-turn receiving loop (circular) (14)

 ≈ 0199 H
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and

 ∼ − ≈ −125 Ω
Assuming a receiving loop load of  = 1 Ω then (24) is

 ≈ 125× 10−10
As one would expect, the impedance mismatch for this small loop at this low frequency is severe and the

coupling will be quite low.

Next we assume a transmitting loop of radius  = 25” (this radius is chosen to keep this circular-loop

area consistent with the enclosed area of the rectangular loop used in the test, Fig. 1) and a transmit/receive

separation of  = 3”. For this case, 0 (13) becomes

0 =
1

2
0

Ã
22

(2 + 2)
32

!2
≈
³
804 W (A−m)2

´
2

(Here the field generated by a circular-loop transmitter (2) has been used.) Lumping these quantities

together to form the received power we have,

 ≈ 2

4
(15)

¡
125× 10−10¢ ¡8042¢ (1) ≈ 2

¡
108× 10−3 WA2

¢
at 1 MHz. (A polarization mismatch factor of  = 1 has been assumed).

Increasing the operating frequency to 10 MHz, we have

 ≈ 80× 10−7ohms
 ≈ −125 Ω
 ≈ 204× 10−8

0 ≈
³
804 W (A−m)2

´
2

so that

 ≈ 2
¡
18× 10−3 WA2

¢
As the frequency increases, the power received remains essentially the same. This can be clearly seen with

the received power in the form of (12) since for  dominated by an inductive reactance, the frequency

dependence cancels out.

For convenience, the received energies are tabulated below for the circular loop receiver and circular

loop transmitter case at various frequencies (away from the receiver resonance). To be consistent with

the test setup, a drive current of  = 140 kA and 0 = 7 s is assumed in going from the received power

calculations to the energy received. As discussed in Section 3.7, for low frequencies we can frequently take

 = (02)

Tables 2 and 3 show energy calculations for two different spacings between the transmit and receive

antennas.

Table 2. Energy received using a circular loop receiver of u=1.5" and a circular loop transmitter of b=2.5".

A transmit/receive seperation of d=3" is assumed

f [MHz]  [J]

0.584 42

1 74

10 121

60 120

In the section below we consider a rectangular-loop transmitting antenna, where we observe that,
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Table 3. Energy received using a circular loop receiver of u=1.5" and a circular loop transmitter of b=2.5".

A transmit/receive seperation of d=5" is assumed

f [MHz]  [J]

0.584 4.9

1 8.6

10 14

60 14

relative to the circular-transmitter case, the levels of received energy decrease significantly. As mentioned

previously, a rectangular-loop transmitter as shown in Fig. 1 is considered here to be consistent with the

experimental testing that was ongoing.

3.5 Multiple Turn Loop

If we now consider the same rectangular transmitting loop with a -turn circular receiver (rather than

the 1-turn type as previously considered), (11) is modified to

 
 =

1

2


||2¯̄̄
2

()
 + 

¯̄̄2 = 1

2


0 (0)
2¯̄̄

2
()
 + 

¯̄̄2 0 | (0 )|2

Note that for an -turn receiving loop, the self-inductance is given by

 = 2() ≈ 20 [ln (8)− 2] (25)

which for  = 3 and a 3” diameter becomes 179 H when we crudely take  →  ≈ 00255” (16 gauge
wire). However, to more accurately calculate the self-inductance, we note that in addition to the factor of

2 increase in the inductance associated with the additional turns, the turns have the effect of increasing

the effective radius of the wire loop antenna. In the next two sections, two different wire arrangements

(resulting in different effective radii) are considered.

3.5.1 Triangular Wire Configuration

If we take the multi-turn wires to be in the configuration of an equilateral triangle (as depicted in Fig.

10a) then the equal current drive results in the proper current distribution to achieve little net flux between

the wires when the loop diameter is very large. In this case we can treat the wires as approximately two

dimensional and write the vector potential near the wires as

 = −0
2

2X
=0

ln
¯̄̄
+  − 23

√
3
¯̄̄
+0

= −0
2

ln

s∙³
− 

√
3
´2
+ 2

¸ ∙³
+ 

³
2
√
3
´´2

+ ( − 2)
2

¸ ∙³
+ 

³
2
√
3
´´2

+ ( + 2)
2

¸
+0

where  is the spacing between wires (the complex location in this case is + ).

Now the vector potential on a wire at  = 
√
3 +  and  = 0 for    gives

 ∼ −0
2

ln
¡
2
¢
+0

Setting this equal to zero (and using the symmetry of the wires for zero net flux between wires) determines

0,

0 =
0

2
ln
¡
2
¢
=

0

2
ln ()
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a) b)

Figure 10. A 3-wire bundle arranged a). in a triangular configuration or b). axially in a cylindrical

configuration.

where 3 = . For large values of  =
p
2 + 2 we find the expected form

 ∼ −0
2

ln ()

where the equivalent radius for a triangular arrangement of the three wires (with   ) is

 =
¡
2
¢13

=
¡
42 

¢13
(26)

Here we have taken the insulation diameter to be 2 = . Thus, for the wire-loop arrangement shown in

Fig. 10a, (26) is used for the calculation of the loop inductance in (25). The effect of a 3-turn bundle

arranged in a triangular configuration versus a cylindrical configuration is discussed in Section 3.5.3.

3.5.2 Cylindrical Wire Configuration

Alternatively let us take the wires to be located at axial positions  (wound along a cylinder as in Fig.

10b) and set

 =
2
√
q

(+ )
2
+ ( − )

2

The vector potential is then


 =

0

2

r




X
=1



"Ã
2

2
− 1
!
 ()− 2

2
 ()

#
Now taking the integration along the three loops at  =  and at  = 0 ±  to find the total flux linking

the loops gives

Φ = 0

X
0=1

X
=1

0

"Ã
2

20
− 1
!
 (0)− 2

20
 (0)

#
where for small spacing compared to the radius ,

0 =
2q

(2)
2
+ (0 ± − )

2
∼ 1− 1

2
(0 ± − )

2
 (2)

2

Here we have used

 () ∼ ln (40)   → 1

0 =
p
1− 2

00 ∼ |0 ± −  |  (2)
 () ∼ 1   → 1

Then

Φ ∼ 0

X
0=1

X
=1

∙
ln

µ
8

|0 ± −  |
¶
− 2
¸

Assuming that  − 0 for uniform loop spacing is only a function of the difference  − 0 we can denote it
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by −0 = ( − 0) , where  = 2 is the diameter of the insulation. For this case

Φ ∼ 0 [ln (8)− 2] + 0 (− 1)
∙
ln

µ
8

|± |
¶
− 2
¸
+ 0 (− 1)

∙
ln

µ
8

|−± |
¶
− 2
¸

+0 (− 2)
∙
ln

µ
8

|2± |
¶
− 2
¸
+ 0 (− 2)

∙
ln

µ
8

|−2± |
¶
− 2
¸

+ · · ·+0 (− + 1)

∙
ln

µ
8

|(− 1) ± |
¶
− 2
¸
+ 0 (− + 1)

∙
ln

µ
8

|− (− 1) ± |
¶
− 2
¸

Dropping the radius  versus the spacing  and specializing to  = 3, we have

Φ ∼ 03
2

½
ln (8)− 2 + 2

3
ln ()− 2

9
ln 2

¾
(27)

Recalling that for a 3-turn loop the inductance is given by

 = Φ = 03
2 [ln (8)− 2]

so we can identify from (27) the equivalent radius as

 =
³
2232

´13
(28)

3.5.3 Comparisons of Wire Configurations

Using (26) and (28), with  ≈ 267 (2), we obtain 131 H in the 3-turn triangular configuration

and 124 H for the 3-turn cylindrical case. Alternatively, Grover [6] gives the estimate resulting from

replacement of a cylindrical winding by a strip as

 ≈ 20

∙
ln

µ
8



¶
− 1
2

¸
which gives 124 H. Thus all these calculations give similar results; we also note that the loop in the 3-turn

experiment appears to be a combination of the triangular and cylindrical cases.

3.6 Transmission Line Loads

Cases where various lengths of transmission line are attached to the receiving loop are now considered

and the effects of these types of loop loads on the received power are treated in Section 5.3. These lines can

have the form of twin-lead lines, twisted pairs, or shielded pairs.

3.6.1 No Insulation Parameters

We now consider the case where the receiving loop 2 = 3”(16 gauge) is attached to a twin-lead

transmission line without insulation. If we consider a  = 7” long lead with 16 gauge wire (2 ≈ 0051”)
and a separation of 2 = 267 (2) then


 =

0

Arccosh ()
∼ 0

ln (2)
≈ 295 pF

 =
0


Arccosh () ∼ 0


ln (2) ≈ 012 H (29)

These would be combined in series with the loop parameters. Note that if we have a tight (we assume no

gap between wire insulations and a low twist rate, where this length is nearly the same as ) twisted pair,

instead of a twin line, the effective length is similar

0 =




q
2 + (2)

2 ≈ 74 in
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where  ≈ 1ft10 is the twist period (this parameter is based on the twisted-pair used in the experiment).

Longer leads are considered in the next subsection.

3.6.2 Insulation Parameters

For a twin line with a cylindrical insulation having permittivity 2 surrounding the wires (we assume

free space outside the insulation) we have the per-unit length inductance  and capacitance  of [9]

 =
0

Arccosh ()

(as for the twin line without insulation (29)) and

1 ≈
sµ



0
+
1

2

¶2
−
µ


0
+

2

2

¶2
(30)

For (30), we have

0 =
0

Arccosh ()

2 =
2

ln ()

 =

q
2 − 2

and

2 = 07 (1− )
2 − 0

2 + 0
(1− )

Note that if  =  this reduces to  = 0 and

 ≈ 2
p
(1−2) {1 +2 + 22 (0)}

The perfectly-conducting current density on a wire surface (with a return at 2 away) is


 =



2

p
2 − 2

 +  sin

so integration around the perimeter to determine the leading term of the internal impedance per unit length

gives

 =
1

2

µ
1

2


¶
||2 ∼ 1

2

Z


 |
 |2  =

1

2



2

¡
2 − 2

¢ ||2 1
2

Z 2

0



( +  sin)
2

The one-half factor (in parentheses times ) is introduced due to symmetry because we are integrating

over only one wire, and the surface impedance is

 = (1− )

where

 = 1 ()

and the skin depth is

 =
p
2 ()

Thus we can write this as [1]

 =  −  ∼ 



p
2 − 2

(31)

where we have used [5]Z 2

−2



( +  sin)
2
= − 



Z 

0



( +  cos)
= − 



p
2 − 2
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Now taking the wire-to-wire center spacing as 2 = 2 (required to accommodate the insulation radii

around the wire ) where 2 ≈ 267 (2), wire diameter 2 = 0051”, and relative permittivity of

20 = 2 ≈ 25, we find
2 ≈ 01876

2 ≈ 7081 pF/m
 ≈ 3135 pF/m
 ≈ 06553 H/m

Thus, in the case of a line having  ≈ 05 m (which, over the frequency range examined below, acts as a

lumped load), the low frequency load would be  ≈ 15 pF.

In the case of a shielded pair (with the insulations of the pair touching the exterior cylindrical shield)

we would find approximately  ≈ 2 (this assumes the capacitance to the images is the same as

wire-to-wire) and  ≈ 2. If it is a shielded twisted pair, with large twist length compared to the

radius 2 of the shield, then the longer effective length 0 of the twisted pair must replace . From (31) the

internal impedance per unit length, using the value for copper  ≈ 58× 107 S/m and  = 0584 MHz, is

 =  ≈ 00289 H/m
where

 ≈ 00034 in
 ≈ 02 mohm

 ≈ 0106 ohm/m
Thus, the total inductance per unit length becomes

 +  ≈ 0684 H/m
with line quality factor

 ( + )  ≈ 2368
3.6.3 Transmission Line Equations

We next use this twin-line per-unit length characterization ( ) to compute the input impedance

and propagation constant (both having complex values) of the transmission-line load. The transmission-line

equations are



= − = − (− ) 

and



= −  = − (− )

where, for example,  =  and  is due to insulation losses. Eliminating  givesµ
2

2
+ 2

¶
 = 0

where

2 = −  = − (− ) (− ) = 2

µ
1 + 





¶µ
1 + 





¶
(32)

3.6.4 Solution For Open-Circuit End

In the case that the transmission-line load to the circular receiver is open-circuited (as in Fig. 11), we

have
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Figure 11. A circular-loop receiver with an open-circuited transmission line load. The radius of the recieving

loop is assumed to be  = 15” throughout this report.
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 ( = ) = 0

 = 0 cos  (− )

and

 = − 1





= − 


0 sin  (− )

so that the input impedance seen looking into the transmission-line terminals is

 =  (0)  (0) =  −  = −
µ




¶
cot () = 0 cot ()

Here the characteristic impedance of the line is

0 =
p


and from (32)

 ≈ 
p
 [1 +  (2)]

where

1 ≈ 


+




If we ignore the insulation loss → 0, we can write

 ≈ 


with

 =  ≈ 



p
2 − 2

and

 ≈ 
p
 {1 +  (2)} (33)

0 ≈
p
 {1 +  (2)} (34)

 ≈ 0 cot ()

Using the above parameters

1
p
 ≈ 136p

 ≈ 145 ohms
so that

0 ∼ 

0
2
0

( +)
2
+ ( + )

2
(35)

Note that this represents the power received by the receiving antenna shown in Fig. 11, normalized by

the power generated by the transmitting antenna over the receiving loop area (0 = 0 = 
1
2
0 ||2).

To define the susceptibility of the receiver, the inverse of this expression will be plotted (Fig. 15) in a

subsequent section and compared to the normalized power resulting from alternate receiver configurations.

3.6.5 Solution For Loaded End

If a load is placed at the transmission-line end we have

 ( = ) = − 1





( = ) =  ( = )

 = 0

∙
cos  (− ) +

1


 sin  (− )

¸
and

 = − 1





= 0

h
− 


sin  (− ) +  cos  (− )

i
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Figure 12. A circular loop receiver connected to a capacitively-loaded transmission line. The radius of the

recieving loop is assumed to be  = 15” throughout this report.

so that

 =  (0)  (0) =
1



cos () + 1


 sin ()

− sin () + 1

 cos ()

= 0
cos ()− 0 sin ()

sin () + 0 cos ()
(36)

In the case of a capacitively-loaded transmission line as shown in Fig. 12, we have

 = −
Calculations for the normalized power received (35) based on the input impedance of a capacitively-loaded

transmission line (36) are included in the susceptibility results of Section 5.2.

3.7 Relating Coupled Power to Energy

This section examines the relations between received energy and power, in an effort to simplify the

connection in a form that holds in many frequently-encountered situations. For convenience we assume here

that free space surrounds the receiver. Let us take the excitation to be a damped sinusoid

 () = 0 Im
£
0

¤
 () = 0

µ
0 − 

∗
0

2

¶
 () = −0

−0 sin (0) ()

where

0 = −0
µ
+

1

20

¶
= −0 − 10

The transform is defined by

 () =

Z ∞
−∞

 () 

so

 () =
0

2

µ
1

0 + 
− 1

∗0 + 

¶
and thus

| ()|2 = 2
0

0

4

"
1

120 + ( − 0)
2
− 1

120 + ( + 0)
2

#
Noting from Rayleigh’s theorem Z ∞

−∞
2 ()  =

1

2

Z ∞
−∞

| ()|2 

so the received energy can thus be written as

 =

Z ∞
−∞

 ()  =
1

2

Z ∞
−∞

 () 0 | ()|2 
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3.7.1 Resonance Region

Let us first examine the case where the source carrier frequency 0 is near a resonance  of the

receiving loop. It is useful to construct an approximate effective area function that obeys the symmetry

rule  (−) =  () in addition to capturing the low frequency behavior, at least for a resistive load (or

a lossy-wire loop). Thus,

 () = 
¡
2
¢ 1
2
0 | (0 )|2

so that

 () ≈ 0

"
22

2


(2 − 2)
2
+ 22

2


#
= 0

∙


2 + 2 − 2
− 

2 − 2  − 2

¸
(37)

where  is the receive loop resonant frequency,  the resonant quality factor, and the receiving time

constant is

 (2) = 1
Note that this form of the effective area behaves as 

¡
−2

¢
= 

¡
2
¢
(constant gain) for high frequencies.

The poles associated with this effective area can be used to evaluate the energy as

 ≈ −02
0

0

2
0 (02) Im

"
1

(0 + 0)
2
+ 2 (0 + 0)   − 2

− 1

(0 + 0)
2 − 2 (0 + 0)  − 2

#

+0
2
0

0

4
0 Re

"
1

120 + ( +   − 0)
2
− 1

120 + ( +   + 0)
2

#
(38)

where 0 is the transmitter time constant.

Setting 0 =  and assuming that   1 and 00  1 gives

 ≈ (02)
µ

0

0 + 

¶
= (02)

00 (2)

00 (2) + 1
(39)

where the continuous-wave average received power is

 =
1

2
0

2
0

0


The decaying exponential modulated pulse has an effective pulse width of (02) and the final factor

0 (0 + ) reduces the energy further if the receiver time constant is comparable (or longer) than the

drive duration. We note that in the case of 0   then

 ≈ (02) (40)

This final result can be interpreted as the case where the effective area is nearly constant in frequency

because in such a case we can approximate the energy received as the time domain integral (with fixed

effective area). That is,

 ≈ 0
0


Z ∞
0

2
 () 

≈ 0
2
0

0


Z ∞
0

−20 sin2 (0)  ≈ 1
2
0

2
0

0


Z ∞
0

−20

≈ (02) 1
2
0

2
0

0
 ≈ (02)

which also gives physical insight into (39) (the continuous wave power  times the effective transmitter

pulse width 02 times a correction factor for smaller pulse widths 0 (0 + )).

3.7.2 Low Frequency Region

Let us now examine the case where the source carrier frequency 0 is well below the resonance  of
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the receiving loop. First consider the limit of (37)

 () ∼ 0
¡
22

¢
2    

and from Section 3.7

| ()|2 = 2
0

0

4

"
1

120 + ( − 0)
2
− 1

120 + ( + 0)
2

#
Because the behavior of the source spectrum is 

¡
−4

¢
for   0 we can use the preceding asymptotic

form of the effective area to calculate the energy received as

 ∼ 00
0


2
0

82
2


Z ∞
−∞



"
1

120 + ( − 0)
2
− 1

120 + ( + 0)
2

#


Residues in the upper half plane yield

 ∼ (02) 1
2
0

2
0

0


¡
20

2


¢
2 = (02)

where now

 =
1

2
0

2
0 (0)

This is the expected result that was used in the low-frequency coupling analysis presented in Section 3.4.

Now let us consider what happens when there is an open-circuited capacitor in the loop. In this case,

based on the preceding results for the coupled power, we take

 () ∼ 1
4    

but the resulting energy integral does not then converge at infinity. The high-frequency content of the

source is created by the discontinuity in slope of the source waveform at  = 0




(0) = 00

This can be avoided by designing a waveform free from this discontinuity in derivatives as discussed in the

next subsection. Alternatively we can deal with this problem by realizing that in the time domain the 2

operator (the square root of the effective area behavior) is a double derivative

−2 ↔ 2

2

Thus we can write (here we are ignoring the delta functions arising from derivatives of the unit step  ()

at  = 0, taking one sided derivatives there to mimic the case where the waveform and its derivatives are

really continuous)

2

2
 () =

¡
120 − 20

¢
0

−0 sin (0)− 2 (00)0
−0 cos (0)    0

and ∙
2

2
 ()

¸2
= 40

2
0

∙³
1− 1 (00)2

´
sin (0) +

2

00
cos (0)

¸2
−20    0

Therefore

 ∼
Z ∞
0

10

∙
2

2
 ()

¸2


∼ 1
4
0

1

2
0

2
0

Z ∞
0

−20∙³
1 + 1 (00)

2
´2
−
³
1− 6 (00)2 + 1 (00)4

´
cos (20) +

4

00

³
1− 1 (00)2

´
sin (20)

¸

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or

 ∼ (02) (0)
1

2
0

2
0

⎡⎢⎣³1 + 1 (00)2´2 + 4−
³
1− 1 (00)2

´2
1 + 20

2
0

⎤⎥⎦
If we assume that 00  1, then once again we arrive at

 ∼ (02) (0)
1

2
0

2
0 = (02) (41)

3.7.3 Continuous Source Description

An alternative description of the source in which all time derivatives remain continuous is

() =  () sin (0)

 () = 0



1 + (−)
This is used to avoid the high-frequency behavior caused by the discontinuity of derivatives at  = 0. The

inverse double exponential waveform, where the parameters 0, , , and  are adjusted to yield the

appropriate rise and fall times of the wave, is often used to describe the EMP waveform (and is in fact

often adopted as the requirement). The time interval over which this wave exists, from an analytic point of

view, is −∞   ∞. From a practical point of view  is chosen so that at time  = 0 the value of () is

vanishingly small, and it can thus be ignored for   0. The time of peak of  () is  =  +
1

ln
³


−

´
.

Thus if 0 is set to the desired peak amplitude, then the constant  is given by

 = ( − )−1− −

We should adjust the parameters so that the rise time is consistent with the 0 frequency behavior and the

fall time is consistent with 0. Notice that the factor 
− is typically taken to be vanishingly small. Note

that it is possible for the switching operation in the source to introduce some high frequency components

(or near discontinuities at  = 0) that could contribute to the coupling in the capacitive load case, which

would be in addition to the coupling caused by this smooth waveform. The transform of the exponential

part is

() =

Z ∞
−∞

()

or

() = 0




(+)

sin[(+ )

]

Noting that

 () =

Z ∞
−∞

sin (0) 
 =

1

2
lim
→∞

Z 

−

h
(+0) − (−0)

i


=  lim
→∞

∙
sin ( − 0)

 − 0
− sin ( + 0)

 + 0

¸
=  [ ( − 0)−  ( + 0)]

lim
→∞

Z 

−
 ()

sin ()


 = lim

→∞

Z 

−
 ()

sin ()


 =  (0) lim

→∞
[2 Si ()] =  (0)

we can write the transform of the modulated source field as

() =
1

2

Z ∞
−∞

(0) ( − 0) 0 =


2

Z ∞
−∞

(0) [ ( − 0 − 0)−  ( + 0 − 0)] 0

=


2
[ ( − 0)− ( + 0)] =



2
0





½
(+(−0))

sin[(+  ( − 0))]
− (+(+0))

sin[(+  ( + 0))]

¾
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This can then in principle be integrated to yield the energy

 =

Z ∞
−∞

 ()  =
1

2

Z ∞
−∞

 () 0 | ()|2 

4 RESULTS

We now illustrate coupling results for various transmit-receive scenarios. In this section we assume free

space surrounding the loop.

4.1 Rectangular Transmitting Loop And Circular Receiving Loop

If we consider the magnetic field generated by a rectangular loop as used in the test (as discussed in

Section 2.2), 0 becomes

0 =
³
38 W (A−m)2

´
2

where from (6) and (3)

 ≈
¡
37× 10−7 Hm¢ 

 = (014m) 

at  ≈ 65” (measured from the center of the plates and with  = 5”),  = 0 and absolute position

 = 0 (2∆ is near the average value
¡
175+10

2

¢
” and 2 ≈ 115”). The geometry of the transmitter is shown

in Fig. 1. The power received in this case (with the axes of the two loops aligned) becomes

 
 = 2

¡
29× 10−6 WA2

¢
Using the source parameters of  = 140  and 0 = 7 , this gives an energy received at 0584 MHz of

 
 = 200 mJ

(40). Note that going from a transmitting circular loop of  = 25” to a transmitting rectangular loop with

the dimensions listed above, there is a drop of about a factor of 25 in the energy received (see Table 3).

Moving the receive location up towards the bend in the transmitting loop to  = 4”(this corresponds to the

test position of 95” from the base of the primary, where now 2∆ approaches the top value),  
 decreases

to 96 mJ. Decreasing the transmit/receive separation to  = 3” with  = 4”, there is significant increase

in the received energy with the result going to 586 mJ from the previous value of 96 mJ. A summary of

the received energies based on a circular receiving loop and a rectangular loop transmitter separated by

 = 5” for absolute positions  = 0 and  = 4”are given in Tables 4 and 5.

Table 4. Energy received using a circular loop receiver of u=1.5" and a rectangular loop transmitter as

shown in Fig. 1. A transmit/receive seperation of d=5" is assumed at z=0".

f [MHz]  [mJ]

0.584 200

1 351

10 572

60 575

The variation in the received power versus the separation between the transmit (rectangular) and

receive (circular) loops is shown in Figure 13. (Note that  = 0 corresponds to the center of the primary

loop and the distance  = 4” corresponds to the test position up towards the bend of the transmitting

rectangular loop (Fig. 1). For convenience, the received energy has been normalized by the square of the

peak drive current 2 (a time constant of 0 = 7  is assumed).
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Figure 13. The normalized received energy versus the spacing  between the edge of the transmitting

rectangular loop and the center of the receiver (single turn). The case  = 0 corresponds to the two axes of

the loops aligning, whereas  = 4” corresponds to a displacement of the receive center from the transmitting

loop center (Fig. 1).
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Table 5. Energy received using a circular loop receiver of u=1.5" and a rectangular loop transmitter as

shown in Fig. 1. A transmit/receive seperation of d=5" is assumed at z=4".

f [MHz]  [mJ]

0.584 96

1 169

10 275

60 277

It is important to note that values of received energy shown in Fig. 13 have been obtained by sampling

the transmitting field (associated with the rectangular loop for this case) at a single point (center) through

the receiving loop. This was done for convenience and the agreement between this and an integration over

the receiving loop was found to be reasonably accurate. This comparison, in the form of a graph, was

presented in Fig. 9 (dashed green curve versus solid orange curve).

A comparison between the center-point and integrated received energy calculations is also provided

in Table 6 for a drive current of  = 140 kA and an absolute location of  = 55” (relative location in

symmetric system of 525”). Here the table columns for the first four rows represent the distance  from the

edge of the transmit loop, the analytic constant magnetic charge density result using a center point value

of the magnetic field, the analytic result using an integration of the magnetic field over the loop, and the

analytic result using an integration (including the loop alone 0199 H→ −0730 ohms, and the theoretical
result for a lead inductance of 74” length in the loop circuit 0327 H→ −120 ohms), respectively.
The second set of four rows in this table give the analytic results using the mutual inductance from the

linear approximation for the magnetic charge density. The third set of four rows uses the magnetic vector

potential results for the mutual inductance. The last two rows in this table used the mutual inductance

from the EIGER simulation instead of the analytic formulas. Notice that these results are all relatively

close to each other (for the same value of  and load); the analytic results for  = 3” using the magnetic

vector potential model are quite close to the EIGER results.

4.2 Rectangular Transmitting Loop And Three Turn Circular Receiving Loop

If we now consider the same rectangular transmitting loop with a 3-turn circular receiver (of 3”

diameter), the received power is

 
 =

1

2


||2¯̄̄
2

()
 + 

¯̄̄2 = 1

2


0 (0)
2¯̄̄

2
()
 + 

¯̄̄2 0 | (0 )|2

and the calculated received energies are tabulated in Table 7. (For the purposes of creating Table 7 the

self-inductance of the 3-turn receiver is taken to be 131H.) Comparing the analytic value of 551 mJ at

 = 5” from Table 7 to the single-turn result of 96 mJ in Table 5, it is clear that the energy received by the

transmitter is decreased with the additional loop turns (for this low impedance load of  = 1 Ω).

5 SUSCEPTIBILITY CURVES

This section will quantitatively examine the major factors involved in loop coupling in the simplest

possible way. From above (Section 3.1) we can write the received power in terms of the external magnetic
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Table 6. Energy received using a 1-turn circular loop receiver of u=1.5" and a rectangular loop transmitter

as shown in Fig. 1. In the analysis, a position of z=5.5" and a transmit frequency of 0.584 MHz are assumed,

with a peak current of 140 kA and an exponential decay time of 7 microseconds.

d : Center Point : Integrated Flux : Integrated Flux & Inductance

3 in 251 mJ 199 mJ 125 mJ

5 in 46.5 mJ 42.3 mJ 26.6 mJ

7 in 14.3 mJ 13.6 mJ 8.6 mJ

d 
 : Center Point 

 : Integrated Flux 
 : Integrated Flux & Inductance

3 in 269 mJ 216 mJ 135 mJ

5 in 53.5 mJ 49.0 mJ 30.8 mJ

7 in 17.5 mJ 16.7 mJ 10.5 mJ

d  
 : Center Point  

 : Integrated Flux  
 : Integrated Flux & Inductance

3 in 520 mJ 416 mJ 261 mJ

5 in 98.3 mJ 89.6 mJ 56.3 mJ

7 in 30.5 mJ 29.0 mJ 18.2 mJ

d 
 : Center Point 

 : Integrated Flux 
 : Integrated Flux & Inductance

3 in 516 mJ 421 mJ 264 mJ

field at the loop as

 =
1

2


||2
| + |2

∼ 

0 (0)
2

| + |2
1

2
0 ||2 (42)

where  is the loop area which for the circle is 
2,  is the loop impedance and  is the load

impedance. We again assume in this section that we are well below the loop resonant frequency (and thus

we are ignoring the radiation resistance and the intrinsic capacitance) and therefore take

 ∼ −
 ∼ 0 [ln (8)− 2] ≈ 0199 H

We again take  = 1 Ω, but consider several additional loads to generate a total complex impedance of

.

As before, the energy and power are taken to be connected through

 ≈ (02)
(41). But note that if the load thermal time constant is longer than the preceding microsecond electrical

pulse width 0, we can, in principle, lengthen the driven pulse to match this thermal time constant and

then drop the power requirements (and required power density) to achieve the same coupled energy.

5.0.1 Resistive Load

In the first case we again take

 =  = 1 Ω

Then the received power (42) can be written as

0 ∼ 

0
¡
20

¢
2 + 22

(43)

where the power from the transmitter produced over the received loop is

0 = 0
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Table 7. Energy received using a 3-turn circular loop receiver of u=1.5" and a rectangular loop transmitter

as shown in Fig. 1. A position of z=4" and a transmit frequency of 0.584 MHz are assumed.

d [in.]  [mJ]: Analy.

3 335

5 55.1

7 15.2

with

0 =
1

2
0 ||2

The behavior of (43) in frequency changes from 
¡
2
¢
for the low frequencies to a constant near

1 = 0 ≈ 0 (0199 s)

or 0 = 20 with 0 ≈ 08 MHz. Thus, for the case of a resistive load (and in the limit of low frequencies)
we have

0 ∼ 0
2
0



≈ ¡7552× 10−4¢ 2 (MHz) (44)

and as the frequency increases beyond 0 ≈ 08 MHz, the normalized power received becomes

0 ∼
0
¡


2
¢


()
2

≈ 4833× 10−4 (45)

(For obtaining these expressions, a loop of 2 = 3” has been assumed.) Note that based on these two

limiting cases in frequencies, the behavior of the received power is as shown in Fig. 14 (where the region

about 0 ≈ 08 MHz has been approximated by the asymptote curves).

5.1 Capacitive and Resistive Load

Another case we can take is

 =  + 
where  is an extra complex load impedance associated with an open circuit capacitance 

 = 1 (−)

In this situation (where the load is a pure capacitance) we assume that this capacitive reactance dominates

over the load resistance and antenna inductance so that from (42)

0 ∼ 0 (0)
2


The behavior here is 
¡
4
¢
in frequency and 

¡
2
¢
in the capacitance. For the case where

 =  ≈ 23

ln ()
≈ 0272 pF

we obtain

0 ≈
¡
2206× 10−15¢ 4 (MHz)

As a second example, the load capacitance to the circular loop is increased to

 ≈ 15 pF
(as for a short section of open-circuited transmission line, discussed above) and this yields

0 ≈
¡
671× 10−12¢ 4 (MHz)

The results for the capacitively-loaded circular loops are included in Fig. 14, where it is clear that the
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Figure 14. Received power to transmit power ratio for various receiving antenna configurations. All curves

assume a 15” radius circular loop receiver with a resistive 1 Ω load.

received power decreases dramatically when the circular loop is anything but short-circuited.

We can also fix the energy threshold and optimize the pulse width to the thermal time constant,

thereby giving the required power density produced by the transmitter over the receiving loop as a function

of frequency. In this case we instead plot the inverted ratio 0 (or 0) as shown below.

5.2 Transmission-Line Load

While thus far results corresponding to discrete loads to the circular-loop receiver have been considered,

in this section we examine the case where a longer transmission line is attached to the receiving loop. We

consider a transmission line characterized with the parameters

 ≈ 3135 pF/m
 ≈ 06553 H/m

 ∼ 



p
2 − 2

≈ 0106 ohm/m
(Section 3.6.2) which then yields p

 ≈ 145 ohms
 ≈ 

¡
618× 10−6¢p

 ≈ 136
At this point the propagation constant  and characteristic impedance 0 of the transmission line can be

calculated ((33) and (34)) to ultimately arrive at the input impedance  =  −  seen looking down

the transmission line (as shown in Figs. 11 and 12). In Fig. 15, results based on the normalized received

power (determined from (35)) are given for various length transmission lines (all terminated in an open

circuit). For comparison, results for a short-circuited circular loop, an open loop, and a capacitively-loaded

circular loop are also provided (all with  = 1 Ω). Figure 15 demonstrates that coupling is facilitated as
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Figure 15. Transmitting power to receive power ratio for various receiving antenna configurations, including

open-circuited transmission lines attached to the receiving loop. All curves assume a 15” radius circular

loop receiver with a resistive 1 Ω load.

transmission-line sections are introduced to the receiving antenna (in this case a 15” radius circular loop

has been assumed) and the frequency is increased.

For convenience, the data in Fig. 15 has been renormalized by the area of the receiving loop ( = 2)

so that the ordinate axis becomes 0 in units of inverse square meters, as given in Fig. 16.

While Figs. 15 and 16 include results for open-circuited transmission lines, Fig. 17 shows the effect of

a load at the end of the transmission line (in this case the same capacitive load we discussed previously,

simulating a short section of another line). These calculations are based on the analysis presented in Section

3.6.5 and can be compared to the unterminated transmission line results given above. A 15 pF capacitor is

considered (Fig. 12).

It is interesting to note that if we instead move the capacitive load from the end of the line to the

beginning of the line (in series with the transmission line and again with a value of 15 pF), the resonant

responses of the transmission lines are pushed out to slightly higher frequencies and the minimums of

0 do not go quite as low (at least in the frequency range we are considering). This particular

receiving antenna configuration is shown in Fig. 18 and the corresponding behavior is included in Fig. 19.

For this case,

 =




+ 0 cot ()

5.3 Antenna-Transmission Line Mode

In the previous results the drive was limited to the loop alone and the attached cables acted as loads.

49



1.0 10.08 2 3 4 5 6 7 2 3 4 5 6

f (MHz)

3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

lo
g 10

(S
0/

P
re

c)
 (

m
-2

)

Shorted Loop Asymptotes
Open Loop
Capacitively Loaded Loop (15 pF)
1 m Transmission Line Load
2 m Transmission Line Load
5 m Transmission Line Load
10 m Transmission Line Load

La / RL = 1

S0 = (1/2) 0|H0|2

Figure 16. Transmitting power density (0) to receive power ratio for various receiving antenna configura-

tions, including open-circuited transmission lines attached to the receiving loop. All curves assume a 15”

radius circular loop receiver with a resistive 1 Ω load and a rectangular loop transmitter as shown in Fig. 1.
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Figure 17. Transmitting power to receive power ratio for various receiving antenna configurations, including

capacitively-loaded transmission lines attached to the receiving loop. All curves assume a 15” radius circular

loop receiver with a resistive 1 Ω load.
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Figure 18. A circular loop receiver connected to a capacitor in series with an open-circuited transmission

line. The radius of the recieving loop is assumed to be  = 15” throughout this report.
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Figure 19. Transmitting power to receive power ratio for various receiving antenna configurations, including

a series capacitor and transmission line attached to the received loop. All curves assume a 15” radius circular

loop receiver with a resistive 1 Ω load.
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Figure 20. A twisted pair cable with a low impedance load in one wire.

Now we consider the case where the drive is to the bulk current of the cable and part of this current drives

the load. Figure 20 shows the topology. This cable can be in free space or above a perfect ground plane.

The two wires in the transmission line act together in free space as an antenna, or together in concert

with the ground plane as a bulk transmission line. For simplicity in this section we assume that the load

is placed at the center of the cable (in this special case the even resonances with  = (− 12) will be
present but the odd resonances  =  will not be excited, where 2 =  is the cable length).

5.3.1 Common And Differential Decompositions

The bulk current can be decomposed in general into a sum of common mode (equal currents) and

differential mode (oppositely directed currents). In the case of symmetric wires this is the natural

decomposition. On the other hand with asymmetrical wires it is more natural to split the bulk current

into an antenna mode (with no potential difference between wires) and a type of differential mode (with

a voltage differential between wires). For the remainder of this section we assume symmetric wire cross

sections.

Let us consider symmetric wires and write the common and differential mode currents and voltages in

terms of the wire currents ± and ± as
 = + + −
 = + − −
 = + + −
 = + − −

We will model both the bulk current (antenna mode or transmission line mode) and the differential mode

current in terms of transmission line models.

5.3.2 Antenna Problem

In the case of an antenna excited by the axial electric field along the wires we write




= − + 

 (46)




= −

where  and  are "average" (we assume the wires are thin compared to the line length) impedance per

unit length and admittance per unit length parameters along the antenna. These can be written using

duality [10] as

 = ∆ − 

 ≈ 0Ω (2)

1 = ∆ +
1

−

 ≈ 20Ω
where the expansion parameter in thin antenna theory is taken as

Ω = Ω+ 

(the choice of the constant  can be made to achieve first order accuracy in the quasistatic solution of the
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antenna) and the fatness parameter is

Ω = 2 ln (2)

where the transmission line length is

2 = 

For a scattering antenna  = 2 (ln 2− 73) [10] and for a center load  = −2 (1 + ln 2). Note that
these two choices are nearly consistent (if we approximate ln 2 ≈ 0693 ≈ 23 then from both we find

 ≈ −103). The parameter  is the equivalent radius of the two wires operating in a common mode.
Let us again take twin 16 gauge wires (2 ≈ 0051”) and a separation of 2 = 267 (2)

 =
p
 ≈ 004167 in

The parameters ∆ and ∆ can account for dielectric media surrounding the wires. For

example in the case of a single wire of radius  with insulation  of radius , we can take  = ,

∆ = (1− ) (2)−  (0) ln (), 1∆ = − ()  ln (). In our case for the twin wire
line we use the radius  but include the wire losses (inserting one half for two parallel wires sharing the

common mode current)

∆ =
1

2
(1− ) (2)

and we ignore the correction to the capacitance per unit length of the common mode due to the insulation

∆ ≈ 0

We can account for radiation and higher-order reactive terms by modifying (46) to




= − ( + )  +



and eliminating the voltage gives µ
2

2
+ 2

¶
 = −



where the propagation constant is (not to be confused with the argument of the elliptic integrals in the

beginning of the report)

 =
p
− ( + )

where for  ≈ 0 (and based on a current distribution proportional to cos 0 − cos 0) [10]
 =  − 

 = 0
Cin (40) + 4 Si (20) cos 0 (0 cos 0− sin 0)− sin2 (20)

2 [1 + cos 0 (2 cos 0− 3 sin 0 (0))]
 = 0

4 cos 0 (0 cos 0− sin 0) {ln 2− 2−Cin (20)}+ Si (40)− 2 cos2 0 sin (20)
2 [1 + cos 0 (2 cos 0− 3 sin 0 (0))]

where the sine and cosine integrals are (0 ≈ 05772156649 is Euler’s constant)

Cin () =

Z 

0

1− cos


 = −Ci () + ln+ 0

Si () =

Z 

0

sin




Ci () =

Z ∞


cos




The current at the ends of the antenna vanishes

 (±) = 0
We assume that the incident plane wave has axial field


 = 0

0 cos 0
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and then the common-mode antenna current has the form

 =  sin  + cos  − 0
0 cos 0

¡
2 − 20 cos

2 0
¢

For normal incidence (with respect to the  axis) 0 = 2 we make this even with respect to  = 0

 = (cos  − cos )0
¡
2 cos 

¢
+ sin  (− ||)

Note that the final term has a different distribution than that assumed for the  calculation,

cos  − cos . However near resonance  = (− 12) where these terms have their largest impact on
the mode amplitude, we have cos  = 0 and sin  (− ||) = (−1)−1 cos .

Next, the differential mode satisfies the transmission line equations




= −




= −

where we have assumed that the wires are twisted and have ignored any distributed source terms in the

differential mode (it will be driven by the load alone). The formulas for the impedance and admittance per

unit length of the differential mode with twisted insulated wires can be found back in the previous section

on insulated wires.

 ≈ −

 ≈ 3135 pF/m
 ≈  − 

 ≈ 06553 H/m
 = (1− )

 =




p
2 − 2

≈ 0106 ohm/m

We take open circuits at the ends so that

 (±0) = 0
where the twisted half length is

0 = 02 = 

q
1 + (2)

2

Again we assume no gap between wire insulations and a low twist rate, where this length 0 is nearly
the same as  (the use of 0 in the differential mode is thought to result in a slight overestimate of the
twist effect). This twisting also adds extra impedance per unit length to the common mode which could

be accounted for by small additions to ∆ and ∆ , but we neglect it (the use of  in the common

mode is thought to result in a slight underestimate of the twist effect). Eliminating the voltage  in the

transmission line equations gives µ
2

2
+ 2

¶
 = 0

where the differential propagation constant along the pair is

 =
p
−

The solution has the form

 = 0 sin  +0 cos 

and for normal incidence, the even solution obeying the open-circuit end condition is

 = 0 sin  (
0 − ||)

Now if we place a load  at the center of one wire, say the + one, we have

+ (−0)− + (+0) =
1

2
[+ (+0) + + (−0)] = + (0)
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and

+ (−0) = + (+0)

− (−0) = − (+0)

− (−0) = − (+0)
or

 (−0)−  (+0) =
1

2
[ (0) +  (0)] =  (−0)−  (+0)

 (−0) =  (+0)

 (−0) =  (+0)

Thus, from the above representations




= − = − sin 0

¡
2 cos 

¢−  cos  (− ||) sgn ()



= − = −0 cos  (0 − ||) sgn ()

and

−2 


0 cos 
0 =

1

2

£
(1− cos )0

¡
2 cos 

¢
+ sin +0 sin 

0¤
= −2 


 cos 

or
1

2

£
(1− cos )0

¡
2 cos 

¢
+0 sin 

0¤ = −µ1
2
 sin + 2




cos 

¶
1

2

£
(1− cos )0

¡
2 cos 

¢
+ sin 

¤
 = −0

µ
1

2
 sin 

0 + 2



cos 0

¶
and

−
1
2
(1− cos )0

¡
2 cos 

¢
1
2
 sin 0 +

³



cos 0
cos 

´³
1
2
 sin + 2



cos 

´ = 0

−

³



cos 0

cos 

´
1
2
(1− cos )0

¡
2 cos 

¢
1
2
 sin 0 +

³



cos 0
cos 

´³
1
2
 sin + 2



cos 

´ = 

Then the current of interest is

+ (0) =
1

2
[ (0) +  (0)] =

1

2

£
(1− cos )0

¡
2 cos 

¢
+ sin +0 sin 

0¤
=

³



cos 0

cos 

´
(1− cos )0

1
2
 sin 0 +

³



cos 0
cos 

´³
1
2
 sin + 2



cos 

´
As a check, notice that if  = 0 we find that the load current becomes half the common-mode current

+ (0) =
1

2
(1− cos )0

¡
2 cos 

¢
=
1

2
 (0)

because  = 0 (and 0 = 0) in this limit. This type of result is used below as an approximation to simplify

the results for a low impedance load.
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Limited Drive Region Suppose that the drive is limited to the region near the cable center with

length

0 = 20
with constant field 0 in this region and zero drive field outside this region (this crudely simulates the case

where the source has limited spatial extent). Then we can writeµ
2

2
+ 2

¶
 = −0  0  ||  02 = 0 (47)µ

2

2
+ 2

¶
 = 0  02 = 0  ||  2 = 

 =  sin  (− ||) + cos  − 0
2  0  ||  0

 = 1 sin  (− ||)  0  ||  

Matching the current and its derivative at  = 0, we obtain

 cos 0 = (1 −) sin  (− 0) + 0
2

 sin 0 = (1 −) cos  (− 0)

or

(1 −) = 0 sin 0
¡
2 cos 

¢
 = cos  (− 0)0

¡
2 cos 

¢
and thus

 = 1 sin  (− ||)
+ {cos  cos  (− 0)− cos − sin 0 sin  (− ||)}0

¡
2 cos 

¢
 0  ||  0

Once again the distribution is not strictly cos − cos , but near the even resonance  = (− 12) it
becomes proportional to cos , and the  terms can be used. The differential mode is again

 = 0 sin  (
0 − ||)

and thus



= − = −0 cos  (0 − ||) sgn ()




= − = −1 cos  (− ||) sgn ()

− {sin  cos  (− 0)− sin 0 cos  (− ||) sgn ()}0 ( cos )  0  ||  0
At the center we have

 (0) = 0 sin 
0

 (0) = 1 sin − (1− cos 0) () (0)
 (−0)−  (+0) = −2 


0 cos 

0

 (−0)−  (+0) = −2 


1 cos + 2 sin 0 (0)

The conditions at the center

 (−0)−  (+0) =
1

2
[ (0) +  (0)] =  (−0)−  (+0)

then determine the unknowns

−2


0 cos 
0 = −2


1 cos + 2 sin 0 (0)

=
1

2
[1 sin − (1− cos 0) () (0) +0 sin 

0]
or ∙µ

2


+
1

2





tan 0

¶
cos +

1

2
 sin 

¸
1

=
1

2


∙
(1− cos 0) +

µ



sin 0

¶
tan 0

¸
() (0) + 2 sin 0 (0)

0 cos 
0 =




1 cos − 


sin 0 (0)
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The quantity of interest is the load current

+ (0) =
1

2
[ (0) +  (0)]

=
1

2
[1 sin − (1− cos 0) () (0) +0 sin 

0]

The power absorbed in the load, with

Re () = 

is then

 =
1

2
 |+ (0)|2

We normalize here by

0 =
1

2
0
¯̄



¯̄2
=
1

2

¯̄



¯̄2
0 =

1

20
|0|2

Approximate Antenna Problem We can simplify the preceding analysis for low impedance loads

by subjecting the load to the short circuit current on the + wire (one half the common mode current) at

the center of the cable. The antenna mode current without a load is

 =  cos  − () (0)  0  ||  0

 = [ cos 0 − () (0)] sin  (− ||)  sin  (− 0)  0  ||  

Making the derivative continuous at  = 0

() (0) cos  (− 0) =  [cos 0 cos  (− 0)− sin 0 sin  (− 0)] =  cos 

Thus

 = () (0) [cos  (− 0) cos  cos − 1]  0  ||  0
 = () (0) [cos  (− 0) cos 0 cos − 1] sin  (− ||)  sin  (− 0)  0  ||  

Now the load current is

+ (0) =
1

2
 (0) =

1

2
() (0) (cos 0 − 1 + tan  sin 0)

Figure 21 shows the susceptibility curves for the antenna-coupling model as the curves with solid circles.

The approximate short-circuit current calculation (dashed curves) nearly overlays the more exact solution

(solid curves) except for a minor blip at 10.17 MHz (and others at higher frequencies). The low-frequency

slope is the same as the loop without an attached transmission-line load (the black curve) because the

common-mode drive results from the fixed electric field of the incident plane wave 0, and hence the

current is  =  (0) =  (), and thus  = 
¡
2
¢
. The black solid curve "shorted loop asymptotes"

exhibited similar low-frequency behavior  = 
¡
2
¢
because the current  =  () =  () is

proportional to , as a result of the induced loop voltage being proportional to .

5.3.3 Ground Plane Problem

Next let us consider the preceding case when a ground plane is present at a distance  below the cable.

In this case the bulk or "common mode" transmission line equations become [11]




= − +




= − +

where the sources for    are given by

 = −


 ≈ 0

 ≈ 

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Figure 21. Susceptibility curves for antenna and transmission line coupling (in addition to the previous

loop drives). The antenna results are the curves with solid circles. The drive existed over a one meter length

at the antenna center. Each curve has a solid line, which includes the one ohm load self consistently, and a

dashed line (nearly overlaying the other) which drives the one ohm load with the short circuit current. At

10.17 MHz you can see a slight upward blip in the 10 m curve, which indicates that the differential mode

is diverting current around the one ohm load when it is included in the circuit, hence requiring a slightly

higher drive field to achieve the same received power. The curves with the open circles are for the case where

the transmission line is 0.1 m above a perfect ground plane. It is again driven over a one meter length at its

center. There are solid curves which again include the one ohm load in the circuit, as well as dashed curves,

which apply the short circuit current to the load (nearly overlaying the solid curves). Near the dips one can

see the solid curves not going as low as the dashed curves because the damping from the low impedance

load is having some effect in lowering the quality factor of the resonances, and possible diversion of current

around the load due to the differential mode.
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 ≈ 

and 
 and 

 are the "short circuit" external fields in the presence of the ground plane. The impedance

and admittance parameters are now

 = ∆ − 
 = −

where now

 =
p
−

Notice that we can use Faraday’s law

−




+





= 0




to show that



= − + 





− 








= − − 




and thus µ
2

2
+ 2

¶
 = − 





≈ − [

 ( = )−
 ( = 0)] = −

 ( = )

and the final expression on the right is the result of using a finite-difference approximation for the

short-circuit electric field derivative at low frequencies (noting that this field component vanishes on the

ground plane). The correspondence with the preceding antenna equation (47) is apparent. For simplicity,

here we take the electric field to be polarized in the  direction so that the only source term is .

If we take twin 16 gauge wires (2 ≈ 0051”) and a separation of 2 = 267 (2), with  ≈ 01 m,
0 ≈ 1 m, and  = 1 m, 2 m, 5 m, 10 m, then

 =
p
 ≈ 004167 in

∆ ≈ 1
2




≈ (1− )



2
and in this case we use the approximate forms of the wire bundle above a ground plane

 ≈ 20

ln (2)
≈ 1061 pFm

 ≈ 0
2
ln (2) ≈ 105 Hm

Eliminating the voltage in the transmission-line equations givesµ
2

2
+ 2

¶
 = −  0  ||  02 = 0µ

2

2
+ 2

¶
 = 0  02 = 0  ||  2 = 

and

 = 1 sin  (− ||)
+ {cos  cos  (− 0)− cos − sin 0 sin  (− ||)}

¡
2 cos 

¢
 0  ||  0

 = 0 sin  (
0 − ||)

The matching equations and current + (0) are identical to those in the preceding antenna section (only ,

, , and 0 →  are different). The same holds for the approximate solution using the short circuit

current. These results are shown as the curves with open circles in Fig. 21. We normalize here by

0 =
1

2
0
¯̄



¯̄2
Again there are two sets of curves with open circles, associated with the ground plane, the solid curves

include the load in the circuit, whereas the dashed curves use the short circuit current through the load.
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Notice that the approximate solution (dashed curves) nearly overlays the more exact solution (solid curves)

except at the resonance minimums, where the extra damping from the load raises the bottoms of the solid

curves (and it is possible that there is some diversion of current around the load due to the differential

mode). The low-frequency slope here is the same as the open circuited loop because the reflection of the

incident field in the nearby ground plane introduces an extra factor of frequency in the common mode

current  =  () = 
¡
2
¢
, and thus  = 

¡
4
¢
. The black dashed curve "open loop" of Figure

21 (along with the 15 pF load, shown as long black dashes, and the transmission line loads, shown as

solid color curves without circles) all show a similar behavior because  =  () = 
¡
2
¢
and hence

 = 
¡
4
¢
.

6 CONCLUSIONS

This report estimates inductively coupled energy to a low impedance load in a loop-to-loop arrangement.

The transmitter loop is taken to be either a circular geometry or a rectangular-loop (stripline-type)

geometry that was used in an experimental setup. Simple magnetic field models are constructed and

used to estimate the mutual inductance to the receiving loop, which is taken to be circular with one or

several turns. Circuit elements are estimated and used to determine the coupled current and power (an

equivalent antenna picture is also given). These results are compared to an electromagnetic simulation of

the transmitter geometry. Simple approximate relations are also given to estimate coupled energy from

the power. The effect of additional loads in the form of attached leads, forming transmission lines, are

considered. The results are summarized in a set of susceptibility-type curves. Finally, we also consider

drives to the cables themselves and the resulting common-to-differential mode currents in the load.
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