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There are several types of disorders that affect our colon’s ability to function 

properly such as colorectal cancer, ulcerative colitis, diverticulitis, irritable bowel 

syndrome and colonic polyps. Automatic detection of these diseases would inform the 

endoscopist of possible sub-optimal inspection during the colonoscopy procedure as 

well as save time during post-procedure evaluation. But existing systems only detects 

few of those disorders like colonic polyps. In this dissertation, we address the automatic 

detection of another important disorder called ulcerative colitis. We propose a novel 

texture feature extraction technique to detect the severity of ulcerative colitis in block, 

image, and video levels. We also enhance the current informative frame filtering 

methods by detecting water and bubble frames using our proposed technique. Our 

feature extraction algorithm based on accumulation of pixel value difference provides 

better accuracy at faster speed than the existing methods making it highly suitable for 

real-time systems. We also propose a hybrid approach in which our feature method is 

combined with existing feature method(s) to provide even better accuracy. We extend 

the block and image level detection method to video level severity score calculation and 

shot segmentation. Also, the proposed novel feature extraction method can detect water 

and bubble frames in colonoscopy videos with very high accuracy in significantly less 

processing time even when clustering is used to reduce the training size by 10 times. 
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CHAPTER 1: INTRODUCTION 

Colonoscopy is the preferred screening modality for prevention of colorectal 

cancer---the second leading cause of cancer-related deaths in the US [1]. As the name 

implies, colorectal cancers are malignant tumors that develop in the colon and rectum.  

The survival rate is higher if the cancer is found and treated early before metastasis to 

lymph nodes or other organs occurs. To prevent death due to this disease, the current 

Medicare guidelines suggest that each US citizen undergo colonoscopy at least once 

every 10 years starting at age 50.  Colonoscopy is a complex procedure. It consists of 

two phases: an insertion phase and a withdrawal phase. During the insertion phase, a 

flexible endoscope (a flexible tube with a tiny video camera at the tip) is advanced under 

direct vision via the anus into the rectum and then gradually into the cecum (the most 

proximal part of the colon) or the terminal ileum. During the withdrawal phase, the 

endoscope is gradually withdrawn. The camera generates a video signal of the interior of 

the human colon, which is displayed on a monitor for real-time analysis by the physician. 

The purpose of the insertion phase is to reach the cecum or the terminal ileum. Careful 

mucosa inspection and diagnostic or therapeutic interventions such as biopsy, polyp 

removal, etc., are performed during the withdrawal phase. The inspection should be 

thorough of the colon mucosa and reach the end of colon indicated by the appearance of 

the appendix, ileocecal valve, or the small bowel mucosa. Colonoscopy has contributed 

to a marked decline in the number of colorectal cancer related deaths. However, recent 

data suggest that there is a significant (4-12%) miss-rate for the detection of even large 

polyps and cancers [2]. The miss-rate may be related to the experience of the endoscopist 

and the location of the lesion in the colon, but no prospective studies related to this have 
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been done thus far. In 2006, American Society for Gastrointestinal Endoscopy (ASGE) 

and American College of Gastroenterology (ACG) issued guidelines for quality 

colonoscopy. The guidelines suggest that (1) on average the withdrawal phase during a 

screening colonoscopy should last a minimum of 6 minutes and (2) visualization of cecum 

anatomical landmarks such as the appendiceal orifice and the ileocecal valve should be 

documented [2]. Nevertheless, there was no measurement method to evaluate the 

endoscopist's skill and the quality of a colonoscopic procedure.  

1.1   Motivation and Significance  

To address this critical need, Dr. JungHwan Oh, his colleagues, Dr. Wallapak 

Tavanapong (Iowa State University, Ames, IA) and Dr. Piet C. de Groen (Mayo Clinic, 

Rochester, MN), and his previous and current students have been investigating 

automated procedure quality measurement system [3] by adapting some algorithms and 

software developed with the support of the NSF funded Endoscopic Multimedia 

Information System (EMIS) project, Mayo Clinic and university research grants. As a 

result, the research team has in place hardware and software for collecting annotated 

colonoscopy videos, and images that can immediately be used for education activities 

(presentations, teaching of fellows, manuscripts, etc.), real-time blurry frame detection 

which includes a method to evaluate images without any reference frame in real time, 

real time detection of maximum intubation, which includes methods to identify reliable 

motion vectors, camera motion shots, and the end of the insertion phase, real-time polyp 

detection, and providing feedback in real time, which can be used by physicians and 

quality control committees to evaluate and improve the quality of colonoscopy in their 

institutions.  
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1.2   Problems Addressed in Dissertation 

There are several types of disorders that affect our colon’s ability to function 

properly such as Colorectal Cancer, Ulcerative Colitis, Diverticulitis, Irritable Bowel 

Syndrome, Colonic polyps and other abnormalities. As discussed in the previous section, 

the automated procedure quality measurement system can provide Colonic polyp 

detection only at the moment among these disorders. We would like to add a function to 

handle one of the important disorders called ‘Ulcerative Colitis’. We propose a novel 

method to detect the severity of Ulcerative Colitis. We have investigated its detection in 

both block level, image level as well as video level. Besides, we have investigated 

methods to detect water and bubble frames from colonoscopy videos. Existing non-

informative frame detection methods fails to detect water and bubble frames as non-

informative ones because of edge structures present in the images. Accurately detecting 

and discarding water and bubble frames can improve the performance of the automated 

feedback system. 

1.2.1  Severity of Chronic Ulcerative Colitis in Colonoscopy Videos 

We propose a novel method to detect the severity of Ulcerative Colitis. The severity 

includes five classes which are ‘severe’, ‘moderate’, ‘mild’, ‘scar’, and ‘normal’. We 

introduce a novel feature extraction algorithm based on accumulation of pixel value 

differences, which provides better accuracy, and at faster speed than the existing 

methods. Since there is no one type of texture feature providing reasonable accuracies 

for all five classes, we propose a hybrid approach in which a new proposed feature based 

on the accumulation of pixel value differences is combined with an existing feature such 
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as LBP [4]. Hence, our contributions are: (a) to introduce a novel feature extraction 

algorithm which is more than two times faster than existing algorithms such as LBP, and 

(b) to propose a hybrid method for classification of multiple classes with significantly 

improved accuracy. 

1.2.2  Water and Bubble Detection to Enhance the Informative Frame Filtering 

A fundamental step of the automated feedback system is to distinguish non-

informative frames from informative ones. Existing non-informative frame detection 

methods fails to detect water and bubble frames as non-informative ones because of 

edge structures present in the images. We propose a novel method for water and bubble 

frame detection based on image texture focusing on accumulation of pixel value 

differences. We compare it with other existing texture based algorithms in terms of 

accuracy and execution time. To further reduce the execution time, we investigate 

different clustering methods for our training datasets. The proposed method performs 

very well in terms of accuracy and execution speed with or without clustering at a faster 

execution time. Therefore, our main contribution is to propose a novel method which can 

detect water and bubble frames with very high accuracy in significantly less processing 

time even when clustering is used to reduce the training size by almost a factor of 10. 

1.3   Organization of Dissertation 

The reminder of the dissertation is organized as follows. Chapter 2 describes the 

ulcerative colitis severity detection in colonoscopy video frames. Chapter 3 discusses the 

enhancement of informative frame filtering by water and bubble detection in colonoscopy 
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videos. Finally, chapter 4 gives some discussion and concluding remarks as well as future 

direction of the research topics discussed in this dissertation.  
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CHAPTER 2: DETECTION OF ULCERATIVE COLITIS SEVERITY IN COLONOSCOPY 

VIDEO FRAMES1 

2.1  Introduction 

Ulcerative Colitis (UC) is a chronic inflammatory disease characterized by periods 

of relapses and remissions affecting more than 500,000 people in the United States [1]. 

The therapeutic goals of the UC are to first induce and then maintain disease remission.  

Endoscopic disease severity may better predict future outcomes in UC. However, 

currently there are no validated clinical scoring systems that have been consistently 

utilized in UC clinical trials. Randomized controlled UC trials have used one of nine 

different clinical scoring systems to determine therapeutic efficacy [5-7]. Almost all UC 

patients with deep, extensive ulcers underwent colectomy (93%) compared to only 23% 

with only superficial ulcers present during colonoscopy [8]. Among patients with newly 

diagnosed moderate to severe UC requiring an initial course of systemic corticosteroids, 

absence of mucosal healing at 3 months was an independent predictor of more intensive 

future medical therapy, hospitalizations and colectomies [9]. Hence, it is very significant 

to detect the severity of UC for better management of UC disease and reduce its overall 

impact. 

However, it is very difficult to evaluate the severity of UC objectively because of 

non-uniform nature of symptoms associated with UC, and large variations in their patterns 

1 Parts of this chapter have been previously published, either in part or in full, from A. Dahal, J. Oh, W. 
Tavanapong, J. Wong, and P. C. de Groen (2015). Detection of Ulcerative Colitis Severity in Colonoscopy 
Video Frames in 13th International Workshop on Content-Based Multimedia Indexing (CBMI), 2015, pp. 
1-6, DOI: 10.1109/CBMI.2015.7153617.  
 
© 2015 IEEE. Reprinted, with permission, from A. Dahal, J. Oh, W. Tavanapong, J. Wong, and P. C. de 
Groen, Detection of Ulcerative Colitis Severity in Colonoscopy Video Frames, June 2015. 
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[10]. To address this, we objectively measure and classify the severity of UC presented 

in optical colonoscopy video frames based on the image textures. For the evaluation of 

the severity of UC, we use four UC classes such as ‘severe’, ‘moderate’, ‘mild’ and ‘scar’ 

[11], and one ‘normal’ class as seen in Figure 2.1. It is clear that any of these five classes 

does not have a dominant color, so color based approaches are not reliable. Also, these 

five classes do not possess any specific shape. Thus, the shape-based approaches are 

not suitable either. However, image textures could be an option for detecting the severity 

of UC since the UC images consist of various textures. We have experimented and 

evaluated various popular texture features such as Higher Order Local Auto Correlations 

(HLAC) [10, 12], Local Binary Pattern (LBP) [4, 13, 14], Gabor filter banks [15], Leung-

Malik filter banks [16], a modified version of LBP [17], the  

   
                              (a)                                 (b)                                 (c) 

  
                                                   (d)                               (e) 

 
Figure 2.1 Images in different classes of UC. a) severe, b) moderate, c) mild, d) scar, 

and e) normal. 

traditional texture features (i.e., Contrast, Correlation, Energy, Homogeneity, etc.) based 

on Gray-Level Co-Occurrence Matrix (GLCM) [18] as well as MPEG-7 texture features 
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[19]. Based on our experiments, none of the existing algorithms provides reasonable 

accuracy for all five classes of UC images within a training set we have created. We 

observed that, most features work well for 'mild’ class, LBP works well for ‘scar’ and 

‘normal’ classes, but any of existing methods did not provide reasonable accuracy for 

‘severe’ and ‘moderate’ classes. More detailed explanation will be provided in the 

experimental section later. We introduce a novel feature extraction algorithm based on 

accumulation of pixel value differences, which provides better accuracy for ‘severe’ and 

‘moderate’ classes, and at faster speed than the existing methods. Since there is no one 

type of texture feature providing reasonable accuracies for all five classes, we propose a 

hybrid approach in which a new proposed feature based on the accumulation of pixel 

value differences is combined with an existing feature such as LBP.  

Hence, our contributions are: (a) to introduce a novel feature extraction algorithm 

which is more than two times faster than existing algorithms such as LBP, and (b) to 

propose a hybrid method for classification of multiple classes with significantly improved 

accuracy. The remainder of this chapter is organized as follows.  Related work is 

presented in Section 2.2. The proposed technique is described in Section 2.3. In Section 

2.4, we discuss our experimental setup and results. Finally, Section 2.5 presents some 

concluding remarks. 

2.2  Related Work 

Not much research has been done related to automated detection of UC disease 

features in colonoscopy videos. There are several literatures dealing with the texture 

detection and analysis in different types of images ranging from medical to non-medical 

images. There are literatures related to wireless capsule endoscopy (WCE) but WCE and 
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colonoscopy images are somehow different. In Wireless Capsule Endoscopy, research 

has be done to detect ulcers with the use of color as well as texture features. Li and Meng 

have proposed ulcer detection in WCE images by using chromaticity moments [20]. Their 

approach mainly focused on color features in HSI color space. Recently [21] has 

proposed another ulcer detection in WCE using bag-of-word model and feature fusion 

technique using LBP and SIFT features. Similarly, Li et al [22] have proposed ulcer 

detection in WCE by combining several classifiers as hybrid model. In terms of 

colonoscopy, authors in [10] classified the UC images by extracting Higher Order Local 

Auto Correlations from the saturation channel in HSV color space. This method considers 

the whole image for the feature extraction and classification, and very few images (total 

27) were used for training and testing. We could not reproduce a similar accuracy as 

described in [10] using our larger dataset. The comparison with our method will be 

provided in the experimental section.  

An automatic method of colitis detection in abdominal CT (Computerized 

Tomography) scans is proposed where the UC and non-UC images are detected by 

Gabor filter banks using k-means clustering and histograms from the codebook generated 

previously [23]. This method is close to [24] where texture based abnormality detection is 

applied to endoscopy video frames using Leung-Malik (LM) filter banks and local binary 

patterns (LBP). But in both of these works, images are classified into only two classes 

(i.e., normal and abnormal). Our problem involves multiple classes (5 classes) and these 

classes are very close to one another making it very difficult for accurate classification.  
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2.3  Blocks Extraction Methodology 

The UC textures are not uniform throughout the image resulting in a significant 

number of variations in the textures. This makes the texture detection very challenging 

because we have to deal with several different variations of the same class.  Figure 2.2 

shows the images in the same severe class with very different textures. It can be seen 

that the severe texture vary from a video frame to another. Also, it can be seen that the 

textures are not present throughout the image. The pattern is similar in other classes as 

well. Therefore, it is better to extract the features based on blocks rather than the entire 

image. We divide the UC images (720x480 pixels) into a number of blocks in which each 

block is 128x128 pixels in size. We experimented with various block sizes such as 32x32, 

64x64, 128x128, and 256x256 pixels and empirically determined the block size of 

128x128 pixels to be optimal for capturing unique textures, and computationally efficient.  

We observed that block size was very important aspect of the optimal feature 

extraction. Too small block size resulted in too similar textures even for different classes 

because they were not able to capture unique textures to differentiate two unlike classes. 

Similarly, too big block size had similar effect because of lack of distinguishing texture 

features. For better capturing of the non-uniform textures, we allow an overlap for block 

division, which means one block overlaps 50% horizontally and vertically with its 

neighboring blocks. The reason we do overlapping of block is to not miss the textures 

which lie in between (either vertically or horizontally) of two different blocks. 
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                               (a)                         (b)                                  (c) 

 
                                              (d) 
Figure 2.2 Four different textures in same severe class. Similarly, other classes (images 

not shown) also have different variations in their textures. 

2.3.1  Blocks Filtering and Normalization 

UC images contain black borders and specular reflections which means some of 

the extracted blocks would contain black borders and specular reflections if processed 

without filtering. Also, some of the blocks may contain both very dark region and very 

bright region within a block making texture feature inconsistent. We filter out these types 

of blocks so that only good blocks like Figure 2.3 (d) are passed through the feature 

extraction process. To filter out blocks, first we separate red, green, and blue channels 

from the original RGB block and process each channel separately. 

The actual values of the thresholds used for block filtering are summarized in Table 

2.1, which are determined experimentally. The threshold values are determined one at a 

time using the entire images (total 207). Once the block filtering is done each used RGB 

block such as shown in Figure 2.3 (d) are converted into grayscale blocks for further 

processing. To make the grayscale properties consistent throughout the procedure, we 
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normalize the block by subtracting the minimum grayscale value from each pixel in the 

block.  

We experimented with other preprocessing steps on our blocks apart from the 

normalization but it affected negatively with the accurate classification. We used 

homomorphic filtering to correct the non-uniform illumination of UC frames. Homomorphic 

filtering normalizes the brightness and increases the contrast across the image 

simultaneously [25]. Applying this filter prior to feature extraction reduces the likelihood 

of extracting erroneous features because of uneven illumination. But after applying this 

filter, we observed that the features for ‘mild’ and ‘moderate’ blocks were too similar 

resulting in misclassifications. So, we opted to use only grayscale normalization as 

preprocessing step. 

Table 2.1 Block filtering parameters and thresholds used in UC experiments. These 
values are obtained based on 207 training images. 

Parameters Threshold values 

Specular Reflection Pixel SpecularThld = 0.8 

Specular Pixel Percent SPPThld = 20% 

Black Border Pixel BPThld = 0.05 

Black Border Pixel Percent BBPPThld = 5% 

Block Standard Deviation BSDThld = 0.3 
 

    
                            (a)             (b)                     (c)                       (d)        

Figure 2.3 Discarded blocks due to a) Specular Reflection, b) Black Borders, and c) 
High Standard Deviation. d) Example of a used block. 
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2.3.1.1 Blocks with Specular Reflection 

Figure 2.3 (a) is an example of block with specular reflection. To filter out those 

blocks, first we separate red, green, and blue channels from the original RGB color in 

each block and normalize them so that the intensity value range for each channel 

becomes between 0 and 1. 

Let I(xi, yj) represents the pixel intensity at ith row and jth column of the block I with 

size M x N where M represents number of rows and N represents number of columns. 

The total number of specular pixels is calculated as 

SpecularPixels =  ∑ ∑ S �I�xi, yj��N
j=1

M
i=1    (2.1) 

where, S�I(xi, yi)� = �       1, if I(xi, yi) > 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑇𝑇ℎ𝑙𝑙𝑙𝑙 ∀ channels   
0.  Otherwise                                               

� 

Here, SpecularThld is set based on Table 2.1 and is calculated experimentally. Once all 

specular pixels are found, we calculate its percentage over the entire block. If this 

percentage is greater than a threshold (SPPThld), we discard the block from further 

processing.  

2.3.1.2 Blocks with Black Borders 

First, blacks pixels are determined similar to specular pixels as given in equation 

(2.1) but key difference is that S(I(xi,yi)) is 1 if I(xi,yj ) < BPThld for all channels and 0 

otherwise. Here, BPThld is set based on Table 2.1. If all RGB channel values of a pixel are 

less than a threshold (BPThld), it will be considered as a black pixel. If the black pixel 

percentage of a block is greater than a threshold (BBPPThld), we discard it. Figure 2.3 (b) 

is an example of discarded black border block. 
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2.3.1.3 Blocks with High Standard Deviation 

Some of the blocks like Figure 2.3 (c) have very high uneven illumination which 

may provide incorrect characteristics of textures. The uneven illumination is characterized 

by calculating the standard deviation of the gray values of all the pixels in the block. We 

discard those blocks by thresholding with standard deviation. If a standard deviation of a 

block given by equation (2.2) is greater than a threshold (BSDThld), we discard it. 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 =  � 1
𝑀𝑀∗𝑁𝑁

∑ ∑ �𝐼𝐼�𝑥𝑥𝑖𝑖,𝑦𝑦𝑗𝑗� − 𝜇𝜇�
2𝑁𝑁

𝑗𝑗=1
𝑀𝑀
𝑖𝑖=1   (2.2) 

where, 𝜇𝜇 =  1
𝑀𝑀∗𝑁𝑁

∑ ∑ 𝐼𝐼�𝑥𝑥𝑖𝑖, 𝑦𝑦𝑗𝑗�𝑁𝑁
𝑗𝑗=1

𝑀𝑀
𝑖𝑖=1  

 
2.4  Proposed Feature Extraction Method 

We consider a window of 3x3 pixels as shown in Figure 2.4, in which an average 

of the absolute differences between the center pixel (Pc) and its eight neighbors (P1 ~ P8) 

is calculated using equation (2.3), where n = 8. 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑃𝑃𝑐𝑐) =  1
𝑛𝑛
∑ |𝑃𝑃𝑘𝑘 − 𝑃𝑃𝑐𝑐|𝑛𝑛
𝑘𝑘=1    (2.3) 

 

 
Figure 2.4 A 3x3 pixel neighborhood; Pc represent the center pixel and all others are its 

neighbors. 

This process is repeated over the entire block as 3x3 window (Figure 2.4) slides across 

the block one pixel at a time. One reason why we consider 3x3 window is to provide a fair 

comparison with LBP where its best accuracy is achieved with this window size [4]. A 
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major difference between our new texture feature and other existing methods is that it 

considers not only patterns of pixel differences but also what center pixels are associated 

with them. A comparison of between LBP and DIFF is shown in Figure 2.5. As seen, LBP 

considers which pixel value is larger among a center and its neighbors, but does not 

consider how much larger whereas DIFF does retain the pixel value difference when it 

compares a center with its neighbors. In other words, DIFF considers actual difference of 

center pixel value and neighbors for texture feature whereas LBP only considers the sign 

of center pixel and neighbors for texture feature. Similarly, DIFF considers the contrast of 

local image texture whereas LBP does not consider contrast of local image texture. 

             
                    (a) LBP                          (b) DIFF 
Figure 2.5 Difference in feature extraction method between proposed DIFF vs existing 

method Local Binary Pattern (LBP). DIFF considers contrast of local image texture 
whereas LBP does not considers the contrast of local image texture. 

 For a block of 128x128 pixels, 15,876 (126x126) DIFF values are generated after 

excluding border pixels. Minimum and maximum possible values of DIFF are 0 and 255, 

respectively. Also, possible values of Pc are between 0 and 255. Therefore, the number 

of occurrences of these values can be represented as a matrix (256x256) in which its 
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columns and rows represent different DIFF and Pc values, respectively as shown in figure 

2.6. Now, the texture of a block is represented by 65,536 (256x256) numbers. 

 

Figure 2.6 256 x 256 matrix representation of DIFF textures. Column values represents 
the DIFF values given by equation 2.3; i.e., Tm,n  represents the frequency for DIFF 

value n with center pixel value m. Row values represent the center pixel value. This is 
the maximum possible size of the texture representation of a block. 

 We can significantly reduce this huge texture size by quantization. The 

quantization of the center pixel (Pc) values is straightforward. Since it has 256 values, it 

can be quantized into any number by dividing by 2m (m = 1, 2, …, 8). In our case we 

quantize into 16 values (256/24), 8 value (256/25) and so on. The quantization reduces 

the size of the feature vector and thereby accelerates the performance whereas too much 

quantization may generate unreliable features depending on the nature of textures in the 

images as seen in the results in experimental section. 
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Figure 2.7 Quantization of original 256 x 256 texture. In this DIFF_16_10 texture, we 
have 16 groups of center pixels and first 10 DIFF values [0-9]. The 256 different center 

pixels are quantized into 16 groups each containing equal range of values. Center 
pixels values [0-15] goes to group 1, [16-31] goes to group 2 and so on. This way 

original 256 x 256 matrix is reduced to new 16 x 10 matrix which results in 160 bin size 
feature vector.  

DIFF values generated by equation (2.3) for the blocks of our colonoscopy images 

are typically less than 50, and mostly less than 10 based on the observation of entire UC 

images (207 images in total). In fact, the first 10 DIFF values (i.e., the first 10 bins in the 

histogram) represent more than 95% DIFF values of the entire block for all UC classes. 

The reason is that the pixel value differences in a 3x3 window are very small since 

neighboring pixels are very similar. This feature of our DIFF method is key for significantly 

reduced feature vector size. This is where our proposed method excels in terms of 

processing time as less time is spent extracting the features from images. It will be shown 
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in the experimental section that how we could achieve competitive accuracy even keeping 

our feature vector size very low and gain significant speed performance.  

We consider some combinations of quantized center pixel (Pc) values with 

quantized DIFF values as new features such as ‘DIFF_16_10’ with 16 center pixel (Pc) 

values and 10 DIFF values. Similarly, ‘DIFF_16_50’ with 16 center pixel (Pc) values and 

50 DIFF values, ‘DIFF_1_10’ with one center pixel (Pc) value and 10 DIFF values, and so 

on. The selection of DIFF values and center values for a particular feature is dependent 

on the characteristics of textures in the blocks. For example, we observed that ‘severe’ 

and ‘moderate’ classes which have more non-uniform and random textures need more 

center values to be able to extract distinguishable features. The results can be seen in 

the experimental section. This feature method can be applied to other non-medical 

images as well if processing time is the key. It can be especially utilized with the system 

with real-time performance requirement. 

2.5  Proposed Hybrid Method 

Before we discuss the hybrid method, we summarize the overall procedure first. It 

has two main phases: Training and Testing.  For Training, each input image in all five 

classes is divided into a number of blocks, and the block filtering and normalization are 

applied. A selected feature is computed for all blocks, and used to train a KNN (k-nearest 

neighbors) classifier [26] with k=1. KNN is one of simplest machine learning algorithms 

and quite accurate as compared to others for our medical dataset. An image block is 

classified by a majority vote of its k nearest neighbors. If k = 1, then the image block is 

simply assigned to the class of that single nearest neighbor. We experimented with 

different values of k, but found k=1 giving best results for our dataset. We also tested 
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other classifiers such as Decision Tree and Naïve Bays [26], but their results were worse 

than KNN and we exclude their results. 

 For Testing, a test image is divided into number of blocks, and the same block 

filtering and normalization as used in Training are applied to all blocks in the test image. 

Using the trained KNN classifier from the training phase, we determine for each block to 

which class it belongs. Lastly, we calculate the UC class probability of each test image by 

dividing the number of blocks for each class by the total number of blocks. The UC class 

with the largest probability value is selected as the UC class of the test image. In other 

words, the class of a test image is the class that most blocks of that image belong to.  If 

there is a tie, the more severe UC class is selected as its class. For example, if there is 

the same number of ‘moderate’ and ‘mild’ blocks in a test image, it is classified as 

‘moderate’. 

As mentioned earlier, any one feature could not provide acceptable accuracies for 

all five classes. We propose a simple hybrid method which provides a better accuracy. 

Here, we are discussing a hybrid of our DIFF with LBP as an example. In the Training 

phase, we train two KNN classifiers: one for LBP and the other for DIFF. In Testing, a test 

image is evaluated by the two classifiers in which each classifier provides the UC class 

that the test image belongs to with its probability value. The results of the two classifiers 

either are the same UC class or two different UC classes, we take the result with the 

greater probability value. Figure 2.8 shows step by step flow chart of the process for the 

hybrid classification. As the number of features increases, the computation cost also 

increases. But the combination of more features does not always result in better accuracy 

and it is also computationally expensive. We mainly focus on combination of two features, 
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but any combination of multiple features is possible. As mentioned earlier, the number of 

features needed for the hybrid will also depend upon the texture types of the images. 

 

Figure 2.8 Detection method in hybrid approach. Two different feature methods are 
used and classified individually. The best result among two is picked as the final 

classification result.  

2.6  Experiments 

In this section, we assess the effectiveness of the single features including the 

proposed feature (DIFF), and the hybrid methods with multiple features. All experiments 

were conducted on a Windows 7 64-bit PC with Intel i7 2.8GHZ processor and 6GB RAM 

using MATLAB R2014a. For Training and Testing, we used 10-fold cross validation [26]. 

We chose this validation because manually dividing images into training and testing 
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makes the results inconsistent for different sets of images. Another reason for opting to 

10-fold cross validation is due to limited training and testing images.  For each of the 10 

cross validations, we get 10% images from each class for testing, and all remaining 

images are used to train the KNN classifier which classifies the test images and their 

blocks. When all images of a class are evaluated for a cross validation, we calculate the 

image level accuracy and block level accuracy for the class using equation (2.4) and (2.5) 

below. 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 =  𝑇𝑇𝑇𝑇𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼

𝑁𝑁𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼
𝑥𝑥 100%   (2.4) 

 
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 =  𝑇𝑇𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

𝑁𝑁𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵
 𝑥𝑥 100%    (2.5) 

 
Here, TPImage is the total number of correctly classified images (which means the 

image of a UC type is matching with its actual type), similarly TPBlock is the total number 

of correctly classified blocks. FNImage is the total number of incorrectly classified images 

(which means an image of one UC type is mistakenly classified as another UC type or 

normal type), similarly FNBlock is the total number of incorrectly classified blocks.  

NImage = TPImage + FNImage, and NBlock = TPBlock + FNBlock.  

Table 2.2 Colonoscopy images and blocks used in the experiments. The images were 
annotated by domain experts. The blocks are the only good blocks after filtering out 

unnecessary blocks in the preprocessing stage. 

Severity type No. of Images No. of Blocks 
Severe 40 1,500 

Moderate 45 1,698 
Mild 50 1,886 
Scar 22 685 

Normal 50 1,949 
Total 207 7,718 
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Once a cross validation is completed, the same process is repeated for the remaining 

cross validations, and the final result is obtained as the average of all 10 cross 

validations. So, all the results presented below are average of 10 fold cross validations. 

2.6.1  Single Features – Existing Feature Methods 

For the single feature comparisons, we compare Higher Order Local Auto 

Correlations (HLAC) [10],  four versions (LBP256, LBP59, LBP10, and Local variance 

method (LOCAL_VAR256)) from the original Local Binary Pattern [4],  Gabor filter banks 

(GABOR) [15], Leung-Malik filter banks (LM) [16],  a modified version of LBP (MOD_LBP) 

[17], the traditional textures (Contrast, Correlation, Energy, and Homogeneity) based on 

Gray-Level Co-Occurrence Matrix (GLCM) [18], and MPEG-7 based texture features 

(MPEG-7_HTD (Homogeneous Texture Descriptor) and MPEG-7_EHD (Edge Histogram 

Descriptor)) [19]. Brief explanation of each of these texture feature methods are 

presented below. 

2.6.1.1 Local Binary Pattern (LBP) 

LBP (Local Binary Pattern) is a widely used method that describes a local texture 

patterns. LBP works in a 3x3 pixel block of an image with one center pixel and its 8 

neighbors. Although it can be generalized to any size and any neighbors, we only focused 

on a 3x3 neighborhood because it provides better accuracy according to [4], and it is 

computationally less expensive than larger neighborhoods. The LBP label of the center 

pixel is obtained by thresholding neighborhood pixels with the gray value of the center 

pixel, multiplying with power of 2, and summing them up as indicated in equation (2.6). 

There are 28 = 256 possible values for LBP labels. 
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𝐿𝐿𝐿𝐿𝐿𝐿𝑃𝑃,𝑅𝑅(𝑥𝑥𝑐𝑐,𝑦𝑦𝑐𝑐) = ∑ 𝑆𝑆�𝑔𝑔𝑝𝑝 − 𝑔𝑔𝑐𝑐�2𝑝𝑝𝑃𝑃−1
𝑝𝑝=0    (2.6) 

where S(a) = 1 if a ≥ 0; S(a) = 0 if a < 0; P is the number of neighbors in a circular 

neighborhood or radius R; gp and gc represent gray values of neighbor pixel p and center 

pixel c respectively.  

LBP256 contains 256 bins (histogram size) obtained by equation (2.6). The 

number of bins can be reduced to 59 by considering uniform patterns only. LBP59 

contains 59 bins where the first 58 bins are 58 uniform patterns, and the last bin is 

everything else. Similarly, LBP10 is obtained based on rotation invariant uniform LBP. 

Uniformity is measured based on U value which is number of spatial transitions (bitwise 

0/1) in the pattern. LBP operator which is both rotation invariant and uniform with U value 

2 can be obtained using equation 2.7. It contains 10 bins where the first 9 bins contain 

the 9 rotation invariant uniform patterns, and the last bin contains all remaining ‘non-

uniform’ patterns. 

𝐿𝐿𝐿𝐿𝐿𝐿𝑃𝑃,𝑅𝑅
𝑟𝑟𝑟𝑟𝑟𝑟2 = �∑  𝑆𝑆�𝑔𝑔𝑝𝑝−𝑔𝑔𝑐𝑐�      𝑖𝑖𝑖𝑖 𝑈𝑈�𝐿𝐿𝐿𝐿𝐿𝐿𝑃𝑃,𝑅𝑅�≤2𝑃𝑃−1

𝑝𝑝=0
 𝑃𝑃+1      𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒              �   (2.7) 

where 

𝑈𝑈�𝐿𝐿𝐿𝐿𝐿𝐿𝑃𝑃,𝑅𝑅� = �𝑆𝑆�𝑔𝑔𝑝𝑝−1 − 𝑔𝑔𝑐𝑐� − 𝑆𝑆(𝑔𝑔0 − 𝑔𝑔𝑐𝑐)� + � |𝑆𝑆�𝑔𝑔𝑝𝑝 − 𝑔𝑔𝑐𝑐� − 𝑆𝑆�𝑔𝑔𝑝𝑝−1 − 𝑔𝑔𝑐𝑐�|
𝑃𝑃−1

𝑝𝑝=1

 

 

The local variance method (LOCAL_VAR256) is obtained also as described in [4], 

which takes the mean of 8 neighbors, and subtracts the mean from each of those 

neighbors. For our experiment, we set the number of bins to 256. A modified version of 

LBP (MOD_LBP) [17] slightly modifies the traditional LBP by multiplying the binary values 

with the squared difference of neighboring pixel and mean of the 3x3 neighborhood pixels. 

The total number of bins can remain 256 for this as well.  
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2.6.1.2 Gabor Filter Banks 

Gabor filters are used for texture discrimination in various types of images [27]. 

Gabor filters are also widely used in pattern analysis applications [15]. We considered 

Gabor filter banks with 80-bin feature vectors (GABOR). First, we obtain 40 different 

Gabor filters (5 scales and 8 orientations), and convolute each filter with the input block 

to get 40 different response matrices. After that, we obtain Local Energy and Mean 

Amplitude by using the response matrices. Local Energy is calculated by summing up the 

squared values of a response matrix. Similarly, Mean Amplitude is calculated by summing 

up the absolute values of a response matrix. The [1x40] feature vector from Local Energy 

and [1x40] feature vector from Mean Amplitude is merged to obtain [1x80] Gabor feature 

for each image block. 

2.6.1.3 LM Filter Bank 

We include another popular filter bank called Leung-Malik (LM) [16] which is multi 

set, multi orientation filter bank with 48 filters. Although LM filter banks are not rotationally 

invariant, their accuracy is very good [24]. It consists of first and second derivatives of 

Gaussians at 6 orientations and 3 scales making a total of 36 filters, 8 Laplacian of 

Gaussian (LOG) filters, and 4 Gaussian filters. Similar Local Energy and Mean Amplitude 

as in GABOR feature are computed to make a 96 bin feature vector for each block. Only 

one of the Mean Amplitude or Local Energy could be used as feature vector but we 

observed that combination of two was generating better accuracy so we opted for 

combined feature vector. 

 

24 

 



 
 

2.6.1.4 Higher Order Local Auto Correlations 

  Higher Order Local Auto Correlations (HLAC) [12] is also evaluated where the 

primitive features are obtained by computing the sums of the products of the gray scale 

values of the corresponding pixels with 25 local 3x3 masks. HLAC features are used in 

various areas of image analysis ranging from face recognition to gesture recognition to 

natural object recognition [12, 28, 29]. One big advantage of HLAC features is they work 

in mask patterns which is less computation heavy as compared to interpolation [30]. Since 

our goal is to extract feature in real-time, HLAC feature is very suitable for faster feature 

extraction. 

2.6.1.5 Gray-Level Co-Occurrence Matrix 

  Traditional texture features based on Gray-Level Co-Occurrence Matrix (GLCM) 

[18], which shows the relationships between adjacent pixels are also included for the 

comparisons. The texture segmentation by using different orientations of GLCM are 

proposed in [31]. Each texture are processed with normalization as well as noise removal. 

Principle component analysis is used for dimensionality reduction. For our experiment we 

use four commonly used texture features (Contrast, Correlation, Energy, and 

Homogeneity).  

 Contrast which is also known as ‘sum of squares variance’ measures how contrast 

the image block is. Here, the pixels similar to each other are given the weight zero. On 

the other hand, homogeneity weights values by the inverse of the contrast weight with 

decreasing the weights exponentially away from the diagonal. Energy which is also known 

as uniformity is calculated as square root of Angular Second Moment (ASM). ASM is 
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simply the sum of squares of the values from GLCM table. The Correlation measures the 

linear dependency of gray levels of neighboring pixels. By combining these 4 features, 

GLCM feature vector of size 4 is constructed for each block. 

2.6.1.6 MPEG-7 Descriptor 

MPEG-7 based texture extraction is also considered in the experiment. We have 

used Homogeneous Texture Descriptor (HTD) and Edge Histogram Descriptor (EHD) 

[19]. MPEG7_HTD is composed of a 62 bin feature vector. The first two are the mean 

and the standard deviation of the image block. The rest are the energy and the energy 

deviation of the Gabor filtered responses. MPEG7_EHD represents local edge 

distributions in the image block and is represented by 80 (16 sub-images per image, 5 

bins i.e., one bin per each edge type (vertical, horizontal, two diagonals, and non-

directional edge) per sub-image) bin feature vector. 

2.6.2  Summary of Proposed and Existing Features 

Table 2.3 lists the different variations of proposed features and existing features 

evaluated during the experiments. It can be seen that the feature vector size varies a lot 

based on different features and their versions and the computation time depends on the 

feature vector size. Our goal is to get the maximum accuracy possible by using minimum 

feature vector size without sacrificing the accuracy of the feature algorithm.  For our 

proposed feature method, the feature vector size varies from 10 to 800 but the accuracy 

does not varies that much which is a good thing; and one important reasons our proposed 

feature is superior than the existing one in terms of accuracy and speed even though 

feature vector size is relatively small . 
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Table 2.3 Summary of different proposed and existing features methods. The feature 
vector size depends on the feature method algorithm and its variation. The computation 

time also depends on the feature vector size. 

Feature Method Variants 
Feature 
Vector 
Size 

DIFF 

DIFF_1_10 10 

DIFF_1_50 50 

DIFF_8_10 80 

DIFF_16_10 160 

DIFF_16_50 800 

LBP (Local Binary Patterns) 

LBP10 10 

LBP59 59 

LBP256 256 

Local Variance (LOCAL_VAR)  256 

Modified LBP (MOD_LBP)  256 

Gabor Filter Banks  80 

Leung-Malik (LM) Filter Banks  96 

Higher Order Local Auto 
Correlations (HLAC)  25 

Gray Level Co-occurrence Matrix 
(GLCM)  4 

MPEG-7 
MPEG7-HTD (Homogeneous Texture 

Descriptor) 62 

MPEG7-EHD (Edge Histogram Descriptor) 80 

Discrete Fourier Transform (DFT)2  256 

2 Although DFT feature method is discussed and evaluated in chapter 3, it is included here for the 
comparison purpose with other existing feature methods. 
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2.6.3  Results with Colonoscopy Dataset 

In this section, we present the results of our proposed method and existing 

methods with our colonoscopy dataset. The test set contains 207 images from five 

different classes (‘severe’, ‘moderate’, ‘mild’, ‘scar’ and ‘normal’) provided by our domain 

expert. The images were taken from a collection of several videos. For convenience, we 

call this dataset ‘UC dataset’. The details of images and corresponding blocks for each 

class are shown in Table 2.2. Overall, we compare 16 different single features discussed 

above including our DIFF_1_10, DIFF_1_50, DIFF_8_10, DIFF_16_50 and DIFF_16_10. 

The detailed results can be found in Table 2.4, which are the averages from the 10-fold 

cross validations.  

The best image level accuracies for ‘severe’ and ‘moderate’ classes are achieved 

by DIFF_16_50 and DIFF_16_10, which are generating very similar accuracies. For ‘mild’ 

class, the best accuracy was achieved by several different features. The best image level 

accuracy for ‘scar’ is achieved by LBP10, DIFF_1_10, and DIFF_1_50. And the best 

image level accuracy for ‘normal’ classes is achieved by LBP10. The best accuracy for 

all classes is achieved by LBP10, but it is less than 84%. A little bit less, but similar 

accuracies (80~82%) are achieved by DIFF_1_10, DIFF_1_50, DIFF_16_50 and 

DIFF_16_10. Overall these three features perform similarly in the image level. At the 

block level, LBP10 is a little better than the others only for ‘scar’ and ‘normal’ images. 

Figure 2.11 shows some of the examples of misclassified images by single features such 

as LBP10 and DIFF_16_10. 
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2.6.4  Results with General Datasets 

For more objective comparisons of single features (DIFF_1_10, DIFF_16_10 and 

LBP10), we evaluated these with two popular texture datasets in [32] (called CUReT) and 

[33] in which their ground truths are known. For convenience, we call the dataset in [32] 

as ‘dataset1’, and the dataset in [33]  as ‘dataset2’. ‘dataset1’ includes five texture types 

(bread, concrete, loofa, skin, and sponge) in which each type has 45 images. Similarly, 

‘dataset2’ includes five texture types (T01, T04, T07, T08, and T09) in which each type 

has 40 images. Both datasets were tested in similar fashion as described above for testing 

UC images. 

   
                            bread          concrete         loofa  

  
         skin           sponge 

Figure 2.9 Five image types selected for dataset1. These image types are selected at 
random from the pool of several images. 

For ‘dataset1’ (225 images with 5,525 blocks), the average image and block level 

accuracies for DIFF_16_10 were 99.6% and 97.8% respectively, whereas they were 

99.1% and 95.9% for LBP10. Similarly, DIFF_1_10 resulted in 94.1% and 83.6% 

respectively for ‘dataset1’. For ‘dataset2’ (200 images with 2,400 blocks), the average 
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image and block level accuracies for DIFF_16_10 were 97.5% and 90.5% respectively, 

whereas they were 99.0% and 93.1% for LBP10. Similarly, DIFF_1_10 resulted in 93.5% 

and 83.0% respectively for ‘dataset2’. As the results show, DIFF_16_10 performs 

   

  T01 - Bark         T04 - Wood   T07- Water  

  

               T08 - Granite              T09 - Marble 

Figure 2.10 Five image types used for dataset2. These images were also selected at 
random from the pool of several images.  

as good as LBP10 which is one of the most popular texture detection methods. But more 

importantly, our DIFF_16_10 is better than LBP10 in terms of execution speed. More 

details about the computation costs will be discussed later.  

This shows that our proposed DIFF methods not only works for medical images but 

also with other well-known dataset images. Because of its low cost of computation and 

high accuracy for feature extraction and classification, it can be used in different fields of 

image processing and computer vision. As discussed in proposed feature extraction 

method section, we can quantize the DIFF features to best suit the image types of 
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consideration. We will show in chapter 3 that how versatile the DIFF features can be for 

other types of images even for the same colonoscopy image domain.  

2.7  Results of Hybrid Methods with Multiple Features 

For the hybrid approaches, we combine the best performing features such as 

LBP10, DIFF_1_10, and DIFF_16_10. Even though the accuracies of GABOR, LM, and 

MPEG7_HTD are less than those of the best performing single features as seen in Table 

2.4, we include them in the hybrid approaches for comparison purposes. The hybrid 

approaches improve both image and block level accuracies significantly.  

By using the combination of DIFF_16_10 and LBP10, we achieved 90.1% image 

level and 68.7% block level accuracies. We tested the combination of DIFF_16_10 and 

DIFF_1_10 with 84.1% image level and 61.3% block level accuracies. Other combination 

DIFF_1_10 with MPEG7_HTD generated 86.1% image level and 62.8% block level 

accuracies. We also tested the combinations of three feature methods involving 

DIFF_16_10, LBP10, MPEG7_HTD, LM, and GABOR. Again, their results are similar with 

two feature methods, but their execution cost is higher (data not shown). We also tested 

the combinations of other features, but we did not include the results here because there 

were very few differences. In terms of image and block level accuracies as well as 

execution time, the combination of DIFF_16_10 and LBP10 is best for our UC images. 

This is because the DIFF_16_10 works well for ‘severe’, and ‘moderate’ classes whereas 

LBP10 works well for ‘scar’ and ‘normal’ classes. Also, we observed that almost all hybrid 

methods works well for ‘mild’ class. 
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Table 2.4 Image and Block level accuracies (Unit: %) where IL = Image Level accuracy 
and BL = Block Level accuracy. The result is the average of 10 fold cross validations. 

The results after the bold horizontal line are for hybrid methods.  

 

Features 
Severe Moderate Mild Scar Normal Average 

IL BL IL BL IL BL IL BL IL BL IL BL 

LBP10 70.0 50.3 73.0 51.0 92.0 64.4 90.0 76.0 94.0 82.1 83.8 64.8 

LBP59 57.5 46.5 77.0 56.7 90.0 62.1 81.7 61.3 92.0 65.4 79.6 58.4 

LBP256 65.0 47.4 81.0 56.3 92.0 60.9 66.7 58.6 88.0 63.2 78.5 57.2 

GABOR 77.5 48.1 75.0 52.5 78.0 46.3 71.7 48.1 56.0 42.3 71.6 47.5 

HLAC 47.5 37.0 63.0 44.1 88.0 49.4 66.7 48.8 72.0 50.5 67.4 46.0 

MOD_LBP 70.0 43.5 74.5 43.3 68.0 46.4 61.7 43.3 74.0 47.9 69.6 44.9 

LOCAL_VAR256 72.5 49.7 72.5 51.1 88.0 58.4 71.7 56.6 82.0 65.4 77.3 56.2 

GLCM 70.0 40.7 82.5 42.2 74.0 38.5 55.0 39.6 50.0 38.6 66.3 39.9 

LM 77.5 45.1 79.0 51.1 92.0 47.6 66.7 47.1 62.0 42.8 75.4 46.7 

MPEG7_HTD 75.0 57.5 89.5 57.4 80.0 53.5 75.0 53.5 64.0 46.5 76.7 53.7 

MPEG7_EHD 25.0 34.7 76.5 62.6 92.0 61.9 33.0 22.7 54.0 41.9 50.2 44.7 

DIFF_1_10 62.5 45.2 74.5 47.9 92.0 62.7 90.0 63.8 88.0 69.4 81.4 57.8 

DIFF_1_50 65.0 45.3 68.0 48.4 92.0 63.2 90.0 63.7 90.0 69.2 81.0 58.0 

DIFF_8_10 77.5 54.3 77.0 58.0 84.0 55.7 71.7 50.4 78.0 58.3 77.6 55.3 

DIFF_16_10 82.5 56.1 94.0 60.2 92.0 54.5 61.7 42.5 72.0 54.5 80.4 53.5 

DIFF_16_50 82.5 56.4 94.0 60.5 92.0 54.8 61.7 42.5 72.0 54.5 80.4 53.7 

DIFF_16_10+LBP10 87.5 59.9 96.0 63.8 92.0 65.6 85.0 74.0 90.0 80.4 90.1 68.7 

DIFF_16_10+DIFF_1_10 75.0 54.5 89.0 62.0 94.0 64.1 76.7 57.6 86.0 68.1 84.1 61.3 

DIFF_1_10+LM 65.0 48.6 79.0 55.8 92.0 63.6 78.3 57.7 90.0 68.6 80.9 58.9 

DIFF_1_10+MPEG7_HTD 75.0 56.4 85.0 59.7 92.0 65.3 86.7 64.0 92.0 68.4 86.1 62.8 

DIFF_16_10+LBP10 
+GABOR 87.5 63.6 91.5 65.5 98.0 69.0 85.0 74.7 92.0 81.6 90.8 70.9 

DIFF_16_10+MPEG7_HT
D +LM 85.0 62.5 86.5 66.0 94.0 60.4 68.3 49.1 78.0 56.4 82.4 58.9 
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Table 2.5 Contribution of DIFF_16_10 and GABOR with LBP10 as hybrid methods. 
DIFF_16_10 contributes more in the hybrid method DIFF_16_10+LBP whereas GABOR 

feature method contributes less in LBP10+GABOR hybrid method. 

 
Class 

DIFF_16_10+LBP10 LBP10+GABOR 

DIFF_16_10 LBP10 LBP10 GABOR 

Severe 62.5 37.5 67.5 32.5 

Moderate 68.8 31.2 60.0 40.0 

Mild 32.0 68.0 80.0 20.0 

Scar 9.0 91.0 100.0 0.0 

Normal 16.0 84.0 96.0 4.0 

Table 2.5 shows the contribution of feature methods while deciding the final 

classification in the hybrid approaches. It is seen that DIFF_16_10 decides ‘severe’ and 

‘moderate’ classes on average 62.5% and 68.8% respectively in DIFF_16_10+LBP10 

hybrid. On the other hand, majority of the classes were decided by only LBP10 in 

LBP10+GABOR which shows GABOR is not significant in the hybrid of LBP10+GABOR. 

 

 
                              (a)                         (b)                                (c) 

Figure 2.11 Examples of some of the misclassified images: a) ‘severe’ image 
misclassified as ‘moderate’ by LBP10, but classified correctly by DIFF_16_10, b) ‘scar’ 
image misclassified as ‘normal’ by DIFF_16_10, but classified correctly by LBP10, and 

c) ‘mild’ image misclassified as ‘moderate’ by LBP10 as well as DIFF_16_10. 

Figure 2.11 shows some of the misclassified examples by DIFF_16_10 and LBP10 

features when they are used as hybrid. We observed that the accuracy level of these 

methods varies based on class types. For example – ‘severe’ and ‘moderate’ class were 
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less accurately detected my LBP10 whereas ‘scar’ and ‘normal’ images were more 

accurately detected by LBP10. On the other hand, ‘mild’ class was the most accurately 

detected class by both methods.  

One of the reasons LBP10 was not able to differentiate between ‘severe’ and 

‘moderate’ class consistently is because of its inability to extract distinguishable features. 

By observing the entire blocks of ‘severe’ and ‘moderate’ classes from the training set, 

we found that the average of feature vectors for ‘severe’ and ‘moderate’ class were very 

similar as seen in Figure 2.12. The graph of ‘severe’ and ‘moderate’ class almost overlap 

which means that there is high probability that a classifier may incorrectly classify a 

‘severe’ image into a ‘moderate’ image and vice versa. On the other hand, the average 

feature vector for ‘mild’, ‘scar’, and ‘normal’ classes do not overlap which means the 

chance of misclassification is lower for those classes and the experimental results shown 

in Table 2.4 exactly demonstrate this fact.  

In the hybrid method, we are taking the maximum probability from two feature 

methods which means that there is a chance of picking an incorrect classification. For 

example, let’s say method 1 classifies an image M incorrectly into class C. Similarly, 

method 2 classifies the same image correctly into class D. Since we are using method 1 

and method 2 as hybrid approach, we pick the result from the method which classifies 

with higher probability. So, if the probability of method 1 is higher than method 2, result 

from method 1 is picked and image is misclassified. This is the main reasons for 

misclassification in hybrid method and a drawback of our hybrid approach. We tried to 

tackle this problem by introducing more feature methods in the hybrid approach and take 

the result based on the majority voting between multiple methods. But we encountered 
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the similar problems where majority methods could also incorrectly classify. Also, more 

methods means more processing time which affected the computation cost.  

 

Figure 2.12 The average frequency of each bins in LBP10 for 5 classes. Here, ‘severe’ 
and ‘moderate’ class almost overlap causing higher misclassification among them.   

 
Figure 2.13 and 2.14 show the image level and block level comparisons for our 

proposed feature method and some of the existing feature method as histograms. It can 

be seen that the hybrid method significantly increases the classification accuracy. We 

observed that the accuracy does not always increase in hybrid methods if the combination 

of hybrid methods are not optimal. Also, some of the feature methods are computationally 

expensive which results in computationally expensive hybrid methods. Our goal is to 

maximize the accuracy by keeping the execution speed low. The combination of our 

DIFF_16_10 and LBP10 was able to achieve that goal as shown in the results.  
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Figure 2.13 Image level accuracy of the average of 10-fold test results for single 
features and hybrid approaches. 

  

Figure 2.14 Block level accuracy of the average of 10-fold test results for single features 
and hybrid approaches.  
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Figure 2.15 10-fold test results for LBP10 Image Level 

 

Figure 2.16 10-fold test results for LBP10 Block Level 

Figure 2.15 and 2.16 show the 10-fold block level and image level classification 

accuracy for LBP10 feature method. It can be seen the LBP10 works well for ‘mild’, ‘scar’ 

and ‘normal’ classes but not so good for ‘severe’ and ‘moderate’ classes. This further 

proves that LBP10 cannot distinguish effectively between ‘severe’ and ‘moderate’ classes 

just like it is illustrated by graph in Figure 2.12. 
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Figure 2.17 DIFF_1_10 Image Level 

 

Figure 2.18 10-fold test results for DIFF_1_10 Block Level 

Figure 2.17 and 2.18 show image and block level 10-fold accuracy for DIFF_1_10 

feature method. It shows that the overall accuracy is not good for ‘severe’ and ‘moderate’ 

classes as compared to others. In fact, the results of DIFF_1_10 and LBP10 are very 

close for overall classes. This is the main reason DIFF_1_10 did not improve the accuracy 

when used in hybrid approaches. 
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Figure 2.19 10-fold test results for DIFF_16_10 Image Level 

 

Figure 2.20 10-fold test results for DIFF_16_10 Block Level 

Figure 2.19 and 2.20 show that DIFF_16_10 works comparatively better for 

‘severe’ and ‘moderate’ class than previously discussed LBP10 and DIFF_1_10 methods. 

Since the results of DIFF_16_10 show better accuracy with ‘severe’ and ‘moderate’ class, 

it is used in DIFF_16_10+LBP 10 hybrid approach.   
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2.8  Computation Cost Comparison 

As mentioned above, we compare the computation costs for some of the best 

performing single features and hybrid methods in this subsection. The computation cost 

which is the average execution time of 10-fold validation is computed for training and 

testing separately on ‘UC dataset’. As shown in Table 2.6, both DIFF_1_10 and 

DIFF_16_10 are at least 2x faster than others during the training phase. Testing includes 

the feature extraction of testing blocks and their classifications. In terms of speed, our 

DIFF_1_10 and DIFF_16_10 outperform the existing methods by a huge margin in the 

testing phase as well. Any hybrid method that includes our DIFF_1_10 and DIFF_16_10 

is significantly faster than any other hybrid method, even without considering the 

computation cost of the training, which is a one-time cost. This shows that our feature 

method (DIFF) can significantly reduce the execution time for both single feature and 

hybrid approaches without compromising the accuracy. 

Table 2.6 Average of 10-fold computation cost (unit: seconds). Only the best performing 
feature methods are considered for computation cost. 

Feature Method Training Testing 

DIFF_1_10 41.1 6.0 

DIFF_16_10 47.4 12.7 

LBP10 134.2 16.2 

MPEG-7_HTD 358.1 72.5 

LM 1,751.8 156.6 

GABOR 4,074.2 430.8 
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2.9  Conclusion 

It is very difficult to evaluate the severity of Ulcerative colitis (UC) objectively 

because of non-uniform nature of symptoms associated with UC, and large variations in 

their patterns. To address this, we objectively measure and classify the severity of UC 

presented in optical colonoscopy video frames based on image textures. To extract 

distinct textures, we use a hybrid approach in which a new proposed method (DIFF) 

based on the accumulation of pixel value differences is combined with an existing method 

such as LBP. Therefore, our contributions are development of a new texture feature that 

works well for ‘severe’ and ‘moderate’ UC classes, and to combine this new texture 

feature with an existing feature to achieve significantly better overall accuracy with 

significantly less processing time for all UC disease grade classes. The experimental 

results show that the hybrid method, which can easily be modified for further 

improvement, already can achieve more than 90% overall accuracy.   

Because of the computational efficiency of our DIFF single feature as well as 

hybrid method, it can be used for other image domains as well especially if the processing 

time is the key. This image level classification concept can be applied to video level 

severity score calculation as well as shot segmentation. We plan to extend this work 

further to video level which works as a feedback system for real-time colonoscopy 

procedure. Also, the classification criteria can be modified to better reflect the severity of 

disease rather than the mathematical maximum probability.   
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CHAPTER 3: ENHANCING INFORMATIVE FRAME FILTERING BY WATER AND 

BUBBLE DETECTION IN COLONOSCOPY VIDEOS3 

3.1  Introduction 

Colonoscopy is an endoscopic technique that allows a physician to inspect the 

mucosa of the human colon. It has contributed to a marked decline in the number of 

colorectal cancer related deaths [1]. However, recent data suggest that there is a 

significant (4-12%) miss-rate for the detection of even large polyps and cancers [2]. To 

address this, some research have been conducted investigating an ‘automated feedback 

system’ which informs   the   endoscopist   of   possible sub-optimal inspection during 

colonoscopy in order to improve the quality of the actual procedure being performed [3, 

35]. 

A fundamental step of this system is to distinguish non-informative frames from 

informative ones. An informative frame in a colonoscopy video can be broadly defined as 

a frame which is useful for convenient naked-eye analysis of the colon mucosa (Figure 

3.1). A non-informative frame has the opposite definition where we can not see the colon 

wall crearly (Figure 3.2). In general, non-informative frames can be considered out-of-

focus frames. Informative and non-informative frames can be loosely termed as clear and 

blurry frames, respectively. An accurate algorithm for this informative frame filtering (IFF) 

[36-38] has been developed, which is firstly to detect the  presence of such vivid lines, 

and secondly to measure the amount of curvaceous connectivity they possess.  

3 Parts of this chapter have been already published, either in part or in full, from A. Dahal, J. Oh, W. 
Tavanapong, J. Wong, and P. C. de Groen (2015). Enhancing Informative Frame Filtering by Water and 
Bubble Detection in Colonoscopy Videos in the proceedings of the International Conference on Health 
Informatics & Medical Systems, pp. 24-30, July 2015. 
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Then, with a carefully chosen threshold, frames which exhibit more curvaceous 

connectivity and classify them as informative, and vice-versa are identified. 

   

 
Figure 3.1 Examples of Informative Frames or Clear Frames. The colon wall is clearly 

visible in these images.  

 

   

 
Figure 3.2 Examples of Non-Informative Frames or Blurry Frame. Colon mucosa is not 

visible in these images.  

Figure 3.3 shows some frames having water and bubbles, which do not carry any 

useful visual information of colon mucosa. These frames need to be classified as non-

informative. However, most IFF algorithms [36, 39] classify them as informative since they 

have clear edges and are in-focus. These types of frames are caused by water injection 
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for cleaning purpose during the colonoscopy procedure, and need to be discarded from 

further processing. We define a frame as water or bubble frame if more than 50% of the 

frame is covered with water or bubble. We call the frames in Figure 3.3 (a-b) ‘water’ 

frames, and the ones in Figure 3.3 (c-d) ‘bubble’ frames for convenience. Based on our 

observation with 100 colonoscopy videos, the percentage of these frames varies from 

5.6% to 20.7% and 9.7% on average. Accurately detecting and discarding water and 

bubble frames can improve the performance of the ‘automated feedback system’ 

mentioned earlier. 

   
(a)               (b)  

  
                    (c)                                (d) 

Figure 3.3 Examples of Water/Bubble frames: (a) and (b) Water Frames, (c) and (d) 
Bubble Frames. Even though colon mucosa is not visible in these images, they have 
significant amount of edges which result in incorrect classification as clear frames by 

existing IFF algorithms.  

In this chapter, we propose a novel method for water and bubble frame detection 

based on image texture focusing on accumulation of pixel value differences. We compare 

it with other existing texture based algorithms in terms of accuracy and execution time. 

To further reduce the execution time, we investigate different clustering methods. The 
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proposed method performs very well in terms of accuracy and execution speed with or 

without clustering. More detailed explanation of accuracy and execution speed of the 

method is described in the experimental section. Therefore, our main contribution is to 

propose a novel method which can detect water and bubble frames with very high 

accuracy in significantly less processing time by using efficient clustering mechanism.  

The remainder of this chapter is organized as follows. Related work is presented 

in Section 3.2. The proposed technique is described in Section 3.4. In Section 3.5, we 

discuss our experimental setup and results. Finally, Section 3.6 presents some 

concluding remarks. 

3.2  Related Work 

To the best of our knowledge, water and bubble frame detection in colonoscopy 

videos has not been investigated before. The most closely related work is [36] but it has 

some limitations as mentioned before. Recently, a new non-informative frame filtering 

method based on difference of Gaussian filtering has been proposed [39] but it has similar 

limitation which is that very clear water and bubble frames can be classified as 

informative. The clustering of non-informative frames in GI endoscopy videos is proposed 

for manifold learning to create structured manifolds from complex endoscopic videos [40]. 

Color and texture based features (mean, standard deviation, entropy, etc.)  are extracted 

to classify the colon status as either normal or abnormal using Principle Component 

Analysis to reduce the size of features [41].  

One of most popular texture detection method in images are based on textons. 

Textons are first introduced by Julesz [42] more than 30 years ago. In [43] algorithms are 
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designed to partition the grayscale image into different segments based on brightness 

and texture. Besides, there exist several texture detection techniques. The most 

commonly used ones are: Higher Order Local Auto Correlations (HLAC) [12], LBP (Local 

Binary Patterns) [4], Gabor filter banks [15], Leung-Malik filter banks [16], the traditional 

texture features (i.e., Contrast, Correlation, Energy, Homogeneity, etc.) based on Gray-

Level Co-Occurrence Matrix (GLCM) [18], MPEG-7 texture features [19], Gaussian 

Markov random field (GMRF) [44] as well as Discrete Fourier Transform (DFT) [45].  

Bejakovic et al [46] uses MPEG-7 descriptor along with GLCM features to 

differentiate fluids such as blood and intestinal juices as well as extraneous matter such 

as food and bubbles in WCE. Vilarino et al [47] proposed technique uses Gabor filters to 

automatically detect the intestinal juice. But as the experimental results show that Gabor 

filters are very computation expensive. Because of this, it cannot be used in real-time 

systems. All of these methods are competitive in terms of accuracy but their execution 

speeds vary a lot. We present the evaluation method and results of most of these existing 

algorithms. Also, we will compare our proposed method and these existing methods in 

Section 3.5 in terms of both ‘with clustering’ and ‘without clustering’ method. 

3.3  Preprocessing 

The goal of preprocessing stage is to filter out unnecessary blocks which may 

result in inconsistent results. Also, it normalizes the good blocks that are being processed 

so that the feature vector is consistent for all the variations of the blocks. The 

preprocessing steps are similar as explained in section 2.3.1. There are some notable 

differences and the major one is the specular reflection. Specular reflection are widely 
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present in water and bubble frames and is one of the key texture to differentiate them with 

other normal frames. Because of this reason we do not filter out specular reflection blocks 

from the preprocessing step. They are treated as good blocks and are moved to further 

processing. The black border blocks and blocks with high standard deviation are 

discarded based on the threshold values given in the Table 2.1. 

3.4  Feature Extraction Methods 

We compare our proposed feature extraction method explained in section 2.4 with 

several existing feature methods discussed in section 2.6.1. Most of the feature methods 

from section 2.6.1 are adapted. From our proposed method, we are using DIFF_1_10, 

DIFF_1_50, DIFF_2_10, DIFF_8_10, and DIFF_16_10. For the proposed feature 

methods, we are not considering DIFF_16_50 which results in 800 bin feature vector. 

From our experiments in chapter 2, we concluded that this feature method take a lot of 

computation time and it does not improve the accuracy at all.  

In addition to these, we are considering a new variant called DIFF_2_10 having 20 

size feature vector. This smaller size feature vector is computationally efficient and does 

not sacrifice the accuracy. The reason it did not work well for UC severity is that it could 

not generate the distinguishing feature vectors which could distinguish between five 

different UC classes effectively. This is because of the reason we discussed in chapter 2 

that too much quantization may deteriorate the performance of feature method depending 

upon the texture patterns. From the existing feature methods from chapter 2, we are 

adapting LBP10, LBP59, LBP256, LOCAL_VAR, GLCM, HLAC, GABOR, LM, 

MPEG7_HTD, MPEG7_EHD. We are not considering MOD_LBP because of its high 
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computation cost and relatively low accuracy for UC images. We are also considering a 

new feature method based on Discrete Fourier Transform which will be discussed next. 

3.4.1  Discrete Fourier Transform 

For additional existing features, we have explored Discrete Fourier Transform 

(DFT) [45] based feature. DFT is used in different field of image processing such as image 

compression, image filtering and texture analysis. First, we get DFT of the input block 

using Fast Fourier Transform (FFT) algorithm [45]. FFT is a fast computation algorithm 

for DFT. To reduce the feature vector size, we take the mean and standard deviation of 

each row of the resultant block, and use them as features. In this way, a block is 

represented by a 256 bin feature vector with 128 means and 128 standard deviations.  

3.5  Evaluation Method  

Evaluation method has mainly two phases: Training and Testing.  For Training, 

each input image is divided into a number of blocks, and the block filtering and 

normalization are applied as discussed in preprocessing section. A selected feature is 

computed for all blocks, and it is used to train a KNN (k-nearest neighbors) classifier [26] 

with k=1. We experimented with different values of k, but found k=1 giving best results for 

our dataset. We also tested other classifiers such as CART (Classification and 

Regression Tree) Decision Tree and SVM (Support Vector Machine) with linear kernel in 

MATLAB. Their comparison results will be discussed later.   

For Testing, a test image is divided into number of blocks with the same block size 

used in Training. The same block filtering and normalization as used in Training are 

applied to all blocks in the test image. Using the trained KNN classifier, we determine for 
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each block to which type it belongs. Lastly, we calculate the  probability of each type i.e. 

water/bubble or normal by dividing the detected number of blocks for each type by the 

total number of blocks processed for that image. If the test image has at least 50% 

water/bubble blocks, it is classified as a water/bubble frame. Otherwise, it is classified as 

normal frame. The rationale behind 50% threshold is that the colon mucosa is mostly 

hidden in an image covered with water/bubble by more than half. These types of frames 

will negatively affect the automatic feedback system if they are not filtered out. 

3.6  Experiments 

All experiments were conducted on a Windows 7 64-bit PC with Intel i7 2.8GHZ 

processor and 6GB RAM using MATLAB R2014a. The training images were provided by 

domain experts with annotations. To select testing images for water/bubble and normal 

class, we gathered several colonoscopy videos, extracted frames from them and 

randomly picked the test images. We tried our best to collect the images with different 

illuminations, colors, and noise levels so that it represents the vast majority of 

colonoscopy images and videos including the ones taken from different endoscopes.   

We present our results using commonly used performance metrics [48]: Recall (or 

Sensitivity) (R), Specificity (S), Precision (P), and Accuracy (A). They are based on Table 

3.1 of True Positive (TP), False Positive (FP), False Negative (FN), and True Negative 

(TN). Precision (P) computed as the ratio of correctly classified positive instances from 

the predicted positives.  

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑃𝑃) =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

    (3.1) 

Recall (or Sensitivity) (R) computed as the ratio of correctly classified positive instances.  
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𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑅𝑅) =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

    (3.2) 

Specificity (S) computed as the ratio of correctly classified negative instances.  

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑆𝑆) =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

   (3.3) 

The accuracy (A) is the ratio of correctly classified instances.  

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝐴𝐴) =  𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝑁𝑁+𝑇𝑇𝑇𝑇

   (3.4) 

Table 3.1 Evaluation Metrics. 

Actual 
Predicted 

Water/Bubble Normal 
Water/Bubble TP FN 

Normal FP TN 
 

The number of images and blocks used for training and testing are summarized in Table 

3.2. We evaluate a large number of training and testing images in order to properly 

evaluate the computation cost of the different existing texture feature extraction 

methods and compare with different variations of our proposed texture feature 

extraction method. 

Table 3.2 Description of number of images and blocks used in the experiments. The 
images are annotated by domain experts. The blocks used are only the good blocks 
after filtering out unnecessary blocks in the preprocessing stage. 

Type 
Training Testing 

Image Block Image Block 

Water + Bubble 588 22,049 288 10,522 

Normal 599 21,296 284 10,456 

Total 1,187 43,345 572 20,978 
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3.6.1  Evaluation Without Clustering 

We evaluated a total of 15 features including 5 different versions of our DIFF 

features (DIFF_1_10, DIFF_1_50, DIFF_2_10, DIFF_8_10, and DIFF_16_10). Table 3.3 

shows the results in terms of precision, recall, specificity, and accuracy for both image 

and block levels. Most feature methods are providing decent (i.e., 90-95%) image level 

accuracies. Some of the feature method such as GLCM and MPEG7_EHD did not 

perform well as compared to others.  

Table 3.3 Image and Block level performance metrics without clustering (unit %) 
 

Feature Method 
Image Block 

Precision Recall Specificity Accuracy Precision Recall Specificity Accuracy 

DIFF_1_10 91.1 88.5 91.2 89.8 69.8 67.9 70.5 69.2 

DIFF_1_50 90.9 89.9 90.8 90.3 70.0 67.9 70.8 69.1 

DIFF_2_10 95.8 90.2 96.1 93.1 76.3 70.1 78.1 74.1 

DIFF_8_10 96.0 91.6 96.1 93.8 77.0 72.0 78.4 75.2 

DIFF_16_10 95.4 92.7 95.4 94.0 75.7 72.0 76.8 74.4 

LBP10 88.8 91.3 88.3 89.8 72.8 72.7 72.7 72.7 

LBP59 93.1 93.7 92.9 93.3 76.4 75.4 76.5 75.9 

HLAC 91.6 94.4 91.2 92.8 69.9 72.9 68.4 70.7 

GLCM 86.3 85.4 86.2 85.8 63.6 62.8 63.9 63.3 

LOCAL_VAR 91.1 82.2 91.9 87.0 69.2 65.0 70.8 67.9 

GABOR 94.1 93.7 94.0 93.5 74.0 74.7 73.6 74.2 

LM 93.4 93.7 93.3 93.5 73.4 74.2 73.0 73.6 

DFT 95.9 90.2 96.1 93.1 70.5 67.2 71.7 69.5 

MPEG7_HTD 96.7 93.0 96.8 94.9 77.8 74.6 78.6 76.6 

MPEG7_EHD 77.8 92.7 73.2 83.0 67.4 78.4 61.8 70.1 
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Our feature method DIFF_16_10 performed as good as the best performing 

feature method which is MPEG7_HTD. One of the reason GLCM did not perform well 

could be because of its smaller feature vector size. We observed that almost all of our 

feature methods (DIFF_1_50, DIFF_2_10, DIFF_8_10, and DIFF_16_10) performed on 

par with popular existing methods. Although all 4 performance metrics are equally 

important, we are mainly focused on the accuracy metric which gives the overall 

performance (both positive and negative classification) of the feature method tested. 

The block level accuracy were similar to image level accuracy. DIFF_2_10, 

DIFF_8_10 and DIFF_16_10 performed on par with other feature methods in block level 

tests. GLCM and DFT are the worst performer in terms of block level. It should be noted 

that the image level result is more important for the classification because doctors only 

consider image level evaluation. DFT feature method is highly accurate with 93.1% even 

though its block level accuracy is only 69.5%. We will discuss the performance of feature 

methods with clustering and without clustering later along with their computation costs 

later. The computation cost is the main differentiator among the different feature methods 

because their accuracy are very similar. As seen in figure 3.4 and 3.5 the performance 

metrics are not that different when clustering is not used. The similar results hold for both 

image and block level evaluations. We will see how the performance fluctuates when 

clustering is used in the next sub section.  
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Figure 3.4 Image Level performance metrics without clustering 

 

Figure 3.5 Block level performance metrics without clustering 

3.6.2  Evaluation with Clustering 

For more efficient and faster computing, we consider the clustering of the training 

blocks. To provide accurate detection of water and bubble frames, a huge number of 
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blocks in the training set need to be compared with the blocks in an unseen image. By 

the use of clustering, we can reduce the number of comparisons, which impacts the 

execution speed. A cluster has hundreds of feature vectors generated from hundreds of 

blocks. Instead of comparing with these hundreds of vectors, we can compare with one 

vector which is its centroid (i.e., mean). For the clustering purpose, we use K-means, K-

medoids and Fuzzy C-means clustering [26]. But, first we need to find an optimal number 

of clusters.  

We use the Elbow method which is simple but effective [49] where Within Cluster 

Sum of Squares (WCSS) is observed for different number of clusters. We ran K-means 

clustering for k = 10, 20, 30, …, Kmax, where Kmax equals 500 in our case, and the WCSS 

value is computed for each k. Our goal is to find the minimum value of k without sacrificing 

the accuracy of the classification.  

 

Figure 3.6 Optimal cluster estimation using Within Cluster Sum of Squares (WCSS). 
The plots almost overlap which means that we can use same number of clusters for 

both water/bubble and normal images. 
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We plot clusters (k) versus WCSS values. The optimal number of clusters is 

estimated by looking for k for which WCSS is not decreasing rapidly. Figure 3.6 shows 

the plot for water/bubble blocks as well as normal blocks in which DIFF_2_10 feature is 

used for computing WCSS values. The plot was obtained based on all of the training 

blocks for both water/bubble and normal images as listed in Table 3.3. As seen in the 

plot, after the k value around 50, the WCSS values do not decrease rapidly. And, after 

the k value around 300, the WCSS values change very slowly, which makes the graph 

almost flat. So, we can see that an optimal k value can be in the range from 50 to 300. 

Next, we find the optimal k from this range. 

 

Figure 3.7 Image level accuracy for different numbers of clusters using DIFF_2_10 
feature method. We limit the maximum number to clusters to 2000. 
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Figure 3.8 Block level accuracy for different numbers of clusters using DIFF_2_10 
feature method. The maximum number of clusters was set to 2000 for block level test 

as well. 

We evaluated several different k values. Figure 3.7 and 3.8 show the image and 

block level accuracies when K-means clustering is used with different cluster sizes and 

with DIFF_2_10 as feature method. It can be seen that the optimal image and block level 

accuracies are achieved at the cluster size of around 200 which falls in the estimated 

range by WCSS plot.  

Table 3.4 show the results in terms of precision, recall, specificity, and accuracy 

for both image and block levels with clustering of size 200. As seen, the performances 

are degraded for the most of the features when compared with those without clustering. 

DIFF_1_10, DIFF_2_10, DIFF_8_10, DIFF_16_10, LBP59, and LM are still good (i.e., 

better than 90%). It can be seen that DIFF_2_10 retained its 93% accuracy even after 

the clustering. Accuracy was expected to go down when clustering was used to save 

the evaluation time. The previous best MPEG7_HTD decreased it accuracy from 94.9% 

to 86.7% which is more than 8 percentage points. It shows that the clustering is 

sensitive to feature methods. Our DIFF based feature is robust to clustering as shown in 
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the results that the accuracy remained intact even after clustering. We will show later 

that it is a key feature of our proposed feature method which dramatically improves the 

processing time without sacrificing the accuracy. We claim that DIFF_2_10 is our best 

choice since it is faster than the others and as well as it retains accuracy after 

clustering. Figure 3.9 and 3.10 shows the image and block level performance metrics 

with clustering. It can be seen that accuracy decreased for several feature methods 

significantly.  

Table 3.4 Image and Block level performance metrics with clustering (unit %)  

Feature Method 
Image Block 

Precision Recall Specificity Accuracy Precision Recall Specificity Accuracy 

DIFF_1_10 90.7 85.4 91.2 88.2 70.7 66.6 72.2 69.4 

DIFF_1_50 88.8 88.8 88.7 88.8 70.1 66.6 71.4 69.0 

DIFF_2_10 97.0 89.9 97.1 93.5 75.5 69.4 77.4 73.4 

DIFF_8_10 96.1 87.1 96.4 91.7 75.9 68.1 78.2 73.1 

DIFF_16_10 95.0 87.5 95.4 91.4 74.7 69.4 76.3 72.9 

LBP10 78.2 90.9 74.3 82.6 72.5 81.5 68.9 75.2 

LBP59 90.5 89.5 90.4 90.0 79.2 76.1 79.9 78.0 

HLAC 87.6 84.0 88.0 86.0 66.5 65.7 66.7 66.2 

GLCM 78.9 87.1 76.4 81.8 62.3 63.2 61.5 62.4 

LOCAL_VAR 89.2 77.4 90.4 83.9 70.5 65.2 72.5 68.9 

GABOR 97.7 45.1 98.9 71.8 87.6 47.5 93.2 70.3 

LM 95.0 93.7 95.0 94.4 71.7 74.4 70.5 72.4 

DFT 96.5 78.1 97.1 87.5 74.3 61.5 78.6 70.0 

MPEG7_HTD 81.5 95.1 78.1 86.7 67.2 75.4 62.9 69.2 

MPEG7_EHD 66.1 95.8 50.3 73.2 60.5 74.2 51.3 62.8 
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Figure 3.9 Image Level Performance Metrics with Clustering 

 

Figure 3.10 Block Level Performance Metrics with Clustering 

We also evaluated our best performing feature DIFF_2_10 using different 

clustering algorithms and classifiers. We set the number of cluster to 200 as before and 

cluster our training blocks using K-medoids and Fuzzy C-Means as well as K-means 
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clustering algorithms [26]. For the classification we chose SVM and CART Decision Tree 

to compare with KNN [26].  

 

Figure 3.11 DIFF_2_10 Image level accuracies with three different clustering algorithms 
(K-means, K-medoids, and Fuzzy C-means) and three classifiers (KNN, SVM, and 

Decision Tree). 

 

Figure 3.11 and 3.12 show the results of a total of nine combinations of the three 

clustering algorithms and three classifiers for the image and block levels, respectively. 

The main objective of this evaluation to observe the change in the accuracy when different 

clustering algorithms and classifiers are used. As seen, KNN with K-means clustering is 

the best among all in terms of accuracy. We observed that k-means and decision tree 

combination gives best recall percentage but it is not as good in terms of other metrics.  
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Figure 3.12 DIFF_2_10 block level accuracies with same three different clustering 
algorithms and same three classifiers. 

3.7  Execution Speed Comparison 

Computation cost is really important in a colonoscopy video processing system 

since a very large number of frames need to be evaluated. We compare the computation 

costs of some of the better performing features. Tables 3.5 and 3.6 show the results of 

the total computation costs for entire images of training and testing listed in Table 3.2 for 

both ‘without clustering’ and ‘with clustering’. As seen, our DIFF based features are more 

than 2x faster than the others for the training phase in both ‘with’ and ‘without’ clustering 

evaluations.  For the testing phase, our best performing feature DIFF_2_10 is significantly 

faster than all other similarly performing features. For example – per frame testing cost 

for DIFF_2_10 is 746.9/572 (these numbers are from Tables 3.5 and 3.2) = 1.3 seconds.  
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Table 3.5 Execution speed without clustering (unit: seconds). Not all feature methods 
are considered for execution speed comparison. 

Features  Training Testing Total 
DIFF_1_10 251.4 668.8 920.2 
DIFF_2_10 278.6 746.9 1,025.5 
DIFF_8_10 278.0 1,101.1 1,379.1 

DIFF_16_10 283.1 1,562.9 1,846.0 
LBP10 965.9 1,061.3 2,027.2 
LBP59 857.3 1,251.6 2,108.9 
HLAC 1,278.9 1,272.2 2,551.1 
DFT 677.2 2,311.9 2,989.1 

MPEG7_HTD 1,842.1 2,061.3 3,903.4 
LM 8,565.0 4,941.6 13,506.6 

GABOR 16,713.2 13,407.6 30,120.8 
 

Table 3.6 Execution speed with clustering. Some of the feature methods dramatically 
improved the execution speed.  

Features  Clustering Training Testing Total 
DIFF_1_10 775.6 244.0 624.5 1,644.1 
DIFF_2_10 794.7 271.5 642.4 1,708.6 
DIFF_8_10 1,167.0 327.3 674.5 2,168.8 

DIFF_16_10 2,513.5 370.5 675.9 3,559.9 
DFT 4,861.3 749.8 846.4 6,457.5 

LBP10 1,254.2 916.3 959.9 3,130.4 
LBP59 1,287.5 827.9 979.6 3,095.0 
HLAC 1,763.7 1,281.2 1,172.4 4,215.3 

MPEG7_HTD 4,003.2 2,109.9 1,605.0 7,718.1 
LM 9,477.5 8,825.1 3,727.2 22,029.8 

GABOR 18,408.8 17,142.5 8,532.2 44,083.5 
  

Since all the implementations are done in MATLAB, the cost can be reduced 

significantly once implemented in C/C++. As mentioned earlier, the main benefit of 

clustering is to reduce the number of comparisons in the testing phase thereby reducing 

the computation cost. We observed that the computation cost improves dramatically in 

the testing phase for feature methods with a larger feature vector size like DIFF_16_10 
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(160 bin) and DFT (256 bin) as seen in Figure 3.14. For example – the testing time of 

DIFF_16_10 is reduced more than 2 times with clustering. Even without considering the 

one-time cost like clustering and training, classification using our DIFF based features is 

significantly faster than that using the other feature extraction methods. This shows that 

our DIFF based features are computationally efficient without sacrificing accuracy. 

 

Figure 3.13 Plot of computation cost without clustering 

Figure 3.13 shows the plot of computation cost without clustering. The most 

important time measure is during the testing phase because the training is only a one-

time cost. All of our DIFF methods have lower processing time than other existing 

methods. As seen in figure 3.14 the computation cost decreased dramatically for some 

of the feature methods because during the classification we are comparing less number 

of blocks because of the use of clustering. 
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Figure 3.14 Plot of computation cost with clustering 

3.8  Conclusion 

To improve quality of colonoscopy, research have been conducted investigating 

an ‘automated feedback system’ which informs the   endoscopist   of   possible sub-

optimal inspection during the procedure. One of the basic steps of this system is to 

distinguish non-informative frames from informative ones. Existing methods for this 

cannot classify water/bubble frames (which do not carry any useful visual information of 

colon mucosa) as non-informative frames since they focus on image clarity not image 

semantic. To consider image semantic, we propose a novel image texture feature based 

on accumulation of pixel differences, which can detect water and bubble frames with very 

high accuracy and significantly less processing time. To reduce processing time even 

more, we employ clustering which can reduce the number of time-consuming 

comparisons. The experimental results show the proposed feature can achieve more than 

93% overall accuracy in almost half of the time existing methods take. 
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CHAPTER 4: OVERALL CONCLUSION AND FUTURE WORK 

There are several types of disorders that affects our colon’s ability to function 

properly such as Colorectal Cancer, Ulcerative Colitis, Diverticulitis, Irritable Bowel 

Syndrome, Colonic polyps and other abnormalities. As discussed before, the automated 

procedure quality measurement system can provide Colonic polyp detection only at the 

moment among these disorders. We would like to add a functionality to handle one of the 

important disorders called Ulcerative Colitis. However, it is very difficult to evaluate the 

severity of Ulcerative colitis (UC) objectively because of non-uniform nature of symptoms 

associated with UC, and large variations in their patterns.  

To address this, we objectively measure and classify the severity of UC presented 

in optical colonoscopy video frames based on image textures. To extract distinct textures, 

we use a hybrid approach in which a new proposed method (DIFF) based on the 

accumulation of pixel value differences is combined with an existing method such as LBP. 

Therefore, our contributions are development of a new texture feature that works well for 

‘severe’ and ‘moderate’ UC classes, and to combine this new texture feature with an 

existing feature to achieve significantly better overall accuracy with significantly less 

processing time for all UC disease grade classes. The experimental results show that the 

hybrid method, which can easily be modified for further improvement, already can achieve 

more than 90% overall accuracy. 

Recent data suggests that there is a significant (4-12%) miss-rate for the detection 

of even large polyps and cancers during the colonoscopy procedure. To improve quality 

of colonoscopy, an ‘automated feedback system’ which informs the endoscopist of 

possible sub-optimal inspection during the procedure have been investigated. One of the 
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basic steps of this system is to distinguish non-informative frames from informative ones. 

Existing methods for this cannot classify water/bubble frames (which do not carry any 

useful visual information of mucosa) as non-informative frames since they focus on image 

clarity not image semantic. To consider image semantic, we propose a novel image 

texture feature based on accumulation of pixel differences, which can detect water and 

bubble frames with very high accuracy and significantly less processing time. To reduce 

processing time even more, we employ clustering which can reduce the number of time-

consuming comparisons. The experimental results show the proposed feature can 

achieve more than 93% overall accuracy in almost half of the time existing methods take.   

The results also show that our DIFF based methods are hardly affected by the 

clustering. This is beneficial if we have very large dataset that needs to be trained and 

computation cost is important. Our DIFF based feature with clustering can be extended 

for any computationally intensive real-time systems. Depending upon the nature of the 

textures, different variants of DIFF feature can be used with different size of clusters. Last 

but not the least, the proposed feature method can be applied to any image domains as 

our results illustrated that it works accurately for other types of images as well. 

We plan to extent this image classification into video based severity score 

calculation and shot segmentation. The severity score calculation and shot segmentation 

can help doctors during real-time colonoscopy procedure as well as post procedure 

assessments. Based on the colonoscopy videos, the severity score will help to measure 

the mucosa healing progress in the patients. Severity score calculation can be performed 

for whole colonoscopy video in certain frame per second rate. Various preprocessing 

steps can be applied to discard water, bubble, blurry, and stool frames from colonoscopy 
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video using our existing algorithms. Just like image based classification, each image from 

the video should be divided into number of blocks and feature is extracted from each 

block using proposed single feature or hybrid method involving DIFF and other existing 

methods. K-means clustering can be used for training blocks to reduce the ultimate 

classification cost and evaluation can be done based on KNN classifier. The severity 

score of each class (‘severe’, ‘moderate’, ‘mild’, and ‘scar’) as well as other metrics can 

be generated from each video. Shot detection algorithm can be implemented to segment 

different shots of the video based on the detected image severity. The optimized C/C++ 

code has be written to further improve the computation cost and meet the real-time 

requirements. 

 Based on our extensive experiments and exposure to hundreds of colonoscopy 

videos, we have realized that there are different variety of UC images having different 

textures, colors, orientations, contrasts and illuminations. So the traditional machine 

learning method is not feasible for large number of videos as training should be rebuilt for 

every new set of images. The current deep learning [51] trend seems very promising and 

the results are encouraging especially for image classifications [52]. To improve our 

detection system even further and to keep the system efficient, deep learning method can 

be applied to detect the UC images as well as water bubble images. Especially, the 

effectiveness of UC classification can be improved by using deep learning. We will 

explore deep learning as an extension of our current work.   
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