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Abstract 

A numerical algorithm is proposed for connecting the incoming and outgoing 

wave fields in studies of linear conversion. This is the first such ray-based algo- 

rithm for wave conversion in multiple spatial dimensions. It is demonstrated 

that, aside from the overall phase of the coupling, one can directly evaluate all 

quantities needed for the connection coefficients from the ray geometry. The 

ray dynamics is generated using the determinant of the dispersion matrix as 
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the hamiltonian. Using information available while following an incoming ray, 

the algorithm automatically detects that the ray has entered a conversion r e  

gion, evaluates the transmission and conversion coe5cients, and launches the 

transmitted ray. The algorithm does not require any prior knowledge of the 

geometry of the conversion region. The algorithm is illustrated using a twc- 

dimensional toroidal model with resonant conversion from a magnetosonic t o  

an ion-hybrid wave. 

Consider a linear multi-component wave equation in multiple spatial dimensions. An 

important tool for its analysis is ray tracing (also known as the WKB method), which 

provides physical insight often diflicult to  extract from full-wave simulations. For example, 

ray tracing methods (as developed by Maslov and others [l-41) reveal how energy propagates 

through the system, and how he-scale spatial structure can form due t o  caustics. For an 

n-dimensional system, the ray dynamics is hamiltonian in the 2n-dimensional ray phase 

space (x, k). 

When the background medium is non-uniform, it often occurs that the dispersion rela- 

tions for two distinct modes can be simultaneously satisfied in certain localized regions. In 

such linear conversion regions the WKB approximation breaks down and a full-wave descrip- 

tion which connects the incoming and outgoing waves must be developed. Global wavefields 

have recently been calculated for two-dimensional problems of interest in tokamak heating, 

including mode-conversion to ion-hybrid and ion-Bernstein waves [5-81. Such large-scale 

computations, performed with a limited spatial resolution, do not yet allow for a systematic 

study of the parameter space. Full-wave numerical calculations are also unlikely to  treat 

problems involving conversion to  the electron-Bernstein wave in the near future. 

Separating the propagation (which can be treated using WKB) from the conversion, 

in [4], we showed how t o  compute the connection formulas, once a reduction to a local 2 x 2 

coupled wave equation was carried out. Not discussed there, however, was the manner of 

reduction without prior knowledge of the geometry of the conversion region. This lack of 



a reduction algorithm limited the application of our method to problems simple enough to  

allow an analytical reduction [9]. In more general situations, the physics will l i ldy be too 

complex t o  allow such an intuitive reduction, and one must provide a means for the ray 

tracing algorithm to ‘discover’ the conversion region and evaluate the connection formulas 

automatically. 

The long-term goal of this research program is to  develop a ray-based algorithm for 

computing wave fields in complex geometries including linear conversion. Such an algorithm 

would supplement direct full-wave calculations and provide further insight. 

In closed systems, such as a toroidal cavity, conversion can occur repeatedly and has 

a dramatic effect upon the global structure of the wave fields. The presence of linear 

conversion also strongly affects the response t o  external driving (such as antennas, see [lo] 

for a one-dimensional study). A complete numerical algorithm would have the ability 

to: 11 Launch a family of rays. 21 Propagate both amplitude and phase ‘freely’ until 

linear conversion is encountered. 31 Detect that the rays are entering a linear conversion 

region. 41 Connect the incoming and outgoing wave fields (amplitude and phase) for both 

the transmitted and converted waves. 51 Construct the full wave fields in the vicinity of the 

conversion. 61 Reflect waves off boundaries when they are encountered. And, 71 iterate this 

process as many times as needed to understand where the energy is eventually deposited. 

In this paper we describe an algorithm to cany  out steps 31 and 41 of this program. 

It is demonstrated that, except for the phase of the normalized coupling constant 7, the 

connection formulas and the the transmitted ray can be calculated using information which 

can be measured while following the incident ray. (The phase of the coupling constant 

requires more effort and will be discussed in a later paper.) The present conversion algorithm 

is then demonstrated on a problem of interest in plasma heating: the conversion of a 

magnetosonic wave (MSW) to  the ion-hybrid wave (IHW). 

The paper is arranged as follows: we begin by briefly reminding the reader of the phase 

space formulation of ray tracing. v[ie then describe the algorithm, and end with a summary 

of its application to  the MSW-IHW conversion. 
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For concreteness, we consider the propagation of electromagnetic waves in a two- 

dimensional magnetized plasma, representing the poloidal plane of an axisymmetric torus. 

The algorithm described below can be easily generalized for wave equations in three spatial 

dimensions, or for problems which include more field variables (e.g. fluid velocity fields, 

densities, etc.). Assuming the background plasma properties are given and independent 

of time, the problem reduces to  solving for the electric field E(x)e-”*. Dissipative effects 

do not affect the ray trajectories and can be treated perturbatively to  extract the power 

absorption profile. Hence, we use the hermitian part of the full 3 x 3 dispersion matrix, D. 

In the x-representation, the electric field satisfies: 

D(x, k -iV; W )  . E(x) = 0. (1) 

In what follows, we suppress the w dependence. In symbolic form [4], we write the dispersion 

matrix as the 3 x 3 hermitian matrix D(x, k). For any point in the four-dimensional ray 

phase space, (x, k )  = (z, y, kz, ky), the matrix D(x, k) has three (real) eigenvalues and three 

associated eigenvectors: 

D(x, k) . GJx, k )  = Dj(x, k)Gj(x, k) .  j = a,  b,  c. 

In order to simplify the algebraic expressions to  come, we now shift notation from (x, k) to 

z = (x, k )  for our phase space coordinates. 

The dispersion surface of mode j consists of those values of z such that Dj(z)  = 0. 

In the four-dimensional phase space the dispersion surfaces are three-dimensional. Linear 

conversion can occur in regions where two of these dispersion functions are nearly zero [ll]. 

Ray a 

That is, 

First, start with a ray of mode a and launch it far i?om a conversion region. 

is propagated using the full determinant D ( z )  

i dz/dnD is given by: 

det(D)(z) as its hamiltonian. 

(3) 
dk aD _ = _  aD - - ___ - 

dx  
d n D  ak’ dnD a X ’  

The physical time, t ,  is related to  the ray parameter n~ via d t / d u D  = aD/aw [4]. Note 

that in [4] we used D, as the ray hamiltonian. This leads to a different parameterization 
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of the ray, but otherwise leaves it unchanged. For notational clarity, we now drop the ‘D’ 

subscript and denote the ray parameter as u. We now turn to  the question of how to  detect 

that the ray is entering a linear conversion region. 

The first task at hand for implementing a numerical ray tracing algorithm which includes 

mode conversion is to  ask What quantities can be monitored following the rays which detect 

that one has entered a conversion region? The problem is made more dif6cult when we add 

the requirement that the algorithm should provide results that are invariant under changes 

of representation (i.e. under congruence transformations of the vector wave equation), and 

under linear canonical transformations. The algorithm proposed here satisfies both of these 

requirements. 

Any quantity which is proposed as a monitor for linear conversion must have the property 

that it can detect when a second eigenvalue of D is getting small. For a 2 x 2 problem, the 

natural quantity to  monitor is TTD = Dll+Dzz = D,+Db(= Db since D, = 0). Following a 

ray of mode a, a local minimum of ITrDl(u) strongly suggests that the ray may have entered 

a conversion region. For the 3 x 3 problem, the trace is not useful as a monitor for conversion 

beause in this case TrD = Dll + D2? + D33 = DI, + D Congruence transformations leave 

the signs of the eigenvalues Db and D ,  invariant, but not their magnitudes, hence the sign of 

the trace can change under a congruence transformation. A more useful quantity to  monitor 

for the 3 x 3 problem is the symmetric function of pairwise products of the eigenvalues, 

which we denote as F = D,Db + DmDc + DbDc [3]. The function F can be evaluated by 

expanding D in minors: 

On the dispersion manifold D, = 0 and we have F = DbD,. The value of the ray parameter 

where the relevant monitor, lTrDl(u) or IFI(u), has a local minimum is defined as the point 

UO. It is an important aspect of our algorithm that we can define a single point on the ray 

as the location where conversion occurs. For a family of rays, it is assumed that we can 

treat the conversion as occurring ray by ray for the entire family. We now proceed t o  look 
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for further evidence that one is near a conversion. 

When the conversion monitor suggests that the ray has entered a conversion region, at 

the point zo z (ao )  we evaluate the ray velocity and acceleration: 

dz d2z 
d a  do2 

io = -(OD), 20  -(uo). (5) 

Generically, these two vectors are not parallel. Hence, using z(ao)  z zo as an origin, they 

can be used to deiine a two-dimensional plane embedded in the four-dimensional phase 

space (see Fig. (1)). This is the osculating plane of the ray [12]. Our computation of 

the connection coe5cients in [4] implicitly assumes that the ray is locally conhed to such 

a plane. Confinement to this two-dimensional plane allows us to  reduce the local wave 

equation in the vicinity of the conversion to  a k s t  order ordinary differential equation 

which is easy to solve. However, if the ray dynamics transverse to the plane is important 

(Le. if the ray exhibits the phase space equivalent of torsion), then this reduction is not 

valid and one must use a higher order description. 

Now compute the symplectic ‘area’ spanned by io and io: 

and introduce the basis vectors 

Any point in the osculating plane can be represented as a linear combination of these two 

vectors: 

In what follows, we denote points in the osculating plane by capitals, 2, and we note that 

q and p are a conjugate pair of coordinates on this plane. 

Now consider the restriction of the ray hamiltonian D(z) t o  the osculating plane, denoted 

as h(q,p): 
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We note that h ( q , p )  acts as a local hamiltonian governing the ray dynamics in the 

neighborhood of the conversion. For conversion to occur, the hamiltonian must have a 

saddle structure. This ensues that there is a second dispersion manifold in the vicinity, 

and that the local geometry loolcs lilce that of an 'avoided crossing' or a 'tunneling' region 

(see Fig. (2)). We first assume there is a saddle structure, and ask about the nature of the 

rays in the vicinity. From this, we uncover an important relationship between the saddle 

geometry and the coupling coefficient 7. After establishing this connection, we then ask 

how to  fmd the saddle geometry approximately, using information evaluated only along the 

incoming ray. 

Now consider the directional derivatives (see Eqs. (7)-(9)): 

A saddle point (q. ,p,)  satisfies two conditions: 11 the gradient of h vanishes: 

and 21 the matrix of second derivatives (the hessian) 

at the saddle point must have two non-zero eigenvalues with opposite signs (the determinant 

of the hessian must be negative). We note that the saddle point (q*,p,) corresponds to  the 

point 2, Z(q, ,p , )  = 20 + q*Gq +p,$ in the full phase space. Now expand h ( q , p )  about 

the saddle point. To quadratic order, this gives: 

where Az ( q  - q*,p - p * ) .  

Wk now consider the connection between the quadratic hamiltonian h ( q , p )  of (13) and 

the local 2 x 2 dispersion matrix assumed in [4]. There, we asserted that in a conversion 
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region a congruence transformation could be used to bring the dispersion matrix D into the 

form [ D&) ; D T ) ; T ) 7  f i  

with D,, DA and D, identied as the ‘uncoupled’ dispersion functions and f i  the coupling 

constant. Focusing attention on the upper left block, the local 2 x 2 form is then expanded 

about the conversion point (defined in [4] as the point where the uncoupled rays cross). We 

identify this crossing point as the saddle point Z,. The linearization (in the four-dimensional 

phase space z) about Z ,  gives (using D,(Z,) = Dx(Z,) = 0):  

We now assume that the variation of the linear functions (z - Z,) . V,D, and (z - Z,) . V,Dx 

is predominantlyin the osculating plane of the ray, implying that (z-Z,).V,D, N (Z(q,p)- 

Z,) . V=D,, etc. Hence, we replace the four-dimensional quantities in (15) with the local 

two-dimensional fonns: D,(q,p) = Az .a = (q - q,)aq + (p -p*)a,  arid D ~ ( q , p )  = At. X = 

( q  - qi)Xg + (p -p*)Ap. The hamiltonian h(q ,p )  is now identified as the determinant of the 

2 x 2 dispersion matrix: 

and a little algebra shows that (Az . m ) ( A z .  A) can be written as A z .  X,. Az with 

Note the important result that: 
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(19) 
1 1 

det(7-L) = --(aq& - (YJ,)~ = --{D=, D ~ } ~ .  
4 4 

This last quantity is the square of the Poisson bracket of D, and Dx, a quantity denoted B 

in [4]. Therefore, the normalized coupling is 

From this, we compute the transmission and conversion coefficients [4] (the reader should 

also refer to Fig. (1) for a graphical representation of the relationship between the incoming 

and outgoing wavefields): 

+rt = T @ i ,  +;r"" = p q i .  (21) 

Here, +: is the amplitude of the incoming field, meaning that the incoming electric field for 

polarization (Y is of the form E? = gap:, etc. The transmission and conversion coefficients 

are: 

In the expression for the conversion coefficient, p, we are lacking the phase of 7. This will 

be discussed in a later paper. 

For weak coupling, one can locate the saddle point and evaluate the magnitude of the 

coupling, using only information computed while following the incoming ray. Therefore, in 

this case there is no need t o  search for the saddle point. Taylor expanding h ( q , p )  to Znd 

order about the origin (recall that the point zo lies on a ray, hence D (00) = 0; and denote 

ah/a4(Oo) E aho/aq etc.) :  

We note that the quadratic terms involve the hessian evaluated at ZO, which we denote X o .  

v[ie first locate the saddle point (q . ,p , )  by one-step Newton iteration: 
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and then note that 

1 
h(q*,p*) = --Vho 2 ' 7101 ' Vho 

For weak coupling the saddle is close to ZO, therefore 710 N ?I!* (correct to O(Azz)). There- 

fore, we can evaluate the normalized coupling as 

We note that all quantities in the above equation are evaluated on the incoming ray. 

It remains to  launch the transmitted ray. We can & the initial conditions by searching 

along a straight line in phase space which connects the point zo on the incoming ray with 

the saddle point Z, = Z(q, ,p , )  = If there is a conversion occurring, this line 

will also puncture the other dispersion manifold (see Fig. (1)). Parameterize this connecting 

line as 

--w < s < 03. (27) 

The parameter value s = 0 corresponds t o  ZO, the parameter value s = 1 is the saddle point 

Z , ,  hence the transmitted ray should lie in the vicinity of s = 2. The initial conditions for 

the transmitted ray are fixed by finding the local zero of D(z(s ) )  restricted t o  this line, 

f(s) = D(20 + (Z* - z0)s). 

This line punctures the second dispersion manifold when f = 0, which defines the parameter 

value s = s', and thereby fixes the initial condition of the transmitted ray z(s') = ZO+ (Z, - 

~ 0 ) s ' .  This is the initial condition for the transmitted ray. The transmitted ray is assigned 

an amplitude equal t o  that of the incoming ray at the conversion point 20 multiplied by the 

transmission coefficient 

We now discuss the application of the algorithm to the MSW-IHW conversion in toroidal 

geometry, by first introducing a conceptual model t o  illustrate application of the algorithm, 

and then end with a very brief discussion of a more realistic toroidal model. 
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Our simplified model is a variation of that used in [13], and is a two-dimensional variation 

of the model considered in [9]. Consider the two coupled wave equations (7J is constant in 

this model): 

here DM is a simpl5ed model of a magnetosonic (fast) wave conhed to the poloidal plane 

of a torus with circular cross-section. In non-dimensional variables, we put Dnf(x ,  k) E 

1 - (kz+ki )  - (z’ +y2). The (2, y)-dependence of DM provides for radial confinement of the 

MS waves. The second dispersion function DH is a simplified model of the M resonance: 

DE E z - X H .  The ray hamiltonian is D ( x ,  k) = DUDE - 7J2, giving the ray equations (see 

Eqs. (3)) 

X = 2(2 - z H ) k z ,  6 = 2(z - zH)k,, 

z -  -(1-1;’- T’ )  - 2(z - zH)z,  k y  = 2(% - zH)y. 
(30) 

We note that in the vicinity of the IH resonance z M 58 ,  the evolution in the k,-direction 

dominates. 

Y e  and Kaufman first pointed out that resonance crossing could be treated as a two-step 

process in the ray phase space [14], involving a sequence of two conversions (see also [SI). In 

Fig. (2) a plot is shown of a ray undergoing such a pair of conversions. (The first conversion 

is shown in some detail, while the second is not, for clarity.) The incoming MS ray is 

launched (1) near the wall of the torus (numbers refer to locations in the figure). The ray 

is propagated using Eqs. (30). In the vicinity (2) of the first conversion, the trace of the 

dispersion matrix (ITTDI = ~ D M  + DHI) exhibits a local minimum and & w s  the location of 

the conversion point zo. The osculating plane at zo is defined by io and io. A thumbnail 

contour plot of h ( q , p )  in the osculating plane is shown, with proper orientation in the phase 

space. The contour is also shown in more detail as the inset at the upper right. This contour 

plot clearly displays a saddle structure. Note that the incoming ray starts in the upper left 

quadrant and exits as the converted ray in the upper right quadrant. The point of conversion 
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is denoted with a large filled dot. The saddle point is indicated with a cross, and the initial 

conditions of the transmitted ray are indicated by an open dot. While the transmitted MS 

ray is launched in phase space, we show only its projection onto the (z, y)-plane at (3) for 

clarity. 

After the first conversion, the converted ray propagates predominantly in the I;,-direction 

(4). It has become an M ray (a 'slow' wave). This M. ray undergoes a second conversion at 

(5) where it converts to  the 'reflected' MS ray (6). The transmitted IH ray at  (7) continues 

to propagate t o  large I;, until it is eventually absorbed via Landau damping (assuming it is 

absorbed before undergoing further conversion of some kind). This propagation to regions 

of large k, implies that the wave fields develop h e  scale structure near the conversion layer, 

an effect which makes direct numerical solution of the full wave equations difficult. The MS 

ray (8) subsequently undergoes further reflection at the outer wall of the tokamalc and will 

re-enter the resonance layer. 

We end with a very brief discussion of the application of the algorithm to  a more realistic 

toroidal model. This model uses a 3 x3 cold plasma dispersion matrix including finite I;,,. The 

ray equations are developed using magnetic coordinates, which allows for treatment of non- 

circular poloidal cross-sections and non-zero plasma current. A DH plasma is assumed and 

a Solovev equilibrium used for the plasma background. The algorithm has been implemented 

as a MATL.4B module. This allows interactive display, for example, of the ray trajectories, 

the conversion monitor F ( u ) ,  and the transmission coefficient T .  Typical results are shown 

in Figs. (3) and (4). 

To summarize, in this Letter we have proposed a ray-based algorithm for treating linear 

conversion in multi-dimensions. The algorithm assumes no prior lcnowledge of the location or 

geometry of the conversion region, and uses only information which is available by following 

the incoming ray. The algorithm assumes that, in the vicinity of the conversion, the ray 

is confined to  a local two-dimensional plane in the phase space. The algorithm detects 

the presence of a conversion region, provides an evaluation of the connection coefficients, 

and fixes the initial conditions of the outgoing transmitted ray. Further development of 
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the algorithm will include the amplitude propagation, the phase of the coupling coefficient 

(which is needed for the conversion coefficient p),  inclusion of thermal effects, and calculation 

of the wave fields in the immediate vicinity of conversion. 
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FIG. 1. Phase space diagram of the conversion region. The incoming ray enters fcom the upper 

part of the figure. The conversion monitor has identified the point 20 as a candidate conversion 

point. At 80, the two-dimensional osculating plane of the ray is defined by io and z,. The local 

hamiltonian h(4,p) is found t o  have a saddle structure (with asymptotes indicated by dot-dashed 

lines). The saddle point is at Z,. The transmitted ray is found by searching for a second zero of 

h ( q , p )  along the line connecting 20 and Z, (shown as a dashed line). A zero of h(q ,p)  will also be 

a zero of the determinant D ( z )  and, hence, a valid initial condition for the transmitted ray. See 

text for details. 

FIG. 2. MSW-IHW conversion in multi-dimensions. A phase space plot (z,y,hz) of the ray 

trajectory is shown. Also shown is the projection of the ray onto the (z,  g)-plane. This figure was 

generated by numerically integrating the ray equations (30) using MAPLE. 
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FIG. 3. Toroidal cross section and a dozen rays launched near the outer wall. The dashed line 

indicates roughly the location of the IH resonance layer. For clarity, the rays are followed only 

through the Erst conversion (i.e. the calculation is stopped when kz passes through zero). 
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FIG. 4. Two time series (in ray parameter u) showing the histories of the conversion monitor 

[F(u) (  (solid line, arbitrary units), and the transmission coe5cient T (data points). The uppermost 

ray in Fig. (3) was used to generate the time series shown here by following it fully through the pair 

of conversions. The transmission coefficient is evaluated using Eqs. (26) and (22). Notice the two 

shallow minima of IF(u)I indicated on the figure at A and B,  with approximately 45% and 85% 

transmission, respectively. Both of these minima occur in the immediate vicinity of the resonance 

layer indicated by the dashed line in Fig. (3). 
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