

High Level Waste Workshop

Mechanisms and Kinetics of Organic Aging and Characterization of Intermediates in High Level Waste (#81883)

Don Camaioni Tom Autrey Michel Dupuis

January 20, 2005

Background

- ► The project started with first HLW call in 1998, renewed in 2002 and 2004; it builds on the PI's experience with Hanford Waste Tank Safety programs since 1993 and collaborations with EMSP projects:
 - Interfacial Radiolysis Effects in Tank Waste Speciation (54646), 9/96-9/99, T Orlando
 - The NOx System in Nuclear Waste (55229), D Meisel, 9/96-9/99, 2001-2004
- ➤ At start of the original project, there were unresolved questions about the safety of stored HLW, specifically the potential for releases from uncontrolled increases in temperature or pressure.
- Organic waste constituents and their degradation in HLW were central to many of these questions.
 - Radiolytic and thermochemical processes degrade organic solutes into smaller fragments of lower energy content, thereby reducing hazards associated with deflagration of organic complexants-nitrate salt mixtures
 - Organic degradation contributes to generation of toxic, flammable and potentially explosive gases, e.g., NH₃, H₂, and N₂O and myriad volatile organic compounds.
- Now the sites face questions about how the wastes react to mixing, heating, and chemical treatments during and pretreatment operations, such that understanding of HLW chemistry is still relevant.

Objective

Develop fundamental understanding of the significant chemical changes that HLW undergoes during storage, retrieval and treatment operations and computational capabilities to model that chemistry

Approach:

- Combine experimental observation, electronic structure computations, and theoretical methods development to achieve this goal
- Exchange information with site operations staff ... contribute to resolving technical issues

Research Activities

- Mechanistic elucidation of "waste aging" reactions
 - Reactions of organic complexants catalyzed by aluminate ions
 - Reactions in aerated wastes
 - Mechanisms of N₂O and NH₃ generation
- Charaterization of intermediates
 - Thermochemistry of radical reactions in water by photo-acoustic calorimetry
 - Theoretical characterization of intermediates
 - Electronic structure characterizations
 - Definition of aqueous solute cavities for continuum solvation theory
- Kinetic model development
 - H₂ generation rate models

Predicting H₂ Generation in Hanford Tank Waste and WTP Treatment Streams

- Estimates of H₂ generation rates in Hanford Waste Treatment and Immobilization Plant process streams were needed to complete designs of mixing and ventilation systems.
- Camaioni worked with David Sherwood (Washington) Group) and Leon Stock (WTP consultant) to perform technical analysis of available data and advance new models for estimating H₂ generation rates.
- Camaioni advised Albert Hu (CH2MHill) on how to adapt the new models for use by Hanford Tank Farm Operations.

New Mechanism for H₂ Formation in Water

LaVerne, J. A.; Pimblott, S. M. J. Phys. Chem. A, 2000, 104, 9820

$$G(H_2) = G_0(H_2) \frac{\tau^{-1}}{\tau^{-1} + k[S]}$$

New Equations for Radiolytic Yield of H₂

► Hanford Waste Treatment Plant process streams (DJ Sherwood and LM Stock, 2490-WTP-RT-04-0002, Rev 0)

$$G_{(H_2)^{\beta/\gamma}} = \frac{0.34}{1 + 2.4 \left[NO_3^-\right] + 0.62 \left[NO_2^-\right]} + \frac{0.11}{1 + 120 \left[NO_3^-\right] + 43 \left[NO_2^-\right]}$$
 molecules/100eV

$$G_{(H_2)^{\alpha}} = \frac{1.05}{1 + 2.4 \left[NO_3^-\right] + 0.62 \left[NO_2^-\right]} + \frac{0.35}{1 + 3900 \left[NO_3^-\right] + 1400 \left[NO_2^-\right]} \quad \text{molecules/100eV}$$

Hanford Tank Waste (TA Hu, HNF-3851, Rev 1)

$$G_{(H_2)^{\beta/\gamma}} = \frac{0.32}{1 + 2.4 \left[NO_3^-\right] + 0.62 \left[NO_2^-\right] + 0.31 \left[Na^+\right]_{ex}^2} + \frac{0.13}{1 + 139 \left[NO_3^-\right] + 54 \left[NO_2^-\right]} \quad \text{molecules/100eV}$$

Future Directions: Gas Generation Models

- Explore improving water radiolysis equations by correcting for fraction of radiation absorbed by water in wastes with sodium in high excess over nitrate/nitrite
- ► Equations for predicting thermal generation rates of H₂ are empirical; basic understanding is needed of
 - Catalysis by aluminate ion: $R = k[TOC][Al(III)]^{0.4}$ or $R = k_1[TOC] + k_2[TOC][Al(III)]$
 - Rate enhancements by O₂
 - Catalysis by transition metal ions (Cr, Mn, etc.)
 - Organic reactivity factors
- Mechanisms/rates of generation of other gases, volatile chemicals

Thermal Degradation of Complexants

- Complexants such glycolate and HEDTA undergo aluminum-catalyzed thermal degradation
- Our evidence suggest the following mechanism

$$-OCH_2CO_2^- + AIOH^- \Rightarrow AIOCH_2CO_2^-$$

H-Atom Transfer:

$$\exists AIOCH_2CO_2^- + ONO^- \longrightarrow \exists AIOCHCO_2^- + HO^- + NO$$

Electron Transfer:

Some Thermochemistry

- Recently found that HNO₂⁻ had lifetime in water of 200 μs, but NO₂H⁻ dissociates spontaneously to NO + OH⁻
 - SV Lymar, HA Schwarz, G Czapski, *J Phys Chem A*, **2002**, *106*, 7245
 - GL Hug, DM Camaioni, I Carmichael, J Phys Chem A, 2004, 108, 65994
- ► As illustrated by ethoxide, reduction of nitrite ion by glycolate should be favorable when H atom is transferred to nitrite oxygen.

Me
$$\stackrel{\circ}{\longrightarrow}$$
 NO $\stackrel{\circ}{\longleftarrow}$ Me $\stackrel{\circ}{\longrightarrow}$ H $\stackrel{\circ}{\longrightarrow}$ Me $\stackrel{\circ}{\longrightarrow}$ $\stackrel{\circ}{\longrightarrow}$ Me $\stackrel{\circ}{\longrightarrow}$ $\stackrel{\circ}{\longrightarrow}$ Me $\stackrel{\circ}{\longrightarrow}$ HNO₂ $\stackrel{\circ}{\longrightarrow}$ $\stackrel{\circ}{\longrightarrow}$ H $\stackrel{\circ}{\longrightarrow}$ $\stackrel{\circ}{\longrightarrow}$ H $\stackrel{\circ}{\longrightarrow}$ Me $\stackrel{\longrightarrow}$ Me $\stackrel{\circ}{\longrightarrow}$ Me $\stackrel{\circ}$

► Complexation with Al(III) may weaken α -C-H bond, which could explain the catalytic effect, but need to determine the activation barrier.

Kinetics and Thermochemistry of Radicals in Aqueous Solution: Time-Resolved Photoacoustic Calorimetry

Signal depends reaction rate and changes in enthalpy and volume

- Analysis gives
 - Bond Dissociation Enthalpies
 - Enthalpies of formation
 - Enthapies of solvation
 - Partial molar volumes

Autrey, Brown, Camaioni, Foster and Getty *J Am Chem* Soc **2004**, 126, 3680

Ab Initio-Based Characterization of Intermediates in High Level Waste

Motivation:

- After extensive experimental characterization of stored HLW during the 1990s, theoretical input based on ab initio theories is now needed:
 - to obtain an improved understanding of chemical reactions in aqueous phase
 - to provide fundamental data of intermediates that cannot be easily measured and yet is needed for the development of reliable kinetic models.

Significance of Research:

- We traced limitations regarding computationally-derived data to the accuracy of continuum models for describing hydration free energies and in particular to the definition of molecular cavities not reflecting well the solute electronic structure.
- This finding causes us to derive chemically-based approaches to the definition of molecular cavities.

"Theoretical Characterization of Oxoanion XO_mⁿ- Solvation," DM Camaioni, M Dupuis, and J Bentley, *J Phys Chem A*, **2003**, 107, 5778

Theoretical Characterization of Oxoanion XO_mⁿ- Solvation

DM Camaioni, M Dupuis, and J Bentley, J Phys Chem A, 2003, 107, 5778

Water-O Surf

Water-H surf

A cavity for nitrate ion with large radius over nitrogen and small radii over oxygens is most consistent with the Electrostatic Potential/Field around nitrate ion and with the nitrate-water surface of minimum interaction energy.

Ab Initio Cavities Defined by Rolling Water Around the Solute

T Autrey, AK Brown, DM Camaioni, M Dupuis, NS Foster, and A Getty, *J Am Chem Soc*, **2004**, *126*, 3680

Hydration Free Energies (kcal/mol) ... Ab Initio Cavity Continuum Model

Solute	∆ _s G* Electro- static	$\Delta_{ m s} G^*$ cav, dis-rep	$\Delta_{f s} {m G}^{m *}$	∆ _s G* Expt
ОН	-6.3	1.9	-4.4	-3.5 ± 1.5
H ₂ O	-8.4	2.1	-6.3	-6.32
HO ₂	-8.8	2.8	-6.0	-7 ± 2
H_2O_2	-10.8	2.0	-8.8	-8.6
NO ₃ -	-67.2	2.6	-64.6	-65 ± 1

- Cavities defined by 0.073 'rolling' water electron isodensity contour
- ► Electrostatic hydration energy Chipman's SSC(V)PE model (HONDO)
- Cavity, dispersion and repulsion energies from scaled particle theory and interaction potentials (Gaussian98 PCM)

New Parameterization ... Free Energy of Solvation for Oxoanions and Related Neutral Compounds, XO_mⁿ-

DM Camaioni, M Dupuis, and J Bentley, J Phys Chem A, 2003, 107, 5778

Training Set:

Anions:

O-, O₂-, HCO₂-, O₃-, NO₂-, CIO₂-, NO₃-

Neutrals:

SO₂, CIO₂, O₃, CO₂, NO₂, O₂

Cavity Radii related to Potential-Derived Atomic Charges:

$$R_O = -0.24 \times |Q_O| + 1.69$$

$$R_X = +0.44 \times |Q_X| + a \times D_{X-O}$$

a = 1.37 for neutrals

a = 1.51 for anions

Mean unsigned errors: ≤ 1 kcal/mol

Theoretical Characterizations ... Current and Future Directions

- Extend protocol for defining continuum solvation cavities based on potential-derived charges and water interactions
 - Dianions, oxometalates
 - OH, NH and CH functional groups
- Explore applications to transition state structures
 - HO• + HOOH → HOH + •OOH
- Use methods to model reactions of complexants
 - Al(III)-catalyzed oxidation by nitrite ion
 - Oxidations by O₂ and NO₂

