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Abstract 

A quasilinear model is developed to produce realistic self-consistent saturation levels when 

modes do not overlap, and give self-consistent diffusion and wave evolution when modes do 

overlap. Both regimes give steady or pulsating behavior in weakly driven systems with clas- 

sical relaxation and background dissipation present. An avalanche response is demonstrated: 

wave momentum release caused by the overlap of closely spaced modes can produce mode 

overlap of more widely spaced modes (a domino effect) or the growth of modes which would 

be stable in systems unaffected by the closely-spaced modes' diffusion. Detailed analysis and 

calculations are performed for the bumpon-tail instability, and extension of the method to 

more general problems is briefly discussed. 
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I. INTRODUCTION 

In an ignited fusion reactor, there is a concern that energetic alpha particles may excite 

Alfvbn waves by tapping the universal drift instability mechanism that feeds off the spatial 

gradient in the distribution If such instability occurs, the excited waves can 

either saturate at a low level without appreciably affecting the hot particle stored energy 

(therefore not affecting the rate of fusion heating of the background plasma), or cause global 

diffusion of the hot particles with the possible loss of the energetic alpha particles' energy 

to the first wall. Both cases have been observed e~perimentally.~'~ Theoretical analysis has 

shown how, depending on parameters, both types of responses can arise when the sources 

and sinks of the energetic particles are accounted for and when dissipation from the back- 

ground plasma is p r e ~ e n t . ~ - ~  Several simulation codes are now being developed to observe 

the saturation and diffusion mechanisms associated with this behavior and these investiga- 

tions give results that are consistent with the theoretical des~ript ion. '~ '~~ It has also been 

noted that the nonlinear behavior can be understood from general considerations of weak 

turbulence theory. Consequently, the bump-on-tail problem can serve as a paradigm for the 

more complicated problem of describing the effect of the Alfvhn-alpha particle instability in 

a tokamak. 

In all these problems there is a natural saturation level for an initially linearly unstable 

system, where the mode amplitude grows until the bounce frequency of resonant particles in 

the excited wave becomes comparable to the linear growth rate. Further evolution depends 

on whether each mode saturates as a single mode or if adjacent modes overlap. It is only 

when overlap occurs that global difFusion of particles can occur. 

In this work we develop a model based on quasilinear theory, to describe the system 

response independent of whether the modes overlap or not. To construct such a model 
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we modify the quasilinear equations in an intuitive manner, by incorporating analytic and 

numerical scalings for the effect of line broadening due to finite growth rate and resonant 

particle trapping. The text gives a specific example of the bumpon-tail problem, and indi- 

cates how the method could be generalized to the alpha particle problem in realistic tokamak 

geometry. 

Another result of the present work is to show how mode overlap can lead to an avalanche 

due to the diffusive evolution of the distribution function. In the example discussed in 

detail in this paper, this phenomena appears as a “domino” effect where, when closely 

spaced resonances overlap, there is an enhanced release of wave energy, that in turn can 

cause nearby but more widely spaced resonances to overlap, thereby rapidly expanding the 

phase space region over which particles can dif€use. This nonlinear effect can also cause 

the destabilization of a spectrum of modes where most of the spectrum would otherwise be 

stable on the basis of lineas stability. 

In Sec. I1 we describe the physical self-consistent linebroadened quasilinear model. In 

Sec. I11 we discuss the theory for the nonlinear domino effect. In Sec. Iv we present prelimi- 

nary numerical results for the bumpon-tail instability. In Sec. V we discuss how the method 

can in principle be extended to more complicated geometry. In Sec. VI a brief conclusion is 

presented. 

11. LINE BROADENING MODEL 

It has been previously observed that the Alfvh wave problem is mathematically similar 

to the one-dimensional bumpon-tail problem. Here we consider the case where in both 

problems the wave spectrum is discrete. According to quasilinear theory, diffusion only 

occurs for the particles that exactly fulfill the resonance condition. In the bumpon-tail 

problem the resonance condition is Rn = w, - k,,v = 0, with w, the eigenfrequency for the 

nth mode (for the bumpon-tail problem we take an = wpc E electron plasma frequency). 
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The quasilinear equation for the evolution of the distribution function, f(v), takes the form 

Here 6 is a shorthand notation for the quasilinear operator, t is time, e and m are the 

energetic particle charge and mass, u is the energetic particle speed, and &o the amplitude 

of the perturbed electrostatic potential. That potential, as a function of time and position 

2, is given by 

Associated with Eq. (1) is the wave evolution equation, which written as the evolution 

of wave momentum Wn, is of the form 

where 

Note that EQs. (1)-(4) imply conservation of momentum, 

with C a time-independent constant. 

There is however an intrinsic difficulty in solving Eqs. (1) and (3) if one takes the expres- 

sion for D(v)  in Eq. (2) literally. This is because the domain of the diffusion coefficient is 
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''Over a point." Consequently, as written the distribution function can only relax in infinites- 

imal interval. In reality the diffusion domain should have a width in V. In fact when a finite 

0 orowth rate, yn > 0, is taken into account, the diffusion coefficient is broadened as one finds 

In fact the quasilinear coefficient is really best applicable when there may be waves that cause 

orbit stochasticity due to mode overlap. Only then is the diffusion coefficient independent 

of "In. Other cases cannot be treated as rigorously. When we do not have orbit stochasticity, 

we seek a method that realisticdly models the conversion of particle momentum to wave 

momentum. The results of the model system we use can be benchmarked with rigorously 

derived simulation results to ascertain the system's accuracy. 

When we have steady waves, without orbit overlap, it is well known that the mean 

distribution flattens around the resonant particle region over a width that is comparable 

to the separatrix width of the wave particle interacti~n. '~~'~ A rigorous solution requires 

accounting for the wave particle phase in calculating the waveparticle interaction. However, 

one can hope to model the waveparticle interaction by assuming that roughly particles 

within the separatrix width can stochastically mix in phase space, but particles outside the 

separatrix width move adiabatically with the wave and do not mix in phase space. For the 

bump-on-tail problem we take the nth electrostatic wave to be of the form 

A conserved quantity is the energy in the wave frame, which is given by 

Particles for which -2e4, < En < 2e4,, lie inside the phase space separatrix. Particles on 

the separatrix satisfy 



The largest and smallest values that 2, - v, can take are 

We will assume that for a steady wave the diffusion coefficient is constant over the region 

-Av/2 < v - 0, < Av/2 (Au = qn6V and qn is an adjustable constant x 1)) and zero 

otherwise. In addition, to take into account diffusion during the growing and decaying 

phases of the wave, we add to Av a factor proportional to the growth. Thus we choose for 

the nonzero region of diffusion 

with 
Av lynl wb n - = A, - + pn 
2 ka Icn 

with An x 1 being another adjustable constant and ub,n = (2ek:4d/m)1/2 (note ub,n  is 

the trapping frequency of a particle deeply trapped in a steady finite amplitude wave) and 

Pn = 2qn- 

Instead of Eqs. (1) and (3) we choose for Dn(v) a d  Tn 

This line-broadened model for Dn(v) together with Av as deked  in Eqs. (9) and (10) allows 

for a self-consistent quasilinear description. 

The model described above can be used when modes are separated from each other and 

when they overlap. When they are separated from each other, the distribution can *e 

and flatten only in a limited phase region that is centered about the resonance velocity, while 
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the distribution maintains its shape in the region between the resonances where there is no 

diffusion. When there is overlap of two modes, (Le. if say vn+l > V n ,  overlap occurs when 

v, + Avn/2 > Vn+1 - Avn+1/2) then particle diffusion can occur in a larger phase space 

region, its will be discussed in the next section. 

111. STEADY STATE AND BURSTING 

We now introduce extra processes in our model. These include a particle source, a 

classical particle relaxation mechanism, wave damping from the plasma background and an 

intrinsic wave fluctuation level. As discussed elsewhere, these mechanisms are needed to 

exhibit a pulsating response of the system. However, under the appropriate conditions, even 

with such mechanisms present, we can have a steady-state response. In this paper we will 

consider a particle source S(v) and particle annihilation at an annihilation rate v.  Our 

complete system of equations is then 

af 
at - = Of - v(v) f + S(v) 

Thus, without waves, D(v)  = 0, and the steady state particle distribution function is 

afo(vn) > 0, so that in absence of background dis- We of course treat the case where - 
Ivl av 
I ,  

2n2e2v,,w, afo( v,,) 
sipation the system is unstable with a predicted linear growth T~~ = 

mlwnlkn ' 

The damping rate for mode n in the absence of hot particles is yd,,, and the wave thermal 

fluctuation level in the absence of hot particles is given by 
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Our model has been created to exhibit the same pulsating behaviors for driven systems 

have discussed the cases where that have been analyzed elsewhere. Previously Berk, et  

the modes are discrete and non-overlapping where one has a benign steady or benign pulsat- 

ing response, or when there is mode overlap giving rise to an explosive pulsation or a steady 

quasilinear response. Let us first analyze the non-overlapping case, where each mode acts 

independent of the others. 

To find the maximum saturation amplitude, we neglect the background damping. This 

serves as an estimate for saturation if Td << TL. Then the mode will grow until the distri- 

bution flattens over the region in an interval I, defined 85 -Av/2 < v - Vn < Av/2, with 

Av determined by the condition that the total momentum (wave momentum plus particle 

momentum) and particle number in the final state equals the initial particle momentum and 

particle number within the interval I .  Thus, the saturation level is determined by 

~ n + A v / 2  
fFAv = 1 dv fL 

V- - A v / ~  

vn+Av/2 vn+Av/l 
wn = m 1 f L v d v - m /  dvfpv (15) v n - A ~ / 2  vn-Avj2 

with fF the final distribution function that is flattened over the in tend  I. With f ~ ( v )  = fL(vn)+ 

(V - vn)fi(vL), we find that 

Now, at saturation, we have from Eq. (10) - - - PnlUhI. Thus we find that the bound 

for the saturation level for a pulsation is given by 
2 

This result shows that the saturation level for a single mode scales so that the trapping 

frequency of a particle in a wave is proportional to the linear growth rate. When background 

damping has to be taken into account w h  will be less than Eq. (16) as the wave momentum 
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will be transferred to the background plasma through the linear dissipation mechanism, and 

the equilibrium distribution does not have to completely flatten before stabilization occus. 

Now let us consider what happens when waves overlap. Suppose DV is the interval 

in velocity over which the linear modes overlap (we assume DV >> y ~ / k ) .  For simplicity 

let US take afL/av a constant in this region, and again we neglect damping. Then if the 

distribution is flattened over the phase space region that is active with linear modes, then a 

repeat of the above logic shows that the wave momentum that is released is 

Let us assume that the phase velocity spacing, Vn+l - Vn z -y~,,/h 2! DV/N,  with N the 

number of unstable modes. In this case the total wave momentum released is 

which is N 3  the wave momentum released by a single mode and N2 the wave momentum 

released by N modes that do not quite overlap. As noted in previous works, this large 

release of wave momentum causes rapid global diffusion of particles over the active velocity 

space region as a large fraction of the momentum stored in the equilibrium distribution 

can be converted to wave momentum. If the particles can reach the boundary, and be lost 

at say v = 0, then in principle all of the stored particle momentum can be converted to 

wave momentum. If there is particle loss, then the bound on the level of wave momentum 

conversion is even four times larger than if the particles were not lost at the v = 0 boundary. 

We now note that overlap can occur even when the average spacing between modes, 

Vn+l - vn, is lrtrger than the average m/&. This arises because of the possibility of a 

“nonlinear domino” effect. As a set of modes in an interval in velocity, bvp, flattens, the 

distribution takes on a sharp velocity gradient at the interface between the region of velocity 

where waves have been excited, and the region of velocity where waves have not been excited. 

- 
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Thus, at this interface, af = A f b(v - u t )  where VI is the interface velocity. By assuming 

f is flat between VI > v > vI - but, and f has its value before excitation of instability for 

. For such a step function distribution, the dispersion v > vI, we find that Af = - - 
relation for a mode that is excited by a phase velocity near V i ,  y << up, can be written as 

av ’ 

a f L  bVl 
d v 2  

For k,,vr =upe, we then find that the growth rate, yi, for a mode at the interface is 

where 6vLn 3 m / k n  is the “velocity width” of linear mode. Thus we see that the linear 

growth rate is enhanced by a factor (Sv1/27r621~~)~/~ at the interface between the flattened 

and unperturbed distribution. In order for this enhanced growing mode to saturate, the wave 

momentum has to grow until the trapping frequency of this mode, W ~ Z ,  is comparable to  71. 

Here saturation occurs when W b I -  71 (this result can also be obtained from momentum and 

particle conservation arguments). This implies that the wave momentum of the enhanced 

growing mode, Wr a w&, saturates at a level 

This result gives a compamb1e saturation level as our previous estimate for the saturation 

level with mode overlap found in Eq. (18) which assumed 6vl/6vtn = N. Thus, the release of 

wave momentum due to mode overlap is consistent with the linear stability that is implied 

by the evolution of a nonlinearly distorted distribution function. It should also be noted 

that when there is strong mode overlap, the quasilinear diffusion is insensitive to the mode 

widths of the individual waves. 

Because the growth rate enhances as the distribution function flattens, one c m  achieve 

global overlap even if the mean phase velocity spacing between unstable modes exceeds 
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- 
y,.,/kn. We do require some modes to have a separation Vn+1 - 21, S m / k n .  However, as 

these modes flatten, the saturation levels of the edge modes increase. For example, suppose 

we have a set of modes denoted by the index p ,  with a mode separation 

În 

IC, Up+l - u p  - P. 

Thus, the saturation of the modes with p = 1 and 2 that are separated just enough to cause 

mode overlap of two neighboring modes, can trigger a reaction where mode overlap arises 

for the more widely spaced modes at larger p .  The result gives rise to an “avalanche” that 

produces global particle diffusion, and can even give particle loss at the edge of the velocity 

space boundary. Another consequence of this enhanced growth rate is that regions that are 

stabilized in the linear theory due to the background damping can be destabilized by the 

nonlinear enhancement of the growth rate that occurs as the “diffusion front” propagates 

into the linearly stable region. 

Another way the domino effect can arise is if there is a spectrum of relatively close modes 

which are predominantly stable due to the presence of background damping. If a few of these 

modes are unstable with a growth large enough to cause local mode overlap, the resulting 

steepening in the distribution function will enhance the drive so that the spectrum can be 

excited and cause mode overlap in the otherwise stable region. This mechanism is a strong 

candidate to explain energetic particle losses that have been observed in experiment. 

IV. SIMULATION OF TWO-STREAM INSTABILITY 

In this section we report on numerical results that follow the evolution of Eqs. (13). We 

first of all need to choose the parameters A, and &. Our results were found to be insensitive 

to An, and we have set A, = 1 in the simulations. The parameter pn = 277n was established 

by synchronizing the steady state wave energy for a single mode with sources and sinks 

found in Ref. 14. The system is defined by the parameten ’ y ~ / w  = 0.176, v/’yt = 0.035, 
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Vmax 3s 
v ax yd/yL = .031 and - - = 1 with 2: = 1 - v/vm,, with the maximum velocity of 

the simulation. We assume particles are lost at v = 0 and are reflected at v = v-. With 

a choice qn = 0.73 we achieve the same steady state wave momentum as found by the more 

basic simulation of Ref. 14. This result is shown in Fig. 1. However, unlike the result in 

Ref. 14, the quasilinear simulation has an overshoot not seen in the more basic simulation. 
v,, as 

If we change parameters so that y ~ / w  = .0039, v / ? ~  = .0082, yd/y~ = 0.082, - - = 1, v ax 
pulsations of a single mode result. Figure 2 shows the pulsating results of the quasilinear 

theory which is of similar character to the corresponding results in Ref. 14 with the same 

value of vn = 0.73. The quasilinear model gives an average pulse width (wh(ma~) /yL)  [with 

wh(max) the maximum trapping frequency of a single pulse] that is a factor 1.14 larger than 

that seen in the more basic simulation, while the first pulse [that is due to the initialized 

unstable distribution function where - = - saturates when the normalized 

bounce frequency, wb/yL,  is .88 of the value found in the more basic simulation. If we run 

a case without a loss mechanism, without a source and without damping, our choice of /3,, 

gives a value of w h / y ~  that is .81 of the more basic simulation result. Thus, though there is 

some discrepancy, one finds that the essential scalings of the more basic simulations can be 

reproduced. 

We now exhibit what happens when mode overlap occurs due to the domino effect. We 

first choose parameters so that a domino effect does not occur. In Fig. 3, we show the mode 

width as a function of time when overlap does not occur. We see the modes pulsate in 

time, but saturation is at a relatively low level. In Fig. 4 we see the resulting distribution. 

It contains local flattening, but the overall stored particle momentum (or particle energy) 

is essentially the same as if the pulsation were absent. In this figure x = 1 - v/v-. By 

increasing y ~ , , / w  by 5%, we can achieve mode overlap. 

Figures 5-7 show, respectively, the “explosion” that occurs in the resonance width, in 
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the wave momentum, and in the distribution function when we attain mode overlap. This 

explosion leads to global diffusion to the edge of the domain that gives rise to particle loss 

at the boundary. Nearly all the particles are lost 8s a result of the explosion. One c m  

also observe in these figures that the flattening starts in the interior, and the diffusion pulse 

propagates to the outside as time evolves. After the particles are fist lost at v = 0, the 

wave amplitude continues to increase and the diffusion pulse then rapidly “cleans” out all 

the particles in nearly the entire phase space. After this pulse, the wave damps and the 

particle distribution builds up again, until another pulse is triggered. The retriggering gives 

a series of bursts similiar to the bursts in Fig. 2, and the domino effect as shown will arise 

at every other pulsation, the pulse shown in Fig. 5 being the first to display it. 

V. GENERALIZATION OF METHOD 

In more complex problems, such as the hot particle interaction with f i 6 n  waves in a 

toroidally symmetric tokamak the phase space is of higher dimension than the two-stream 

problem, but the line broadened model we have described can be extended. In the appropri- 

ate quasilinear equations17 for the energetic particle evolution, one has a diffusion coefficient 

similar to Eq. (2), where the resonance function Rn in the delta function S(%) has the form 

with E,  p ,  p# respectively, the constants of motion: energy, magnetic moment and canonical 

angular momentum. (Equivalently one can choose other constants of motion.) The frequen- 

cies and GO are, respectively, the hot particle’s mean toroidal angular frequency, and 

the mean poloidal angular frequency; n is the toroidal quantum number of the mode and 

p is an integer. (There are in general multiple p values even for a given n-value due to the 

poloidal angular structure of the mode and the particle orbit response). The phase space 

region covered by the condition R n  = 0 are surfaces in the three-dimensional E ,  p ,p4  phase 
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space. Hence, as in the two-stream case the quasilinear diffusion is localized in phase space, 

and may not be global. The resonant surfaces can be given a finite “thickness” in a manner 

similar to what is described in Sec. 11. First, broadening arises due to a finite growth rate. 

Broadening also arises due to “wave trapping” of particles in the phase space. The generic 

trapping frequency is proportional to where A is the amplitude of a wave. Specific 

forms for the trapping frequency in a tokamak for mode frequencies less than the cyclotron 

frequency have been calculated in Refs. 18 and 13. From these solutions the width A& can 

be calculated. Note that, in toroidal geometry, the nth low-frequency wave causes a change 

AEn and Ap- in the particle orbit, while Ap,, = 0. M h e r  AEn = Apb  and thus the 

spread of R, is given by 

dfln(E, P, p i ) ]  
Apb A R n =  - + 

un afln(E, P, ~ 4 )  

[ n  a E  a P i  

with Ap* oc 

from Refs. 7,13, and 18 and will be presented in later work. 

Detailed evaluations of the proportionality constant caa be extracted 

The spread in Szn given by the above equation can now be incorporated into a more 

general quasilinear equation. The evolution of waves and the distribution function can then 

be treated in a manner similar to the two-stream problem to follow wave excitations and 

particle diffusion in the benign (non-overlap) and explosive (overlap) regimes. The evolution 

of waves and particle diffusion in the benign and explosive regimes can be followed with an 

approach similar to our analysis of the two-stream instability. 

VI. CONCLUSIONS 

In this work we have indicated how to develop a quasilinear model to exhibit benign 

or global diffusive behavior of particles, established by the balance of sources and sinks, 

which have a distribution function that causes weak instability. Detailed calculations have 

been performed for the two-stream instability, and we have indicated how this method can be 
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extended to more general situations, such as AIfv4n instabilities caused by energetic particles 

in a tokamak. 

A key to understanding the response is to study the resonance structure and to under- 

stand the condition for mode overlap which will cause global diffusion. Mode overlap will 

arise if the resonance width is comparable to or in excess of separation of the active modes 

(i.e. the modes in the linearly unstable region). In this work we point out a “domino” effect 

that allows a small cluster of modes that satisfy this overlap condition, to give rise to a 

nonlinear enhancement of the wave energy that in turn allows for more widely spaced modes 

to overlap. In the example given, we show that energetic particles can be rapidly lost with 

a very small change of plasma parameters once the domino effect is triggered. 
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FIGURE CAPTIONS 

FIG. 1. Evolution of wave momentum of a single mode with source, sink, md background 

dissipation giving rise to a steady saturation level. Parameters y ~ / w ,  normalized 

particle absorption rate v/yr, ,  and normalized background wave dissipation rate 

?d/yL are given in text. 

FIG. 2. Evolution of wave momentum of a single mode with source, sink, and background 

dissipation present giving rise to a pulsating response. Parameters given in text. 

FIG. 3. Time evolution of resonance widths (shaded areas) for a multi-mode system where 

mode overlap does not occur. Time range of graph selected to coincide with that of 

Fig. 5. System evolved from f(v,  t = 0) = 0 and Wn(t = 0) values at thermal noise 

levels to give benign pulsations, with period of order of that of bursts in Fig. 2. 

FIG. 4. Particle distribution function as a function of time for simulation shown in Fig. 3. 

Resonance locations are shaded. 

FIG. 5. Time evolution of resonance widths for a multi-mode system where mode overlap 

leads to the domino effect. The curves, in different line styles, show the boundaries 

of individual resonances. System evolved from same initial conditions as those of 

Figs. 3-4; y ~ / w  is 5% larger than in those figures. 

FIG. 6. Evolution of normalized wave momenta for the modes of Fig. 5. Modes located at 

lower values of x are located further to the left side of the graph. Modes at higher 

values of x saturate at higher levels because they can absorb particle momentum 

from particles transported from lower x, as well BS from particles originally within 

their resonance widths. 

FIG. 7 .  Particle distribution function as a function of time, for the simulation shown in 

Fig. 5 .  
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