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Abstract

A general quantum-mechanical method for computing kinetic isotope effects is presented. The

method is based on the quantum instanton approximation for the rate constant and on the path

integral Metropolis Monte-Carlo evaluation of the Boltzmann operator matrix elements. It com-

putes the kinetic isotope effect directly, using a thermodynamic integration with respect to the

mass of the isotope, thus avoiding the more computationally expensive process of computing the

individual rate constants. The method is more accurate than variational transition-state theories

or the semiclassical instanton method since it does not assume a single reaction path and does

not use a semiclassical approximation of the Boltzmann operator. While the general Monte-Carlo

implementation makes the method accessible to systems with a large number of atoms, we present

numerical results for the Eckart barrier and for the collinear and full three-dimensional isotope

variants of the hydrogen exchange reaction H+H2 → H2+H. In all seven test cases, for tempera-

tures between 250 K and 600 K, the error of the quantum instanton approximation for the kinetic

isotope effects is less than ∼10%.
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I. INTRODUCTION

Kinetic isotope effects (KIEs) belong among the main tools of chemical kinetics in de-

termining mechanisms of complex chemical reactions or determining the extent of nuclear

quantum mechanical effects in a simple reaction.1–3 These effects are particularly strong for

hydrogen transfer reactions with a high activation barrier or at low temperatures. How-

ever, KIEs have been used to show that in some enzymatic reactions, the hydrogen transfer

proceeds via tunneling even at room temperature with the help of thermally excited “pro-

moting” vibrations that modulate the donor-acceptance distance.4–10

By definition, KIE is the ratio of the rate constants of the lighter and heavier isotopic

variants of a chemical reaction, and in general differs from unity due to several different

factors. Since the early days of chemical kinetics, KIEs have been mostly described from the

perspective of transition state theory (TST).1,2,11 This theory is intrinsically classical, al-

though various quantum “corrections” have been incorporated in it over time. For instance,

observed zero-point-energy effects can be accounted for by replacing classical partition func-

tions by their quantum analogs. For high enough temperature, tunneling can be accounted

for by the Wigner correction.12 For low temperatures, tunneling and accompanying “corner-

cutting” can be accounted for by finding optimal tunneling paths.13–15 Since the very concept

of trajectory is ill-defined in quantum mechanics, a tube of trajectories should be consid-

ered, which is done, e.g., in the semiclassical instanton method16,17 that takes these quantum

fluctuations into account, at least in the harmonic approximation.

There are various approaches to find exact quantum-mechanical rate constants,18,19 but

in general these are not feasible for systems with many degrees of freedom. One therefore

often resorts to various simplifying approximations that make a computation practicable

but are less severe than even the improved versions of TST. Among these belongs a variety

of quantum transition state theories (QTSTs).20–32 Another option is to treat only the most

important (generally only one or two) degrees of freedom quantum mechanically and the

rest classically, as is the case, e.g., in the mixed quantum/classical molecular dynamics with

quantum transitions33 or in the quantum-classical path method with an empirical valence

bond potential energy surface.34

A recent paper35 has introduced a new type of QTST, motivated by the semiclassical

(SC) instanton model,16 and is therefore referred to as the quantum instanton (QI) ap-
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proximation. The similarity between the quantum and semiclassical instanton theory lies

in using the steepest descent approximation to evaluate relevant integrals in the quantum

mechanical rate expression, while the critical difference is that the Boltzmann operators in

the QI expression are evaluated fully quantum mechanically rather than within the semi-

classical approximation. The quantum instanton theory thus incorporates all the tunneling,

corner-cutting, and quantum-fluctuations effects correctly and is expected to overcome the

quantitative deficiency of the SC instanton model.36 Indeed, several test applications have

shown the QI theory to give accurate quantum rates over a wide temperature range, from

the “deep” tunneling regimes at low temperatures to the regime of over-barrier dynamics

at high temperature.35,37–42 A practical path integral Monte-Carlo (PIMC)43–45 scheme has

also been developed to evaluate the QI rate for more complex reactions.37,38

While the theoretical KIE is usually computed by finding the absolute rate constants

for the isotopic variants first and then calculating their ratio,15,33,34 it is often much easier

experimentally to measure the KIE directly. Similarly, in this paper we describe an efficient

procedure, based on the QI approximation, for computing the KIE directly, using a ther-

modynamic integration46,47 with respect to the mass of the isotope. Because our method is

based on the PIMC integration, it scales favorably with the dimensionality of the system

even if all degrees of freedom are treated quantum-mechanically. However, if a different

number of imaginary-time slices is used in the discretization of the path integral for each

degree of freedom, a virtually continuous choice is possible between a fully classical (one

slice) and a fully quantum-mechanical (many slices) treatment of each degree of freedom

separately.42,48 The direct method of computation of KIEs described here is efficient par-

ticularly because it avoids umbrella sampling46 necessary in computing the absolute rate

constants.37,38

The remainder of this paper is organized as follows: Section II provides a simple covari-

ant (coordinate independent) derivation of the QI expression. Section III shows how the QI

theory is applied to the KIEs via the thermodynamic integration. In Sec. IV, we describe

the path integral formalism for evaluating the KIEs within the QI approximation. Section V

gives an overview of the traditional TST framework for KIEs, in particular the high tem-

perature limit of TST is discussed. Section VI summarizes the exact quantum-mechanical

(QM) method (i. e., a quantum reactive scattering calculation) for computing the rate con-

stants of bimolecular reactions A+BC → AB+C in three dimensions. This method is used
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in the following section to provide a benchmark for evaluating the QI approach. In Sec. VII

we numerically test the QI approximation for KIEs from Secs. II-IV and compare it to the

exact quantum KIEs and to the high temperature limit of simple TST, for three systems

of increasing complexity—for the Eckart barrier and for the collinear as well as full three-

dimensional isotopic variants of the H+H2 → H2+H reaction. Section VIII summarizes the

main conclusions of this paper.

II. QUANTUM INSTANTON APPROXIMATION FOR THE THERMAL RATE

CONSTANT

The quantum instanton approximation for thermal rate constants was introduced in Ref.

35 where it was derived from the exact expression

kQr = (2π~)−1

∫ ∞

0

dE N (E) e−βE. (2.1)

Here k is the thermal rate constant, Qr is the reactant partition function, N(E) is the

cumulative reaction probability at total energy E, and β = 1/kBT is the inverse temperature.

An alternative derivation49 starts from the exact Miller-Schwartz-Tromp formula,50

kQr =

∫ ∞

0

dtCff (t) (2.2)

where Cff (t) is the symmetrized (and therefore real) flux-flux correlation function,

Cff (t) = tr
(
e−βĤ/2F̂ae

−βĤ/2eiĤt/~F̂be
−iĤt/~

)
(2.3)

with Hamiltonian operator Ĥ, and flux operators F̂γ defined by

F̂γ =
i

~

[
Ĥ, h [ξγ (r)]

]
, (2.4)

h (ξγ) being the Heaviside function. The above equations involve two dividing surfaces,

defined by ξγ (r) = 0, γ = a, b; i.e., ξa(r) and ξb(r) are generalized reaction coordinates,

functions of the coordinates r that take on positive (negative) value on the product (reactant)

sides of the dividing surfaces. The quantum instanton expression follows by multiplying

and dividing the integrand of Eq.(2.2) by the “delta-delta” correlation function Cdd (t) and

applying the stationary-phase approximation to the resulting integral

kQr =

∫ ∞

0

dtCdd (t)
Cff (t)

Cdd (t)
, (2.5)
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assuming that Cff (t) /Cdd (t) varies slowly compared with Cdd (t) and that the stationary-

phase point is at t = 0. The result is

k ≈ kQI =
1

Qr

Cff (0)

√
π

2

~
∆H

(2.6)

where ∆H is a specific type of energy variance,37

∆H = ~

[
−C̈dd (0)

2Cdd (0)

]1/2

. (2.7)

The delta-delta correlation function used above is defined as

Cdd (t) = tr
(
e−βĤ/2∆̂ae

−βĤ/2eiĤt/~∆̂be
−iĤt/~

)
(2.8)

where the generalized delta function operator is

∆̂γ = ∆ [ξγ (r̂)] ≡ δ [ξγ (r̂)] ‖∇ξγ‖− (2.9)

and the norm of a covariant vector ∇ξγ is

‖∇ξγ‖− =

√√√√ N∑
i=1

1

mi

|∇iξγ (r)|2 (2.10)

(the “-” sign subscript on the left-hand side denotes that the negative first power of mi must

be used in the norm of a covariant vector). The two dividing surfaces γ are determined within

the QI approximation model by the requirement that Cdd(0) be stationary with respect to

the change in their location,

∂Cdd

∂ηk

= 0 for all k and all λ ∈ [0, 1] , (2.11)

where {ηk} is a set of parameters controlling the location of the dividing surfaces. This

stationary condition originates from semiclassical considerations of the periodic orbit in

imaginary time with period ~β (i.e., the “instanton”); the two dividing surfaces correspond

qualitatively to the location of the turning point surfaces of this periodic orbit.

III. APPLICATION TO THE KINETIC ISOTOPE EFFECTS

The kinetic isotope effect (KIE) is defined as the ratio kA/kB of rate constants for two

isotopologues A and B. Isotopologues A and B are two chemical species differing only by
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replacing an atom (or a group of atoms) in A by its (their) isotope(s) in B. It will turn out

below to be convenient to consider the isotope change to be continuous, and parametrized

by a real number λ ∈ [0, 1], where λ = 0 for isotopes present in A and λ = 1 for isotopes

in B. Within the Born-Oppenheimer approximation, the potential energy surface (PES) for

the reaction does not change, the only change in the Hamiltonian being in the mass of the

isotopes. We can therefore define λ by

mi (λ) = mA,i (1− λ) + mB,iλ (3.1)

where mA,i and mB,i are the masses of the ith atom in the isotopologues A and B, re-

spectively. Within the quantum instanton approximation (2.6), the KIE can be expressed

as
k0

k1

=
Qr1

Qr0

× ∆H1

∆H0

× Cff (0)0

Cff (0)1

, (3.2)

the numeric subscript denoting the value of λ. The Metropolis path integral Monte-Carlo

algorithm that we shall use to evaluate the KIE is only capable of finding normalized quan-

tities, such as Cff (0)λ /Cdd (0)λ or ∆Hλ = ~
[
−C̈dd (0)λ /2Cdd (0)λ

]1/2

. It therefore pays to

rewrite Eq. (3.2) as

k0

k1

=
Qr1

Qr0

× ∆H1

∆H0

× Cdd (0)0

Cdd (0)1

×
Cff (0)0
Cdd(0)0
Cff (0)1
Cdd(0)1

. (3.3)

Ratios Cdd (0)1 /Cdd (0)0 and Qr1/Qr0 contain quantities with different values of λ and cannot

be directly evaluated by the PIMC method. In order to circumvent this obstacle, we use

a thermodynamic integration46,47 (also known as the charging algorithm) with respect to

the parameter λ. While Qr(λ) is not a normalized quantity, its logarithmic derivative,

d log Qr (λ) /dλ = dQr(λ)
dλ

/Qr (λ), is and can be directly computed by the PIMC method. We

can therefore find the ratio of the partition functions, and similarly, delta-delta correlation

functions, as

Qr1

Qr0

= exp

[∫ 1

0

dλ
d log Qr (λ)

dλ

]
, (3.4)

Cdd(0)1

Cdd(0)0

= exp

[∫ 1

0

dλ
d log Cdd(0) (λ)

dλ

]
. (3.5)

IV. PATH INTEGRAL REPRESENTATION OF RELEVANT QUANTITIES

Equations (3.3)-(3.5) contain four types of expressions. As mentioned above,

Cff (0)λ /Cdd (0)λ and ∆Hλ are directly suitable for Metropolis PIMC evaluation and path-
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integral estimators for these quantities have been derived in Refs. 37,38. In our case, we

need a generalization of the estimators from the Appendix of Ref. 37. For completeness,

this generalization is written out explicitly in Appendix A. Otherwise, we only need to find

path-integral expressions for d log Qr (λ) /dλ and d log Cdd(0) (λ) /dλ.

We start with the path integral representation for Qr,

Qr ' V −2C

∫
dr(1)

∫
dr(2) · · ·

∫
dr(P )ρr

({
r(s)

})
, (4.1)

ρr

({
r(s)

})
= exp

[
−βΦ

({
r(s)

})]
, (4.2)

where V is the volume,87 C ≡
(

P
2π~2β

)NdP/2 ∏N
i=1 m

dP/2
i is a multiplicative constant, P is

the number of imaginary time slices, and r(s) ≡
(
r
(s)
1 , r

(s)
2 , . . . , r

(s)
N

)
the set of Cartesian

coordinates associated with the sth time slice. ρr is the thermal density matrix in the

reactant region and βΦ
({

r(s)
})

is the discretized “action” given by

Φ
({

r(s)
})

=
P

2~2β2

P∑
s=1

N∑
i=1

mi

(
r
(s)
i − r

(s−1)
i

)2

+
1

P

P∑
s=1

V
(
r(s)

)
(4.3)

with r(0) ≡ r(P ) and
{
r(s)

}
representing

{
r(1), r(2), . . . , r(P )

}
. The Monte-Carlo estimator for

the logarithmic derivative of Qr easily follows,

d log Qr (λ)

dλ
'

N∑
i=1

dmi

dλ

〈
dP

2mi

− β
∂Φ

∂mi

〉
ρr

, (4.4)

∂Φ

∂mi

=
P

2~2β2

P∑
s=1

(
r
(s)
i − r

(s−1)
i

)2

. (4.5)

Here 〈A〉ρ denotes the Monte-Carlo average of quantity A over discretized paths
{
r(s)

}
,

weighted with a density ρ,

〈A〉ρ ≡
∫

dr(1)
∫

dr(2) · · ·
∫

dr(P )A
({

r(s)
})

ρ
({

r(s)
})∫

dr(1)
∫

dr(2) · · ·
∫

dr(P )ρ ({r(s)})
. (4.6)

〈A〉ρ is the PIMC approximation to the QM thermal average of the quantity A, tr Âρ̂/ tr ρ̂.

Similarly, the path integral expression for Cdd (0) is

Cdd (0) ' V −1C

∫
dr(1)

∫
dr(2) · · ·

∫
dr(P )ρ‡

({
r(s)

})
, (4.7)

ρ‡
({

r(s)
})

= ∆
[
ξa

(
r(0)

)]
∆

[
ξb

(
r(P/2)

)]
exp

[
−βΦ

({
r(s)

})]
, (4.8)
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where ρ‡ is the thermal density matrix constrained to the two dividing surfaces (“transition

state” region).88 Since the position of optimal dividing surfaces in general depends on λ, Cdd

has both an explicit and an implicit dependence on λ, Cdd ≡ Cdd(λ, {ηk(λ)}) where {ηk(λ)}

is a set of parameters controlling the position of the dividing surfaces. Consequently

dCdd

dλ
=

∂Cdd

∂λ
+

∑
k

∂Cdd

∂ηk

dηk

dλ
, (4.9)

where from now on we omit the argument t = 0 of Cdd. Because of the appearance of extra

terms besides ∂Cdd/∂λ it seems at first that the thermodynamic integration for Cdd would

be much more difficult than that for Qr. However, due to the stationary property (2.11) of

the dividing surfaces, we have

dCdd/dλ = ∂Cdd/∂λ. (4.10)

The estimator for the logarithmic derivative is therefore

d log Cdd

dλ
'

N∑
i=1

dmi

dλ

〈
dP

2mi

− β
∂Φ

∂mi

−
∑
γ=a,b

|∇iξγ|2

2m2
i ‖∇ξγ‖2

−

〉
ρ‡

, (4.11)

where ξa is evaluated at r(0) and ξb at r(P/2).

For numerical computation we used a generalization of the Gaussian approximation of

the delta function from Ref. 37,

δ̃ [ξ (r)] ≡
(

2P

π~2β

)1/2
1

‖∇ξ‖−
exp

{
− 2P

~2β

[
ξ (r)

‖∇ξγ‖−

]2

−

}
, (4.12)

∆̃ [ξ (r)] =

(
2P

π~2β

)1/2

exp

{
− 2P

~2β

[
ξ (r)

‖∇ξγ‖−

]2
}

.

With this approximation, estimators for all quantities constrained to the dividing surfaces

must have ξa evaluated at r̄(1) instead of r(0) and ξb at r̄(P/2+1) instead of r(P/2), where

r̄(s) = 1
2

(
r(s) + r(s−1)

)
(see Ref. 37 for explanation). The constrained density matrix ρ‡ as

well as the estimators for Cff (0) /Cdd (0) and ∆H must be adjusted in a similar manner

as in Ref. 37. See Appendix A for details. Also, the estimator (4.11) for the logarithmic

derivative of Cdd changes and becomes

d log Cdd

dλ
'

N∑
i=1

dmi

dλ

〈
dP

2mi

− β
∂Φ

∂mi

− 2P

~2β

∑
γ=a,b

ξ2
γ |∇iξγ|2

m2
i ‖∇ξγ‖4

−

〉
ρ‡

, (4.13)

ρ‡
({

r(s)
})

= ∆
[
ξa

(
r̄(1)

)]
∆

[
ξb

(
r̄(P/2+1)

)]
exp

[
−βΦ

({
r(s)

})]
. (4.14)
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V. TRANSITION STATE THEORY FRAMEWORK FOR THE KINETIC ISO-

TOPE EFFECTS

The quantum-instanton approach described above is capable of capturing such quantum

effects as tunneling, “corner-cutting,” and anharmonic fluctuations about the semiclassical

path, and therefore goes far beyond the capabilities of the conventional transition state

theory (TST). Still, before we discuss the numerical results, it is useful to consider KIEs

in the framework of TST1,2,11 because this theory provides a way of classifying various

contributions to the KIEs, it is still widely used for describing experimental KIEs, and in

fact, it gives quantitative results at least at high enough temperatures (but not so high that

recrossing effects become important).

Within transition state theory, the reaction rate is

kTST = κ
kBT

h

Q‡

Qr

e−Eb/kBT , (5.1)

where κ is the transmission coefficient, Q‡ is the partition function of the activated complex

(i. e., excluding the unstable motion along the reaction coordinate), and Eb is the classical

barrier height. The KIE becomes

rTST =
kTST (λ = 0)

kTST (λ = 1)
=

κ (0)

κ (1)

Q‡ (0)

Q‡ (1)

Qr (1)

Qr (0)
. (5.2)

Assuming approximate separability of the Hamiltonian, the partition function can be fac-

tored into translational, rotational, and vibrational components as

Q = Qtrans ×Qrot ×Qvib.

At high temperature, we may use the classical forms of the three components of the partition

function,

Qtrans = (2πmkBT/h2)d/2, (5.3)

Qrot = 8π2(8π3IxIyIz)
1/2(kBT )3/2 (in 3 dimensions), (5.4)

Qvib =
kBT

~ω
(per degree of freedom), (5.5)

where Ix, Iy, Iz are the moments of inertia along the principal axes and ω is the angular

frequency of the vibration. The TST expression (5.2) greatly simplifies if we further use the
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Teller-Redlich product theorem.51,52 For the most general case of a nonlinear molecule in

three dimensions, this theorem reads,[
m(0)

m(1)

]3/2 (
Ix0Iy0Iz0

Ix1Iy1Iz1

)1/2

=
N∏

i=1

mi(0)

mi(1)

3N−6∏
j=1

ωj(0)

ωj(1)
(5.6)

where m =
∑N

i=1 mi is the total mass of the molecule and ωj is the angular frequency of

the jth normal mode. After substitution into Eq. (5.2) we obtain the classical (or infinite

temperature) limit of the KIE, which is temperature-independent,

rclass =
s‡ (1)

s‡ (0)

sr (0)

sr (1)

|ω‡unst (0) |
|ω‡unst (1) |

. (5.7)

Here s‡ and sr are the symmetry factors for the transition state and reactants, respectively,

and ω‡unst is the (imaginary) frequency for the unstable “vibration” along the reaction coor-

dinate at the transition state.

The first correction to the transmission coefficient at high but finite temperatures is the

order 1/T 2 expansion of the Wigner tunneling correction,

κ = 1 +
1

24

(
~

∣∣∣ω‡unst

∣∣∣ /kBT
)2

,

Similar corrections appear for the partition functions for all vibrational degrees of freedom,

QQM
vib

Qclass
vib

=
~ω/kBT

2 sinh (~ω/2kBT )
≈ 1− 1

24

(
~ω

kBT

)2

+ O
(
T−3

)
.

Including these corrections in the high temperature limit, the kinetic isotope ratio becomes

rhigh T = rclass

{
1 +

1

24

(
~

kBT

)2 [
Ω(0)2 − Ω(1)2

]}
, (5.8)

Ω(λ)2 ≡
∑

j

ωr,j(λ)2 −
∑

j′

ω‡j′(λ)2,

where ωr,j and ω‡j′ are vibrational (or bending) frequencies of the reactant and the transition

state, respectively.

VI. EXACT QUANTUM MECHANICAL METHOD

In order to evaluate the accuracy of the QI approximation for the KIE in the following

section, we need an exact benchmark. We will see that for the Eckart barrier, there is an
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analytical expression for the cumulative reaction probability (CRP) N(E) from Eq. (2.1).

For the collinear reactions, we will use exact results from Refs. 53–56. For the isotopic

variants of the full three-dimensional H+H2 reaction, we carried out our own extensive QM

calculations that we describe in this section.

The methodology of these calculations is based on the accurate determination of the

cumulative reaction probabilities which has been described extensively in the literature,57–59

thus only a brief sketch will be given in this section along with the details of the specific

calculations.

The thermal rate coefficient k(T ) can be written as

k(T ) =
∑
J=0

(2J + 1)kJ(T ), (6.1)

where the specific rate constant for total angular momentum J for a bimolecular A+BC

reaction, kJ(T ), can be written as

kJ(T ) =

Zelec(T )

∫ ∞

0

dE NJ(E) e−E/kBT

hΦrel(T )QBC
int (T )

(6.2)

In Eq. (6.2), QBC
int (T ) is the coupled nuclear–rovibrational partition function of BC and

Φrel(T ) is the relative A, BC translational partition function per unit volume. Zelec(T ) is

the ratio of the electronic partition functions of the transition state and of the atom A. The

key quantity in Eq. (6.2) is the total cumulative reaction probability, NJ(E), given by

NJ(E) =
∑
vjK

∑
v′j′K′

P J
vjK→v′j′K′(E) =

∑
α′ 6=α

∑
vjK

∑
v′j′K′

|SJ
α′v′j′K′, αvjK |2, (6.3)

where P J
vjK→v′j′K′(E) is the reaction probability from reactants with initial vibrational, ro-

tational, and helicity quantum numbers v, j,K to products with final vibrational, rotational

and helicity quantum numbers v′, j′, K ′, and α′ labels the AC+B, AB+C product arrange-

ment and α the A+BC reagent arrangement.

In the present work, the CRPs have been calculated for all J up to Jmax, including all

the projections in K and K ′ up to maximum values of K = min(J, j,Kmax) and K ′ =

min(J, j′, Kmax), where Kmax have been chosen such that for the highest energy calculated

for a given isotopic variant of the reaction contributions from higher K (K ′) are practically

negligible.
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The QM reactive scattering matrix has been calculated using a coupled–channel hy-

perspherical coordinate method of Skouteries et al.,60 which has been employed previously

in scattering calculations for the F+H2,
61–63 F+HD,64, H+D2,

65,66 and O(3P )+HCl67 re-

actions. Converged reaction probabilities and CRPs have been calculated at total angu-

lar momenta J=0–35 for the H+p–H2 reaction on the Boothroyd-Keogh-Martin-Peterson

(BKMP2) PES68,69 using a basis set including all H+p–H2 and HH+H channels with di-

atomic energy levels up to Emax = 2.6 eV and rotational quantum numbers up to jmax = 15.

Calculations have been carried out for a total of 70 energies between 0.271 eV and 1.651 eV

for this isotopic variant. For the D+p–D2 reaction the CRPs were calculated for J=0–38

using a basis set with Emax = 2.6 eV and jmax = 15. Note that only reactions with p–H2 have

been considered because the results for p–H2 and o–H2 are practically identical. It must be

stressed that this is the only approximation used, and that the CRPs have been calculated

for all partial waves J ∈ [0, Jmax]. For the H+HD reaction the CRPs were calculated for

J=0–28 using a basis set with Emax = 2.6 eV and jmax = 16. Using these basis sets, it has

been found that the CRPs are converged to better than 1% for J=0. For J > 0, angular

basis functions with helicities up to Kmax=7 for the reactant and product arrangements have

been retained for all the reactions considered. We have checked that for J=12 the CRPs are

converged to 1.0% at the highest energy with the present parameters. The size of the basis

sets employed in these calculations is given in Table I.

VII. NUMERICAL RESULTS AND DISCUSSION

We now apply the general procedure for evaluating the KIEs within the QI approxima-

tion, described in Sections III and IV, to three systems of increasing complexity: a one-

dimensional Eckart barrier, a collinear atom-diatom reaction, and a full three-dimensional

atom-diatom reaction A+BC → AB+C. In all three cases, we use parameters corresponding

to the H+H2 reaction and its isotope variants. While the whole computational procedure

described in Secs. III and IV is more accurate for two separate dividing surfaces, it has been

shown that the error introduced by considering a single dividing surface (ξa = ξb = ξ) is

small except at very low temperatures (below ∼ 250 K for a D+H2 reaction).37 In fact, two

independent dividing surfaces actually coalesce into one above 300 K. We therefore use a sin-

gle dividing surface ξ for numerical calculations. Let us assume that the r and λ dependence
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in the function ξ(r, λ), defining the dividing surface, can be separated,

ξ (r, λ) = ζ (r)− η (λ) , (7.1)

i.e., that there is the same family of dividing surfaces for all isotope variants of the underlying

reaction. Which member of this family is used depends on the isotope, and is specified by

the parameter η(λ). Since all systems have an underlying symmetric potential, we could

and did choose a function ζ odd under the interchange of atoms A and C (odd under the

inversion x → −x in the case of the Eckart barrier). Namely, for the Eckart barrier we chose

ζ(x) = x, and for the A+BC → AB+C reaction, we chose ζ = rBC−rAB, where rAB denotes

the distance of atoms A and B.89 In all computations, we started from a symmetric isotope

variant H+H2 for λ = 0, and chose η(λ = 0) = 0 because of the symmetry. In cases with

symmetric isotopic reaction for λ = 1 (i.e., H+DH or D+D2), the symmetry is preserved

and so we kept η(λ) = 0. For the asymmetric isotopic reactions for λ = 1 (i.e., D+H2 or

H+D2), we evolved the dividing surface position η(λ) according to the prescription derived

in Appendix B.

The Metropolis Monte Carlo sampling was performed with the staging algorithm.70–72

Besides the staging multiple-slice moves, less frequent single-slice and whole chain moves

were used to speed up the exploration of accessible configuration space. Single slice moves

were applied specifically to the slices involved in the reaction coordinate (i. e., r(0), r(1),

r(P/2), r(P/2+1)) because of the increased rigidity due to the constraint potential.

Each computation was performed with three different numbers of time slices, e. g., P = 8,

12, and 16 for T = 1000 K. For other temperatures, P was chosen such that P × T was

approximately constant. For each P , the following quantities were computed using the

estimators from Sec. IV and Appendix A: Cff (0)λ/Cdd(0)λ from Eq. (A1) and ∆Hλ from

Eq. (A2), both for λ = 0 and λ = 1, d log Qr/dλ from Eq. (4.4) and d log Cdd/dλ from

Eq. (4.13), both for several equally spaced values of λ between 0 and 1. Ratios of partition

functions and delta-delta correlation functions were then computed using the thermodynamic

integration according to Eqs. (3.4) and (3.5). In all cases, it was found that discretizing the

change of λ from 0 to 1 in 10 steps was enough to converge the thermodynamic integrals.

For each P , the number of samples was chosen such that the QI result for the KIE had a

statistical error below 1%. While the results of the computation with the largest value of P

had already a very small discretization error, we extrapolated the values of Cff (0)λ/Cdd(0)λ,
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∆Hλ, d log Qr/dλ, and d log Cdd/dλ for the three values of P up to P → ∞, assuming a

discretization error ∝ P−2. These extrapolated results were used for the calculation of the

QI value of the KIE, using Eq. (3.3). This value of the KIE had the combined statistical

and extrapolation error always below 1.5% and it is the value that was used in the figures

and tables below.

The tables with results also show two other variations of the QI approximation. The

so-called “simplest quantum instanton” (SQI) approximation,49 is

kSQI =

√
π

2
~
Cdd(0)

Qr

, (7.2)

and is expected to be accurate only at higher temperatures, compared to the QI result from

Eq. (2.6). The “modified QI” (QI-mod),49 is the QI result augmented by an ad hoc correction

∆Hmod(β) = ∆H(β) +

√
π −

√
2

β
(7.3)

to correct the high temperature (free particle) behavior of the QI. This modified version can

significantly improve the QI approximation for the absolute rate, but (as we will see below)

not the KIEs in which the errors due to high temperature (free particle) behavior almost

completely cancel. (However, the modified QI cannot correct for recrossing effects.)

A. Eckart barrier

The simplest, one-dimensional model, uses the Eckart potential,

V (x) = V0/ cosh(ax)2, (7.4)

with parameters V0 = 0.425 eV and a = 1.36 a.u. The mass changes from m0 = 1060 a.u.

to m1 = 2120 a.u.90 In this model, a single translational motion of the reactant becomes an

unstable vibration of the transition state. The high temperature limit (5.8) of the KIE gives

rhigh T =

√
m1

m0

[
1 +

1

24

(
~

kBT

)2 ∣∣∣k‡unst

∣∣∣ (
1

m0

− 1

m1

)]
, (7.5)

k‡unst = − d2V

dx2

∣∣∣∣
x=0

= −4V0a
2,

where k‡unst is the (negative) force constant at the transition state. In particular, the classical

limit (5.7) is rclass =
√

2 ≈ 1.414.
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The exact rate constant for this reaction can be obtained from expression (2.1). In one

dimension the cumulative reaction probability equals the transmission probability, which

can be derived analytically for the Eckart barrier,

1

NQM (E)
= 1 +

cosh2
(

1
2
π
√

8mV0/~2a2 − 1
)

sinh2 (πk/a)
, (7.6)

k =
√

2mE/~. (7.7)

Figure 1 and Table II show the kinetic isotope effect kH/kD for temperatures 100 K to

2400 K, calculated exactly and by various approximations. It is clear that for high tem-

peratures, the exact KIE approaches the parabola representing the high temperature limit

(7.5) of TST. QI result follows the exact KIE closely for all temperatures. In particular, for

temperatures 300 K and higher, the error of the QI result is within 5%. At low temperatures

(200 K and lower), the error of our single-dividing-surface QI increases, which is expected,

since there we should correctly use two separate dividing surfaces.37,49 One of the reasons

for the excellent agreement of the QI with exact results at temperatures 300 K and higher is

that for systems with one degree of freedom, there is strictly no classical recrossing. Every

classical trajectory crosses the top of the barrier at most once. Since the classical TST yields

the exact classical rates correctly, the only possible errors are of quantum nature and those

are well accounted for by the QI approximation.

The modified QI (QI-mod) result (7.3) does not yield a significant improvement over the

QI result (3.3). This is so because the QI expression for the rate constant (2.6) underesti-

mates the infinite-temperature free-particle limit for both isotopologues by the same relative

error.49 The “simplest” QI expression (SQI), which is not expected to work for a single divid-

ing surface in its basic form (7.2), gives surprisingly accurate results for temperatures above

300 K. The behavior of the SQI and modified QI approximations for other KIEs described

below is similar, we therefore omit this discussion there.

B. Collinear reaction H+H2 → H2+H

Our second simplest system is the collinear hydrogen exchange reaction H+H2 → H2+H

and its isotope variants, D+D2 → D2+D, H+DH→ HD+H, D+H2 → DH+H, and H+D2 →

HD+D, on the Truhlar-Kuppermann (TK) potential surface.53,73 While we could subtract
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the center-of-mass motion and make this system effectively two-dimensional, we do not make

this simplification and instead treat the model as a system with three degrees of freedom.

(The reason is that in future applications of the present PIMC procedure to systems with

many degrees of freedom, subtracting the center of mass motion—three degrees of freedom in

three spatial dimensions—would not significantly simplify the calculation.) In the collinear

case, two translational and one vibrational motion of the reactants turn into a translational,

a symmetric (stable) and an asymmetric (unstable) vibration of the transition state. The

high temperature limit (5.8) becomes

rhigh T =

∣∣∣∣∣ω‡asym(0)

ω‡asym(1)

∣∣∣∣∣
{

1 +
1

24

(
~

kBT

)2 [
Ω2

coll(0)− Ω2
coll(1)

]}
, (7.8)

Ω2
coll(λ) =

kr

µBC (λ)
+

∣∣k‡asym

∣∣
µAC,B (λ)

−
k‡sym

µAC (λ)
,

where kr, k‡asym, k‡sym are force constants of the reactant vibration, of the asymmetric

and symmetric vibration of the transition state, respectively. The corresponding reduced

masses are µBC = mBmC/(mB + mC), µAC,B = (mA + mC)mB/(mA + mB + mC), and

µAC = mAmC/(mA + mC). Expression (7.8) works even for asymmetric reactions (D+H2

and H+D2), for which the normal mode coordinates differ from the Jacobi coordinates. Ex-

pression (7.8) is still true because Ω2
coll is a trace of a certain matrix (M−1/2KM−1/2) and

therefore is independent of the coordinate system. (M and K are the mass and force con-

stant matrices.) For the TK potential, the values of the force constants are kr = 0.3804 a.u.,

k‡asym = −0.0543 a.u., k‡sym = 0.0782 a.u. (These are the the force constants corresponding to

the non-scaled normal mode coordinates. Often in literature, the transition state force con-

stants are specified for the normal coordinates scaled to the mass of the asymmetric stretch,

which would in our case result in a change k‡sym → k‡sym×(4/3) ≈ 0.1043 a.u.) In order to find

rclass = |ω‡asym(0)/ω‡asym(1)|, in general we need to diagonalize a 2× 2 matrix M−1/2KM−1/2.

Specifically, rclass(H+H2 / D+H2) ≈ 1.054 and rclass(H+H2 / H+D2) ≈ 1.332. For the sym-

metric reactions (H+H2, D+D2, and H+DH → HD+H), the symmetric and asymmetric

stretch normal coordinates are the same as the corresponding Jacobi coordinates. For these

reactions, the classical limit is particularly simple,

rclass =

√
µAC,B (1)

µAC,B (0)
. (7.9)
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Specifically, rclass(H+H2 / D+D2) =
√

2 ≈ 1.414 and rclass(H+H2 / H+DH) =
√

3/2 ≈

1.225.

The kinetic isotope effect k(H+H2) / k(D+D2) in the temperature range 200 to 1500 K is

displayed in Fig. 2(a) and Table III. The quantum-mechanical (QM) results are taken from

Refs. 53–56 and are said to be accurate to within 2% or better.53 Again, the figure shows

that at high temperatures, the exact KIE approaches the parabola representing Eq. (7.8).

For temperatures 300 K and higher, the QI result gives an error within 7%. These results

are surprisingly accurate even at high temperatures, considering the dynamical recrossing

that is by definition not captured by any (even quantum) transition state theory.

Since dynamical recrossing at high temperatures is a classical effect, its importance at a

given energy can be estimated by running classical trajectories and computing the reaction

probability defined as

P (E) = Freact(E)/Finc(E) (7.10)

where Freact(E) and Finc(E) are the reactive and incident flux, respectively. In Ref. 74, it

was found that P (E) computed by TST is essentially exact up to energies 0.2 eV above the

barrier, but at energies 1.0 eV, TST overestimates P (E) by a factor of more than 2. In order

to estimate the importance of recrossing for the thermal rate constant at a fixed temperature

rather than energy, we can use formula (2.1) with N(E) = P (E)Finc(E). Using results from

Ref. 74, we estimated the error of the thermal rate constant due to classical recrossing to be

less than 1% up to 600 K, 3% at 1000 K and 9% at 1500 K. Presumably, the error of the

KIE should be somewhat less than this due to cancellation since recrossing always (i. e., for

both isotopologues) results in an overestimation of the rate constant. Bearing in mind this

estimate, the error of the QI calculation of the KIE at 1500 K (-5%) is very reasonable. It

is neither worse nor (suspiciously) better than what we could expect from the best theory

neglecting classical recrossing.

Analogous results for the kinetic isotope effects k(H+H2) / k(H+DH), k(H+H2) /

k(D+H2), and k(H+H2) / k(H+D2) are displayed in Figs. 2(b)-(d) and Tables IV-VI. Even

for the asymmetric reactions, QI results are extremely accurate (within ∼10% error for 300

to 1000 K). The larger error at 200 K for H+D2 is due to the use of a single dividing sur-

face, and at 1500 K due to neglecting the recrossing effects. The reason why the errors for

the asymmetric reactions are slightly higher than the errors for the symmetric reactions is
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most likely because we varied the dividing surface so that it is stationary only with respect

to translations and not rotations (see Appendix B). In particular, the QI approximation

correctly captures the temperature behavior of the KIE k(H+H2) / k(D+H2) [see Fig. 2(c)]

which is inverted compared to the other three KIEs. This unusual behavior is due to the fact

that the reactant vibrational partition functions are identical for the two isotopic species

and cancel exactly in the KIE. We can see it already in the high T expansion of the TST:

The dominant term in expression (7.8) for Ω2
coll is the term −ksym/µAC and results in the

concave dependence of KIE on 1/T at high temperatures. For the three other KIEs, the

term kr/µBC in expression (7.8) for Ω2
coll is dominant and determines the convexity of the

high temperature behavior of KIEs.

C. Reaction H+H2 → H2+H in three spatial dimensions

The third system is the full three-dimensional hydrogen exchange reaction H+H2 →

H2+H and its isotope variants, D+D2 → D2+D, and H+DH→ HD+H, on the more accurate

BKMP2 potential surface.68,69,73

1. Quantum instanton calculation

Again, due to the translational symmetry, we could subtract the center-of-mass-motion

and make this system effectively six-dimensional, but instead (in the QI calculation) we use

simple Cartesian coordinates and treat the reaction as a system with nine degrees of freedom.

From this point of view, six translational, two rotational, and one vibrational degree of

freedom of the reactants turn into three translational, two rotational, and four vibrational

degrees of freedom of the collinear transition state (a symmetric and an asymmetric stretch,

and two degenerate bending motions). The high temperature limit (5.8) becomes

rhigh T =
s‡ (1)

s‡ (0)

∣∣∣∣∣ω‡asym(0)

ω‡asym(1)

∣∣∣∣∣
{

1 +
1

24

(
~

kBT

)2 [
Ω2

3D(0)− Ω2
3D(1)

]}
, (7.11)

Ω2
3D(λ) = Ω2

coll(λ)− 2kbend/µAC,B (λ) .

where k‡bend is the force constant of the bending motion. For the BKMP2 potential68,69 the

values of the force constants are kr = 0.3698 a.u., k‡asym = −0.0579 a.u., k‡sym = 0.0805 a.u.,

and k‡bend = 0.0209 a.u. [Again, using the mass-scaled normal mode coordinates with a
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common mass µAC,B would give k‡sym → k‡sym×(4/3) = 0.1073 a.u.] Because of the symmetry

of the potential, to find the normal modes we do not have to diagonalize a 4×4 matrix. The

bending modes decouple, so in general we have to diagonalize only a 2× 2 matrix coupling

the symmetric and asymmetric stretch. However, because all three reactions considered here

are symmetric, as in the collinear case, even this smaller matrix is already diagonal, and

|ω‡asym(0)/ω‡asym(1)| = [µAC,B(1)/µAC,B(0)]1/2. The classical limit (5.7) then gives rclass(H+H2

/ D+D2) =
√

2 ≈ 1.414 and rclass(H+H2 / H+DH) = 2
√

3/2 ≈ 2.449.

2. Exact cumulative reaction probabilities and rate constants

The exact quantum-mechanical kinetic isotope ratios were computed using the method

described in Sec. VI. The exact total cumulative reaction probabilities, N(E) =
∑

J(2J +

1)NJ(E), for the H+H2, D+D2 and H+HD→HD+H, →H2+D are shown in Fig. 3 as a

function of the total energy. The resulting N(E) are fairly smooth and the higher values

correspond to the D+D2 reaction for all energies. Those for the two reaction arrangement

channels of the H+HD reaction are fairly similar (for the D+H2 channel no nuclear spin

restriction has been enforced). As expected, the lowest values of the total CRP correspond

to the H+H2 reaction, whose threshold is similar to those of the H+HD reactions.

The values of the rate constants, k(T ) for all the isotopic variants here studied are shown

in Table VII. The Arrhenius plot of these k(T ) is shown in Fig. 4. The existing experimental

values for the H+H2,
75 D+D2,

76 and H+HD→D+H2
76 are also shown in this figure. The

agreement with these values is quite good, especially considering that these probably were

the first measurements of k(T ) for these reactions.

3. Kinetic isotope effects

The kinetic isotope effect k(H+H2 ) / k(D+D2) for temperatures from 200 K to 2400 K

is displayed in Fig. 5(a) and Table VIII. Besides the QM, QI, SQI, and high T TST

values, this figure and table also display comparable results of the canonical variational

TST with semiclassical tunneling (CVT-SCT) from Ref. 15 (that calculation was done for

a slightly different—DMBE—potential77,78). For temperatures from 200 K to 600 K, the

agreement between the QI and QM results is excellent: the error is less than 6% in this
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temperature range. For high temperatures, the QI, SQI, and CVT-SCT results approach

the classical behavior predicted by Eq. (7.11), as expected, because quantum effects become

small. However, the QM results for 1000 K and 1500 K deviate significantly (15% and

19%, respectively). While in the collinear case we understood the increased error of the

QI approximation at high temperatures to be due to recrossing effects, in three spatial

dimensions these effects should be much smaller.74 Moreover, as in the collinear case, the

errors due to recrossing should partially cancel in the kinetic isotope ratio. Originally, we

thought of another possible explanation: while QI calculations are easier to converge at high

T (because fewer path variables are needed in the path integral), QM calculations become

more difficult since more excited states must be included in Eq. (6.1). We therefore made

sure that the QM calculations of Sec. VI were well converged even for high temperatures

(1000 K and 1500 K). The reason for this somewhat higher error of the QI approximation

for the KIE at high T still needs to be better understood. Comparing the QI and the CVT-

SCT approximations shows that the QI method performs significantly better in the whole

temperature range.

The corresponding results for the kinetic isotope effect k(H+H2) / k(H+DH) are dis-

played in Fig. 5(b) and Table IX. One immediately observes that at high temperatures, the

KIE k(H+H2) / k(H+DH) is larger than the KIE k(H+H2 ) / k(D+D2), whereas in the

collinear case the situation was opposite. The reason is simple: in three spatial dimensions

there are two identical product channels for the H+H2 or D+D2, but only one product chan-

nel (HD+H) of the reaction H+DH contributes to the KIE k(H+H2) / k(H+DH). In the

temperature range from 250 K to 600 K, the QI and QM results are in excellent agreement

(the error is within 8%). At 200 K, a slightly higher error (11%) is due the use of a single

dividing surface. At high temperatures (1000 K and 1500 K), the error is higher (16% and

19%) and, as for the previous KIE, still needs to be better understood. In any case, even 10-

20% errors are excellent results, better than most approximate methods for computing KIEs.

The errors for very low temperatures (below 250 K) could be avoided by using two separate

dividing surfaces and evolving them according to the general prescription in Appendix B.

Temperatures of interest in most chemical and biochemical applications are safely in the

range 250 K and 600 K where the QI approximation, even with a single dividing surface,

gives excellent results: less than 8% errors for both reactions. As in the previous case, the

QI significantly outperforms the CVT-SCT approximation in the whole temperature range.
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VIII. CONCLUSION

We have described a general and accurate method for computing the kinetic isotope effects

(KIEs) and compared it on several test problems with the quantum-mechanical calculations

and conventional and variational transition state theory (TST). Our method is based on

the thermodynamic integration with respect to the masses of the isotopes, the quantum

instanton (QI) approximation for the rate constant, and on the path integral Monte Carlo

(PIMC) evaluation of the matrix elements of the Boltzmann operator. The several exam-

ples presented here demonstrate that the QI method is more accurate than simpler TST

approaches based on a single reaction path. For similar reasons, the QI approximation is

also superior to the older SC instanton approximation.

We have theoretically described two versions of the method: with a single or two separate

dividing surfaces. Using a single dividing surface is more efficient and already gives less than

∼10% error for the KIEs in the temperature range 250 K to 600 K for all seven test cases

considered. The slightly higher error at lower temperatures could be reduced by using two

separate dividing surfaces. At high temperatures (≥ 1000 K), a slightly higher error is

partially due to classical recrossing effects, which are not accounted for by the QI in its

present form. However, recrossing effects become less important as the number of degrees

of freedom increases. In particular, it should be negligible for polyatomic systems even at

quite high temperatures.

Finally, an important feature of the method is its computational efficiency. One reason

is the Metropolis PIMC implementation that scales favorably with the number of degrees

of freedom. Another reason is that we evaluate the KIEs directly, using a thermodynamic

integration with respect to the mass of the isotope, instead of finding the absolute rate

constants for the two isotopologues first and then computing their ratio. Thus we avoid

the cumbersome umbrella sampling that is required in computation of the absolute rate

constants.

There are several avenues available to further enhance the accuracy and efficiency of

the present methodology, such as: a) the inclusion of higher order derivatives of the flux-

flux correlation function at the origin (this approach should lead to an exact rate in the

limit),41,79,80 b) capturing the classical recrossing effects by SC methods,81–86 c) using a

smaller number of path variables for heavier atoms or less important degrees of freedom
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(which could increase the efficiency without effecting the accuracy),42 and d) a general

search algorithm for the optimal dividing surfaces. The goal of this overall approach, of

course, is to implement the methodology to realistic models of molecular systems with many

degrees of freedom.
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APPENDIX A: ESTIMATORS FOR Cff/Cdd AND ∆H

For completeness we write out explicitly the estimators for Cff (0)λ /Cdd (0)λ and ∆Hλ for

the case when a Gaussian approximation of the delta constraint (4.12) and the corresponding

constrained density (4.14) are used. It is a generalization of estimators from Ref. 37,

Cff (0)λ

Cdd (0)λ

'
〈
fv

({
r(s)

})〉
ρ‡ , (A1)

∆H2
λ '

1

2

〈
F

({
r(s)

})2
+ G

({
r(s)

})〉
ρ‡

, (A2)

with velocity factor

fv

({
r(s)

})
=

(
iP

~β

)2 ∇ζ
(
r̄(1)

)
·
(
r(1) − r(P )

)
‖∇ζ (r̄(1))‖−

∇ζ
(
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)
·
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)
‖∇ζ (r̄(P/2+1))‖−

, (A3)

and

F
({

r(s)
})

= − P 2

2~2β2

P∑
s=1

as

∥∥r(s) − r(s−1)
∥∥2

+
+

P∑
s=1

bsV
(
r(s)

)
, (A4)

G
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r(s)
})

=
NdP 2

2β2

P∑
s=1
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s −

P 3

~2β3

P∑
s=1

a2
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∥∥r(s) − r(s−1)
∥∥2

+
. (A5)
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Here ‖r‖+ denotes the norm of a contravariant vector r,

‖r‖+ =

√√√√ N∑
i=1

mir2
i (A6)

[the “+” sign subscript on the left-hand side denotes that the positive first power of mi

must be used in the norm of a contravariant vector, compare with Eq. (2.10)]. The dot (·) in

Eq. (A3) denotes the dual product between a covariant vector x and a contravariant vector

y,

x · y =
N∑

i=1

xi · yi. (A7)

[The dot (·) on the right hand side denotes the usual scalar product in three-dimensional

space.]

APPENDIX B: EVOLUTION OF THE DIVIDING SURFACES

When the symmetry of the reaction is broken by the isotope change, the location of

optimal dividing surfaces will in general depend on λ. For simplicity, we assume that the

dependence of ξ on position r and parameter λ can be separated, so

ξγ (r, λ) = ζ (r)− ηγ (λ) , (B1)

[I. e., in Eq. (4.9), we only have two parameters ηa, ηb controlling the position of the dividing

surfaces along a single “reaction” coordinate ζ.] In order to find out how the dividing surfaces

evolve with changing λ, we first recall that Cdd has both explicit and implicit dependence

on λ, Cdd ≡ Cdd [λ, ηa (λ) , ηb (λ)] , and then differentiate Eq. (2.11) with respect to λ,

d

dλ

∂Cdd

∂ηα

=
∂2Cdd

∂λ∂ηα

+
∑
β=a,b

∂2Cdd

∂ηα∂ηβ

dηβ

dλ
= 0. (B2)

This equation can be easily solved to obtain dηα/dλ. The solution is conveniently expressed

in terms of a 2× 2 matrix A and a 2-vector B,

Aαβ =
∂2Cdd/∂ηα∂ηb

Cdd

, (B3)

Bα =
∂2Cdd/∂λ∂ηα

Cdd

, (B4)

23



as
dηα

dλ
= −

∑
β=a,b

A−1
αβBβ. (B5)

[We have divided Eq. (B2) by Cdd in order that A and B be normalized and ready for PIMC

evaluation.] Knowing the position of the dividing surface for λ = 0, we can simultaneously

integrate Eqs. (4.13) and (B5) to obtain the ratio Cdd (λ) /Cdd (0) and the position of dividing

surfaces for each λ. PIMC estimators for A, B, and ∂ log Cdd/∂λ can be compactly written

as,

Aαβ ' 〈fαβ + fαfβ〉ρ‡ , (B6)

Bα ' 〈fλα + fλfα〉ρ‡ , (B7)

∂ log Cdd

∂λ
' 〈fλ〉ρ‡ , (B8)

where ρ‡ is the constrained density (4.14) and

fλ =
N∑

i=1

dmi

dλ

[
dP

2mi

− β
∂Φ

∂mi

− 2P

~2β

∑
γ=a,b

ξγ (r, λ)2 |∇iζ|2

m2
i ‖∇ζ‖4

−

]
, (B9)

fα =
4P

~2β

ξα (r, λ)

‖∇ζ‖2
−

, (B10)

fλα =
4P

~2β

ξα (r, λ)

‖∇ζ‖4
−

N∑
i=1

dmi/dλ

m2
i

|∇iζ|2 , (B11)

fαβ = −δαβ
4P

~2β

1

‖∇ζ‖2
−

. (B12)
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and V. J. Herrero, J. Chem. Phys. 110, 9971 (1999).

67 T. Xie, D. Y. Wang, J. M. Bowman, and D. E. Manolopoulos, J. Chem. Phys. 116, 7461 (2002).

68 A. I. Boothroyd, W. J. Keogh, P. G. Martin, and M. R. Peterson, J. Chem. Phys. 104, 7139

(1996).

69 A. I. Boothroyd, W. J. Keogh, P. G. Martin, and M. R. Peterson, J. Chem. Phys. 95, 4343

(1991).

70 M. Sprik, M. L. Klein, and D. Chandler, Phys. Rev. B 31, 4234 (1985).

71 M. Sprik, M. L. Klein, and D. Chandler, Phys. Rev. B 32, 545 (1985).

72 M. E. Tuckerman, B. J. Berne, G. J. Martyna, and M. L. Klein, J. Chem. Phys. 99, 2796 (1993).

73 R. J. Duchovic, Y. L. Volobuev, G. C. Lynch, A. W. Jasper, D. G. Truhlar, T. C. Alli-

son, A. F. Wagner, B. C. Garrett, J. Espinosa-Garćıa, and J. C. Corchado, POTLIB-online,
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83 J. Vańıček and E. J. Heller, Phys. Rev. E 67, 016211 (2003).
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86 J. Vańıček, Phys. Rev. E 70, 055201(R) (2004).

87 This expression is for a bimolecular reaction. In the limit V →∞, V −2 cancels the V 2 divergence

from the integration over the center-of-mass coordinate and the relative coordinate of the two

molecules. For a unimolecular reaction, the factor is V −1 and is canceled by integration over

the center-of-mass coordinate.

88 Factor V −1 is canceled by the integral over the center of mass coordinate. Expression (4.7) is

valid for both unimolecular and bimolecular reactions.

89 To make sure that there was no “leakage” into the other product channel (AC+B), we also used

ζ = min(ζ1, ζ2) where ζ1 = rBC − rAB and ζ2 = rAC − rAB.

90 While m0 = 1060 a.u. is not the correct reduced mass corresponding to the H + H2 →H2 + H

reaction, we use this numerical value since it has been used extensively in literature.

28



TABLES

29



TABLE I: Size of the basis set employed in the exact QM scattering calculations for the H+H2

reaction and isotopic variants on the BKMP2 PES.

J Reaction Diatomic parity Triatomic Parity Number of channels

0 H+p–H2 (–1)j=1 (–1)p=(–1)J 108

1 H+p–H2 (–1)j=1 (–1)p=(–1)J 204

1 H+p–H2 (–1)j=1 (–1)p=(–1)J+1 96

≥7, even H+p–H2 (–1)j=1 (–1)p=(–1)J 614

≥7, even H+p–H2 (–1)j=1 (–1)p=(–1)J+1 506

≥7, odd H+p–H2 (–1)j=1 (–1)p=(–1)J 614

≥7, odd H+p–H2 (–1)j=1 (–1)p=(–1)J+1 506

0 D+p–D2 (–1)j=1 (–1)p=(–1)J 171

1 D+o–D2 (–1)j=1 (–1)p=(–1)J 346

1 D+o–D2 (–1)j=1 (–1)p=(–1)J+1 165

≥7, even D+p–D2 (–1)j=1 (–1)p=(–1)J 1098

≥7, even D+p–D2 (–1)j=1 (–1)p=(–1)J+1 917

≥7, odd D+p–D2 (–1)j=1 (–1)p=(–1)J 1098

≥7, odd D+p–D2 (–1)j=1 (–1)p=(–1)J+1 917

0 H+ –HD (–1)j=0 (–1)p=(–1)J 251

1 H+ –HD (–1)j=0 (–1)p=(–1)J 484

1 H+ –HD (–1)j=0 (–1)p=(–1)J+1 233

≥7, even H+ –HD (–1)j=0 (–1)p=(–1)J 1514

≥7, even H+ –HD (–1)j=0 (–1)p=(–1)J+1 1263

≥7, odd H+ –HD (–1)j=0 (–1)p=(–1)J 1514

≥7, odd H+ –HD (–1)j=0 (–1)p=(–1)J+1 1263
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TABLE II: Kinetic isotope effect r = kH/kD for the Eckart barrier: rQI is the quantum instanton

result obtained from Eq. (3.3), rSQI the “simplest” quantum instanton from Eq. (7.2), rmod
QI the

“modified” quantum instanton from Eq. (3.3) with ∆H replaced by Eq. (7.3), rhighT
TST the high T

expansion of the TST from Eq. (7.5), and rQM is the ratio of rate constants obtained from Eqs. (2.1)

and (7.6).

T (K) rQI % errora rSQI % errorb rmod
QI % errorc rhighT

TST % error d rQM

100 1509 -15 1134 -36 1482 -16 17.43 -99 1767

150 266.3 -10 154.3 -48 263.0 -11 8.53 -97 296.8

200 42.75 -20 25.96 -52 42.79 -20 5.42 -90 53.60

300 6.20 -5 4.71 -28 6.34 -3 3.19 -51 6.535

400 3.18 2 2.71 -13 3.27 5 2.41 -23 3.125

600 2.00 1 1.87 -6 2.05 3 1.86 -6 1.987

1000 1.59 -1 1.56 -3 1.61 0 1.57 -2 1.609

1500 1.49 -1 1.48 -2 1.50 0 1.49 -1 1.506

2400 1.43 -2 1.44 -1 1.43 -2 1.44 -1 1.455

∞ 1.414 0 1.414
a(kQI − kQM)/kQM × 100
b(kSQI − kQM)/kQM × 100
c(kmod

QI − kQM)/kQM × 100
d(khighT

TST − kQM)/kQM × 100
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TABLE III: Kinetic isotope effect r = kH+H2
/kD+D2

for the collinear reaction using the TK

potential.53 Here rhighT
TST was obtained from Eq. (7.8), rQM from Refs. 53,55. Meaning of remaining

quantities is the same as in Tab. II.

T (K) rQI % error rSQI % error rmod
QI % error rhighT

TST % error rQM

200 59.57 -23 42.21 -45 60.87 -21 28.85 -63 77.24

300 10.87 3 10.28 -3 11.18 5 13.61 28 10.60

400 6.21 7 5.93 2 6.29 7 8.27 42 5.81

600 3.75 7 3.54 1 3.75 7 4.46 27 3.51

1000 2.37 -1 2.28 -5 2.37 -1 2.51 5 2.39

1500 1.81 -5 1.82 -5 1.82 -5 1.90 0 1.91

∞ 1.41
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TABLE IV: Kinetic isotope effect r = kH+H2
/kH+DH for the collinear reaction using the TK

potential.53 Meaning of various quantities is the same as in Tab. III.

T (K) rQI rSQI rmod
QI rhighT

TST

200 14.06 11.50 14.04 16.28

300 5.22 4.89 5.24 7.92

400 3.45 3.32 3.45 4.99

600 2.36 2.27 2.35 2.90

1000 1.69 1.67 1.69 1.83

1500 1.43 1.44 1.43 1.49

∞ 1.22
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TABLE V: Kinetic isotope effect r = kH+H2
/kD+H2

for the collinear reaction using the TK

potential.53 Meaning of various quantities is the same as in Tab. III.

T (K) rQI % error rSQI % error rmod
QI % error rhighT

TST % error rQM

200 1.002 4 0.396 -59 0.999 3 -0.738 -176 0.967

300 0.793 -2 0.600 -26 0.786 -3 0.258 -68 0.810

400 0.826 -5 0.722 -17 0.822 -6 0.606 -30 0.870

600 0.882 -11 0.863 -13 0.882 -11 0.855 -13 0.988

1000 0.994 -8 0.970 -11 0.992 -8 0.983 -9 1.084

1500 1.010 -14 1.008 -14 1.010 -14 1.022 -13 1.175

∞ 1.054
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TABLE VI: Kinetic isotope effect r = kH+H2
/kH+D2

for the collinear reaction using the TK

potential.53 Meaning of various quantities is the same as in Tab. III.

T (K) rQI % error rSQI % error rmod
QI % error rhighT

TST % error rQM

200 127.3 -22 41.63 -74 126.0 -23 29.78 -82 163

300 17.92 -3 12.52 -32 17.69 -4 13.98 -25 18.52

400 8.31 -3 6.92 -19 8.20 -4 8.44 -1 8.56

600 4.11 -4 3.76 -13 4.08 -5 4.49 4 4.30

1000 2.31 -8 2.25 -10 2.31 -8 2.47 -2 2.51

1500 1.77 -12 1.75 -13 1.77 -12 1.84 -8 2.00

∞ 1.33
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TABLE VII: Exact QM thermal rate constants k(T ) for the H+H2 reaction and isotopic variants

as a function of temperature calculated on the BKMP2 PES. The rate constants were obtained

from Eq. (6.1). They are in units cm.s−3, the figure in parentheses denoting the power of 10.

T (K) H+H2 D+D2 H+HD → H+HD H+HD → D+H2

200 2.01(-18) 8.92(-20) 1.14(-19) 2.02(-19)

250 3.67(-17) 3.53(-18) 3.46(-18) 5.71(-18)

300 3.24(-16) 4.65(-17) 4.04(-17) 6.34(-17)

350 1.71(-15) 3.11(-16) 2.53(-16) 3.83(-16)

400 6.30(-15) 1.33(-15) 1.05(-15) 1.54(-15)

450 1.79(-14) 4.23(-15) 3.25(-15) 4.65(-15)

500 4.21(-14) 1.08(-14) 8.17(-15) 1.15(-14)

600 1.57(-13) 4.59(-14) 3.37(-14) 4.57(-14)

800 8.87(-13) 3.05(-13) 2.15(-13) 2.77(-13)

1000 2.69(-12) 1.03(-12) 7.01(-13) 8.71(-13)

1200 5.89(-12) 2.42(-12) 1.61(-12) 1.95(-12)

1500 1.35(-11) 5.96(-12) 3.87(-12) 4.55(-12)
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TABLE VIII: Kinetic isotope effect r = kH+H2
/kD+D2

for the reaction in three spatial dimensions,

using the BKMP2 potential68,69 except for rCVT/SCT which uses the DMBE potential.77,78 Here

rhighT
TST is the high T expansion of TST from Eq. (7.11), rCVT/SCT is the result of canonical variational

TST with semiclassical tunneling corrections from Ref. 15 and rQM is the quantum-mechanical

result from Eq. (6.1). Meaning of remaining quantities is the same as in Tab. III.

T (K) rQI % err. rSQI % err. rmod
QI % err. rhighT

TST % err. rCVT/SCT % err.a rQM

200 23.35 4 16.66 -26 23.77 6 25.53 13 13.67 -39 22.53

250 10.98 6 9.10 -13 11.28 8 16.85 62 7.56 -27 10.40

300 7.41 6 6.42 -8 7.58 9 12.13 74 5.48 -21 6.97

400 4.84 2 4.41 -7 4.92 4 7.44 57 3.87 -18 4.74

600 3.25 -5 3.04 -11 3.29 -4 4.09 20 3.42

1000 2.22 -15 2.15 -18 2.24 -14 2.38 -9 2.03 -22 2.61

1500 1.83 -19 1.78 -22 1.84 -19 1.84 -19 2.27

2400 1.56 1.56 1.57 1.58 1.57

∞ 1.41
a(kCVT/SCT − kQM)/kQM × 100
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TABLE IX: Kinetic isotope effect r = kH+H2
/kH+DH using the BKMP2 potential68,69 except for

rCVT/SCT which uses the DMBE potential.77,78 Meaning of various quantities is the same as in

Tab. VIII.

T (K) rQI % error rSQI % error rmod
QI % error rhighT

TST % error rCVT/SCT % error rQM

200 15.77 -11 12.88 -27 15.79 -10 29.19 66 8.21 -53 17.63

250 10.23 -4 8.99 -15 10.29 -3 19.56 84 6.58 -38 10.61

300 7.88 -2 7.08 -12 7.91 -1 14.33 79 5.66 -29 8.02

400 5.84 -3 5.38 -10 5.86 -2 9.13 52 4.65 -22 6.00

600 4.27 -8 4.04 -13 4.29 -8 5.42 16 4.66

1000 3.21 -16 3.17 -17 3.23 -16 3.52 -8 3.06 -20 3.83

1500 2.81 -19 2.80 -19 2.82 -18 2.92 -15 3.45

2400 2.59 2.57 2.59 2.64 2.47

∞ 2.45
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FIGURE CAPTIONS

FIG. 1: Kinetic isotope effect kH/kD for the Eckart barrier.

FIG. 2: Kinetic isotope effect for the collinear hydrogen exchange reaction: (a) k(H+H2) /

k(D+D2), (b) k(H+H2) / k(H+DH → HD+H), (c) k(H+H2) / k(D+H2), (d) k(H+H2) /

k(H+D2).

Fig. 3: QM total cumulative reaction probabilities calculated using the BKMP2 PES for

the H+p–H2, D+p–D2, and H+–HD reactions.

FIG. 4: QM rate constants calculated using the BKMP2 for the H+p–H2, D+p–D2, and

H+–HD reactions.

FIG. 5: Kinetic isotope effect for the hydrogen exchange reaction in three spatial dimen-

sions: (a) k(H+H2) / k(D+D2), (b) k(H+H2) / k(H+DH → HD+H).
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FIG. 3: J. Vanicek et al.
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FIG. 4: J. Vanicek et al.
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