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Uncertainty analysis of nondestructive assay measurements of nuclear waste

Larry G. Blackwood and Yale D. Harker

Idaho National Engineering and Environmental Laboratory, P. O. Box 1625, Idaho Falls, ID 83415-3730

ABSTRACT

Regulatory agencies governing the disposal of nuclear waste require that the waste be appropriately characterized prior to
disposition.  The most important aspect of the characterization process, establishing radionuclide content, is often achieved
by nondestructive assay (NDA).  For NDA systems to be approved for use in these applications, measurement uncertainty
must be established.

Standard “propagation of errors” methods provide a good starting point for considering the uncertainty analysis of NDA
systems for nuclear waste.  However, as compared with other applications (e.g., nuclear material accountability), using NDA
systems for nuclear waste measurements presents some unique challenges.  These challenges, stemming primarily from the
diverse nature of the waste materials encountered, carry over into the uncertainty analysis as well.  This paper reviews
performance measures appropriate for the assessment of NDA uncertainty, describes characteristics of nuclear waste
measurements that contribute to difficulties in assessing uncertainty, and outlines some statistics based methods for
incorporating variability in waste characteristics in an uncertainty analysis.
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1.  INTRODUCTION

Nondestructive assay (NDA) systems used to determine the quantity of radioactive material in nuclear waste are subject to
various quality requirements and associated performance criteria.  In particular, regulatory agencies such as the U. S.
Department of Energy, the U. S. Environmental Protection Agency, and various state agencies require that uncertainty in
NDA measurements be established prior to shipping and or disposal of nuclear waste.

Standard “propagation of errors” methods provide a good starting point for considering the uncertainty analysis of NDA
systems for nuclear waste.  However, as compared with other applications (e.g., nuclear material accountability), assessing
uncertainty in NDA measurements of nuclear waste presents some unique challenges to the application of error propagation
methods.  These challenges stem primarily from the diverse nature of the waste.  Nuclear waste is often heterogeneous in
nature in terms of characteristics that can radically affect NDA measurement outcome.  These matrix effects must be
considered when assessing uncertainty of measurements. This paper reviews performance measures appropriate for the
assessment of NDA uncertainty, describes characteristics of nuclear waste measurements that contribute to difficulties in
assessing uncertainty using standard propagation of errors, and outlines some statistics based methods for incorporating
variability in waste matrix characteristics in an uncertainty analysis.

2.  MEASURES OF UNCERTAINTY

Uncertainty in NDA systems can be quantified by two basic measures: bias and precision.  Bias is a measure of the
systematic error in an NDA system, while precision is a measure of the random error.  Bias and precision can be expressed in
numerous forms.  The most fundamental form for the calculation of bias is the difference between the mean of replicate NDA
system measured values and the true quantity being measured.  The fundamental precision measure is the standard deviation
of replicate measurements.

For the purpose of this discussion, we need to distinguish between what might be termed nominal and matrix specific bias
and precision measures.  Nominal bias and precision refer to the calculated performance of an NDA system for a single ideal
test item or container (e.g. 208-liter waste drum).  Typically, the test item will comprise surrogate waste material whose
properties are well known and in which known quantities of radioisotopes are placed.  The waste matrix is typically
homogeneous and non-interfering in the nominal case.  (In fact it may consist of known sources suspended in an otherwise
empty container.)  Hence nominal uncertainty refers to measurement performance under ideal conditions, such as that



existing during instrument calibration.  Counting statistics errors based on detector response values and an assumed Poisson
distribution for counts comprise the largest component of error in regard to nominal uncertainty calculations.  When standard
propagation of errors methods are used based on component uncertainties estimated without regard to the influence of matrix
effects etc., the end result is implicitly a measure of the nominal uncertainty of the NDA system.

Matrix specific bias and precision refer to the expected performance of the NDA system on a waste population of interest. To
the extent that specific characteristics or properties of the waste affect measurements, matrix specific bias will be influenced
by the average properties of the waste population.  Similarly, matrix specific precision will be affected by the degree of
variability of salient matrix characteristics in the population.

Except in a totally homogenous population, matrix specific uncertainty of an NDA system will always exceed the nominal
uncertainty values.  Some specific matrix characteristics found in real waste that can affect nuclear waste NDA
measurements and produce larger uncertainties than the nominal values indicate are:

•  Source isotopic/chemical composition variability
•  Non-uniform matrix absorption
•  Non-uniform matrix moderation
•  Non-uniform source distribution
•  Variations in source particle size
•  Significant voids in the matrix
•  Shadow shielding of one region by high neutron absorption in another region,
•  Waste elemental composition not addressed by the calibration routine, and
•  Excessive (α, n) source interference.

Matrix effects (and other effects such as varying background levels) add a whole new dimension to an uncertainty analysis in
that conditions external to the measurement system itself can become major determinants of measurement uncertainty.  A
good way to think of nominal vs. matrix specific bias and precision of an NDA system is to consider what the expected bias
and precision are for a single “ideal” drum vs. that for a randomly selected item from the population of interest.  Suppose 20
measurements of a single 208-liter waste drum containing 50g of plutonium in a non-interfering matrix are obtained.   The
difference between the mean of those 20 measurements and the true value of 50g Pu is an estimate of the nominal bias of the
NDA system.  The standard deviation of the 20 measurements is an estimate of the nominal precision.  Now suppose 20
different drums all containing different configurations of a particular waste type (e.g. glass, combustibles, or process sludge)
but all containing 50g of plutonium are measured using the same NDA system.  The difference between the mean of the
measurements on the 20 different drums and the true value of 50g Pu is an estimate of the matrix specific bias for that waste
type.  Similarly, their standard deviation is a measure of the matrix specific precision.

3.  IMPLICATIONS OF MATRIX EFFECTS

Note that matrix specific bias and precision can only be measured relative to a specific population of waste.  That is, while
nominal uncertainty measures are characteristics of the measurement system only, matrix specific uncertainty is a
characteristic of a NDA system used on a particular waste type.  When detector response is influenced by characteristics of
the waste other than the amount of radionuclides present, only matrix specific measurement uncertainty will provide a
realistic estimate of true measurement error.

In the presence of significant matrix effects it becomes just as important to adequately characterize the makeup of the
population of interest (in terms of the distribution of important matrix parameters) as it is to characterize the measurement
system itself.  Uncertainty analysis results become waste type specific and are valid only to the extent that they properly
reflect the distribution of important matrix effects in the population of interest.  Failure to adequately characterize the
distribution of the population matrix parameters can produce misleading or erroneous results.

Figure 1 contains a very simple example of the importance of establishing matrix specific measurement uncertainty.
Consider two waste form populations of 3 drums each.  All drums in both populations contain 10g Pu, but the quantity of a
matrix component with a shielding effect varies from drum to drum within a population as well as between the two
populations.  In addition, the degree of drum to drum matrix heterogeneity varies between the two populations.  The results



show that the bias and precision can differ considerably between the two populations.  Hence any estimates of uncertainty
must be population specific.

True Pu

10 g 5.6 g

10 g

10 g

10 g

10 g

10 g

Measured Pu Bias*  Precision**

Population 1
High degree of shielding, low variability from drum to drum   

Population 2
Low degree of shielding, high variability from drum to drum   

True Pu Measured Pu Bias* Precision**

8.2 g

9.3 g

9.9 g

5.1 g

5.4 g -4.6 g

-0.9 g

s = .25 g

s = .86 g

* Bias = mean measured quantity - 10 g
** Precision = standard deviation of measured quantities   

Figure 1.  A simple example of matrix specific uncertainty.

One might ask why include bias in the discussion of uncertainty.  If we have a known bias, then it is standard procedure to
correct for it.  In this case the expected bias is zero.  However, the bias correction is generally estimated rather than known
exactly, thus there is some unknown error in the bias adjustment.  Tracking bias uncertainty allows estimation of the
uncertainty in the bias correction.  This can be important in subsequent calculations involving summing multiple
measurements in which the relative precision error tends to get smaller but the bias error will not.



A bias error in one situation can become a random error in another.  For example, replicate measurements of a single waste
drum establish the bias of an NDA system for that drum.  However, in a random selection of drums from the same waste
type, each drum will have a unique bias value.  The average of these bias values becomes the bias estimate for the waste type
population, but the standard deviation of the bias values contributes to the overall precision error for the NDA system for
measurements of that waste type.

It is also important to note that bias can be a major component of the total uncertainty in a measurement.  For example, using
a NDA system calibrated using standards in a non-interfering matrix to measure nuclear waste with high absorption or other
significant matrix effects, large bias in measurements may result.

Combining bias and precision uncertainties gives an estimate of the total uncertainty in a measurement.  While a measure of
total error is useful, care must be taken in using total uncertainties in certain applications.  Suppose two or more waste drums
from the same measurement system are combined in a single container for shipment and estimates of the uncertainty
components in the total Pu content for the shipment are required.  The random components of the uncertainties for each drum
will generally be uncorrelated.  Hence the relative precision error of the total Pu content will be reduced compared to the
values for the individual drums.  The bias errors on the other hand may be perfectly correlated.  Hence there is no reduction
in the bias error for the combined value.  If the bias and precision components are kept separate, these calculations are easy.
If only the total uncertainty for each drum is available, then the correlation between the errors induced by the bias
components will be difficult to take into account.  Simply combining the total uncertainties as if they were uncorrelated will
underestimate the total uncertainty for the combined shipment.

4.  STANDARD PROPAGATION OF ERROR METHODS

In most NDA systems, measurement results are not obtained directly.  Instead they are derived as the result of calculations
performed on a set of input components or parameters.  The system uncertainty is then a function of the uncertainties in the
input parameters.  A typical propagation of errors approach to deriving the final uncertainty values involves the following
four basic steps.

1. Identify all input parameters and formulas required for calculating the final measurement value.
2. Assess the uncertainty of the individual input parameters.
3. Obtain the correlation structure of the parameter errors.
4. Propagate the results to obtain final uncertainty.

Examples of the input parameters for the NDA measurements are detector counts, gate times, calibration coefficients, etc.
The final measurement outcome is expressed as a mathematical function of these input parameters.

Once all the input parameters are identified, estimates of their individual uncertainties (bias and standard deviation) are
obtained.  Various methods are used to obtain the component uncertainties.  Suitable values are sometimes available from the
manufacturer’s specifications.  Otherwise laboratory evaluations may be performed.  Calibration coefficient uncertainties are
usually a by-product of the analysis (e.g., least squares regression) used to derive the coefficients themselves.

For some components in a NDA system, measurement errors are correlated.  For example, calibration intercept and slope
coefficients based on least squares regression are always correlated.  The correlation (or alternatively the covariance) of the
errors for all pairs of interrelated input parameters must be estimated.  These estimates are typically obtained through
laboratory experiments.

Once the uncertainties of the various components of a measurement system have been characterized, they are combined, i.e.
propagated, to produce the uncertainty for the system output.  The formula used for combining the uncertainties depends on
the mathematical function or functions used to calculate the system output.  In other words it depends on the form of data
reduction used to process the input parameters to obtain the final measurement result.

Often the data reduction functions are not linear.  Since exact error propagation for nonlinear functions is complex, a linear
approximation of the functions is employed.  The linearization is achieved mathematically by the use of a Taylor series
expansion, which re-expresses the function as a polynomial sum of linear and higher order terms.  Under the assumption that
the measurement errors in the input parameters are small, the higher order terms in the expansion are set to zero, leaving only



the linear terms.  Given the variances and covariances of the input parameters, uncertainty is then easily estimated.  For a k
input parameter system with an arbitrary (i.e. potentially nonlinear) form

z = f(x1, x2, . . ., xk), (1)

the Taylor series expansion produces the following expression for the variance of the final measurement
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∂
∂ is the partial derivatives of f with respect to xi, σi

2 is the variance of xi, and σij, is the covariance of the errors in

the input parameters xi and xj.

Similarly the bias is propagated as
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where Bi is the bias for xi and Bij is that portion of the bias terms Bi and Bj that arise from identical error sources.

Propagation of errors can proceed separately for bias error and for precision error, or they can be combined when only total
uncertainty is desired.  Parameters contributing to bias error only are considered constants in the propagation of precision
error.  Similarly, parameters contributing only to precision error are treated as constants in the propagation of bias error.  Bias
parameters are often uncertainty parameters from a calibration etc. that were originally calculated as variances in the context
of the calibration, but become bias errors in implementation because the calibration error is constant in application.1

5.  ERROR PROPAGATION EXAMPLE: PASSIVE-ACTIVE NEUTRON RADIOASSAY SYSTEM
ACTIVE MODE NET ACTIVITY CALCULATION

At the Idaho National Engineering and Environmental Laboratory (INEEL) the Passive-Active Neutron (PAN) radioassay
system is used to certify 208 liter nuclear waste drums in terms of quantifying plutonium and other transuranic elements
activities.  In the active mode, the net activity (in nCi/g) in a waste drum is calculated as

NetActivity = c1*EGSC – c2*LGSC – c3*IB (4)

where:

EGSC = early gate shielded count

LGSC = late gate shielded count

IB = interrogation background

The terms in c1, c2, and c3 are combinations of correction and calibration factors that have been estimated at some previous
point.  The errors in these estimates will be the same for all measurements with this system (until such time that new
correction factor estimates are introduced e.g. at recalibration).  Thus these contribute to the bias error in the measurements.
The variables unique to each drum measurement, EGSC, LGSC, and IB are count data containing random errors, thus
contributing to the precision uncertainty.



Given that the terms c1, c2, and c3 are constants in the sense that they do not change from one measurement to the next, the
precision error for the net activity, expressed as a variance, is
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where σ2 is the variance for the parameter indicated in the subscript.  Since the three count measurements EGSC, LGSC, and
IB are obtained independently of each other, all the covariance terms in the calculation are zero.

Bias error is propagated in a similar manner as
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Since the terms c1, c2, and c3 have several terms in common, their bias “covariance” values are nonzero.  The values of these
terms are obtained by further propagation of the formulas for c1, c2, and c3 (not shown).

In the nominal case (i.e., a non-interfering matrix), the variance of EGSC, LGSC, IB can be estimated by the values EGSC,
LGSC, and IB themselves since they represent count data following Poisson distributions.  However, for estimating matrix
specific precision other estimates of the variances of these terms must be obtained.  These estimates must contain the
additional variability due to matrix effects.  Matrix effects in 208-liter drums can be can be quite large, as waste
heterogeneity within and between drums (even of a particular waste type) can be considerable.  The additional variability
created by this heterogeneity can be much larger than the simple counting statistics error values used in the nominal case.

6.  MATRIX EFFECTS AND PROPAGATION OF ERRORS

Using propagation of errors methods to estimate matrix specific uncertainty is problematic compared to calculation of
nominal uncertainty.  The variance terms used in a propagation of errors uncertainty analysis are often based on theoretical
calculations or limited laboratory tests.  For example the variance of the early gate shielded count in the previous example
can be calculated theoretically to be equal to the measured count since counts typically follow a Poisson probability
distribution (for which the variance is equal to the mean).  However, such a theoretical calculation does not take into account
the degree to which the matrix characteristics can affect the overall performance of the NDA system.  The material used in
laboratory tests may or may not duplicate the important matrix characteristics of the population of interest.  Even if test items
for laboratory experiments are constructed to be generally similar to those in the population of interest, they can still vary
considerably in terms of matrix complexity compared to the real items.  This will also result in underestimation of variance
terms used in propagation of error calculations.  For the uncertainty analysis results to be truly applicable to a population of
nuclear waste whose matrix characteristics are expected to affect measurement results, error terms must reflect the bias and
variability that would have been obtained on samples from that specific population.

An additional limitation to the standard propagation of errors methods for uncertainty analysis when matrix effects are
present is due to the magnitude of the errors in measurements induced by the matrix effects.  The propagation of errors
formulas used for nonlinear measurement functions are based on the assumption that the measured values are close to the true
values.  That is the relative measurement error is small.  As long as this is true, the linear approximation to the measurement
function obtained by setting the higher order terms in the Taylor’s series expansion to zero is justifiable.  However, in NDA
systems measurement errors can be very large (e.g. even orders of magnitude) so the linear approximation can be invalid.

When matrix effects are a significant component of the uncertainty of an NDA measurement, quoted uncertainty results are
population specific.  In other words, the results are only valid in the context of the population of waste items for which the
uncertainty analysis duplicates the matrix effects.  Thus laboratory derived variance components are only valid for a
population of waste that matches the same matrix characteristics as used in the laboratory tests.  The only way to verify this
equivalence is to perform some sort of characterization process of the real waste that delineates the important matrix
parameters.  Even if all the relevant matrix characteristics are identified and evaluated, it may not be possible to duplicate the
complexity of the real waste in a laboratory setting.  A prime example is source size effects.  While it is recognized that the
source particle size distribution can have major effects on NDA measurements, lack of knowledge of the actual particle size
distribution can lead to problems.



7.  UNCERTAINTY ANALYSIS BY DIRECT SAMPLING AND VERIFICATION

In the presence of matrix effects the importance of the representativeness of sampled items used to estimate bias or variance
components is clear.  In a waste drum radioassay system for example, results from an uncertainty evaluation using drums
filled with a benign matrix cannot be legitimately used to infer the uncertainty for drums containing large quantities of
shielding material such as lead.  An alternative approach to propagation of errors that directly addresses the issue of
representativeness is direct sampling and verification.  The basic steps in this method are:

1. Draw a random sample of actual items from the waste population of interest.
2. Measure the items using the NDA measurement system being evaluated.
3. Perform a confirmatory measurement using a different (unbiased) method.
4. Use regression analysis and variance component analysis to obtain estimates of bias and precision.

By directly calculating bias and variability of the final NDA measurement of real waste (rather than evaluating each
component of the system separately and then combining them as in the propagation of errors method), many assumptions and
approximations required in the propagation of errors method or in the construction of test items for laboratory evaluations are
avoided.  For example, any issues related to the Taylor’s series approximations in the propagation of error calculations are no
longer relevant.  Also eliminated are any concerns of potentially misleading results due to constructing laboratory test items
that fail to reflect the diversity of matrix characteristics in the real waste.  By drawing a random sample, the matrix
characteristics of the items evaluated will be representative of the population of interest.  It will also by default automatically
include all relevant matrix effects.  Thus bias and precision estimates for the sample will apply directly to the entire
population.

Typically the confirmatory method will be a more precise but perhaps more expensive method than the NDA method under
study.  The primary requirement of the confirmatory measurements is that they must be unbiased for the true values of the
quantity of interest.  Otherwise, it would not be possible to establish the exact bias of the NDA system (only its bias relative
to the confirmatory measurement method).

Often it will be the case that the uncertainty, particularly the precision error or standard deviation of the errors in
measurement, will increase with the amount of the quantity of interest that is present in an item being measured.  In this case
bias and precision must be defined as a function of the quantity of interest.  For bias, this most often simply means expressing
it as a constant relative bias (i.e. bias is a fixed percentage of the measured value).  It is also possible for there to be both
absolute and relative bias terms.  A regression of the confirmatory measurements on the quantity of interest will yield
estimates of both components.  For variable precision, an additional regression fit involving residuals from the bias
regression model will give an indication of trends in standard deviation.

Estimates of the bias components are obtained by linear regression analysis.  A weighted least squares regression is
appropriate in the usual case where the random error changes as a function of the values measured.  It is possible that a more
complicated bias relationship exists than that expressed by a linear model, i.e., the bias may be a nonlinear function of the
quantity being measured.)  This can be checked in the regression analysis, by testing for significant quadratic effects for
example.

Precision estimates are obtained by analysis of the residuals from the regression performed to estimate the bias components.
If there is no indication of varying precision values, then precision can be estimated simply by calculating the standard
deviation of the residuals (i.e., the mean square error from the regression).  However, if the residuals themselves appear to
follow a trend as a function of the measured values, then that must be estimated using additional regression analysis or other
appropriate techniques.  Also, in the case where there is appreciable measurement error in the confirmatory measurements as
well as the NDA measurements, analysis separating the variability due to these two sources is required.

8.  SAMPLING AND VERIFICATION EXAMPLE: PAN RADIOASSAY SYSTEM ACTIVE MODE PU
MASS MEASUREMENTS OF SOLIDIFIED AQUEOUS SLUDGE WASTE

A major waste type being measured using the INEEL’s PAN radioassay system is solidified aqueous sludge stored in 208-
liter drums.  Sampling and verification was used to determine measurement uncertainty for the PAN active mode sludge
measurements.  The confirmatory measurements for the sludge waste were obtained from destructive radioassay of core



samples from selected drums.  A facility has been built at the INEEL for coring and sampling sludge waste drums.
Originally developed for sampling for Resource Conservation Recovery Act (RCRA) listed hazardous constituents, core
sampling plans were modified to include sampling for radioassay analysis as well.  While the comparative drum core
radioassay data contain a certain amount of uncertainty themselves, they are expected to be unbiased.  So by comparing the
mean core sample results to the mean PAN results, the bias of the PAN system can be easily established.  Furthermore,
applying the proper variance component analysis allows the standard deviation of errors to be estimated as well.

8.1  Basic steps in performing the uncertainty analysis

The basic steps used in performing the sampling and verification uncertainty analysis for the solidified aqueous sludge waste
were as follows:

1. Select 125 sludge waste drums for which PAN measurements are available and which are being sent to the coring facility
for RCRA evaluation.

2. Send samples from the cores for each of the selected drums to the INEEL Analytical Chemistry Laboratory for
radiochemical assessment.

3. Convert the chemical radioassay results (pCi/g) to the equivalent total drum contents (i.e., total grams of Pu).
4. Compare the radiochemical analysis results with the PAN Pu measurement results for the same drums.  From these data,

estimates of matrix specific bias and precision for the PAN system sludge drum measurements can be obtained.

A minimum of two cores was obtained from each of the 125 waste drums used in the uncertainty analysis.  Coring locations
for each drum were selected at random from seven possible ports in a template placed over the drum prior to coring.  Once
the cores were removed from the drum, a slice of the recovered material, running the full length of the core, was obtained and
homogenized.  One aliquot was randomly sampled from each homogenized core slice and sent to the lab for analysis.

8.2  Data

The total Pu mass as determined by radiochemistry analysis and the corresponding PAN measurements for each of the 125
drums in the uncertainty analysis are plotted in Figure 2.  The line of perfect agreement specified in the plot (i.e., the solid
line) indicates where the data would fall if there were no measurement bias or precision error.  The second line in the plot
(i.e., the dashed line) is a regression line fit to the data using the method described below.  The regression line indicates the
degree of bias in the PAN system.  That the regression line (and most of the data) falls above the line of perfect agreement
indicates that the PAN Pu measurements are biased low compared to the confirmatory radiochemistry results.  The degree of
scatter in the points about the regression line is an indicator of the degree of precision in the measurements.  Since both the
PAN system and radiochemistry data are subject to precision error, the precision of the PAN system must be estimated by the
decomposition of variance components in the regression model.  The appropriate treatment of the variance components is
determined by consideration of measurement models in the next section.

8.3  Measurement models

Let ξη be the theoretical mean of the PAN measurements of all drums in the population of sludge drums that contain η g Pu.
If the PAN system is unbiased, ξη = η.  If there is constant and/or relative bias in the PAN system then the relevant model is

η = α + βξη (7)

where α is the constant bias effect and β is the relative bias effect.  If α ≠ 0 and β = 1, then there is a constant bias in the
measurement system.  If α = 0 and β ≠ 1, then there is constant relative bias in the system.  It is also possible to have both
constant and relative bias terms at the same time.  To estimate the bias terms as well as address the precision error in the PAN
system, we need to compare the measured Pu values from the PAN system and the radiochemistry data.

The observed PAN measurement for a randomly selected drum from those containing η g Pu is equal to the theoretical mean
ξη plus random errors due to matrix effects, counting statistics, etc.  That is, if xi is the PAN measurement for drum i and ηi
the true Pu value for drum i then
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Figure 2.  Comparison of PAN and radiochemistry Pu measurement results

xi = ξηi + δpi (8)

where δpi is the random error in the measurement of drum i, and

E(δpi) = 0

Var(δpi) = σ2
pi.

(9)

(10)

E(.) and Var(.) are the expected value and variance of the indicated terms.  The i in the subscript of the σ2 terms indicates that
the variance values can change from drum to drum.  (Below we show that the error variances can be modeled as functions of
the measured Pu quantity in the drum.)

Since the radiochemistry data are unbiased but measured with error, the measured radiochemistry value for drum i is the true
value plus a random measurement error term, i.e.,

yi = ηi + δri

E(δri) = 0

Var(δri) = σ2
ri

(11)

(12)

(13)

where yi is the measured radiochemistry value for drum i and δri is the measurement error in the radiochemistry value for
drum i. The term δri comprises all the error in the radiochemistry data (e.g., analytic error and core to core variability in the
radiochemistry measurements).

A measurement model relating the radiochemistry data to the PAN data from which bias and precision estimates can be
obtained via regression is created by first replacing the ηi term in Equation 11 with Equation 7:

yi = α + βξηi + δri. (14)



Next, solve for ξηi in Equation 8 and substitute into Equation 14 to get

yi = α + β(xi - δpi)+ δri.

= α + β(xi) + δri – β(δpi)

= α + β(xi) + εi (15)

where

εi = δri – β(δpi). (16)

The model in Equation 15 is in terms of the observed PAN and radiochemistry measurements so estimates of α and β can be
obtained using statistical regression analysis techniques.  Since the residual values (the differences between actual and
predicted yi values) from this regression are estimates of the ε values, the residuals, along with additional information, can be
used to obtain precision component estimates.  (Note, since the independent variable values in the regression analysis are
measured with error, a violation of standard regression assumptions, special statistical analysis techniques may be required to
prevent bias in the regression parameters.2,3)

8.4  Matrix specific bias

A regression analysis was performed to estimate the parameters α and β in Equation 15.  Since the variability of the data
increases with increasing Pu quantity (see Figure 7-1), a weighted least squares analysis was performed.4  Ideally, the weights
used in the analysis should be 1/σx

2 where σx is the standard deviation of ε for a given value of x.  True values of σx are
unknown but can be estimated by estimating ε, since sx = |ε| is an estimate of σx.

Equation 16 cannot be used directly to estimate ε.  While we have estimates of the radioassay measurement error δri
independent estimates of the remaining two components β and δpi are not available.  (We have estimates of the counting
statistics error component of δpi, but not the matrix error component.)  Hence, both the weights and the regression coefficients
were estimated by an iterative method.

In the first iteration of the weighted least squares analysis the weights were all set to 1.0 (i.e., an ordinary least squares
analysis was performed).  To obtain new weight estimates, the estimated values of α and β from this regression were first
substituted into Equation 15.  Solving for εi and taking absolute values gives the new sx value for each of the xi data points.
While each of the sx values is an estimate of the corresponding σx value, taken individually they are highly inaccurate
estimates.  Better estimates of the weights can be obtained by considering the whole set of sx estimates in terms of their
relationship to the PAN measured mass values.  A scatterplot of the sx values and the measured PAN mass values showed the
relationship to be linearly increasing on a log-log scale.  A numerical estimate of this increasing relationship was obtained by
regressing the logarithms of the sx values on the logarithms of the PAN mass values.  New estimated values for sx obtained
from this regression equation were then squared and, after taking reciprocals, used as weights in the second iteration of the
weighted least squares analysis.  This yielded new estimates of α and β, from which new estimates of the ε could be
obtained.  This iterative process was repeated until the estimates of α and β and ε did not change in the first three significant
digits.

The final equation used for calculating sx and hence the weights in the final iteration of the weighted least squares analysis
was

sx = .365(PAN Pu mass).931. (17)

The weighted least squares analysis for the measurement model in Equation 15 produced an estimate for α that was not
significantly different from zero, so that term was dropped from the model.  The estimated value for β is β̂  = 1.55.  To check
the adequacy of a linear model for the data, a quadratic term was also tested.  The quadratic term was not statistically
significant; indicating the linear model is sufficient to represent the data.  Therefore, the only applicable bias term is the
relative bias term β.  That is, the model relating the PAN system measurements to the radiochemistry results is simply



y = βx

which is estimated as

y = 1.55x.

(18)

(19)

Under the assumption that the radiochemistry data are unbiased, Equation 19 becomes an expression for quantifying the bias
in the PAN system.  Based on this analysis, a 1.55 bias correction is being applied to all aqueous sludge drum measurements.
Hence, the expected bias in measurements of aqueous sludge waste is now zero.  There is still uncertainty in the result
associated with the bias adjustment.  An approximate 95% confidence interval for the true relative bias of PAN
measurements after the bias adjustment was calculated to be (-27%, 27%).  (A detailed description of the analysis is available
elsewhere.5)

8.5  Matrix specific precision

An expression for calculating matrix specific precision error for the sludge waste can be found by calculating the variance of
both sides of Equation 16 and solving for the error term associated with the PAN measurements, σpi.  This gives the precision
error as

2

22

β
σσσ ε rii

pi
−= (20)

where σεi is the residual standard deviation (i.e., the standard deviation of the ε values) and all the other terms are defined as
before.

From Equation 20, estimates of the matrix specific error can be calculated using reported radiochemistry measurement error
values to estimate σri, and estimates of β and σεi produced in the weighted least squares regression above.

The matrix specific precision error is related to the mass of Pu in the drum, as can be seen in Figure 3, which plots the
calculated precision error terms as a function of the bias adjusted PAN Pu mass.  A weighted least squares regression was
applied to these data, resulting in the following formula for estimating the matrix specific error:

sm = .33*(bias adjusted PAN Pu mass). (21)

Equation 21 indicates a relative precision error of approximately 33%.  It should be noted that the regression fit is affected
somewhat by several high uncertainty values.  If the relative precision error is calculated separately for each of the 125
individual drums the mean value is 31%, which agrees closely with the regression parameter estimate of 33%.  However, the
median relative uncertainty value is 19%, a considerably lower value.

9.  DISCUSSION

The previous example has shown how an uncertainty analysis can proceed based on direct sampling and verification of
nuclear waste.  This method was ideal for the sludge waste because verification of PAN measurements could be reasonably
obtained by destructive radiochemical analysis of core samples.  This may not be the case for other waste types, particularly
debris waste where coring is not a practical means of obtaining confirmatory measurements.  Some modifications of the
sampling and verification method can be used on such waste types.  Computer simulation of direct sampling and verification
methods has been used successively at the INEEL.

In the computer simulation approach, computer models of real waste drums and of the PAN system performance were
developed.  After benchmarking the process by comparing real and simulated measurements of surrogate waste drums, the
computer-simulated measurements of the real waste drums were analyzed as if they had come from real measurements of the
waste type of interest.  For the computer simulation method to work requires specific knowledge of both the important matrix



characteristics and the distribution of these characteristics in the population of interest.  At the INEEL the simulation based
approach was made possible by:

•  the previous existence of computer programs simulating both the neutron transport properties of a simulated waste drum
and the subsequent PAN system performance,

•  a large collection of real-time radiography tapes for waste drums at the INEEL (so that actual waste drums could be
modeled), and

•  an extensive database of actual PAN measurements on waste drums and background drums (from which other
parameters important to measurements (e.g. background levels) could be determined.
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Figure 3.  Estimated matrix specific error as a function of bias adjusted Pu PAN Pu mass.
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