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Shadows in indoor scenarios are usually characterized with multiple light sources that 

produce complex shadow patterns of a single object. Without removing shadow, the 

foreground object tends to be erroneously segmented. The inconsistent hue and intensity of 

shadows make automatic removal a challenging task. In this thesis, a dynamic thresholding 

and transfer learning-based method for removing shadows is proposed. The method 

suppresses light shadows with a dynamically computed threshold and removes dark shadows 

using an online learning strategy that is built upon a base classifier trained with manually 

annotated examples and refined with the automatically identified examples in the new videos. 

Experimental results demonstrate that despite variation of lighting conditions in 

videos our proposed method is able to adapt to the videos and remove shadows effectively. 

The sensitivity of shadow detection changes slightly with different confidence levels used in 

example selection for classifier retraining and high confidence level usually yields better 

performance with less retraining iterations.  
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CHAPTER 1

INTRODUCTION

Computer vision has been a popular research area in the last decade, applications today

are making their mark in the commercial market, and this makes it increasingly important to

focus on making computer vision systems reliable and e�cient. Background subtraction is

a critical step in many computer vision applications ranging from object tracking to action

recognition, which require accurate foreground objects.

These object may vary from human object to other objects which may need to be

accurately segmented from the background, some prominent examples are cars, bacteria,

blood cells etc. Applications using a video sequence, have to segment the foreground in every

frame, this usually involves saving a general model for the background, which may or may

not update depending upon the algorithm in question. This model is used to segment the

foreground object.

However, the foreground object is usually distorted by non-stationary artifacts and

noises. These noises may be caused by a variety of factors such as moving trees, inaccurate

segmentation algorithm, shadows etc. This poses complications and may result in incorrect

outputs. For instance, if a human segmentation is not accurate it might give incorrect results

in a human pose estimation algorithm.

A most challenging distortion is shadows of the moving object. Due to its nature of

dynamically emerging with objects, which causes regional color changes with respect to the

reference image, shadow is usually misclassi�ed as foreground object or part of it.

Shadows di�er when lighting condition varies. As shadows can change dynamically

with changes in lighting conditions, it is therefore essential to understand how and when

shadow properties change in a video.

Ariel et al. [3] de�nes shadow as a photometric phenomenon which occurs when an
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object partially or totally blocks the direct light source. Shadows can also be static or dynamic

according to [3], static shadows are implicitly handled by many foreground detection algo-

rithms such as [5], as they have a constantly changing model for the background. Dynamic

shadows are those regions which move between consecutive frames, either because the object

moves or because the light source moves.

Shadow can be complex to remove as there are a few issues that need to be handled.

(1) Shadow can be formed from a single or multiple light sources. For single light

sources, it is easier to predict the direction of the shadow with respect to the light

source and the object detected. Whereas in the case of a complex indoor environ-

ment with multiple light sources e�ecting the shadow pattern predicting the direction

of the shadow becomes more complex.

(2) Objects can have shadows casted on themselves by other objects. This situation

can cause problems for color based algorithms as many portions of the objects may

be mis-classi�ed as shadow.

(3) Ambient light scenario (indoor environment with many lights) can cause shadows

of di�erent shade. In indoor situations a single shadow pattern may contain many

gradients of shadow color.

(4) Shadows can be spatially joint to the object which makes it more di�cult to classify

shadows.

There have been many methods developed to handle shadow removal in a variety of

outdoor scenarios, e.g., tra�c monitoring [7] and surveillance [3]. However, these methods

usually assume a single light source (such as the sun) and are facing di�cult in indoor lighting

where multiple light sources combine to produce complex shadow intensity. Research has been

conducted for indoor scenarios [19], in which a manually speci�ed threshold was used.

Shadows in indoor scenarios are usually characterized with multiple light sources that

produce complex shadow patterns of a single object. An example is shown in Fig. 1.1(a). As
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(a) (b) (c)

Figure 1.1. Complex shadow and the background subtraction results. (a) a

frame showing complex shadow of di�erent shades. (b) background subtraction

result. (c) background subtraction with shadow removal.

a result of multiple shadows casting on the wall, part of the shadow appears brighter in color

than the other. Without removing shadow, the foreground object tends to be erroneously

segmented, as shown in Fig. 1.1(b); and with shadow removal the optimal body silhouette

contains no shadow component, as shown in Fig. 1.1(c).

The inconsistent shades of shadows make automatic removal a challenging task; simple

color-based methods are ine�ective and could cause shattered object of interest [19]. Another

issue in shadow removal from videos is time e�ciency. Serving as a preprocessing step

for video analysis, shadow removal shall take little computational time to ensure real-time

performance for the forthcoming processes.

In this thesis, I present a dynamic thresholding and transfer learning-based method for

removing shadows in videos of indoor environments with multiple light sources that generate

complex shadows. This method categorizes shadows into light shadows and dark shadows

based on the color changes induced to the background model. In light shadows, chroma

3



of a pixel has little changes but its intensity is mostly impacted. Hence, a threshold is

dynamically determined to remove light shadows. For dark shadows an online learning method

is proposed to identify the unwanted regions. A model is initially trained with manually

annotated examples and re�ned with the videos on-the-
y.

1.1. Thesis Contributions

The contributions of this thesis are as follows:

(1) Framework for analyzing dark and light shadows in a complex indoor lighting condi-

tion.

(2) Light shadow removal with dynamic thresholding- A dynamic thresholding mecha-

nism is presented, which takes no user input to decide the threshold for the removal

of light shadows.

(3) Transfer learning process to remove dark shadows - A pre-trained classi�er is used

to detect dark shadow pixels. Transfer learning is used to tune the classi�er to the

indoor environment in question.

1.2. Applications

Many current and future applications can bene�t from an accurate shadow removal

algorithm. As background subtraction is an intermediate step in many applications, reduced

noise due to shadows in this step can improve accuracy and e�ciency.

(1) Pose detection algorithms [24] rely heavily on a noiseless human silhouette. Various

types of segmentation and calculations are performed on this silhouette to get esti-

mates of pose in every frame, a removed shadow from the foreground can improve

the accuracy of estimation of these poses.

(2) Automatic surveillance systems [3], usually face the problem when two human ob-

jects appear to be one because of an extended shadow. A shadow removal process

can eliminate this behavior of the system, making it more accurate.
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(3) Many applications face incorrect predictions because of a disjoint shadow from the

body. A disjoint shadow is spatially not connected to the object, in the frame in

question. This causes the system to classify two moving objects instead of one [3].

(4) Shadowed regions also increase the number of pixels to be processed after back-

ground subtraction. Shadow removal will leave the systems with fewer and accurate

foreground to process.

1.3. Thesis Organization

The rest of the thesis is organized as follows:

� Chapter 2 presents the motivation, related work to shadow removal in videos and,

in particular, methods to handle indoor scenarios. It also reviews various methods

and algorithms applied in the system.

� Chapter 3 describes various properties and classi�cations of shadows. These classi-

�cations and properties become the basis of di�erentiating shadows from the fore-

ground object.

� Chapter 4 describes the system in detail. Light shadow removal is explored by

analyzing it's behavior and elaborating on the dynamic thresholding process. Dark

shadow removal is performed by a transfer learning process which adapts to the new

video by building on a pre-trained classi�er.

� Chapter 5 consists of evaluation and experimental results on complex shadow pat-

terns.

� Chapter 6 describes conclusion and future work.
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CHAPTER 2

BACKGROUND

2.1. Motivation

Human Pose tracking and body part segmentation has been an area of extensive

research in the past few years. Human Pose tracking refers to tracking the pose of a human

object as the object changes position and pose. Body Part segmentation is an intermediate

step to pose recognition. It tries to segment the human body in question, into separate parts

such as head, torso, legs etc.

Research on body part segmentation has been done on both 2D and 3D camera

systems. 3D camera systems generally are accompanied with an additional sensor to calculate

depth of the object. This makes it trivial to remove shadows and detect object occlusions.

On the other hand with a 2D camera system, it becomes increasingly problematic to handle

some issues such as,

(1) Shadows casted when a human object walks around. These shadows are classi�ed

as foreground by background subtraction algorithms.

(2) It is hard to detect or predict occlusion in a 2D camera system, due to the absence

of depth data.

(3) 2D camera systems might need initial calibration to judge the distance of the object

from the camera.

2.1.1. Human energy consumption calculation with a 2D camera system

A proposed application of human body segmentation using a 2D camera system is

human energy calculation. Following is the overall objective of the system.

(1) A system to track energy cost of human activity using 2D cameras.

(2) The proposed system should be computationally inexpensive, i.e. it can run and

provide feedback in real time.
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(3) System should track individual body parts such as head, hands, torso, etc.

(4) System should handle occlusions of human body parts by predicting their location.

The proposed framework for the above approach is as follows,

(1) The system will use two 2D cameras to track a human object, the purpose of two

cameras is to handle total occlusion of some body parts.

(2) Human body parts would be segmented in an initialization phase and features would

be captured for the same.

(3) Movement of individual body parts would be tracked by a tracking algorithm in

consecutive frames.

(a) (b)

Figure 2.1. A�ect of shadow on human object segmentation (a) Frame with

shadow classi�ed as foreground object (b) Foreground object separated from

shadow.

Background subtraction on each frame is required both for segmentation as well as

for tracking in most algorithms, this is done to accurately segment the foreground object

before segmenting or tracking. As mentioned in the previous chapter, a very prominent noise

element in foreground detection is the presence of shadows, Fig. 2.1 shows foreground object

with shadow and shadow removed. Shadows generally accompany the moving object as do

not have a �xed gradient, shape or size.
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My thesis is focused on the problem of removing shadows from foreground object with

focus on complex lighting conditions of indoor environments. Following are the objectives of

my thesis,

(1) Remove shadows from real time videos.

(2) The assumed lighting condition would be complex, i.e unpredictable number of light

sources, i.e a typical indoor environment.

(3) Presence of static objects with shadows, some of which may combine with a moving

cast shadow to create more complex patterns.

(4) Low computational complexity.

2.2. Related Work

Shadow removal is a challenging problem in both still images [2,12] and videos. Al-

though methods that deal with still image can be applied to video frames, their performance

degrade and the computational complexity is usually too high for practical applications [6].

To remove shadows from videos, various color models have been explored to charac-

terize their dynamic changes. Cucchiara et al. [9] proposed an HSV color space model for

shadow removal from videos. The idea is that shadow changes the hue and the saturation

components in a certain range while reduces the brightness. The thresholds are derived from

the average image luminance and gradient. Gallego and Pardas [10] implemented a Bayesian

method using brightness and color distortion model for shadow removal.

Amato et al.[1] developed a method that employs local color constancy. The values

of the background image are divided by the values of the current frame in the RGB space.

The method assumes that in the luminance ratio space, a low gradient constancy is present

in all shadowed regions due to a local color constancy. A chroma di�erence model in RGB

space was also developed in [5].

A 3D cone-shaped illumination model was proposed in [13] for background subtraction

with shadow removal in indoor surveillance. The work explores the challenges of illumination
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changes in indoor environments. Nghiem et al. [19] employs chromaticity consistency, texture

consistency and range of shadow intensity to remove shadows. However, the the sensitivity

and e�ciency are in question [21]. Homogeneity and texture are also employed in shadow

detection and removal.

Asaril et. al. [4] developed a shadow removal method based on the homogeneity

property of the shadow. Thresholding and boundary removal are used for removing shadows

followed by a validation step that checks the percentage of area that has been removed.

Bian et al. [7] implemented a method that uses texture autocorrelation to extract the

shadow of a vehicle. Later statistical discrimination is used to analyze the extracted portions.

Error correction is performed using integer wavelength transform.

Lu et al. [16] proposed a shadow removal method based on the direction of shadows

using patch based comparison on geometrical properties. The algorithm assumes that the

shadow will start at the edge of the object. This is true if the whole object is visible from

the camera, otherwise the chances of a disjoint shadow arises. Disjoint shadows are shadows

which are not connected spatially to the body.

Jung [15] proposes a background subtraction technique coupled with geometrical con-

straints to detect and remove shadows. A statistical model consisting of rations of neighboring

pixel values is used to detect and remove shadows. Morphological post processing is used to

eliminate pixels which have been wrongly classi�ed.

Learning-based approaches have been developed to model and remove shadows. Wang

et al. [22] proposed a dynamic conditional random �eld model for shadow segmentation in

indoor video scenes that uses intensity and gradient features. Temporal and spatial depen-

dencies are uni�ed by the conditional random �eld. An approximate �ltering algorithm is

derived to recursively estimate the segmentation �eld from the observed images.

Martel-Brisson and Zaccarin [17] proposed a Gaussian mixture model learning algo-

rithm for detecting shadows. Physical properties of light sources and surfaces are employed
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in order to identify a direction in RGB space at which background surface values under cast

shadows are found. However, the method is a�ected by the training phase and the compu-

tational complexity results in a long learning time.

Joshi and Papanikolopoulos [14] proposed a dynamically adapting algorithm that ap-

plies co-training to create a classi�er with a small number of manually labeled data. Semi-

supervised learning helps in adapting to new environments. Intensity, color and edge features

are used to train a support vector machine for shadow removal. Qin et al. [20] employed a

clustering method to remove shadows. However, complex indoor lighting conditions have not

been discussed at length.

Patch-based strong shadow removal is performed by �rst classifying edges as shadow

edges and non-shadow edges in [23]. This algorithm tries to detect strong shadow edges to

classify a shadow edge classi�er, followed by spatial patch smoothing.

Chen, Aggarwal, et al. [8] propose a method to replace shadow regions with unshaded

background pixels. Spatial constraints are used to improve the shadow detection results.

Characteristics of shadow are represented by various descriptors, which in turn help to resolve

the run time classi�cation. Assumption here is that human and shadow region are connected

components.

Barnich et al. [5] proposes RGB and chroma di�erence to �x the moving object

shadow problem. [18] suggests that the texture of the shadow is unchanged when compared

to the background. This is used to estimate shadow e�ected areas.

2.3. ViBe

ViBe is an adaptive technique to segment foreground objects. It used a model for

the background which updates as the frames of the video move on. The update process is

unique as it does not replace the oldest value but does it randomly. We choose ViBe as our

background subtraction algorithm as it is e�cient and accurate. This section describes in

brief the working of ViBe.
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ViBe starts by de�ning a model which contains samples for every pixel in the back-

ground, in experiments the sample size N is taken as 20. As frames are processed in a loop,

each pixel of the new frame is compared with the model on the basis of a radius R. If the

pixel value falls below the de�ned radius, the pixel is classi�ed as a shadow pixel.

Classi�ed shadow pixels and randomly chosen neighboring pixels are then updated in

the de�ned model. The update probability is 1/16.

Following are some of the key advantages of using ViBe as a background subtraction

algorithm,

(1) Fast computation speed, downscaled version can go upto 350 frames/sec on a native

implementation [5].

(2) Better resilience to camera motions by a sub-sampled update process on neighboring

pixels.

(3) Faster ghost suppression caused due to lighting changes or removal or static objects.

(4) Resilience to noise.

2.4. k-Nearest Neighbors

k-nearest neighbors algorithm is a machine learning algorithm which is non-parametric,

instance based learning. It is generally used for both regression and classi�cation. The input

is a set of feature vectors and associated class labels. The output is decided by a majority

vote of the k neighbors. For instance if the value of k is 2, then the nearest 2 neighbors are

considered. Another user de�ned input in the algorithm is the distance metric. MATLAB

2015a de�nes the following distance metrics,

(1) 'euclidean'

(2) 'seuclidean'

(3) 'cityblock'

(4) 'chebychev'

(5) 'minkowski'
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(6) 'mahalanobis'

(7) 'cosine'

(8) 'correlation'

(9) 'spearman'

(10) 'hamming'

(11) 'jaccard'

Figure 2.2. kNN plot of �sheriris dataset with minkowski and chebychev dis-

tance. k is kept as 11.

Figure 2.3. Sample frame with k=11 and chebychev distance.
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Figure 2.4. Sample frame with k=11 and minkowski distance.

The choice of k and the distance a�ects the output of a particular application sig-

ni�cantly, Fig. 2.2 shows the di�erence between minkowski and chebychev. This is due to

the fact that as the number of neighbors increase the system has an overhead to calculate

more distances for each sample, also it is worthy to note that the computation overhead also

increases with the increase in samples. The above variation in output is also evident in our

experiments later, for instance Fig 2.3 and 2.4 show the di�erence in the foreground mask

with chebychev and minkowski distance respectively. Detailed evaluation will be discussed in

the chapter 5.

2.5. Entropy and Shadows

This section gives a brief overview of entropy calculation and how it relates to the

shadow portions. Entropy is a measure of randomness that characterizes the texture of a

grayscale image. If an image has a single plane color then the entropy is zero, as the texture

of the image increases with more variations the entropy value increases.

We use entropy as one of the features in our transfer learning process. Entropy de�nes

the randomness of a grayscale image. For instance if in a grayscale image all gray values are

same, the entropy is zero. In the current implementation entropy has a dual purpose when

shadows are concerned.

(1) Entropy of a shadow portion if not zero, lets us to believe that the shadow in question

has di�erent gradients to it, and can be assumed to a complex shadow pattern. We
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(a)

(b)

Figure 2.5. Clip of complex shadow from a candidate frame. a) is the original

frame with the red box for the clipped region and b) is the zoomed in clipped

region.

use this to prove and shadow that the shadows in our test videos are indeed complex

with varying gradients. Fig. 2.5 shows a clip of a complex shadow region which

resulted in an Entropy value of 4.62 proving that the value set represents a changing

gradient.

(2) Entropy of a shadowed region can also be used to di�erentiate between a shadow

and a human object.
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CHAPTER 3

SHADOWS AND ITS PROPERTIES

Before segmenting shadows from video sequences, it is important to understand how

and when shadow is casted and what properties can be exploited in order to remove shadows

from video sequences. Shadows exhibit properties both with respect to the light source and

the object which is casting the shadow. The hue and intensity of a region casted by shadow

may vary, largely due to the type/number of light sources and the surface the shadow is

casted on.

Figure 3.1. Shadow gradients in the form of umbra and penumbra.

Shadows can be broadly classi�ed based on the light source and physical properties it

has.

(1) Light source - Light plays a very important role on how a shadow behaves in an

environment, Fig. 3.1 shows in general how dark and light regions of shadows are

created. If the source is single and �xed we get a predictable pattern of shadow when

an object moves into the camera view. Whereas if a shadow is casted by a mixture of

di�erent light sources, such as a typical indoor environment, more complex shadows

are formed in such cases. Light sources can be,
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(a) Static - Light source does not move rapidly, sun can be considered a static

source in computer vision applications as the change is not rapid, if weather

conditions are stable. Typical static environment is an indoor room with con-

stant light.

(b) Dynamic - Light sources move and cause rapid changes in shadow gradient. If

we have a cloudy day and the suns intensity is constantly changing, or an indoor

environment where a light source malfunctions and switches on and o�.

Light sources can also be,

(a) Single - The source of the light is singular, i.e like the sun or a room with one

light source.

(b) Multiple - There are multiple light sources in a complex arrangement. Examples

are any common indoor environment like a hallway with multiple light sources.

(2) Physical properties - According to [1] shadows can be classi�ed according to their

physical properties,

(a) Shadow types -

(i) Umbra - Darkest part directly a�ected by the object and the light source.

(ii) Penumbra - Mixture of umbra with addition to some light. Has lighter

saturation than umbra.

(iii) Overlapping - Overlapping of the above two, commonly caused by ambient

light.

(b) Spatial property

(i) Connected - Shadow is spatially connected to the object in question.

(ii) Disconnected - Shadow is not spatially connected the object.

3.1. Shadow Properties

Amato et al. classi�es the shadow removal algorithms by the following properties that

are observed,
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(1) If a shadow is casted on pixel px;y , the intensity of px;y will decrease by a factor

which is proportional to the lighting conditions. On the other hand theoretically the

Hue of p(x; y) should not change. This is a very important property which will a�ect

how we come up with a solution to shadow removal.

(2) A region of the background is classi�ed as a shadow region, if the texture of the

region is similar to that of the background.

(3) If we have prior knowledge of the background and lighting conditions we can deduce

shadows by combining color, shape and size of casted shadows.

3.2. HSV Color Space

Figure 3.2. HSV representation created in MATLAB.

HSV (hue- saturation-value) is a popular model used in computer graphics. It is a

cylindrical representation of the RGB color space, Fig. 3.2 is a generated representation of

the model.

(1) Hue is represented by the angle around the central axis.

(2) Saturation is the distance from the axis.

(3) Value is the magnitude of the central axis.
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Figure 3.3. Shadow map for light shadows.

Figure 3.4. Shadow map for dark shadows.

Shadow regions are generally represented by minimal change in hue and value. For

shadows the hue should theoretically be zero, but in practice we get a small change for light

shadows and a signi�cant change for dark shadows. Value on the other hand has a property of

decreasing the intensity of the region, this decrease is also small for light shadows. Saturation

on the other hand does not provide a de�nitive di�erentiation between the object and shadow.
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Figure 3.5. Hue di�erence in consecutive frames.

Figure 3.6. Hue di�erence from averaged model.

3.3. Variance in Hue and Intensity Di�erence

Hue and intensity values are critical in predicting if a particular pixel or region in

a speci�ed image/frame is shadow. Theoretically if there is no apparent change in the

foreground, the hue and intensity values should not change, however in practice this is not

the case.

Fig. 3.5 shows the di�erence between the hue values among two consecutive frames

with no foreground object or light change. Such changes often, are caused by the hard-
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ware which captures the frame, i.e. di�erent cameras can result in di�erent changes in hue

di�erence.

One approach to standardize such errors is to make the appropriate comparison with

an averaged model instead of a single frame. Fig. 3.6 show the di�erence between hue values

of a frame and an averaged hue model of the background, which in this case contains 20

samples for each pixel in the frame.
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CHAPTER 4

METHODOLOGY

Shadow is caused by the object that blocks a source of light. Depending on the position

of imaging device, light source and the object in question, shadow appears in di�erent shapes,

which is complicated when multiple light sources are present.

Fig.4.1 illustrates an exemplar frame of an indoor human tracking scenario. The

original frame is shown in Fig.4.1(a) and the segmented result is shown in Fig.4.1(b). In this

result image, shadows are separated into two kinds: light shadow and dark shadow. In this

�gure, the human silhouette is depicted in white, the dark shadow is in green, and the light

shadow is in blue.

Light shadow usually occurs when the human subject is at a distance to the background

wall or there exists other light source to brighten that part of the shadow. Dark shadow, on

the other hand, occurs with total (or near total) obstruction of light. The great variation

in the shadow intensity makes it di�cult to di�erentiate from background and foreground

object.

Since light shadows alter the background by slightly dimming its brightness, the hue

of the a�ected pixels has little changes, whereas their intensity decreases proportional to the

lighting conditions [3]. Hence, given the background model B, the light shadow is de�ned in

the HSV color space as follows:

Sl = fI(x; y) j jH(I(x; y))�H(B(x; y))j < �h and

V (B(x; y))� V (I(x; y)) < �ig(1)

where I(x; y) denotes an image pixel, H(�) denotes the hue component in the HSV

space, and V (�) denotes the intensity component in the HSV space. �h and �iare the margins

for the hue and intensity di�erences.
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(a)

(b)

Figure 4.1. An example of shadows in an indoor scenario.

Figure 4.2. Dynamic thresholding and transfer learning-based shadow removal method.

Dark shadows greatly alter the background color, which impact the hue, intensity, and

saturation of the a�ected pixel. We can de�ne the dark shadow following a similar form as
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Figure 4.3. Distribution of light shadow pixels

Figure 4.4. Distribution of dark shadow pixels.

Figure 4.5. Distribution of background pixels

23



Figure 4.6. Distribution of foreground object pixels.

Eq. (1); yet this de�nition is also applicable to the true foreground object in dark colors.

That is, the color di�erence is an unreliable feature to di�erentiate dark shadow from the

rest of the video frame. Instead, the color range and texture provide fundamental features

but need to be aligned with the video context.

This thesis proposes a dynamic thresholding and transfer learning (DyTaTL) method

that deals with light and dark shadows di�erently based on the aforementioned properties.

The framework of the method is shown in Fig. 4.2. A video frame is processed with back-

ground subtraction and results in a foreground silhouette that encloses the moving human

subject and possibly a variety of shadows in di�erent shade.

Based on the color variation of the foreground object, thresholds are dynamically

decided to remove the light shadows. Using annotated video frames as training examples, a

classi�er is developed as the initial model for the dark shadows in the video under processing.

Using the spatial correlation of image pixels, the mostly likely neighboring pixels are recruited

as training examples to update the classi�er.

4.1. Light Shadow Modeling and Dynamic Thresholding

As de�ned in Eq. (1), light shadow changes only the intensity of a pixel. Yet, due to

noise, the hue (i.e., color) of a pixel varies slightly over time. Hence, Eq. (1) is relaxed to

24



model such variation with a margin �h for the hue di�erence as follows:

Sl = fI(u; v) j V (B(u; v))� V (I(u; v)) < �i(2)

s.t. jH(B(u; v))�H(I(u; v))j < �hg

In this model, the intensity of a shadow-a�ected pixel decreases, and the di�erence

is within �i , subject to the maximum hue change of �h induced by noise. Hence, �h can be

estimated by computing the average hue di�erence of pixels in the background:

(3) �h =
1

QT

∑
I(u;v)

∑
t

jH(It(u; v))�H(B(u; v))j

where I(u; v) 2 IB, and IB denotes the set of background pixels in frames Ip through

Ip+T . Q denotes the total number of background pixels. The superscript t denotes the

frame index and is in the range of fp; p + 1; : : : ; p + Tg. To compute �h for a video, the

candidate pixels are determined with background subtraction. Only those pixels that are in

the background in the temporal range T are used.

Alternatively, if there are many initial frames that contain only stationary objects (i.e.,

background), the entire frame can be used in the estimation of �h.

Following the above idea, the intensity di�erence of the background pixels is estimated

as follows:

(4) �i =
1

QT

∑
I(u;v)

∑
t

(V (B(u; v))� V (It(u; v)))

Since shadow always reduces the brightness, it is plausible to assume V (B(u; v)) �

V (I(u; v)) > 0. This intensity di�erence accounts for the variations induced by the imaging

factors such as noise, quantization error, etc. (as shown in Fig. 4.5) It is also representative
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to the changes made by light shadow. Note that Fig. 4.5 depicts a broad range of hue

di�erence for the background pixels.

Given that the background is stationary, it is expected that both the intensity and

hue di�erences are fairly small. The existence of large hue di�erence is caused by noise and

quantization error. For a typical video frame with 169,016 background pixels, the number of

pixels with hue di�erence greater than 0.2 is 2,798, greater than 0.5 is 2,765, and greater

than 0.9 is 1,837. It is clear that the percentage of pixels with large hue di�erence is very

low (in the range of 0:01%).

4.2. Transfer Learning for Dark Shadow Removal

Dark shadows are portions in a moving cast shadow that show a greater increase in

Hue di�erence than light shadows. Removing these with a second layer of thresholding will

impact the foreground object with many misclassi�cations.

We propose a second �ltering of shadows with the help of a classi�er. A pre trained

classi�er is used to determine if a given pixel is a dark shadow or otherwise. This however is

not true for light shadows as training di�erent gradients of light shadows might lead to lower

precision during classi�cation.

The classi�er also adapts to di�erent indoor conditions by having an initial on-line

training to learn the new environment, it should be noted here that this training is only

required when the indoor scene changes completely. Hue, Intensity, RGB and Entropy are

used as features for the training phase.

(1) Hue and Intensity Hue and Intensity values for each pixel px;y which is a shadow is

use. As absolute values of both may cause misclassi�cations on the object itself (if

the object has dark portions) we use the absolute di�erence in Hue and Intensity.

This di�erence is computed with respect to the background model.

(2) RGB Absolute RGB values are used to increase the accuracy of the classi�er,

particularly in cases where Hue and Intensity di�erence on the object are similar to
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the shadow pixels.

(3) Entropy Entropy is used to di�erentiate objects which have similar RGB values to

shadows. Entropy of a shadow pixel px;y is always lower that the object body. Also,

this feature is more accurate because we do not have signi�cant change in intensity

on the shadow portions as light shadows have been removed through thresholding.

In contrast to light shadow, dark shadow introduces much brightness and hue changes,

which makes it di�cult to be separated from the foreground object using thresholding method

(as shown in Fig. 4.4 and 4.6). By increasing the threshold for intensity and raising the

tolerance factor for hue variation, erroneous removals of foreground object is likely to happen.

To address this issue, supervised learning methods have been used [14,17].

Many machine learning methods work well under an assumption that the training and

testing data are drawn from the same distribution. When this distribution changes, the

existing models need to be rebuilt from scratch, which is expensive and ine�cient.

The open challenge is the e�ciency and adaptivity, that is, to be able to quickly

process videos that are in di�erent lighting conditions from the training examples.

To remove dark shadows, the idea of transfer learning is adopted which is based on k-

Nearest Neighbor (kNN) classi�er. The learning method adopted is a general model H for dark

shadow is �rst developed using manually segmented video frames. Let X = fx1; x2; : : : ; xNg

denote a set of training examples, where each xi is a feature vector of a pixel, and Y denotes

the class label f0; 1g with 1 denotes dark shadow pixel and 0 denotes non-dark shadow pixel.

Hence, we have

H : X ! Y:

This model H is used as the base classi�er for videos. For each instance in X, a set of

features are extracted from the video frame as follows:

Intensity and hue di�erence (di and dh)

Di�erent from background noise and light shadow, dark shadow introduces much greater
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changes to the intensity and hue of a pixel. In particular, the brightness of a shadowed area

is reduced. These di�erences are computed with respect to the average intensity and hue of

the background model:

di(u; v) = �H(B(u; v))�H(I(u; v));

dh(u; v) = �V (B(u; v))� V (I(u; v)):

Pixel color in RGB space (r , g, and b)

Comparing to the intensity and hue di�erence, RGB color gives an approximate range of the

shadow, which complement the di�erence feature.

Local entropy (e)

Local entropy is used to di�erentiate the foreground object that might have similar color to

the shadows:

e(u; v) = �
∑
i

pi logpi ;

where pi is the probability of a color in a M by M window. Due to the greater homogeneity

of the shadow region, its entropy is lower than that of the object.

Hence, each instance xi 2 X consists of the above six components: fdi ; dh; r; g; b; eg.

Note that each feature component is normalized by its respective dynamic ranges to avoid

learning bias induced by magnitude. Also, to overcome high storage requirements and low

e�ciency in kNN algorithm, we adopt the reduced nearest neighbor method [11] to keep the

model concise.

When a new video is processed, H is applied to identify dark shadow pixels in the video

frames, and the neighboring pixels of the most con�dent shadow are recruited as training

examples to update this model, which make H �ne-tuned to the variations of the new video

such as brightness and tone changes. Our assumption is that the close neighboring pixels of

a dark shadow pixel is most likely to be a dark shadow pixel as well. In addition, any new

example must satisfy the minimum intensity and hue di�erence as de�ned in Eq. (4) and
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(3). Hence, the new examples I(u; v) must satisfy the following criteria to be selected for

updating the base classi�er H :

(5)


D(I(u; v); Î(u; v)) � �d

V (B(u; v))� V (I(u; v)) > �i

H(B(u; v))�H(I(u; v)) > �h

;

where Î(u; v) is a dark pixel with high con�dence and �d is the neighbor distance.

Another issue is when to update classi�er H with pixels from the new video. Shadows

are not necessarily present as the video starts. In DyTaTL, the algorithm starts re-training

process when there are su�cient number of dark shadow pixels identi�ed in a video frame,

and the training process continues until there is very few pixels satis�es the criteria in Eq. (5).

4.3. Algorithm

Algorithm 1 presents the DyTaTL learning-based dark shadow removal method. In

this, � is a boolean indicator that controls if re-training of H is performed. It is initialized to 1

and set to 0 when there is no new examples identi�ed in the current video frame classi�cation.∑
i yi gives the total number of dark shadow pixels and �s is the minimum number of dark

shadow pixel to perform classi�er update. Set S holds the new training examples and is

initialized with an empty set. Given a dark pixel, an instance is added to S when it satis�es

Eq. (5). Function C(�) gives the con�dence of the prediction of an instance, and the minimum

con�dence of a dark pixel to serve as a start point of �nding new examples is �c .

A (h; w;N) dimensional model is maintained for the hue values of the background,

where h and w are the height and width of each frame in the video sequence, N is the number

of samples to be stored in the model, we choose N=20 which is the same for the background

model described in [5].

First each pixel in the mask that is classi�ed as a foreground, is checked for its Hue

di�erence with the hue model, this value along with the intensity di�erence of that pixel is
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Algorithm 1 Transfer learning-based dark shadow removal.

1: Input: video V and the base classi�er H

2: Output: an image map Î of dark shadow

3: �  1

4: for t = f1; 2; : : : ; Tg do

5: Extract features from image It 2 V : It ! X,

where X = fx1; x2; : : : ; xNg and xi = fdi ; dh; r; g; b; eg

6: Apply H: X ! Y

7: if
∑

i yi > �s and � = 1 then

8: S  ;

9: for all xi : H(xi) = 1 and C(xi) > �c do

10: Find neighboring pixel xj within distance �d

11: if xj satis�es Eq. (5) and H(xj) 6= 1 then

12: S  S [ xj

13: end if

14: end for

15: if jSj > 0 then

16: Update H with examples in S

17: else

18: �  0

19: end if

20: end if

21: end for

�ltered through thresholding. �Hue and �Intensity are the two dynamic thresholds that are

used. This step removes the light shadows which had been classi�ed as foreground.

For removing dark shadows, a kNN based classi�er is chosen which uses training data
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from a varied set of indoor shadow patterns. In the initialization phase the transfer training

module collects speci�c samples to add training data to the existing classi�er. These speci�c

samples of pixels are relevant and speci�c to the indoor environment in question.

The process starts by �rst identifying dark shadows with the current training data, for

each pixel px;y which is classi�ed as shadow by the existing model all neighboring pixels which

are not classi�ed as shadows are considered as a part of speci�c samples. After the speci�c

samples are collected over the period of fn frames, the classi�er is retrained and transfer

learning stops.

The transfer learning in the initialization phase starts when the pre trained classi�er

gives at least �s pixels as shadow and the object in question has �o pixels at a minimum.

After such a detection is reached the on-line training will continue for fn frames.
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CHAPTER 5

EXPERIMENTAL RESULTS

5.1. Experimental Data and Settings

To evaluate the method, 6 indoor videos in rooms and corridors were acquired using

two cameras (camera on an iPhone 6 and camera on an ASUS laptop) with di�erent lighting

conditions. Table 5.1 lists the properties of videos used in experiments, and exemplar frames

are depicted in Fig. 5.1.

Table 5.1. Videos acquired for experimental evaluations.

Color Frame Lighting

Videos Depth Rate Resolution Condition

A 24 30 320 � 568 Bright

B 24 30 320 � 568 Moderate

C 24 30 320 � 568 Dim

D 24 30 320 � 568 Bright

E 24 30 720 � 1280 Moderate

F 24 30 720 � 1280 Variable

During the implementation, ViBe [5] is adopted as the background subtraction method

for its simplicity and e�ciency. However, DyTaTL method can be combined with any similar

method for shadow removal from videos. In ViBe, each pixel in the background model consists

of a set of values that describe the possible color range, which is updated randomly in the pro-

cess of background subtraction. The size of this set is suggested to be 20 based on empirical

evaluations of the e�ciency and accuracy [5], which is adopted in the implementation.

In the experiments, a minimum number of dark shadow pixels in a video frame (�s) is

used to control if and when the classi�er retraining starts, and this threshold is set to 300.

When selecting pixels as new training examples, dark pixel con�dence (�c) is 90%. For a
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 5.1. Exemplar frames from testing videos. (a)-(f) correspond to the

videos listed in Table 5.1.
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kNN classi�er with k = 11, this translates to a positive majority vote of 10 : 1 or 11 : 0.

And pixels in the 4-neighborhood, i.e., �d = 1, of the most con�dent dark pixel are candidate

training pixels. The distance metric of kNN classi�er is Euclidean distance.

Fig. 5.2 illustrates exemplar frames of shadow removed foreground segmentation re-

sults. The left column depicts the original frames from videos; the middle column depicts the

background subtraction results using ViBe method; the right column depicts the shadow re-

moved foreground segmentation results using DyTaTL method. It is clear that when shadows

are present the foreground object is greatly distorted in the background subtraction results.

The shadow caused erroneous foreground regions could be connected to or discon-

nected from the human silhouette as well as vary in size and shape. It is demonstrated that

DyTaTL method successfully removes the shadows and introduces little distortions to the

foreground object. Note that there are voids (dark pixels) inside the human silhouette or

imperfect foreground segmentation in the �nal results, which are, however, inherited from

the background subtraction outcomes. Also shown in these examples is that the lighting con-

ditions in these video frames are clearly di�erent and hence the brightness of shadow varies.

DyTaTL method is able to adapt to the videos and identify shadows correctly.

5.2. Accuracy Analysis

Since evaluation of the performance of shadow removal is in question, it is needed to

have reference images of shadows only. However, it is extremely challenging to delineate the

shadow region in a video frame even for manual tracing. Alternatively, the ground truth was

prepared with images of human silhouette. Another consideration is to exclude errors from

the background subtraction process. Due to noise and similar color of human �gure to the

background, the output of background subtraction usually contains erroneous segmentation.

To suppress the impact of such error to the evaluation of shadow removal, ground

truth is based on the output of the background subtraction procedure that excludes the

shadow areas by manual tracing on the resulted foreground object. Fig. 5.3 depicts a few
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(a) (b) (c)

Figure 5.2. Exemplar results. (a) are the original video frames. (b) are the

background subtraction results using ViBe. (c) are the shadow removed results

using DyTaTL method.
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examples of ground truth of human silhouette. Fig. 5.3(c) depicts a ground truth frame that

contains errors (black pixels in the upper body) from the ViBe method [5]. In the experiments,

60 reference images were created with manually segmented human silhouette, among which

25 contains very little shadows and 35 contains signi�cant amount of light shadows, dark

shadows, or mixture of both.

(a) (b)

(c) (d)

Figure 5.3. Ground truth of human silhouette. (a) and (b) are the ground

truth images with little shadows. (c) and (d) are the ground truth images with

signi�cant amount of shadows.

A key factor for dark shadow removal is the local entropy that di�erentiates grayish or

dark foreground object from the shadow. Table 5.2 lists the average sensitivity and speci�city

and the corresponding standard deviation of detecting dark shadows using three window sizes:

M = 3; 5; and 7. Experimental results show that the detection accuracies using these three

window sizes are very close: 96:9%, 96:9%, and 96:8% for M = 3; 5; and 7, respectively. In

comparison, the performance of detecting dark shadows is examined in frames with a small

amount of shadows and the ones with signi�cant amount of shadows separately. This is be-
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cause the much larger number of non-shadow pixels could overwhelm the overall performance

when the shadow pixels are limited. The speci�city for all cases is above 98% with very little

variations (less than 2% standard deviation).

The sensitivity, however, varies greatly, especially for the small shadow cases. For

frames with small shadow regions, the sensitivity is at 58.5% for window size of 3 by 3 and

is at 48.1% for window size of 7 by 7. However, for frames with large shadow regions, the

sensitivity achieves 88.3% and 87.1%, respectively. The much lower sensitivity for the small

shadow case is mostly due to the small denominator in computing sensitivity, which also

makes the result unstable as shown in the standard deviation. It is evidential that window

size of 3 by 3 exhibits the best performance for both small and large shadows. Hence, we use

M = 3 throughout the rest of the experiments.

Table 5.2. Average sensitivity (Sen.) and speci�city (Spe.) of classifying shad-

ows with di�erent window sizes for entropy calculation. The values in paren-

thesis are the corresponding standard deviation.

Shadow 3 by 3 5 by 5 7 by 7

Region Sen. Spe. Sen. Spe. Sen. Spe.

Small 58.5% 98.3% 55.2% 98.5% 48.1% 98.6%

(36.1) (0.9) (34.6) (0.7) (33.2) (0.7)

Large 88.3% 98.2% 87.6% 98.2% 87.1% 98.1%

(5.5) (1.5) (5.8) (1.6) (6.2) (1.8)

Table 5.3 lists the average sensitivity and speci�city of shadow detection with di�er-

ent number of neighbors in kNN classi�er. The results with small shadow regions exhibit

much lower sensitivity with great variation compared to the cases with large shadow regions.

However, the disparity of sensitivity with respect to the number of neighbors is trivial (within

2%). In addition, the average accuracy regardless of the shadow size is about 97%.

37



In general video frames usually contain much more non-shadow pixels and our selection

of k shall aim to maximize the correct detection of shadow pixels, i.e., largest sensitivity.

Based on this criterion, k = 15 yielded the greatest overall average sensitivity of 76.5%.

Table 5.3. Average sensitivity (Sen.) and speci�city (Spe.) of classifying shad-

ows with di�erent number of neighbors in kNN classi�er. The values in paren-

thesis are the corresponding standard deviation.

Shadow k = 7 k = 11 k = 15

Region Sen. Spe. Sen. Spe. Sen. Spe.

Small 59.3% 98.5% 58.5% 98.3% 58.4% 98.2%

(37.6) (0.8) (35.1) (0.9) (35.7) (1)

Large 87.3% 98.4% 88.3% 98.2% 88.6% 98.1%

(5.6) (1.4) (5.5) (1.5) (5.3) (1.5)

5.3. Classi�er Retraining

In experiments, four frames from two videos were used and selected 4221 dark shadow

pixels and the equal number of non-dark shadow pixels as the training examples to create a

base kNN classi�er, which is then applied to the process of the other videos. The retraining

process starts only if there are signi�cant number of dark pixels (i.e., �s) identi�ed by the

base classi�er (or the updated classi�er). However, the retraining can be conducted in two

means: continue for a certain number of frames or retain the classi�er only if there are a

signi�cant number of dark shadow pixels in a frame. In the �rst case, the retraining ends at

some speci�c number of iterations.

By adjusting the maximum number of frames, the training process is easily controllable.

However, it could run into problems in that the subsequent frames may contain no dark

shadow pixels, and hence the classi�er is not fully adapted to the video. Fig. 5.4 depicts

the average number of new training examples recruited to update the base classi�er in the
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early stage of processing a new video. The maximum number of frames used is 100. The

error bar marks the standard deviation among the trainings in all videos. The average clearly

shows the declining number of new examples recruited for retraining, which implies a training

convergence.

Figure 5.4. The average number of new training examples recruited to update

the base classi�er in the process of a new video. The error bar shows the

standard deviation among testing cases.

Alternatively, the retraining process continues until there are no additional updates. In

this case, all frames throughout the entire video that contain the minimum number of dark

pixels will be involved and the retraining process could end any time. Fig. 5.5 illustrates the

number of new examples recruited in the process of videos using con�dence levels greater than

50%, 60%, 70%, 80%, and 90% from top row to bottom row, respectively. Note that the

x-axis gives the training iterations instead of the continuous frame index. It is clear that when

higher con�dence level is used in example selection the training process completes sooner.

Di�erent from the previous strategy, the number of new examples shows no declining trend.

However, the training process takes much shorter iterations especially when high con�dence

is used.

Table 5.4 lists the average and peak number of new examples in the retraining process.
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(a) Video A (b) Video B (c) Video E (d) Video F

Figure 5.5. The number of new training examples recruited to update the base

classi�er throughout the entire video using di�erent con�dence.

Table 5.4. Average new examples recruited for classi�er updates.

Con�dence Level

Videos 50% 60% 70% 80% 90%

Average Video A 269 263 264 256 237

Number Video B 288 303 272 267 257

of New Video E 155 146 199 188 230

Examples Video F 209 206 194 186 210

Peak Video A 641 569 627 536 452

Number Video B 580 564 485 462 466

of New Video E 374 370 539 579 561

Examples Video F 411 402 376 353 354

40



The average number of new examples recruited changes very little across all con�dence levels.

Given that the retraining process with higher con�dence runs shorter, the total number of

new examples recruited from the video is less. The peak number of new examples, on the

other hand, decreases when high con�dence is used. This is mostly due to the stringent

condition applied to the example selection.

The average performances of shadow removal using these con�dence levels are listed in

Table 5.5. The speci�cities in all cases are very close and are at 98.2% with small variations.

The sensitivities change slightly and when the con�dence level is at 100% the retrained

classi�er exhibits the best sensitivity at 76.6% with a standard deviation of 27.0.

Table 5.5. Average sensitivity and speci�city using di�erent con�dence levels.

The values in parenthesis are the corresponding standard deviation.

Con�dence Level

50% 60% 70% 80% 90% 100%

Sensitivity 75.6% 76.0% 75.7% 76.3% 76.3% 76.6%

(28.3) (27.5) (27.5) (27.1) (27.4) (27.0)

Speci�city 98.2% 98.2% 98.2% 98.2% 98.2% 98.2%

(1.3) (1.3) (1.3) (1.3) (1.3) (1.3)

5.4. E�ciency Analysis

DyTaTL algorithm and ViBe method are implemented with MATLAB and tested in a

PC system with Intel Core i7-4770 CPU at 3.40GHz and 16GB memory. Table 5.6 lists the

average time to process a frame in videos using ViBe for background subtraction and using

DyTaTL for shadow removal. The average time of DyTaTL method is in the range of half a

second and varies greatly between videos, whereas ViBe takes an average of 0.11 seconds.

There are two major factors that a�ect the e�ciency of DyTaTL method: foreground

object size and computation of distances in kNN classi�er. Fig. 5.6 illustrates the \stack
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(a) Video A (b) Video B

(c) Video E (d) Video F

Figure 5.6. Time used to process each frame in the videos. The solid curve

depicts the time used by DyTaTL method. The dash curve depicts the time

used by ViBe method.

(a) Video A (b) Video B

(c) Video E (d) Video F

Figure 5.7. The size of foreground object appears in each frame of the videos.
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Table 5.6. The average time (in second per frame) used for background sub-

traction and shadow removal. The standard deviation is in parenthesis.

Videos A B E F

ViBe 0.110 0.109 0.109 0.111

(0.006) (0.003) (0.002) (0.003)

DyTaTL 0.532 0.610 0.532 0.284

(0.349) (0.558) (0.348) (0.100)

plots"1 of the processing time of video frames. At the start of these videos, there is no

moving foreground object and the processing time of DyTaTL is about the same as that of

the ViBe, and both are in the order of one tenth of a second.

In videos a, b, and e, the human subject walks into the �eld of view and then walk

toward the camera. Hence the foreground object segmented with ViBe grows in size, which

is shown in Fig. 5.7. It is clear that the trend of foreground size coincides with the change of

the processing time using DyTaTL. Fig. 5.6(d) shows the average processing time of a video

with a human subject walking across the �eld of view, that is, the size of the foreground

object varies slightly, as illustrated in Fig. 5.7(d). In this case, the average time used by

DyTaTL is comparable to the time used by ViBe. It is evidential that the processing time of

DyTaTL method is proportional to the foreground object size.

In the process of the four videos a, b, e, and f, the re-training starts at frame 68, 132,

68, and 169, respectively. By comparing the foreground object size and the average time

used, it can be concluded that updating kNN imposes little impact to the processing time

of a frame. However, when making decisions with kNN, the algorithm faces much greater

computational expense for calculating the distances between the foreground pixels and the

examples in the kNN model and making selections of the nearest neighbors.

1The \stack plot" puts the time used by DyTaTL above the time used by ViBe.

So the values marked by DyTaTL represent the total time to complete processing the frames.
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CHAPTER 6

CONCLUSION

Todays fast paced application development and research has led to the adoption of

computer vision applications in the commercial market. Some of the common applications

today revolve around the tracking of humans. Thus, it is getting increasingly essential to

build robust and accurate systems. Pose detection is an algorithm which is gaining much

popularity especially in the health care domain. Pose detection generally involves detecting

and tracking human body parts individually. Majority of such applications use background

subtraction as an intermediate step before any further processing takes place.

Background subtraction involves getting the human silhouette and separating all other

background stationary objects. Noise may be induced in many forms during this process, one

such unwanted noise in many applications is a moving cast shadow. Shadows are casted

when a moving object blocks a source of light. Indoor lighting conditions complicate the way

that shadows are formed with the inclusion of static objects and multiple light sources, which

creates complex shadow patterns when casted and are characterized by varied gradients of

hue and intensity values within a casted region.

Shadows in indoor scenarios are usually characterized with multiple light sources that

produce complex shadow patterns of a single object. Without removing shadow, the fore-

ground object tends to be erroneously segmented. The inconsistent hue and intensity of

shadows make automatic removal a challenging task. In this thesis, a dynamic thresholding

and transfer learning-based method is presented for removing shadows. DyTaTL method

suppresses light shadows with a dynamically computed threshold and removes dark shad-

ows using an online learning strategy that built upon a base classi�er trained with manually

annotated examples and re�ned with the automatically identi�ed examples in the new videos.

The experimental results demonstrate that despite variation of lighting conditions in
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videos our proposed method is able to adapt to the videos and remove shadows e�ectively.

The sensitivity of shadow detection changes slightly with di�erent con�dence levels used

in example selection for classi�er retraining and high con�dence level usually yields better

performance with less retraining iterations.

To select window size for entropy calculation, our experimental results demonstrate

that the detection accuracies using di�erent window sizes are very close. In the cases of small

shadow regions, the sensitivity varies, which is due to the small denominator in calculating

the sensitivity. Our results show that window size of 3 by 3 exhibits the best performance for

both small and large shadow regions.

In the evaluation of e�ciency, updating kNN imposes little impact to the processing

time of a frame. When making decisions with kNN, however, the algorithm faces much

greater computational expense for calculating the distances between the foreground pixels

and the examples in the kNN model and making selections of the nearest neighbors.

6.1. Future Work

Shadow removal in video sequences for indoor situations are new to the �eld of re-

search. Shadows act as a noise element in many applications. In this section I would like to

discuss possible future research opportunities that can be extended from my thesis.

(1) The current implementation is written in MATLAB 2014a. A native code imple-

mentation such as in C/C++ can be tested for e�ciency. E�ciency of the system

would scale up with such kind of an implementation.

(2) Chromatic shadows occur in indoor situations when the light source is colored, such

as bright red or blue. Currently the implementation only handles achromatic shad-

ows. More research and experiments on such situations may make the system to

also handle chromatic shadows.
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APPENDIX

MATLAB IMPLEMENTATION OF ViBe
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% VIBE method for video background extraction

% USAGE: vibe('myVideoFile');

%

% Deepankar Mohapatra, Xiaohui Yuan

% COVIS LAB - UNIVERSITY OF NORTH TEXAS

function vibenew(vidFile)

N = 20; % Number of examples per pixel that used as the model

R = 400; % Max distance to be considered closely matched color value

nnCt = 2; % Number of closely matched examples in the model

% amount of random subsampling

fi = 16;

% Load file as grayscale video

vidSrc = vision.VideoFileReader(vidFile, 'ImageColorSpace', 'Intensity');

vidInfo=info(vidSrc);

w=vidInfo.VideoSize(1);

h=vidInfo.VideoSize(2);

model=zeros(h,w,N); % background model. N values for each pixel

dist=zeros(h,w,N); % distance matrix

segMap=zeros(h,w); % background removed image

vidPlayer = vision.VideoPlayer();

vidPlayer2=vision.VideoPlayer();

47



% Initialize model with the first N images

for ii=1:N

img= step(vidSrc)*256;

model(:,:,ii)=img;

end

testCounter=0;

startN=0;

totalTime =0;

while ~isDone(vidSrc)

tic;

img = step(vidSrc)*256; % Acquire a frame

% Process each frame

for ii=1:N

dist(:,:,ii)=(img-model(:,:,ii)).*(img-model(:,:,ii));

end

distR=zeros(size(dist));

distR(dist<R)=1;

distRSum=sum(distR,3);

segMap=single(double(distRSum<nnCt)*255);

%Step 2.1update model

%Create Random Map of which pixels to update with a probability of 1/16

randProbMap=randi(fi,h,w);

randTemp=zeros(h,w);

randTemp(randProbMap==1)=1;

randRangeMap = randi(20,h,w);
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updateMap=randTemp .* randRangeMap;

%find relevent index

updateInd=find(updateMap>0);

mapIndex=find(segMap<250);

Ind=intersect(updateInd,mapIndex);

%update model

modelIndex = Ind +h*w*(updateMap(Ind)-1);

model(modelIndex)=img(Ind);

%Step 2.2 Update neighbours

randProbMap=randi(fi,h,w);

randTemp=zeros(h,w);

randTemp(randProbMap==1)=1;

randRangeMap = randi(20,h,w);

updateMap=randTemp .* randRangeMap;

%find relevent index

updateInd=find(updateMap>0);

Ind=intersect(updateInd,mapIndex);

%update model

modelIndex = Ind +h*w*(updateMap(Ind)-1);

%Create neighbour vector

probableNeigh = randi([-1 2],size(modelIndex));

probableNeigh(probableNeigh==0)= -(h);

probableNeigh(probableNeigh==2)= h;

NeighIndex = modelIndex + probableNeigh ;
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removeInd=find(NeighIndex<=0 | NeighIndex>=h*w);

NeighIndex(removeInd)=[];

Ind(removeInd)=[];

model(NeighIndex)=img(Ind);

step(vidPlayer, segMap);

step(vidPlayer2,img/256);

end

release(vidPlayer);

release(vidSrc);

end
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