
Benchmarking: More aspects of High Performance Computing

bY

Rahul Ravindrudu

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements €or the degree of

MASTER OF SCIENCE

Major: Computer Science

Program of Study Committee:
Ricky Kendall, Co-major Professor
Simanta Mitra, Co-major Professor

Mark Gordon

Iowa State University

Ames, Iowa

2004

Copyright @ Rahul Ravindrudu, 2004. All rights reserved.

..
11

Graduate College
Iowa State University

This is to certify that the master’s thesis of

Rahul Ravindrudu

has met the thesis requirements of Iowa State University

Go-major Professor

Co-major Professor

For the Major Program

...
111

TABLE OF CONTENTS

LIST OF TABLES . vi

LISTOFFIGURES . vii

CHAPTER 1 . Introduction . 1

CHAPTER 2 . Motivation . 4

2.1 Top500 . 5

2.1.1 TOP500 Description . 6

2.2 Linpack . 7

. 2.3 Basic Linear Algebra Subprograms . 9

2.3.1 L e v e l l . , . 10

2.3.2 Level2 . 10

2.3.3 Level3 . 11

CHAPTER 3 . Background on Linear Algebra 12

3.1 Gausssian Elimination . 12

3.2 LU Factorization . 13

3.2.1 Special Matrices . 13

3.2.2 Factorization Details . 15

3.2.3 Triangular Systems . 18

3.2.4 Pivoting in LU Factorization . 20

3.2.5 Blocked LU Factorization . 22

3.2.6 LU Decomposition Variants . 25

iv

CHAPTER 4 . 1 / 0 in High Performance Computing 27

4.1 High Performance 1/0 Requirements . 28

4.2 File Systems . 30

4.2.1 Nonblocking I/O . 31

4.2.2 Fault Tolerance . 32

4 2 . 3 Distributed File Systems . 32

4.2.4 Parallel File Systems . 33

4.3 Programming Interfaces . 35

4.4 Special Purpose I/O Techniques . 35

CHAPTER5 . HPLAlgorithm . 38

5.1 MainAlgorithm . 38

5.2 Panel Factorization . 39

5.3 Panel Broadcast . 40

5.4 Look Ahead . 42

5.5 U p d a t e . , . 42

5.5.1 Binary-Exchange . 42

5.5.2 Long . 43

5.6 Backward Substitution . 44

5.7 Checking The Solution . 44

CHAPTER6 . DesignofHPL . 46

CHAPTER 7 . Modifications to HPL . 48

7.1 Out-of-Core Capability . 48

7.2 ThreadsinRPL . 50

CHAPTER 8 . Implementation . 51

8.1 1/0 Implementation . 51

8.1.1 Matrix Pointer . 53

V

8.1.2 Main Memory Requirement . 55

8.1.3 Data Integrity . 56

8.2 Threads With OpenMP . 58
I

CHAPTER9 . Results . 59

9.1 Performance With Disk 1/0 . 60

9.2 Performance Of OpenMP . 69

CHAPTER 10 . Conclusions . 75

APPENDIX A . HPL Input File . 77

APPENDIX B . HPL Out-of-Core Data Structures 79

APPENDIX C . OpenMP Without Modification 84

APPENDIX D . OpenMP With Modification 86

BIBLIOGRAPHY . 88

ACKNOWLEDGMENTS . 95

Vi

LIST OF TABLES

Table 2.1 TOP500 List for June 2004: Only the top 5 are included here . . 8

Table 9.1 Table for the Runtimetin seconds) for problem size N=20000 run

on 4x4 processors. NB indicates the block size , . , . . 60

Table for the Runtime (in seconds) on 4x4 processors for N=30000 61

Table for the Buffer size relationship with runtime(in seconds),

for problem size N=50000 on an 8x8 grid, with block size NB=500. 64

Table 9.2

Table 9.3

vii

LIST OF FIGURES

Figure 3.1

Figure 3.2

Figure 3.3

Figure 3.4

Figure 3.5

LU Factorization: Rank-1 Update , , . . . 16

LU Factorization Derivation . . , , 17

LU Factorization Blocked , 22

LU Factorization Blocked Details . , , 23

Result of multiplying L*U in block form shown above and equat-

ing with the corresponding blocks of A :

Left-Looking LU Algorithm .

Right-Looking LU Algorithm , ,

24

26

26

Figure 3.6

Figure 3.7

Figure 3.8 Crout LU Algorithm . 26

Figure 5.1 HPL Algorithm , , , 39

Figure 9.1 Runtimes (in seconds) for various block sizes, and varying the

panel factorization. Problem size N=20000. Data from Table 9.1.

1/0 Times (in seconds) €or various block sizes, and varying the

panel factorization. Problem size N=20000. Data from Table 9.1. 62

RMax values for 4x4 process node with varying block sizes. Prob-

lem size N=20000. Data from Table 9.1. , , 62

61

Figure 9.2

Figure 9.3

Figure 9.4 Runtime(in seconds) for 4x4 processors, N=30000. Data from

Table 9.2. , 63

1/0 Time(in seconds) for 4x4 processors, N=30000. Data from

Table 9.2. , , , , 63

Figure 9.5

...
V l l l

Figure 9.6

Figure 9.7

Figure 9.8

Figure 9.9

Figure 9.10

Figure 9.11

Figure 9.12

Figure 9.13

Figure 9.14

Figure 9.15

Figure 9.16

Runtirne(in seconds) for problem size N=50000, running on 8x8

grid with block size 500 versus the buffer size. The broadcast

type is 1Ring Modified .

Runtime(in seconds) for problem size N=50000, running on 8x8

grid with block size 500 versus the buffer size. The broadcast

type is Long Modified .

Runtimes (in seconds) for different problem sizes with varying

block sizes on a 4x4 processor grid. Buffer size is 2.

1/0 Runtimes (in seconds) for different problem sizes with vary-

ing block sizes on a 4x4 processor grid. Buffer size is 2.

Runtimes (in seconds)for different problem sizes with varying

block sizes on a 2x8 processor grid.Buffer size is 2. Communica-

tion is 1Ring Modified .

I/O Runtimes (in seconds) for different problem sizes with vary-

ing block sizes on a 2x8 processor grid. Buffer size is 2. Cornmu-

nication is 1Ring Modified .

Runtimes (in seconds) for different problem sizes with varying

block sizes on a 8x2 processor grid.Buffer size is 2.Communi-

cation is 1RingModified .

Plot for varying problem size, with fixed block size of 100. Using

UpenMP .

La, times for problem size 15000 with increasing block size.

Using OpenMP .

1/0 times for problem size 15000 with increasing block size. Us-

ingOpenMP .

Factorization times for problem sizes 15k and 12.5k with block

size 100. Using OpenMP .

65

65

66

67

67

68

68

69

70

71

72

ix

Figure 9.17 Dgemm times for problem sizes 15k and 12.5k with block size

100. Using OpenMP . 72

Figure 9.18 Dtrsm times for problem sizes 15k and 12.5k with block size 100.

Using OpenMP . 73

Figure 9.19 Runtimes for problem size 15000 with varying OpenMP threads 74

1

CHAPTER 1, Introduction

The ever increasing need for faster and more powerful computers, coupled with the

advent of fairly cheap microprocessors, has prompted considerable interest in massively

parallel processing systems. Computational power has reached a plateau at the current

state of technology for single processor systems, due to certain fundamental limits (i.e.

the speed of light and the width of the atom being approached).

The past 15 years therefore, has been a renaissance in the high-performance computer

architecture field. Virtually every reasonable parallel computer architecture has been

implemented as a prototype or commercia1 product with most of them aimed at solving

scientific computational problems. The variety of high-performance architectures ranges

from large vector computers with a limited number of processors that share a common

memory to machines with thousands of very simple processors and distributed memories.

A problem with almost all of these machines the enormous performance range, sometimes

potentially a factor of hundred or more, depending on the suitability of a certain piece

of code for the underlying architecture. Peak computational rates are often achieved by

executing in special modes, exploiting novel architectural features like vector hardware

or multiple CPUs. Although this increases the potential power of a system, it adds a level

of difficulty to performance evaluation methods, which must consider the relative values

and contributions of the various components. This complex structure makes the space

of design decisions too large and complicated for analytical prediction and validation.

In this context, the benchmarking of high performance computer systems has rightly

become an active area of investigation. Implicit in every well-known scientific benchmark

2

is the suggestion that the benchmark somehow captures the essence of many important

scientific computations and applications [l]. Just what are the important scientific com-

putations and in what sense is their essence represented by a benchmark are questions

that are typically at the center of any benchmark controversy. Generally, investigating

the performance of a system through benchmarks has three major objectives 1) provide

input for improving the design of future advanced computer architectures 2) permit man-

ufacturers to state the capabilities of their systems in a comparable fashion 3) access

the suitability of a given architecture for a class of applications.

High Performance Linpack, (HPL), is a software package that solves a (random)

dense linear system in double precision arithmetic on distributed-memory computers.

It can thus be regarded as a portable as well as freely available implementation of the

High Performance Computing Linpack Benchmark [2, 3, 41. The original algorithm

used by HPL can be summarized by the following keywords: Two-dimensional block-

cyclic data distribution - Right-looking variant of the LU factorization with row partial

pivoting featuring multiple look-ahead depths - Recursive panel factorization with pivot

search and column broadcast combined - Various virtual panel broadcast topologies -

bandwidth reducing swap-broadcast algorithm - backward substitution with look-ahead

of depth 1. The HPL package provides a testing and timing program to quantify the

accuracy of the obtained solution as well as the time it took to compute it. The best

performance achievable by this software on your system depends on a large variety

of factors. Nonetheless, with some restrictive assumptions on the the interconnection

network, the algorithm described here and the implementation are scalable in the sense

that their parallel efficiency is maintained constant with respect to the per processor

memory usage. The parallel efficiency of the entire algorithm is estimated according to

the following machine model.

Distributed-memory Computers consist of processors that are connected using a mes-

sage passing interconnection network. Each processor has its own memory called the

i
i

3

local memory, which is accessible only t o that processor. The interconnection network of

this machine model is static, meaning that it consists of point-to-point communication

links among processors. This type of network is also referred to as a direct network as

opposed to dynamic networks. The latter are constructed from switches and communi-

cation links. The model assumes that a processor can send or receive data on only one

of its communication ports at a time (assuming it has more than one), In the literature

[HI, this assumption is also referred to as the one-port communication model. Finally,

the model assumes that the communication links are bi-directional. In particular, a

processor can send a message while receiving another message from the processor it is

sending to at the same time.

BPL requires an implementation of the Message Passing Inter€ace (MPI) [5, 61 stan-

dard and the Basic Linear Algebra Subprograms (BLAS) [7]. These implmentations are

how vendors are able to tune the performance of HPL on their system offerings.

4

CHAPTER 2. Motivation

A benchmark was originally a mark on some permanent object indicating elevation.

The mark served as a point of reference from which measurements could be made in

topological surveys and tidal observations. Contemporary usage indicates an object

that serves as a standard by which others can be measured. Analogously, benchmarking

of computer systems is intended to measure new systems relative t o a reference point

on current systems. In particular, benchmarks are standardized computer programs for

which there is history of measurement data for executions of the programs (typically

timings) with specifically defined input and reproducible output that allow the cornpar-

isons for a wide range of computer systems. What distinguishes a benchmark from an

ordinary program is a general consensus of opinion within the industry and research

communities that the benchmark exercises a computer well.

Historically, benchmarking has mainly been employed for system procurements. I t

will certainly maintain its value in that area as it expands to become the experimental

basis for a developing theory of supercomputer and multiprocessor performance eval-

uation. The number of benchmarks currently used is growing day by day. Every new

benchmark is created with the expectation that it will become a standard of the industry

and that manufacturers and customers will use it as the definitive test to evaluate the

performance of computer systems with similar architectures. Most procurements use a

variety of these “standard” benchmarks and applications specific to the purchasing site.

Statistics on high-performance computers are of major interest to manufacturers,

users, and potential users. These people wish to know not only the number of systems in-

5

stalled, but also the' location of the various supercomputers within the high-performance

computing community and the applications for which a computer system is being used.

Such statistics can facilitate the establishment of collaborations, the exchange of data,

software and expertise as well as provide a better understanding of the high-performance

computer market.

Statistical lists of supercomputers are not new. Every year since 1986 Hans Meuer

has published system counts [8] of the major vector computer manufacturers, based

principally on those at the Mannheim Supercomputer Seminar. However, statistics

b a e d merely on the name of the manufacturer are no longer useful. New statistics are

required that reflect the diversification of supercomputers, the enormous performance

difference between low-end and high-end models, the increasing availability of massively

parallel processing (MPP) systems, and the strong increase in computing power of the

high-end models of workstations with symmetric multiple processors (SMP).

2.1 Top 500

To provide this new statistical foundation, the Top 500 project was started in 1993 t o

assemble and maintain a list of the 500 most powerful computer systems. This list has

been compiled twice a year since June 1993 with the help of high-performance computer

experts, computational scientists, manufacturers, and the Internet community in general

who responded to a questionnaire that was sent out. The project has also used parts of

statistical lists published by others for different purposes.

In the present list (which is commonly called the TOP500), computers listed on it

are ranked by their performance on the LINPACK Benchmark. The Linpack benchmark

is run using HPL, A Portable Implementation of the High-Performance Linpack Bench-

mark for Distributed-Memory Computers. This list is updated half-yearly to keep track

with the evolution of computers. The list is freely available at http://w~~w.top500. org/
..

6

where the users can create additional sublists and statistics out of the TOP500 database

on their own.

2.1.1 TOP500 Description

The TOP500 table shows the 500 most powerful commercially available computer

To keep the list as compact as possible, only a part of the systems known to us,

information is shown here:

e NwoTld - Position within the TOP500 ranking

e Manufacturer - Manufacturer or vendor

0 Computer - Type indicated by manufacturer or vendor

0 Installation Site - Customer

0 Location - Location and country

Year - Year of installation/last major update

e Field of Application

e #Proc. - Number of processors

e La, - Maximal LINPACK performance achieved

e F&,eak - Theoretical peak performance

e N,,, - Problem size for achieving LaZ

0 Nr. - Problem size for achieving half of La,
2

In addition to cross checking different sources of information, a statistical representative

sample is randomly selected from the first 500 systems of the database. For these

7

systems, the given information is verified, by asking the supplier of the information to

establish direct contact between the installation site and the verifier. This gives them

basic information about the quality of the list in total.

As the TOP500 should provide a basis for statistics on the market of high-performance

computers, the number of systems installed at vendor sites is limited. This is done for

each vendor separately by limiting the accumulated performance of systems at vendor

sites to a maximum of 5% of the total accumulated installed performance of this vendor.

Rounding is done in favor of the vendor in question.

In the following table, the computers are ordered first by their bas value. In the

case of equal performances (baz value) for different computers, they are ordered by

ILpeak. For sites that have the same computer, the order is by memory size and then

alphabetically. The table provided is just a sample of the Top500 list and not the

complete list.

2.2 Linpack

As a yardstick of performance we are using the “best” performance as measured by

the LINPACK Benchmark [3, 41. LINPACK wits chosen because it is widely used and

performance numbers are available for almost all relevant systems.

The LINPACK Benchmark was introduced by Jack Dongarra. A detailed description

as well as a list of performance results on a wide variety of machines is available in

postscript form from netlib. A parallel implementation of the Linpack benchmark (HPL)

and instructions on how to run it can be found at http://www. netlib. org/benchmark/hpl/,

The benchmark used in the LINPACK Benchmark is to solve a dense system of linear

equations. More details about solving systems of linear equations can be found in [lo].

For the TOP500, the version of the benchmark used is the one, that allows the user

to scale the size of the problem and to optimize the software in order to achieve the

http://www

.. .

8

7- I

m

0
00
9
3

2
0
00
00

m

*
m m
W
rl

0 m
m
rl
rl

n

9

best performance for a given machine. This performance does not reflect the overall

performance of a given system, as no single number ever can. It does, however, reflect

the performance of a dedicated system for solving a dense system of linear equations.

Since the problem is very regular, the performance achieved is quite high, and the

performance numbers give a good correction to peak performance. Table 2.1 shows the

5 most powerful systems from the Top500 list.

By measuring the actual performance for different problem sizes N , a user can get

not only the maximal achieved performance R,,, for the problem size N,,, but also the

problem size N L where half of the performance is achieved. These numbers together

with the theoretical peak per€ormance R p e a k are the numbers given in the TOP500. In

an attempt to obtain uniformity across all computers in performance reporting, the

algorithm used in solving the system of equations in the benchmark procedure must

confirm to the standard operation count for LU factorization with partial pivoting. In

particular, the operation count for the algorithm must be 5N3 + O(N2) floating point

operations. This excludes the use of a fast matrix multiply algorithm like “Strassen’s

Method” [ll, 121. This is done to provide a comparable set of performance numbers

across all computers. If in the future a more realistic metric finds widespread usage,

so that numbers for all systems in question are available, the benchmark authors may

convert to that performance measure.

2

2.3 Basic Linear Algebra Subprograms

BLAS are a set of subroutines written in Fortran which provide a standard API for

simple linear algebra operations. BLAS are split in 3 levels:

e level 1: vector operations,

0 level 2: matrix-vector operations,

10

0 level 3: matrix-matrix operations and triangular solve.

BLAS contains subprograms for basic operations on vectors and matrices. BLAS was

designed to be used as a building block in other codes, for example LAPACK. The source

code for BLAS is available through Netlib. However, many computer vendors will have a

special version of BLAS tuned for maximal speed and efficiency on their computer. This

is one of the main advantages of BLAS: the calling sequences are standardized so that

programs that call BLAS will work on any computer that has BLAS installed. If you

have a fast version of BLAS, you will also get high performance on all programs that call

BLAS. Hence BLAS provides a simple and portable way to achieve high performance

for calculations involving linear algebra. LAPACK is a, higher-level package built on the

same ideas.

2.3.1 Level 1

Lawson [19], proposed a number of basic linear algebra subroutines which are gen-

erally accepted as the so-called BLAS subroutines. In most vector computers efficient

implementations of these subroutines are available, which fully utilize the vectorial and

parallel properties of these computers. In additon, the source of these subroutines is

available so that they can be implemented at any other computer. These consist mainly

of vector-scalar, norm, inner-product and rotation operations. These are 0 (N) opera-

tions.

2.3.2 Level 2

In 1985 and 1988 the level two and three BLAS-subroutines [ZO] [21, 221, respectively,

have been introduced. The level two routines consist of matrix-vector routines and

Special Matrix Solvers. Many of these routines are also optimized for upper-triangular

and diagonal matrices and others. These are O (N 2) operations.

11

2.3.3 Level 3

These routines consist of matrix-matrix operations. These are O (N 3) operations.

12

CHAPTER 3. Background on Linear Algebra

Chapter 1 mentions that HPL solves a dense linear system. This chapter provides

some basic knowledge on how to solve a Linear Equation of the form Ax = b.

3.1 Gaussian Elimination

The most commonly used direct method for solving general linear systems is Gaus-

sian elimination with partial pivoting, which in modern terms is called LU decomposition

with pivoting, or LU factorization with pivoting [27]. Gaussian elimination is commonly

taught by adjoining the right hand side vector b to the matrix, then performing row

combinations that would zero out the subdiagonal entries of the matrix A. LU decom-

position (or “LU factorization”) does the same operations, but ignores the right hand

side vector until after the matrix has been processed. In particular: Let A be an NxN,

nonsingular matrix. Gaussian elirnination,with partial pivoting gives the factorization

P A = LU, where

0 P is a permutation matrix, that is, it has exactly one 1 in each row and column,

and zeros elsewhere. P-l = PT, and can be stored as an integer vector of length

N .

L is unit lower triangular matrix (ones on main diagonal, zero above main diagonal)

U is upper triangular matrix (zeros below the main diagonal)

13

Solving Ax = b then becomes LUX = Pb, since PAX = Pb. Three steps can be taken in

solving LUX = Pb.

1. Set d = Pb, either by shuffling entries of b, or by accessing via indirect addressing

using a permutation vector. In setting d = Pb, we can sometimes overwrite b with

its permuted entries, depending on how P is represented.

2. Solve Ly = d (unit lower triangular system)

3. Solve Ux = y (upper triangular system)

We look later in some detail at all three stages. However, note that the triangular solves

can be implemented by overwriting the right hand side vectors with the solution as we

go along, rather than introducing new vectors y and d. In that case the three steps look

more parsimonious with space:

1. Set x = Pb

2. Solve La: = x (unit lower triangular system). The x on right-hand side is replaced

with the solution. Hence the same vector 2 on both sides.

3. Solve Ua: = x (upper triangular system). As in the previous step, the right-hand

side is replaced with the solution.

and if the original right hand side vector b is not needed later on, x can be replaced with

b in all three steps.

3.2 LU Factorization

3.2.1 Special Matrices

Three types of matrices will be used below. The matrix U is an upper triangular

matrix if the elements of U, uij = 0 if i > j . Similarly, a lower triangular matrix L,

14

0 1 0 0 0

1 0 0 0 0

0 0 0 0 1

with elements 1, = 0 if i < j and with the additional condition that l i , j = 1 if i = j. A

third type of matrix is also required below which is a permutation matrix, P. P has the

property that PP = I . P contains the row exchange information. A sample P matrix:

There are two types of representations for the above matrix using a single integer

vector. One is to use a permutation vector and the other is to use a pivot vector.The

first stores P as a set of integers pi that represent position of xi in y = Px:

i : 1 2 3 4 5

Pi: 3 2 1 5 4

gives y = (EQ, x2,21,55, ~ 4) ~ . We can compute y by

for i = 1:n

y (i) = x (p (i))

end f o r i

A second way of representing Permutation matrices P is with pivot vectors, and it

is these which we use in Gaussian elimination. This is an integer array piv of length n,

applied to a vector I in y = Pz using

y = x

f o r k = 1:n

end f o r

This can of course be better done by overwriting and avoid using another vector y

3.2.2 Factorization Details

The classical “pointwise” algorithm is presented here and later extended to a block

oriented algorithm. The classical algorithm follows a three phase sequence on each step:

find the pivot, interchange rows to bring the pivot to the diagonal position, scale the

subdiagonal entries in the column, then update the rest of the matrix. Carrying out these

operations with overwriting of the array A gives the L and U factors in the corresponding

parts of A. L is unit lower triangular, so it’s diagonal is not stored and both upper and

lower triangular matrices fit nicely. Less obscurely, the algorithm without pivoting is:

LU factorization: Version 1

f o r k = 1:n-I

for i = k+l:n

A (i , k) = A(i,k)/A(k,k)

end for

f o r i = k+i:n

f o r j = k+l:n

A (i , j) = A (i , j) - A(i,k)* A(k,j)

end f o r

end for

end f o r

The above notation for the algorithm can be shortened by following the Matlab

notation. Briefly, the notations are

1. A(r : s,i) refers t o rows r through s in column i,

16

2. A(T, i : j) refers to columns i through j in row T ,

3. A(r : s , i : j) refers to rows T through s in columns i through j .

Note that (1) is a column vector, (2) is a row vector, while (3) is a 2D submatrix. Now

the algorithm above can be stated more succinctly a s

LU Factorization: Rank-1 Update Form

for k = 1:n-1

A(k+l:n,k) = A(k+l:n,k)/A(k,k)

A (k+l : n, k+ 1 : n) = A (k+l: n , k+l : n) - A (k+l: n , k) * A (k , k+l : n)
end for

The last form more clearly shows what the operations involved are. Each iteration is

it vector scaling of the subdiagonal part of column k, followed by a rank - 1 update of

the trailing part of the matrix. Graphically, the LU rank-1 update form procedure

is:

Figure 3.1 LU Factorization: Rank-1 Update

17

The rank - 1 update has a high memory reference to flop ratio, hence does not

perform well as a computational kernel. A more efficient version uses a common idea

in computer science, called lazy evaluation. In numerical linear algebra it has a longer

history, and is called “deferred updates”. This means apply the updating information to

a part of the matrix only when it is actually needed. The algorithm results by equating

parts of A, L, and U in a partitioned way. Graphically, we have N*
L-21 ; L-22

I

Figure 3.2 LU Factorization Derivation

Known values: A-ij, L-11, L-21,U-ll,U-12

Find on step k: 1, g, u’

Unknown until later steps: L 2 2 , U-22

First row of A-22 = (first row of L-21) * U-12 + 1 * (9, u’)

First col of A-22 = ,521 * (first col of U-12) + g *

The diagonal entry in column k of L is known to be one, of course. Note that by se-

quencing the finding of g, u’, and 1 as shown above defines an algorithm which recursively

works on the trailing subblock. The resulting algorithm is

LU Factorization: Matrix-Vector Product Form

f o r k = 1:n-I

A(k:n,k) = A(k:n,k) - A(k:n,l:k-l)*A(l:k-l,k)

A (k, k+i : n) = A (k , k+l : n) - A (k , 1 : k-1) *A (1 : k-I , k+l : n)

A (k i - l : n, k) = A (k + l : n , k) /A (k , k)

end f o r

18

- -

The computational kernels are (in order) matrix-vector product, vector-matrix prod-

uct, and vector scaling. So the rank-1 update has been replaced by matrix-vector prod-

ucts, which have half the memory reference to flop ratio of a rank - 1 update. This is

a big win on a cache-based machine. Minor point performance-wise, but big in terms of

correctness: there is a final update of A(n, n) which has been left off above.

-

3.2.3 Triangular Systems

Once we have the LU factors we need to solve two triangular systems. Consider lower

triangular systems; upper triangular systems can be handled similarly. Also, in Gaussian

elimination the lower triangular matrices are always unit lower triangular, meaning that

they have ones on

2 0 0 0

- 3 2 5 0

1 1 1 1
Everybody would

.5 ':I 0
-2 gi

solve a

ving xl

, particular

= -1, and

lower

then

triangular system:

solve in order for x2,

x3,

Two possibilities occur next: Plug in already-known values as you need them in order

to solve for xi, or when you find a value, plug it into all the remaining equations before

going on to find the next value. Gives two algorithms:

Row-oriented Lower Triangular Solve

for i = 1 : n

f o r j = 1:i-I

b (i) = b (i) - l(i,j)*x(j)

end for j

x (i) = b(i)/l(i,i)

end for i

19

This version has an inner product as innermost loop and accesses rows of L. The second

version is

Column-oriented Lower Triangular Solve

f o r j = 1 : n

x(j) = b(j)/l(j,j)

f o r i = j+i:n

b (i) = b (i) - l(i,j)*x(j)

end f o r i

end f o r j

This version has a daxpy as innermost loop (bad), and accesses columns of L.

Algorithm 1 is sometimes called a row sweep algorithm, and Algorithm 2 is called

a column sweep algorithm. Both algorithms have a block version possible by simply

treating I, as an m x rn block L, [15]. Then

xj = b j / l j j is replaced by: solve L j j x j = b j , where xj, bj are now vectors.

bi = bi - Lijxj becomes a matrix'vector (BLAS-2) operation.

Block Row-oriented Lower Triangular Solve

f o r i = l : n

f o r j = 1:i-I

b (i) = b (i) - L(i,j)*x(j)

end f o r j

solve L(i,i) x (i) = b (i) f o r x (i)

end f o r i

Block Column-oriented Lower Triangular Solve

20

for j = l:n

solve L (j , j > x l j) = b(j) f o r x (j)

f o r i = j + l : n

b (i) = b (i) - L(i,j)*x(j)

end f o r i

end f o r j

The minimal number of memory references are to read L and b and write z. This gives

n(n + 1)/2 + n + n = (n2 + 5n)/2 memory references. The number of flops involved is

sumj,I,,[2 * (n - j) + 11 = n2, So the ratio of memory references to flops is 1/2 + (5/2)n,

a typical BLAS-2 number.

Performing triangular solves is not too hard, and much time should not be spent

optimizing them. The reason is simple: computing the LU factorization requires (2/3)n3

flops, while the triangular solves require only 4n2 (2n2 each for L and U). So our efforts

should go for the most expensive step: LU factorization.

3.2.4 Pivoting in LU Factorization

When using either of the two versions (rank - 1 update and matrix-vector product)

of LU factorization, the division by A (k , k) in the scaling operation can cause problems

if A (k , k) is small in absolute value. Pivoting means bringing a larger element into

that position by swapping rows or columns in the matrix. Partial pivoting means doing

only row swaps; LU factorization is “usually stable” when partial pivoting is used [14].

However, there are classes of problems (some two point boundary value problems in

ODE’S is one example) for which it can fail. For the rank - 1 version this gives

LU Factorization: Rank-1 Update with Pivoting Form

f o r k = l:n

p = index of max element in IA(k.:n,k) I

21

piv(k) = p

swap rows k and p of A: A(k,:) C---> A (p , :)

A (k+l: n, k) = A (k+l: n , k) /A (k , k)

A (k+ 1 : n , ktl : n> = A (k+l: n , k+ 1 : n) - A (k+l : n , k) * A (k , k+ I : n)

end f o r

Note that the first step picks out the largest element in the kth column among the

remaining unreduced part of the matrix. Also, note that we swap the entire rows k and

p of the array A; this will also swap the corresponding parts of L and U since we are

overwriting A with those factors. It is another magic feature of LU factorization that

this makes the factors come out “in the right order” as well.

Next, here is a matrix-vector product formulation with pivoting, but stated for an m by

n matrix B, with m >= n.

-.

LU Factorization: Matrix-Vector Product with Pivoting for mxn Matrix

f o r k = 1:n-i

B(k:m,k) = B(k:m,k) - B(k:m,l:k-l)*B(l:k-1,k)

p = index of max element in IB(k:m,k)l

piv(k) = p

swap rows k and p of B: B(k,:) <---> B (p , :)

B (k, ktl : n) = B (k , k+l : n) - B (k ,I : k-1) *E (1 : k-I , k+l : n)

B(k+l :m,k) = B(k+l:rn, k) /B(k, k)

end for

B(n:m,n) = B(n:m,n) - B(n:m,l:n-l)*B(l:n-l,n)

B (n+l : m,n) = B (n+l: m,n) /B (n,n)

Note the last two steps are new ingredients - they consist of applying the remaining

updates to the rest of the matrix. Also note that we can do another pivot step in case

B(n, n) is small.

22

3.2.5 Blocked LU Factorization

Moving from the rank - 1 update version of LU factorization to a matrix-vector

version was done to get a better BLAS-2 kernel (in terms of load/store analysis) as the

workhorse. But since the best BLAS kernel is matrix-matrix multiplication, we should

try to get a BLAS-3 version. This can be done by blocking [15].

Blocked versions of LU factorization can be derived in the same way as was done t o

get the matrix-vector product version. Partition the matrix into block columns, each of

width v. We can find t~ columns of L and TJ rows of U on each “iteration”. Suppose that

k columns/rows have already been found. The psture is

Figure 3.3 LU Factorization Blocked

23

where

Known Values: A, L-11, L-21, L-31,.U-11, U-12, U-13

Values to f ind on this step: L-22, L-32, U-22, U-23

Values to f ind on l a t e r steps: L-33, U-33

This is the same as the last diagram, but with block columns replacing the unknown

row/column to find at this step. In more detail showing the sizes and shapes of the

systems,

Know: 1 and

1111
Want to find:

and

n-k-v \I
Figure 3.4 LU Factorization Blocked Details

Sequencing the known and unknowns gives:

24

2, Perform LU factorization on the (n - k) by matrix

+

- I

A22

--

A32 - -

Figure 3.5 Result of multiplying L*U in block form shown above and equat-
ing with the corresponding blocks of A

Collecting unknowns on left hand side and knowns on right hand side gives a two

step process for L22, L32, Uz2:

and two more steps in the factorization:

4.. Solve the 21 by 21 lower triangular system with n - k - 21 right hand sides:

This step is carried out with overwriting of A2;

25

The reason for using a matrix-vector product earlier was that it gave better compu-

tational kernels. However, when using a blocked version the rank - 1 update becomes a

rank - update and so becomes matrix-matrix multiplication. That kernel is the best

among the BLAS in terms of its ratio of memory references to flops, so we can safely

use it in a high-performance version of LU factorization, instead of the version above

based on the blocked matrix-vector version. Finally, all this does is produce the LU

factorization. Then comes the triangular solver.

After LU factorization is complete, Az = b may be solved as mentioned above. The

equation Lc = b’ may be solved by a method referred to as a forward solve, as shown:

Once c is obtained, the equation Urc = c may be solved in a similar way.

3.2.6 LU Decomposition Variants

Three natural variants occur for block LU decomposition: right-looking, left-looking

and Crout [27]. The left-looking variant computes on block column at a time using

previously computed columns. The right-looking variant computes a block row column

at each step and used them t o update the trailing submatrix. The right-looking is

also known as the recursive algorithm. The terms right and left refer to the regions of

data access, and Crout represents a hybrid of the left- and right- looking versions. The

26

Figure 3.6 Left-Looking LTJ Algorithm

Figure 3.7 Right-Looking LU Algorithm

graphical representation of the algorithms are in Figures 3.6, 3.7, and 3.8.

Figure 3.8 Crout LU Algorithm

27

CHAPTER 4. I/O in High Performance Computing

High performance applications have unique needs that commodity hardware and soft-

ware developed for larger markets do not always meet. These needs vary widely between

different kinds of applications, so before developing sophisticated I/O techniques, the

demands of the application must first be understood [24, 261.

Until recently, most applications developed for parallel machines avoided 1/0 as

much as possible (distributed databases have been a notable exception). Typical parallel

applications (usually scientific programs) would perform 1/0 only at the beginning and

the end of execution with the possible exception of infrequent checkpoints. The paper

Oldfield [30] surveys various scientific applications using paraIle1 I/O. This has been

changing: I/O-intensive parallel programs have emerged as one of the leading consumers

of cycles on parallel machines. This change has been driven by two trends. First,

parallel scientific applications are being used to process larger datasets that do not

fit in memory. Second, a large number of parallel machines are being used for non-

scientific applications, for example databases, data mining, web servers for busy web sites

(e.g. Google, Yahoo and NCSA) . Characterization of these 1/0 intensive applications

is an important problem that has tremendous effects on the design of 1/0 subsystems,

operation systems and filesystems. Papers by Rosti [28] and Smirni [29] provide an idea

of the 1/0 requirements of scientific applications.

4.1 High Performance 1 / 0 Requirements

Three categories of applications that demand good 1/0 performance are database

management systems (DBMSs) , multimedia applications, and scientific simulations.

DBMSs manage collections of data records, usually stored on disk. The collections

can be quite large, containing millions of records or more, and the DBMS must often

search for individual records that meet certain criteria. Depending on the task at hand,

the DBMS may examine every record in the database, or it may look at a subset of

records scattered across the database. Reading or writing data in small pieces, roughly

less than 1000 bytes, is called fine-grained access, and it is less efficient than .accessing

data in larger pieces.

Multimedia applications process sound, still images, and video data. Unlike a DBMS,

a multimedia application can often access large blocks of data in a predictable sequence.

For example, if the application is presenting a video, it can determine well in advance

what data to read, so it can schedule disk accesses in an efficient sequence. The user

may search forward and backward through the video or take different branches through

an interactive story, but even then the program can usually access data in large blocks.

However, unlike many other applications, multimedia programs often require the 1/0

system to read the data at no less than a specified minimum rate; this rate must be

sustained to make the sound and pictures move smoothly,

In scientific applications, the granularity may be coarse or fine, and the access pat-

terns may be predictable or random. Many scientific applications read and write data in

well-defined phases: the program will read some data, compute for a while, then write

some data. Usually, a program will continue computing in many steps, writing data each

time the program has completed a specified number of steps. In a parallel application,

the individual tasks within a job will often write their data at the same time. Parallel

1/0 libraries can take advantage of this synchrony to improve performance. As example

29

Is a paper by Dror Feitelson 1311.

An important difference between scientific applications and database or multimedia

applications is that the latter two are often designed specifically to do I/O. The ap-

plication designers recognize that accessing data in external storage is essential to the

program’s performance. In scientific applications, on the other hand, the central task is

usually a numerically intensive computation involving data that is already in memory.

Moving the data between memory and external storage is a secondary problem. There-

fore, designers of scientific codes may be less interested in 1/0 issues than in issues of

numerical accuracy and computational efficiency. Also, many database and multimedia

applications focus on reading data, while many scientific applications focus on writing

and reading data.

The two main requirements for most I/O-intensive applications are 1/0 speed and

storage capacity. Like other computer components, such as processors, memory, and

interconnection networks, external storage devices continue to improve at a phenomenal

rate. However, these components are all improving at different rates, which creates an

imbalance between the performance of different computer subsystems.

Ideally, computer architects and system programmers could improve 1/0 performance

without forcing application developers to change their programs. However, tuning the

overall performance of an application requires an understanding of all the major parts

of a computer’s architecture, including not only the CPU, cache, and memory, but also

the 1/0 system. The I/O system includes storage devices, interconnection networks, file

systems, and one or more 1/0 programming libraries.

Computers store data on a variety of media, including electronic memory, magnetic

disk, optical disk, and tape. These media are often classified in a three-level hierarchy,

which distinguishes then according to their volatility, cost, access time, and typical use.

Primary storage, the top level of the hierarchy, includes all types of electronic memory.

Computers use primary storage to hold data and instructions for programs that are

30

currently running. Primary storage is also called main memory, this usually excludes

cache memory. Secondary storage includes rigid magnetic disks and sometimes optical

media. It is nonvolatile, and data can be retrieved from it in a matter of milliseconds.

Tertiary storage includes magnetic tape, and some optical media. [32] shows how UNIX

1/0 performance measurement methodologies are applied to various storage technologies.

4.2 File Systems

Most storage devices have no notion of files, directories, or the other familiar ab-

stractions of data storage; they simply store and retrieve blocks of data. A file system is

the software that creates these abstractions, including not only files and directories but

aIso access permissions, file pointers, file descriptors, and so on. Files systems are also

responsible for moving data efficiently between memory and storage devices, coordinat-

ing concurrent access by multiple processes to the same file, allocating data blocks on

storage devices to specific files, and reclaiming those blocks when files are deleted and

recovering as much data as possible if the file system becomes corrupted. The paper by

Thomas Ruwart [33] describes how various file systems can be compared by file system

benchmarks.

Disk drives read and write data in fixed-size units. File systems allocate space in

blocks, which consist of a fixed number of contiguous disk sectors. Obviously, most files

don’t fit exactly into a whole number of blocks, and most read and write requests from

applications don’t transfer data in block-sized units. File systems use buffers to insulate

users from the requirement that disks move data in fixed-size blocks. Buffers also give

the file systems several ways to optimize data access. File systems allocate their buffers

in units the same size as a disk block. The most important benefit of buffers is that

they allow the file system to collect full bocks of data in memory before moving it to

the disk. If a file system needed to write less than a full block of data, it would have

31

to perform a expensive read-modify-write operation. Similarly, when a file system reads

data, it must retrieve a full block at a time. Even if the application program hasn’t

asked for all the data in the block, the file system will keep the entire block in memory,

since the application may later request more data from the same block.

This technique is called file caching. If a file system detects that an application is

reading data sequentially from a file in small steps, it may use prefetching, also called

read ahead, to improve performance further: the file system reads not only the block

that contains requested data but also one or more subsequent blocks in the file. The

extra cost of reading the additional blocks in a single request is usually less than the

cost of reading two or more blocks separately. Prefetching reduces the apparent data

access time for a disk, since the cost of reading the second and subsequent blocks is

hidden from the application. However, prefetching works poorly when an application’s

read requests don’t follow a simple, predictable pattern. In that case, the file system

may waste time prefetching blocks that the application doesn’t need right away.

The file system uses the same pool of memory for both buffering and caching. This

allows it to keep the data consistent when the application writes and then reads back

the same file location. These accesses will be very efficient because neither request

will require access to the disk. One disadvantage of buffering data is that most buffer

memory is volatile. A user who has saved data to a file may think the data is safe in the

event the computer crashes, but if a crash happens before the file system has written its

buffers to disk, the data in those buffers will be lost.

4.2.1 Nonblocking 1 / 0

Caching and buffering improve performance in two ways: by avoiding repeated ac-

cesses to the same block on disk and by allowing the file system to smooth out bursty

1/0 behavior. The smoothing happens because the application can quickly write a large

amount of data into file system buffers without waiting for the data to be written to

32

disk. The file system

application continues

can write these blocks to disk at a slower, steady rate while the

with other work that doesn’t require I/O. This delayed writing

can make the file system’s instantaneous transfer rate much higher than its sustained

rate. Not all file systems implement nonblocking I/O. Those that do often use the term

asynchronous 1/0 for these operations. All forms of synchronous I/O work best when

the computer has hardware, such as DMA than can move the data at the same time

as it computes. If a CPU manages these transfers, then it has fewer available cycles

to devote to computation. Likewise, if data moving between primary and secondary

storage travels over the same bus that carries data between memory and the CPU or

cache, the file access and the computation have to share the available bandwidth.

A common use of nonblocking 1/0 is for double buffering. Double buffering can

improve performance when a program repeatedly reads data and then processes it, or

produces data and then stores it. Double buffering, and asynchronous 1/0 in general,

can improve performance by no more than a factor of two. This optimum improvement

happens when the background 1/0 request takes exactly as long as the computation it

overlaps.

4.2.2 Fault Tolerance

If a disk drive fails or power is lost while an operation is in progress, the data

structures that organize the disk blocks into files may be left in an inconsistent state.

To reduce the chance of data loss, file systems include a number of features to maintain

data in a consistent state.

4.2.3 Distributed File Systems

All modern file systems handle these tasks, whether they run on parallel or sequential

computers. A parallel file system is especially concerned with efficient data transfer and

coordinating concurrent file access. File systems use caching and buffering to improve

33

performance, especially for accesses to small amounts of data and for bursty access

patterns. Several processes may access a file concurrently, but the file system guarantees

sequential consistency. It usually does this by preventing any process from writing a file

at the same time as another process is either reading or writing the file. Distributed

file systems are designed to let processes on multiple computers access a common set of

files. Although distributed file systems have some features in common with parallel file

systems, they are not a complete solution for parallel I/O.

The best known distributed file system is NFS (Network File System). NFS allows

a computer to share a collection of its files with other computers on the network. The

computer where the collection of files resides is called a server, and a computer that

remotely accesses these files is a client. In NFS, a computer can be a server for some

files and a client for others. Clients mount a collection of files - a directory on the server

and all its subdirectories - at a particular location in their own directory hierarchy. The

remote files appear to be part of the client’s directory hierarchy, and programs running

on the client can access them using the standard Unix naming conventions. When a

client program reads a file that resides on the server, the client’s file system sends a

request to the server, which gets the file and sends it back to the client. The operation

is invisible from the application’s point of view, except that accessing a remote file takes

longer than accessing a local one. Users often don’t know which directories in their

system are local and which are remote.

4.2.4 Parallel File Systems

A distributed file system does only part of what a parallel file system needs to

do. Distributed file systems manage access to files from multiple processes, but they

generally treat concurrent access as an unusual event, not a normal mode of operation.

Parallel file systems do handle concurrent accesses, and they stripe files over multiple

1/0 nodes to improve bandwidth. Sequential Unix-based file systems have traditionally

34

defined the semantics of read and write operations in a way that makes concurrent file

accesses by separate processes appear to occur in a well-defined order. Maintaining these

semantics in parallel and distributed file systems is difficult, so some systems relax the

traditional semantics to improve performance. Other systems use various techniques to

maintain standard Unix consistency semantics while endeavoring to offer good parallel

performance.

Computer vendors and researchers have developed many parallel file systems, some

with novel programming interfaces. The trend in current commercial parallel file systems

appears to be toward offering standard Unix semantics rather than specialized parallel

1/0 interfaces.

4.2.4.1 General Parallel File System (GPFS)

GPFS was introduced in 1998 as a successor to PIOFS (Parallel 1/0 File System)

[53]. GPFS is based on another IBM file system called Tiger Shark. Tiger Shark was

designed specifically for multimedia applications, such as video-on-demand. It includes

a number of features to help it stream audio and video data at high, guaranteed transfer

rates. I t also has a number of special features t o ensure data integrity.

GPFS represents an interesting departure from the trend that other parallel file

systems established. Instead of offering a standard Unix interface for compatibility and

specialized extensions for high performance, GPFS has only a standard interface. AI1

its special features to support high performance concurrent 1/0 lie below the interface,

essentially invisible to the user. Its designers apparently determined that GPFS could

offer strict Unix semantics without reducing performance unacceptably. The exact cost

of this trade-off cannot be measured since there is no way t o relax Unix semantics.

Like other file systems for distributed memory computers, GPFS accesses data

through 1/0 nodes. It uses client buffering with a distributed locking mechanism to

maintain cache coherence. Although GPFS doesn’t implement server buffering directly,

35

it is designed to access storage devices through IBM’s Virtual Shared Disk (VSD) soft-

ware, which does its own buffering. This software runs on the 1/0 nodes and controls

multiple physical storage devices; it presents a uniform view of these devices to higher-

level software like GPFS.

GPFS differs from Tiger Shark mainly in its support for genera-purpose computing.

Although Tiger Shark has a standard Unix interface, it is optimized specifically for

multimedia workloads, which tend to read long streams of data and do little concurrent

writing. GPFS added byte range locking to Tiger Shark’s file locking, and it uses more

sophisticated algorithms for prefetching data.

4.3 Programming Interfaces

There are two types of programming interfaces, one is the low-level programming

interface of parallel 1/0 and the other is the higher-level programming libraries for

scientific applications. The low-level 1/0 interfaces, unlike standard sequential Unix I/O,

allow applications to implement optimizations like collective 1/0 and hints. MPI-IO,

LLAP, POSIX are some the commonly used standards [SO] . NetCDF(Network Common

Data Form) [51], HDF (Hierarchical Data Format) [52], are two examples for higher-level

programming libraries. Both libraries use more sophisticated data models than lower-

level interfaces. These models allow application programmers to specify data access

operations on complex data structures rather than blocks of bytes.

4.4 Special Purpose 1 / 0 Techniques

There are two special-purpose 1/0 techniques commonly used in high performance

computing: out-of-core data access and checkpointing. Considerably research has been

done on both of these areas. Standard 1/0 interfaces could be used for both purposes,

but specialized libraries and algorithms could offer important benefits.

36

An out-of-core computation is one whose data set is larger than the available primary

storage. These computations require the program or the operating system to move

portions of the data set from secondary to primary storage and back as the data is

needed. Out-of-core techniques [34, 351 date to the early days of electronic computers,

when programs often needed to stage both data and instructions into primary storage.

Virtual memory systems have moved most of the responsibility for data staging from

the application developer to the operating system and the hardware. However, standard

virtual memory algorithms that are adequate for general-purpose computing perform

poorly in some very large computations: they do not prefetch data, and they may

access data in inefficient patterns. Some users avoid the performance problems inherent

in virtual memory by sizing their computations to fit in the primary storage of the

computer they will be using. Indeed, some Cray supercomputers did not support virtual

memory even after the technique had become common in general-purpose computers.

For users whose applications cannot fit into primary storage, a number of techniques

and specialized 1/0 systems have been developed to improve performance [36, 37, 381.

All these techniques are based on two familiar optimizations: hiding the disk access time

and minimizing the number of accesses. For out-of-core applications, st aging libraries

optimize common 1/0 requests, such as reading and writing sections of distributed

arrays. Moreover, out-of-core algorithms that explicitly recognize the role of secondary

storage can improve performance compared to using standard virtual memory to simulate

a very large primary storage space [39, 401.

.

Checkpointing techniques fall into two categories: those initiated within the appli-

cation and those initiated by the system. The former are generally easier t o implement

because the application can initiate requests at times when it is in a consistent and easily

recorded state. However, system-initiated checkpointing eliminates the need for users

to include checkpointing requests explicitly in their code. All checkpointing software

represents a trade-off between three competing goals: minimizing the application pro-

37

grarnrner’s effort, minimizing the size of the checkpoint file, and making the checkpoint

data portable.

This chapter has introduced some of the important problems in storing data for

high performance computers, along with several 1/0 programming interfaces designed

€or performance, convenience, or both. Applications make a variety of demands on 1/0

systems and parallel 1/0 can help meet these demands by increasing both capacity and

1/0 speed. Moving data between memory and disk presents the most pressing 1/0

problems, and the majority of 1/0 research has been directed at these problems,

38

CHAPTER 5. HPL Algorithm

This chapter provides a high-level description of the algorithm used in this package.

As indicated in the following sections, HPL contains in fact many possible variants for

various operations. Defaults could have been chosen, or even variants could be selected

during the execution. Due to the performance requirements, it was decided to leave the

user with the opportunity of choosing, so that an “optimal” set of parameters could

easily be experimentally determined for a give machine configuration. From a numerical

accuracy point of view, all possible combinations are rigorously equivalent to each other

even though the result may difler slightly (bit-wise)

5.1 Main Algorithm

This software package solves a linear system of order n: Ax = b by first comput-

ing the LU factorization with row partial pivoting of the n-by-n + 1 coefficient matrix

[Ab] = [[L, Uly]. Since the lower triangular factor L is applied to b as the factorization

progresses, the solution x is obtained by solving the upper triangular system U z = y.

The lower triangular matrix L is left unpivoted and the array of pivots is not returned.

The data is distributed onto a two-dimensional P-by-Q grid of processes according

to the block-cyclic scheme to ensure good load balance as well as the scalability of the

algorithm. The n-by-n + 1 coefficient matrix is first logically partitioned into nb-by-nb

blocks, that are cyclically dealt onto the P-by-Q process grid. This is done in both

dimensions of the matrix.

39

Finished part of U

Finished
Multiplier:

L
I

A(& 1,n:i) A(i+l:n,i+l:n)

Figure 5.1 HPL Algorithm

- A(i,i+l:n)

The right-looking variant has been chosen for the main loop of the LU factorization.

This means that at each iteration of the loop a panel of nb columns is factorized, and the

trailing submatrix is updated. Note that this computation is thus logically partitioned

with the same block size nb that was used for the data distribution.

5,2 Panel Factorization

At a given iteration of the main loop, and because of the Cartesian property of the

distribution scheme, each panel factorization occurs in one column of processes. This

particular part of the Computation lies on the critical path of the overall algorithm. The

user is offered the choice of three (Crout, left- and right-looking) matrix-multiply based

40

recursive variants. The software also allows the user to choose in how many sub-panels

the current panel should be divided into during the recursion. Furthermore, one can also

select at run-time the recursion stopping criterion in terms of the number of columns

left to factorize. When this threshold is reached, the, sub-panel will then be factorized

using one of the three Crout, left- or right-looking matrix-vector based variant. Finally,

for each panel column the pivot search, the associated swap and broadcast operation

of the pivot row are combined into one single communication step. A binary-exchange

(leave-on-all) reduction performs these three operations at once.

5.3 Panel Broadcast

Once the panel factorization has been computed, this panel of columns is broadcast

to the other process columns. There are many possible broadcast algorithms and the

software currently offers 6 variants to choose from. These variants are described below

assuming that process 0 is the source of the broadcast for convenience. “+” means

“sends to”.

Increasing Ring 0 -+ 1; 1 + 2; 2 + 3 and so on. This algorithm is the classic

one; it has the caveat that process 1 has to send a message.

Increasing Ring (modified) 0 + 1; 0 + 2; 2 + 3 and so on. Process 0 sends

two messages and process 1 only receives one message. This algorithm is almost always

better, if not the best.

Increasing %Ring The Q processes are divided into two parts: 0 + 1 and 0 +
Q/2; Then processes 1 and Q / 2 act as sources of two rings: 1 --+ 2, Q / 2 + Q/2+1; 2 .

+ 3, Q/2+1 --+ to Q/2+2 and so on. This algorithm has the advantage of reducing

the time by which the last process will receive the panel at the cost of process 0 sending

2 messages.

41

Increasing 2-Ring-modified As one may expect, first 0 + 1, then the Q-1 pro-

cesses left are divided into two equal parts: 0 + 2 and 0 + &/2; Processes 2 and

Q / 2 act then as sources of two rings: 2 + 3, Q / 2 + &/2+1; 3 -+ 4, Q/2+1 -+
to Q/2+2 and so on. This algorithm is probably the most serious competitor to the

increasing ring modified variant.

Long (bandwidth reducing) as opposed to the previous variants, this algorithm

and its follower synchronize all processes involved in the operation. The message is

chopped into Q equal pieces that are scattered across the Q processes.

The pieces are then rolled in Q-1 steps. The scatter phase uses a binary tree and the

3, rolling phase exclusively uses mutual message exchanges. In odd steps O w l , 2

4 5 and so on; in even steps &-I ++- 0, 1 * 2, 3 4, 5 ++ 6 and so on.

More messages are exchanged, however the total volume of communication is in-

dependent of Q, making this algorithm particularly suitable for large messages. This

algorithm becomes competitive when the nodes are “very fast” and the network (com-

paratively) “very slow”.

Long (bandwidth reducing modified) same as above, except that 0 + 1 first,

and then the Long variant is used on processes 0,2,3,4 .. Q-1.

The rings variants are distinguished by a probe mechanism that activates them. In

other words, a process involved in the broadcast and different from the source asyn-

chronously probes for the message to receive. When the message is available the broad-

cast proceeds, and otherwise the function returns. This allows to interleave the broadcast

operation with the update phase. This contributes to reduce the idle time spent by those

processes waiting for the factorized panel. This mechanism is necessary to accommodate

for various computation/comrnunication performance ratios.

42

5.4 Look Ahead

Once the panel has been broadcast or say during this broadcwt operation, the trailing

submatrix is updated using the last panel in the look-ahead pipe: as mentioned before,

the panel factorization lies on the critical path, which means that when the kth panel

has been factorized and then broadcast, the next most urgent task to complete is the

factorization and broadcast of the k+ l th panel. This technique is often referred to

as “look-ahead” or “send-ahead” in the literature [27]. This package allows to select

various “depth” of look-ahead parameters. By convention, a depth of zero corresponds

to no lookahead, in which case the trailing submatrix is updated by the panel currently

broadcast. Look-ahead consumes some extra memory to essentially keep all the panels

of columns currently in the look-ahead pipe. A look-ahead of depth 1 or 2 is likely to

achieve the best performance gain.

5.5 Update

The update of the trailing submatrix by the last panel in the look-ahead pipe is

made of two phases. First, the pivots must be applied to form the current row panel U.

U should then be solved by the upper triangle of the column panel. U finally needs to

be broadcast to each process row so that the local rank-nb update can take place. We

choose to combine the swapping and broadcast of U at the cost of replicating the solve.

Two algorithms are available for this communication operation,

5.5.3 Binar y-Exchange

This is a modified variant of the binary-exchange (leave on all) reduction operation.

Every process column performs the same operation. The algorithm essentially works its

follows. It pretends reducing the row panel U, but at the beginning the only valid copy

is owned by the current process row. The other process rows will contribute rows of A

43

they own that should be copied in U and replace them with rows that were originally

in the current process row. The complete operation is performed in log(P) steps. For

the sake of simplicity, let assume that P is a power of two. At step k, process row p

exchanges a message with process row p + 2’”. There are essentially two cases. First,

one of those two process rows has received U in a previous step. The exchange occurs.

One process swaps its local rows of A into U. Both processes copy in U remote rows of

A. Second, none of those process rows has received U, the exchange occurs, and both

processes simply add those remote rows to the list they have accumulated so far. At

each step, a message of the size of U is exchanged by at least one pair of process rows.

5.5.2 Long

This is a bandwidth reducing variant accomplishing the same task. The row panel is

first spread (using a tree) among the process rows with respect to the pivot array. This

is a scatter (V variant for MPI users). Locally, every process row then swaps these rows

with the the rows of A it owns and that belong to ti. These buffers are then rolled (P-1

steps) to finish the broadcast of U. Every process row permutes W and proceed with the

computational part of the update. A couple of notes: process rows are logarithmically

sorted before spreading, so that processes receiving the largest number of rows are first

in the tree. This makes the communication volume optimal for this phase [41].

Finally, before rolling and after the local swap, an equilibration phase occurs during

which the local pieces of U are uniformly spread across the process rows. A tree-based

algorithm is used which may not necessarily be optimal for a given compouter. This

operation is necessary to keep the rolling phase optimal even when the pivot rows are

not equally distributed in process rows. This algorithm has a complexity in terms of

communication volume that solely depends on the size of U. In particular, the number

of process rows only impacts the number of messages exchanged. It will thus outperform

the previous variant for large problems on large machine configurations.

44

The user can select any of the two variants above. In addition, a mix is possible as

well. The “binary-exchange” algorithm will be used when U contains at most a certain

number of columns. Choosing at least the block size nb as the threshold value is clearly

recommended when look-ahead is on.

5.6 Backward Substitution

The factorization has just now ended, the back-substitution remains to be done. For

this, we choose a look-ahead of depth one variant. The right-hand-side is forwarded in

process rows in a decreasing-ring fashion, so that we solve Q * nb entries at a time.

At each step, this shrinking piece of the right-hand-side is updated. The process just

above the one owning the current diagonal block of the matrix A updates first its last nb

piece of x, forwards it to the previous process column, then broadcasts it in the process

column in a decreasing-ring fashion as well. The solution is then updated and sent to

the previous process column. The solution of the linear system is left replicated in every

process row,

5.7 Checking The Solution

To verify the result obtained, the input matrix and right-hand side are regenerated.

Three residuals are computed and a solution is considered as “numerically correct” when

all of these quantities are less than a threshold value of the,order of 1.0. In the expressions

below, E is the relative (distributed-memory) machine precision.

45

.I”.. . . ., . -. ,

46

CHAPTER 6. Design of HPL

HPL performs a series of tests given a set of parameters such as the process grid, the

problem size, the distribution blocking factor. This testing routine generates the data,

calls and times the linear system solver, checks the accuracy of the obtained vector

solution and writes this information to the specified output medium. This linear system

is solved first by factoring a N+1 by N matrix using LU factorization with row partial

pivoting. The main algorithm is the “right looking” variant with or without look-ahead.

The lower triangular factor is left unpivoted and the pivots are not returned. The right

hand side is the N + l column of the coefficient matrix.

A new panel data structure is initialized to start the factorization. The main loop

factorizes NB columns at a time, which is the same as the blocking factor used in

generating and storing the input data. This 1-dimensional panel of columns is then

recursively factorized. The RPFACT function pointer specifies the recursive algorithm

to be used, either Crout, Left looking or Right looking. NBMIN allows to vary the

recursive stopping criterion in terms of the number of columns in the panel, and NDIV

allow to specify the number of subpanels each panel should be divided into. Finally

PFACT is a function pointer specifying the non-recursive algorithm to be used on at

most NBMIN columns. One can also choose here between Crout, Right looking or Left

looking.

Bidirectional exchange is used to perform the swap::broadcast operations at once

for one column in the panel. This results in a lower number of slightly larger messages

than usual. On P processes and assuming bi-directional links, the running time of this

47

function can be approximated by (when N is equal to NO):

NO * Zogz(P) * (lat + (2 * NO + 4)/bdwth) + NO2 * (M - N 0 / 3) * gum2 - 3

where M is the local number of rows of the panel, lat and bdwth are the latency and

bandwidth of the network for double precision real words, and garn2-3 is an estimate of

the Level 2 and Level 3 BLAS rate of execution. The recursive algorithm allows indeed

to almost achieve Level 3 BLAS performance in the panel factorization. On a large

number of modern machines, this operation is however latency bound, meaning that its

cost can be estimated by only the latency portion NO * logz(P) * lat . Mono-directional

links will double this communication cost,

48

CHAPTER 7. Modifications to HPL

HPL is part of Highly Parallel Computing Benchmark of LINPACK. This benchmark

is used in generating the Top500 Report from the LINPACK benchmark suite. This

benchmark attempts to measure the best performance of a machine in solving a system

of equations. The Top500 lists the 500 fastest computer systems being used today.

The best Linpack benchmark performance achieved is used as a performance measure

in ranking the computers. The TOP500 list has been updated twice a year since June

1993. As the report it self mentions, the timing information presented in the Top500 list

should in no way be used to judge the overall performance of a computer system. The

results reflect only one problem area: solving dense systems of equations.

The changes made to HPL can be categorized into two parts. The first step was to

add an out-of-core feature to the existing algorithm. The second was to use a threads

based programming model to parallelize some parts of the algorithm. Some very basic

modification were made to the timings routine. The timing routine was modified to

time more parts of the program/algorithm than originally planned. This also help in

identifying the parts of the program which took the most time, and led us to take the

appropriate steps to reduce the runtime for these parts of the program.

7.1 Out-of-Core Capability

The main goal of the modifications was to include the out-of-core feature to the HPL

benchmarking tool. The making of modifications to this tools had a lot of issues, just

49

like any other software modifications. Bow much/what part of the software should be

modified. One of the main criteria was that the algorithm should remain the same, i.e.

it still solve a linear system using LU factorization.

This implied that the matrix in memory should still be in block-cyclic format. A

design point for our implementation is should the matrix in the secondary store (on

disk) be in block cyclic or in some other format? A literature survey was done on the

different storage formats used by various out-of-core algorithms [42, 43, 441. Further

research wits done on the various algorithms used in out-of-core Computations [45, 461.

One common theme among all the out-of-core computation programs were their I/O

operations were designed to give the best performance and the algorithms themselves

were chosen that gave best performance for I/O. But this is not the case for HPL. In HPL

the main loop for factorization is a Right looking algorithm, but according to published

papers/documents [47, 481 a Left looking algorithm is good for factorization. This

would require changing the whole HPL algorithm, and implement the algorithms from

scratch, which was not the purpose of this project. The matrix data is stored in blocks in

the original algorithm. Since the 1/0 operations involved would be significant compared

to the floating point operations, the overhead would be reduced if the data format in

main memory was the same as the data stored on disk. Before each computational block,

namely the BLAS routines, the input data pointers were calculated using functions in

the original HPL code. This meant that, the data could be transferred to/from main

memory and disk transparent to the computational blocks. There would be no direct

involvement between compute operations and I/O operations. Due to the data access

pattern of the original HPL algorithm, each 1/0 operation required reading/writing

a column of data blocks. However, due to the recursive nature of the factorization

algorithm, the entire matrix needed to be accessed during a single iteration of the main

loop. This resulted in polynomial 1/0 operations in relation to the data size N . Some

minor changes were made in some loops to reduce the number of I/O transactions. This

50

made quite an impact on the 1/0 operations. The actual details are presented in the

following chapter.

7.2 Threads in HPL

HPL uses MPI for the multiprocesseor/interprocess communication. Threads are

used for performing some tasks, to take advantage of the SMP style architecture for the

nodes like the IBM SP system Seaborg, at National Energy Research Scientific Com-

puting Center (NERSC). HPL uses external libraries for performing the BLAS routines

[49]. Since, these were the most computationally intensive operations in the benchmark

suite, they made a very good starting point for parallelization. Some of the routines

are memory intensive. This also was hoped to give some performance metrics. Using

OpenMP threads wits one of the thoughts on parallelization. Using pthreads to paral-

lelize the BLAS algorithms should also be very similar. Parallelization using OpenMP

should involve less work, at least from the programming perspective. The Pthreads

interface requires much more code restructuring to obtain a similar implementation.

The HPL code provides some BLAS algorithms of its own but not all algorithms.

This required writing some extra code to provide the same functionality. The details

are provided in the next chapter. The use of this code rather than a third party li-

brary routines, provides a more accurate comparison of the result of including OpenMP

threads in the BLAS algorithms and the overall performance. This should also include

the overhead of creating multiple threads. The major parameters which are expected to

influence the results/timings are the block size, problem size, number of threads. Plots

and tables for these parameters are provided in the chapter on results. Furthermore,

the modified version could readily use any thread b a e d BLAS routines from the ven-

dor offerings. We chose to go with straightforward source code implementations as a

normalizing effect for comparison.

51

CHAPTER 8. Implementation

The implementation of the modifications proceeded in two stages. The first stage

involved adding I/O and Out-of-Core memory management to HPL. The second part

was adding Threads to computationally intensive parts of HPL. The following sections

describe these steps in detail.

8.1 I/O Implementation

The 1/0 for HPL arises due to inclusion of Out-of-Core feature to HPL. The main

preface to an Out-of-Core algorithm is that the data is more than that available in the

main memory. In the case of HPL, the data was the generated input matrix €or the

N-variable linear equation. The in-core algorithm distributes the generated data in a

block-cyclic pattern to all the processes involved, as mentioned in earlier chapters. In

HPL each process was assumed to have its own memory and any type of communication

between the processes was through MPI. Since each process had its own memory, the

easiest way to add 1/0 would be to write the input data generated by each process to a

file (secondary storage), and read from it when the data is needed. This brings us to the

question of how the data is to be stored on disk or secondary st0rage.h order to answer

the above question we would need to take a look at the high performance computing

system on which the testing and debug runs were going to be based. A typical node on

the target system was a 16 processor SMP node with 16 Gigabytes of aggregate memory

€or each node. This meant that the out-of-core data generated for each process was going

52

to be more than 1 Gigabyte. The final location where the data was going to be written

should be large enough to store all data from each process at the same time. This model

works for most MPP systems allowing for adequate secondary storage resources.

Once the amount of secondary storage needed was determined, then came question

of how the data was going to be stored. There were various options to consider, the

data could be written in a single file and all process access it at the same time or they

could create and write files of their own. The latter option was chosen as it was the most

straigtforward to implement. There would be no offsets and integrity checks required

from the other processes. After looking at all the different methods available in [17],

it was not clear on what kind of I/O to actually implement. There were various issues

involved like, the level of abstraction to be used, the layers of storage to be used. External

scientific interfaces like MPI-IO [50], netCDF 1511 and HDF 1521 were also considered.

This also brought into the picture, the data structure needed to store the data on disk.

The easiest option was to store the data in the same format as it is in the main memory.

This would eliminate the overhead of transforming from one format to the other, both

during reads and as well as writes. It would essentially mean that data generated would

be written to the disk/secondary storage as fast as possible.

This would bring us to the actual I/O interface. Since this is a modular design, inter-

face in HPL would not know the actual method used to perform the 1/0 from memory

to disk. This enables us to use vendor specific features to improve the performance and

maintain portability at the same time. This can be accomplished by using generic 1/0

for each process as one option and vendor specific implementation as another option. In

the current implementation, since most of the testing was done on an IBM SP system,

the vendor specific implementation pertains to an IBM SP system. The IBM SP system

has separate I/U nodes running the distributed, parallel 1/0 system GPFS (General

Parallel File System) [53]. The data distribution in memory will the sames as the data

stored on disk. Also, as there will not be any overlapping 1/0 and computation, se-

53

quential access for each process would be B good starting point for the implementation.

Since, most of the I/O is going to be in sequential and in discrete blocks for each process,

the GPFS should provide a good performance. By using the GPFS for I/O, we could

concentrate on data 1/0 in terms of blocks of bytes and not on the intricacies of parallel

1/0 between each process or node. The modular design also meant that the type of I/O

used was not visible to the main program.

8.1.1 Matrix Pointer

The third party software being used were the ATLAS libraries [49] for the BLAS

algorithms and the MPI libraries for interprocess communication. This implied that

BLAS routines and communication routines should not be aware of any 1/0 involved.

Since the basic HPL algorithm of solving an N-variable linear equation was supposed

to remain the same, the only possible place where code changes could be made was the

pointer/memory access to matrix data and coefficients.

In the original algorithm, the pointer to the matrix data was obtained by using the

required indices and a base pointer to the matrix, as shown below:

/*

* Mptr returns a pointer to a_(i-, j- 1 for readability reasons and

* also less silly errors . . .

*/

I #define Mptr(a_, i,, j-, Ida- 1 ((a,) + (i-1 + (j-)*(lda-)

The routine Mptr is now modified to implicitly call a function. The function returns

the appropriate pointer as it does previously, at the same time keeping the I/O involved

invisible to HPL algorithm.

/** Mptr modified to call a function **/

#define Mptr HPL-oocptr

. . "... ..I , , ,

54

As it is evident from the above code, the input matrix as well as all the intermediate

results are all stored in a column major format. To get a better understanding of the

problem involved in converting from in-core to out-of-core, we need to take a brief look

at the data arrangement in the original code.

0 1

The above tables show the 2-D block cyclic data distribution used by HPL. The data

is distributed onto a two-dimensional grid of processes according to the block-cyclic

scheme to ensure good load balance as well as the scalability of the algorithm. The grid

dimensions are P by Q. The N by N+1 coefficient matrix is logically partitioned into

blocks, that are cyclically dealt onto the P by Q process grid. Each block is NB by N s ,

with NB being referred as the blocking factor. This cyclic distribution is done in both

dimensions of the matrix.

In the example above, the process grid is a 2 by 2 grid (P=2 a;nd Q=2), 4 processes

total. The first process being denoted by (O,O) , the second by (OJ) and so on. The

number of subblocks is 4 in both dimensions. The first table shows the position of each

55

subblock in relation to the whole coefficient matrix. The second table shows the final

subblocks distributed to each process, indicated by each quadrant.

As mentioned earlier each individual coefficients in a block (subblock) is accessed in

a column major format. Then each subblock on a process, is accessed again in a column

major format. The storage on disk (secondary storage) would mirror the above structure

t o avoid rearrangement overhead.

8.1.2 Main Memory Requirement

After the data structure for storage of matrix data on disk had been decided, then

came the question of how much of data is going to reside in memory and how to go

about actually transferring data to and from secondary storage.

This step required analyzing the memory access pattern of HPL in minute detail.

HPL used the right-looking variant for the main loop of the LU factorization, in solving

the linear equation. At each iteration of the loop a panel of NB columns is factorized,

and the trailing submatrix is updated. An important point to note, is that, NB above,

is the same value used in partitioning the coefficient matrix into blocks and later used

for data distribution.

The following were the observations on the memory access patterns:

0 At each iteration of the main loop, factorization was performed on a panel at a

time.

0 The width of each panel was N B , the same as the block size in data distribution.

0 Following panel factorization, each panel of columns was broadcast to other pro-

cesses performing a similar operation.

0 After the factorization and broadcast, the trailing submatrix was updated. The

trailing submatrix includes all the columns (panels) yet to be factorized.

56

0 Finally after the entire matrix was factorized, the triangular solve was done, which

involved the entire matrix data.

0 Then the results are verified by computing the scaled residuals which involved the

entire matrix again, as the input data was regenerated.

In addition, the parameters to MPI communications and BLAS routines were also

observed. MPI messages required two distinct locations for sending and receiving mes-

sages. The BLAS had varying memory requirements. Some BLAS routines, usually

that involved vectors required just a single pointer location, where some BLAS routines

required as many as three distinct pointer locations. Upon closer inspection it was found

that the three pointer locations corresponded to just two panels.

From all the above observations, it was gathered that having just two panels of blocks

in memory at a given time, would be enough to correctly execute the HPL code. The

option of being able to add more panels of blocks during runtime was also taken into

consideration. This also means that having more panels in memory would reduce the

maximum problem size that can be run by HPL. The panels were also included in a

priority queue to avoid erasing a panel currently being used and maybe even reducing

the number of reads and writes needed.

8.1.3 Data Integrity

Now that the data format to be stored on disk, and the matrix data to be retained in

main memory have been decided; this brings us to the hardest part yet, The maintenance

of coherence between the data on disk and the data in main memory. There are two

pointers to keep in mind, one is the location of the current matrix data element being

accessed relative to panel of blocks, and the second is the location of the same data

element relative to the entire data distributed to the process. For the original HPL

code, these two pointers are the same, as all the matrix data resides in main memory.

57

But for the out-of-core implementation, the location in the panel of blocks corresponds

to the data element in main memory, and the location relative to data distribution

corresponds to the matrix data in secondary storage.

The access and/or modification of matrix data elements was just a single operation

in the original HPL code. But the new HPL code has obviously become much more

complex for even a simple data element access. In fact data modification involves less

work than data access in HPL with I/O. In HPL with I/O, when a data element is t o be

accessed, the element is first checked in the two(or more) data panels in main memory.

If neither of the two data panels contain the element, then one of the panels in memory

is replaced by the panel of blocks containing the required element. The pane1 being

replaced is written back to the disk first, of course. The appropriate pointer to the data

element in the panel of blocks is then returned by Mptr. In the case of data modification,

the appropriate panel of blocks must already be in memory. It simply involves modifying

the data in memory. This remains in memory until the panel containing it, is going to

be replaced, which is then written back to the secondary storage. Changes to data are

cached in-core thus avoiding as many secondary storate I/O operations as possible.

The above changes would have been enough if Mptr was used only for accessing

the matrix data elements. Unfortunately, Mptr was used to also reference temporary

data from panel factorization and broadcast. If the two data elements could be easily

differentiated, then the solution would have been simple. The original Mptr could be

used for the temporary data, and the modified version for all matrix data elements.

But the distinction was not so clearcut. This was not an issue for the original code as

everything was in main memory and it could be easily represented by pointers. This need

€or differentiation between in-core and out-of-core (secondary storage) data elements,

created a need for another parameter to indicate the type of pointer/data element being

accessed by the routine Mptr. The data types and data structures involved above can

be seen in more detail in Appendix €3.

58

8.2 Threads With OpenMP

As mentioned in the previous chapter, HPL uses third party BLAS routines like AT-

LAS. These routines are optimized for the specific architecture and there is no provision

for including OpenMP in ATLAS. However, HPL provides reference code €or BLAS rou-

tines which are not optimized for any particular architecture. This code is only executed

when VSIPL (Vector Signal Image Processing Library) is used instead of BLAS.

This created considerable modifications in the preprocessor to call the above unop-

timized routines in place of the BLAS routines. Since these routines were tightly linked

to the VSIPL library, the routines had to be replicated .and preprocessed separately.

These unoptimized routines were then parallelized using OpenMP and compared with

the sequential versions. Some parallelizations were direct while, the others required

modifications to the loops. A few examples are presented in the Appendix. As a result

of these modifications there are four versions of the basic BLAS routines available t o

BPI;. There are the two in original code, which include the vendor supplied Fortran

BLAS routines, external BLAS routines in C like ATLAS, and then there are the unop-

timized versions of these routines with and without threads. These options are available

at compile time only.

59

CHAPTER 9. Results

This chapter presents the timing and performance results of HPL with out-of-core

1/0 support. The comparisons with the original in-core HPL are also presented. The

plots and timings tables analyzed and conclusions are drawn from the figures presented.

Appendix A contains a sample input file used for the runs performed by HPL. This

sample input file has 3 additional inputs from the original HPL input file. These are:

e Data directory: This contains destination directory where the out-of-core data is

to the written. The default is data, which is a subdirectory where the executable

is being run.

e Data file prefix: This is optional prefix to the out-for-core files being written in

the above directory. The suffix is a combination of the row process id and column

process id. This helps in keeping the data file names generic.

e Bufler size: This the number of panels of columns to be used for keeping the data

in main memory. The minimum is 2.

Jobs are run with various input parameters and the results are plotted and analyzed.

Not all parameters are tested, as they do not directly affect the I/O. The results are also

presented in two sections, the first is just involving the out-of-core modifications. The

second section includes the performance of OpenMP threads.

60

Table 9.1 Table for the Runtime(in seconds) €or problem size N=20000 run
on 4x4 processors. NB indicates the block size

Left RT I I/O
739.46 240.61

1203.14 532.42
2866.44 1548.79

Crout RT 1/0 I Right RT
764.56 262.68 757.05

1259.67 574.64 1245.89
~ 2988.52 1619.48 2958.63

I/O
261.80
580.16

1631.48
2173.77
3628.12

3870.92 2110.21 4017.82
6051.73 3461.24 6328.21

9.1 Performance With Disk 1 / 0

2203.60 3976.56
3624.35 6250.78

Left,Crout and Right in Table 9.1, indicate the type of factorization used to factor

the individual panels. It can be clearly observed that the greater the block size the lesser

the run time. This is primarily due to the decrease in disk reads and writes involved by

increasing the block size. The process grid is a 4 by 4. So, each process gets 5000 by 5000

data chunk. When the block size is 50, the number of column panels for factorization

is about 100, but when the block size is 500, the number of panels comes down to 10.

That is a considerable change, hence the noticeable decrease in 1/0 time. It is to be

kept in mind here even though the data read or written is the same in both the cases,

it the number of reads/writes which make the difference due to the high latency for

secondary st orage. The performance in GFlops/s (Billions of floating point operations

per second) is also provided to give an overall picture in figure 9.3. Even though 1/0

directly does not contribute to increase GFlops, the less time spent doing 1/0 means

less total runtime, implying more effective GFlops per unit time.

Table 9.2, and figures 9.4 and 9.5 show similar curves in the plots when the problem

size is increased for the same process grid. By looking at the actual timings, it can be seen

that it took nearly 3 times longer even though the increase in problem size per process

was a few thousand. This reiterates the polynomial time increase in the computation

involved in matrix operations.

Plot for Walltime in 4x4,N=200W
7030

6000

5000

4000 -
Y

E
3000

2000

' 1000

0
50 100 f50 200 250 300 350 400 450 500

Block Size(NB)

500
250
100
75
50

Figure 9.1 Runtimes (in seconds) for various block sizes, and varying the
panel factorization. Problem size N=20000. Data from Ta-
ble 9.1.

I Y I

2428.46 847.60 2506.46 913.32 2440.96 874.27
4045.25 1827.46 4295.01 2015.94 4205.67 1987.30
9480.16 5145.75 10143.39 5742.90 9973.85 5640.96

12204.83 6784.75 13257.70 7501.88 13505.61 7715.63
19111.48 10981.55 20405.59 11853.87 20959.22 12297.79

Table 9.2 Table for the Runtime (in seconds) on 4x4 processors for N=30000

I NB I Left RT I/O 1 Crout RT I I/O I Right RT I I/O I

~ , " " ...

4000

3500

3000

2500
1 - g 2000
2

1500

1000

500

0

62

Plot for UO Time in 4~4,N=200W

I , UO Tirne(Left) -
UO Time(Crout
110 Time(Righk{ ~ : ~ ~ ~ ~ :

t

100 150 200 250 300 350 400 450 500
B[ock Size(N6)

Figure 9.2 1/0 Times (in seconds) €or various block sizes, and varying the
panel factorization. Problem size N=20000. Data from Ta-
ble 9.1.

Plot for how RMax varies with block size
9

8

7

6 -
8 5

U z 4
G e

3

2

1

0 I I I I I I

0 100 200 300 400 500 600 700 800 900
Block Size

Figure 9.3 RMax values for 4x4 process node with varying block sizes.
Problem size N=20000. Data from Table 9.1.

63

22000

20000

18000

10000

14000 - - E 12000
F

10000

8000

6000

4000

2000
50 IO0 150 200 250 300 350 400 450 500

Block Size(NB)

Figure 9.4 Runtime(in seconds) for 4x4 processors, N=30000. Data from
Table 9.2.

14000

I2000

too00

g 8000
E
i=

6000

4WO

2ow

Plot for VO Time in 4x4,NdOWO
0 I 1 I I

I10 Time(Left) -+
I/O(Cmut

0 I I I I I ,
50 100 150 200 250 300 350 400 450 500

Block Size(NB)

Figure 9.5 1/0 Time(in seconds) for 4x4 processors, N=30000. Data from
Table 9.2.

64

Buffer size
8
5
4
2
8
5
4

Table 9.3 Table for the Buffer size relationship with runtime(in seconds), for
problem size N=50000 on an 8x8 grid, with block size NB=500.

Broadcast RunTime(s)
lRingM 2656.76

lRingM 3443.19
lRingM 3442.88
LongM 2606.80
LongM 3031.73
LongM 3413.62

1RingM 343 5 * 73

I/O Runtirne(s)
926.54

1231.05
1521.74
1451.22
900.53

1211.18
1 1492.20

In Table 9.3 other broadcast/communication types are not given as they are basically

a variation of the above two. Even though the overall runtime may not be considerably

different, the 1/0 time is impacted due to the size of the messages being transmitted

between processing nodes, and the number of messages sent. The reason there is not a

significant decrease in 1/0 time is, that the number of reads/writes has not decreased

much. The recursive nature of the algorithm, results in an update of the trailing sub-

matrix at the end of each loop of the main loop.' Having a buffer does not help in this

case, as all the unfactorized panels need to be updated. The buffer does decrease the

1/0 some toward the end of the algorithm when there are only a few panels left to be

factorized. The buffer is most efficient when all the panels of columns of the data are in

memory, but that would mean that the entire matrix could fit in the memory, which is

not the purpose of the changes in the first place. But in general, the more the number of

panels in memory the better the performance. The runtimes and 1/0 times are plotted

in Figures 9.6 and 9.7.

Figures 9.8 through ?? try to show to effect of modifying more than a single parameter

at a time. Previously all the plots just changed the values of block sizes, or problem sizes

or the buffer size. The following graphs present of effect of combinations of the above

variations. From the plots it can the easily seen that the results were just as expected

I

65

Plot for runtime for using 1 ringM

Run TimerrjngM] -
110 Time 1nngM ---x---

2500

-
v In

2000
F

mn I I I I I I _ _ _
2 3 4 5 6 7 8

Buffer Size

Figure 9.6

3500

3000

2500

s
F
E 2000

1500

1000

500

Runtime(in seconds) for problem size N=50000, running on 8x8
grid with block size 500 versus the buffer size. The broadcast
type is lRing Modified

Plot for runtime for using IongM
I I 1 I I

4 4.5 5 5.5 6 6.5 7 7.5 a
Buffer Size

Figure 9.7 Runtime(in seconds) for problem size N=50000, running on 8x8
grid with block size 500 versus the buffer size. The broadcast
type is Long Modified

2woo

15000 I

I I ' RunTlme(500) -i--

Run Time 75 '--o---

Run Time(25D
Run Time(1001

./' Run TimeISOj
.r

-

- -
E
F
I-

10000 "

15000 20000 25000 30000 35000 40000 45000 50000
Probrem Size (4x4 processors)

Figure 9.8 Runtimes (in seconds) for different problem sizes with varying
block sizes on a 4x4 processor grid. Buffer size is 2.

without any unusual changes.

Figures 9.10 and 9.12 show how even the process grid can influence the performance.

\ -

bit of calculation we can check that in an 2x8 process grid there are effectively fewer

panels of columns to compute than in an 8x2 process grid. This means that there will

be fewer number of reads/writes in the 2x8 grid compared to an 8x2 grid. This again

confirms that even though the data read is the same, the number of 1/0 operations make

a difference in the performance. This is more clearly evident in the Figure 9.11 which

plots the 1/0 timings for the two grids.

67

14000

12wo

10000

- 8000
E
F
9 6000

Plot for how UO runtime varies with block size
I 1 I I

UO Time(5OO) +

i

c5000 20000 25000 30000 35000 40000 45000 50000
Problem Size (4x4 processors)

Figure 9.9 1/0 Runtimes (in seconds) for different problem sizes with vary-
ing block sizes on a 4x4 processor grid. Buffer size is 2.

Figure 9.10 Runtimes (in seconds)€or different problem sizes with varying
block sizes on a 2x8 processor grid.Buffer size is 2. Communi-
cation is lRing Modified

... - , ._._....I" .,...,

30000

25000

20000

I -
15000rt

F

10000

7000

6000

, ,
Run Time(5OO -
Run Time 250 ---x---
RunTie{IOO/ ---*---

_.-.a Run Time150{ ::::I

_.I. ,... /--

Run Time 75
_.-' -

I __/ ..-.
,_/

__I.

.-. ,/' ,...-.
-

,/-

W'
,_I..-.. /--

/'
,.--*

,/
,*e- -..-

- ___.-- ___---- __--

5000

3 4000

i=
9 3000

I E

2000

1000

0
l!

Figure 9.11

68

Plot for how IUO runtime varies with block slze

I I I
0 20000 25000 30000 35000

Problem Size (on 2x8 processors)

1/0 Runtimes (in seconds) for different problem sizes with vary-
ing block sizes on a 2x8 processor grid. Buffer size is 2. Com-
munication is 1Ring Modified

io000 35000 40000 45000
Problem Size (8x2 processors)

50000

Figure 9.12 Runtime+ seconds) for different problem sizes with varying
block sizes on a 8x2 processor grid.Buffer size is 2.Cornrnunica-
tion is 1RingModified

69

4000

Rmax Time(0MP) -
Rmax Tlme(CBL4S

UO Tirne(CBL4S)
UO Time(OMP1 ~ ~ - - ~ ~ ~ ~ - ~ -

8 3030
E E

3- : 2000
9 2500

1500

1000

son

I

10000 10500 11000 11500 12000 12500 13000 13500 14000 14500 15000

Problem Size

Figure 9.13 Plot for varying problem size, with fixed block size of 100. Us-
ing OpenMP

9,'2 Performance Of OpenMP

The parameters that influence the timings of the thread based section of the code,

are the parameters that are involved in the BLAS algorithms. These include primarily

the Problem Size (N), Block Size (NB), and Panel factorization options.

The plot 9.13 shows the effect of increasing problem size on the runtimes and also the

1/0 time. The graph shows the values for HPL with OpenMP and using unoptimized

BLAS. I t can be easily seen that the 1/0 time is not influenced by the addition of

OpenMP threads. This just verifies that the out-of-core part of HPL is independent of

OpenMP threads. I t can also be observed that thread performance marginally improves

as problem size increases.

70

5500

5000

p 4500

E
I

4000

2
IT 3500

3000

2500

2000

Plot for how RMax runlimevaries with block aize[N=l5k)

- i,
-

-

-

-

-

-

-

I I I 1 ’ Rmax Tirne(0MP) +
Rmax Time(CBLAS) ---x---

6500

6000 - \,

1500 I I r I I I I I I
o 100 zoo 300 400 500 600 700 eo0 goo 1000

Block Size (ISMP Node)

Figure 9.14 La, times for problem size 15000 with increasing block size.
Using OpenMP

The plot 9.14 shows the total runtimes for problem size N=15000 and with

block size (NB) as the x-axis. This plot shows that OpenMP performs better as, the

block size increases. This is expected as the block size directly determines the amount

of work being done by the threads at a time. Another observation that can be made

from the plot, is that the timings change rapidly for block sizes smaller than 256kb and

changes less for block sizes more than 256kb. This also turns out to be the block size

for Seaborg, the system at NERSC that the program was executed.

The plot 9.15 shows total I/O times for the above runs. This shows that 1/0 is

unaffected by OpenMP threads.

The plot 9.16 shows the effect of changing the number of columns €or panel factoriza-

tion. The runs are for two problem sizes 15000 and 12500, each with a block distribution

size of 100. The figure shows that the performance is best at column size of 16. This is

also the number of processors present on the SMP node that the program was run on.

Increasing the number of threads more than the available processors does not provide

4500

4000

3500

3000

-
2500

t
F
p 2000 -

1500

1000

500

n

71

Plot for how UO runtime varies witb block size(N45k)

I I I I I I I
0 100 200 300 400 500 600 700 800 900 1000

Block Size (lSMP Node)

Figure 9.15 1/0 times for problem size 15000 with increasing block size.
Using OpenMP

any benefit; though the performance does not reduce by much for large values of column

size (> 64)

Figure 9.11 shows the performance of the BLAS routine Dgemm by increasing the

column size, for a fixed problem size and block size. The figure shows the values for

problem sizes 15000 and 12500 with block size of 100. Unlike figure 9.16, the above

routine is largely unaffected by column size. This observation can be attributed to the

fact that almost all the routine calls are made in the Update phase of the HPL algorithm

which is after P+nel Factorization.

.

.. ~l,..

35

30

25

20

85

60

55

50

72

Plot for how runtime varies with number of columns

0 10 20 30 40 50 60 70
Columns (ISMP Node)

Figure 9.16 Factorization times for problem sizes 15k and 12.5k with block
size 100. Using OpenMP

1400

1300

1200

1100

c - 2 1000
F

900

800

700

Plot for how runtime varies with number of columns

Dgemm(OMP):15k -
Dgemm(OMP),12.Ck ---x---

4 : c

600 I I 1 I

Columns (1SMP Node)

Figure 9.17 Dgemm times for problem sizes 15k and 12.5k with block size
100. Using OpenMP

73

34

32

30

28
1
I

E
F

26

24

22

20

Plot for haw runtime varies with number of cohmns
I I I

Dtrsm(OMP).lSk -
Dtrsm(OMP),l2.5k ---x---

c

10 20 30 40 50 80 70
Coturnns (1SMP Node)

Figure 9.18 Dtrsm times for problem sizes 15k and 12.5k with block size
100. Using OpenMP

Figure 9.18 shows the performance of another BLAS routine Dtrsm for the same

runs as mentioned for Dgemm. The changes are more noticeable here as the values are

an order of magnitude smaller and number of calls to Dtrsm are significantly less than

Dgemm. On average the performance is better when the number of columns is close to

the number of processors on the SMP node.

Runs were also made by varying the number of OpenMP threads created during the

execution of the benchmark. The values include both less than the available processors

as well as more. The results have been plotted in 9.19. The figure shows that the

performance increases exponentially until all the available processors are used. After

peaking at one thread per processor, any extra threads allocated does not improve the

performance. The performance is not far from optimal when the thread count is more

than the SMP processors available.

The above algorithm is a cache optimized algorithm and is based on the work of

Meng-Shiou [57]. The paper goes into detail on how, a cache aware algorithm as well as

74

Plot for how runtime varies with number of Ihreads(Nd5k)
74000

12ow

10000

aooo
9
E

6000

4000

2000

0 I I I I

Columns (1SMP Node)

Figure 9.19 Runtimes for problem size 15000 with varying OpenMP threads

the use of threads, can impact the performance of a matrix multiply algorithm.

75

CHAPTER 10. Conclusions

The original HPL algorithm makes the assumption that all data can be fit entirely in

the main memory. This assumption will obviously give a good performance due to the

absence of disk I/O. However, not all applications can fit their entire data in memory.

These applications which require a fair amount of 1/0 to move data to and from main

memory and secondary storage, are more indicative of usage of an Massively Parallel

Processor (MPP) System. Given this scenario a well designed 1/0 architecture will play

a significant part in the performance of the MPP System on regular jobs. And, this is

not represented in the current Benchmark. The modified HPL algorithm is hoped to be

a step in filling this void.

The most important factor in the performance of out-of-core algorithms is the actual

1/0 operations performed and their efficiency in transfering data to/from main memory

and disk, Various methods were introduced in the report for performing 1/0 operations.

The 1/0 method to use depends on the design of the out-of-core algorithm. Conversely,

the performance of the out-of-core algorithm is affected by the choice of I/O operations.

This implies, good performance is achieved when 1/0 efficiency is closely tied with the

out-of-core algorithms.

The out-of-core algorithms must be designed from the start. It is easily observed in

the timings for various plots, that 1/0 plays a significant part in the overall execution

time. This leads to an important conclusion, retro-fitting an existing code may not be the

best choice. The right-looking algorithm selected for the LU factorization is a recursive

algorithm and performs well when the entire dataset is in memory. At each stage of

" _ ., " ~ , . ,

76

the loop the entire trailing submatrix is read into memory panel by panel. This gives a

polynomial number of 1/0 reads and writes. If the left-looking algorithm was selected

for the main loop, the number of 1/0 operations involved will be linear on the number

of columns. This is due to the data access pattern for the left-looking factorization. The

right-looking algorithm performs better for in-core data, but the left-looking will perform

better for out-of-core data due to the reduced 1/0 operations. Hence the conclusion that

out-of-core algorithms will perform better when designed from start.

The out-of-core and thread based computation do not interact in this case, since 1/0

is not done by the threads. The performance of the thread based computation does not

depend on I/O as the algorithms are in the BLAS algorithms which assumes all the

data to be in memory. This is the reason the out-of-core results and OpenMP threads

results were presented separately and no attempt to combine them was made. In general,

the modified HPL performs better with larger block sizes, due to less 1/0 involved for

out-of-core part and better cache utilization for the thread based computation.

77

APPENDIX A. HPL Input File

HPLinpack benchmark input file

Innovative Computing Laboratory, University of Tennessee

HPL . out

5 device out (6=stdout ,7=stderr,f i l e)

data data directory (if any)

Adat 1

2 Buffer size (SIZE>=2)

1 # of problems sizes (N)

6 Ns

1 # of NBs

5 NBs

1 # of process grids (P x Q>

1 1 2 Ps

1 2 1 Qs

16.0

I # of panel fact

0 1 2 PFACTs (O=lef t , l=Crout , 2=Right)

1 # of recursive stopping criterion

2 NBMINs (>= 1)

1 # of panels in recursion

2 NDIVs

output file name (if any)

data filename prefix (if any)

t hr e sho Id

.-......I . .-.-..-.....-,.-......-...-I ,, , . , , , ,

1

0 1 2

1

1

1

1

2

64

0

0

1

8

73

of recursive panel fact.

RFACTs (O=left , l=Crout , 2=Right)

of broadcast

BCASTs (O=lrg , l=lrM, 2=2rg, 3=2rM, 4=Lng, S=LnM)

of lookahead depth

DEPTHS (>=O)

SWAP (0=bin-exch,l=long,2=mix)

swapping threshold

L l in (O=transposed,l=no-transposed) f o r m

U in (O=transposed,l=no-transposed) form

Equilibration (O=no,l=yes)

memory alignment in double (> 0)

79

#if ndef

#define

APPENDIX B. HPL Out-of-Core Data Structures

/*

*
*
*

HPL-OCORE-H

HPL-OCORE-H

*/

/*

* macro constants f o r out-of-core routines

*/

#define MAX-BWFS 100

= 401,

80

W ORK-PTR

L2-PTR

Ll-PTR

DPIV-PTR

DINFO-PTR

U-PTR

. IWORK-PTR

W-PTR

X-PTR

1 HPL-DISK-PTR;

= 402,

= 403,

= ,404,

= 405,

= 406,

= 407,

= 408,

= 409,

= 410

typedef struct HPL-S-pnlq

c
int buff ern0 ;

i n t panelno ;

i n t o f f s e t ;

void *vptr;

struct HPL-S-pnlq * prev;

struct HPL-S-pnlq * n e x t ;

1 HPL-T-pnlq ;

typedef struct KPL-S-dkptr

c
char fname [HPL-LINE-MAXI ;

int Ida ;

int panelsize;

81

i n t lastpanelsize;

int nblks ;

double wbuf s ;

double *minptrl

double *minptr2

double *maxptrl

double *maxptr2

int posinmeml

int posinmem2

int curpos 1 ;

int curpo s2 ;

i n t panelinmeml;

i n t panelinmem2;

i n t blksimem;

int localcurpos;

i n t maxpos ;

i n t o f f se t ;

int p2rpl

int myrow

int mycol

HPL-DISK-PTR ptrtype;

int f d ;

double * origptr;
1 HPL-T-dkptr ;

/*

* global structures for easy access

... ~ " -.._....I_" , -. . -_l..._.lll. I I._...

82

HPL-T-dkptr ptr4A;

HPL-T-pnlq * pnlqueue;
HPL-T-pnlq * pnlq-head;
/*HPL-T-pnlq * pnlq-tail=NULL; */

char f pf i x [HPL-LINE-MAX] ;

int buf s ize ;

int 12-pts-a;

int bcast-a-12 121 ;

int bcast-pos E21 ;

i n t bcast_ncol[21;

int * bcast-rcol [a] ;

double * bcast-ptr C21 ;

double * bcast-pack-vptr [21;

i n t bcast-pack-alloc [21;

BPL-DISK-PTR bcast-buf -ptr-type c21 ;

/*

* Function prototypes

*/

double * HPL-oocptr

STDC-ARGS((

double *,
const int ,

83

const i n t ,

const int ,

HPL-DISK-PTR,

int *,
const i n t

1 1;

., ,I ,"_.._..._..__.I_._____.l_l___.ll.........II 1"1 .

84

APPENDIX C. OpenMP Without Modification

The following piece of code is from the Level 3 BLAS routine DGEMM.

HPL-dgemm performs one of the matrix-matrix operations C := alpha* op(A) * op(B) +
beta * C where o p (X) is one of 'op(X) = X or op(X) = Xx. Alpha and beta are scalars,

and A, B and C are matrices, with op(A) an m by k matrix, op(B) a k by n matrix and

C an m by n matrix.

/* Original HPL Routine */

for(j = 0 , j b j = 0 , j c j = 0; j < N; j*+, j b j += LDB, j c j += LDC)

c
HPL-dscal(M , BETA, C+jcj , 1 >;

for(1 = 0; ja l = 0 , i b l j = jbj; 1 < K ; 1++, j a l += LDA, i b l j += I

tO = ALPHA * BCibljl ;

f o r (i = 0 , i a i l = j a l , i c i j = j c j ; i < M ; i++, i a i l += 1, i c i j += I)

C CCicij] += ACiail] * to; 1

The same piece of code as above, now including OpenMP threads is given below.

/* Modified HPL Routine */

#pragma omp p a r a l l e l f o r private (i , j , l , t , i a , ib, i c , f a c t o r)

shared(M,N,K,LDA,LDB,LDC,A,B,C,ALPHA,BETA)

85

f o r (j = O ; j < N ; j++> <
i c = j*LDC;

ib = j*LDB;

f o r (t = O ; t < M ; t++) C[ic+tl *= BETA;

for(l=O; 1<K; 1++) c
ia = I*LDA;

f ac to r = ALPHA*B Cib+l1 ;

for(i=O; i<M; i++) c
C [ic+il += f actor*A [ia+il;

I

3

3

.. -._..........._-._..__I I" _._...._._..i" , " . .

86

APPENDIX D. OpenMP With Modification

The following piece of code is from the Level 3 BLAS routine DTRSM. HPLdtrsm

solves one of the matrix equations op(A) * X = alpha * B, or X * op(A) = alpha * B ,

where alpha is a scalar, X and 13 are m by n matrices, A is a unit, or non-unit, upper or

lower triangular matrix and op(A) is one of op(A) = A or op(A) = AT. The matrix X is

overwritten on B. No test for singularity or near-singularity is included in this routine.

Such tests must be performed before calling this routine.

/* Original HPL Routine */

for(j = 0 , ja j = 0 , j b j = 0 ; j < N; j++, ja j += LDA, j b j += LDB)

f o r (i = 0 , i b i j = j b j ; i < M ; i++, i b i j += 1 c BCibijl *= ALPHA;)

f o r (k = 0 , i a k j = j a j , jbk = 0 ; k < j ; k++, iakj += 1, jbk += LDB)

f o r (i = 0 , i b i j = j b j , i b i k = jbk; i < M ; is+, ibij += 1, i b i k += I)

{ BCibij] -= ACiakj] * BCibikl; 1

The above routine has then been changed to include OpenMP threads and the result

follows. The original routine cannot be parallelized as is. The outmost loop is over the

columns N, and the second inner loop is again over columns but only partially. This

meant the parallelization had to be done over rows M, and not columns. That required

87

splitting the main loop into two parts and parallelizing them separately. The first loop

involved scaling the columns and it was simpler to parallelize on columns. The second

loop had to be exchanged with the inner loop to make the rows at the outer loop and

enabling us to parallelize.

/* Modified HPL Routine */

#pragma omp parallel f o r private (j , t , j LDB) shared (N, M , LDB , B ,ALPHA)

for(j=O; j<N; j++) C

jLDB = j*LDB;

f o r (t=O;t<M;t++) C B[t+jLDB] *= ALPHA; 1

1

#pragma omp parallel for private(k,i,j,kLDB,jLDA,jLDB) shared(N,M,A,B,LDB,LDA)

for(i=O;i<M;i++) C

f o r (j=O;j<N;j++) <
jLDB = j*LDB;

jLDA = j*LDA;

f ac to r = B[i+jLDBI ;

f o r (k=O;k<j;k++) C

kLDB = k*LDS;

factor -= ACk+jLDAI * BCi+kLDBI ;

BCi+jLDBI = factor;

. , .. , , . , ".. i..."" ,".. , . .

88

BIBLIOGRAPHY

[l] Parallel Performance Benchmark page. Last accessed August 4, 2004. Available at

ht tp: // www .cs.man .ac . uk/cnc/pro jects/ecovisrn/benchmarks. ht ml

[Z] J. Dongarra et al. HPL - A Portable Implementation of the High-Performance

Linpack. Last accessed August 4, 2004. This benchmark is made available at

http://www.netlib.org/benchmark/hpl/

[3] J. Dongarra et al. The Linpack Benchmark. Latest release July 22, 2004. This

benchmark is made available at http:/www.top500.org/lists/linpack.php

[4] J. Dongarra, J. Bunch, C. Moler and G. W. Stewart. "LINPACK Users Guide".

SIAM, Philadelphia, PA, 1979.

[5] MPI - The Message Passing Interface Standard. Latest version released July 22,

2004. Available at http://www-unix.mcs.anl.gov/mpi/

[SI M. Snir, S. Otto, S. Russ-Lederman, D. Walker and J. Dongarra, MPI: The Com-

plete Reference, MIT Press, Cambridge, Massachusetts, 1996.

[7] Basic Linear Algebra Subprograms. Accessed July 22, 2004. Available at

http://www.netlib.org/blas/

[8] Hans-Werner Meuer. "The Mannheim Supercomputer Statis-

tics 1986-1992". Accessed August 4, 2004. Available at

http://www. top500.org/repo~ts/l993/chapterZ-4.html

http://www.netlib.org/benchmark/hpl
http:/www.top500.org/lists/linpack.php
http://www-unix.mcs.anl.gov/mpi
http://www.netlib.org/blas
http://www

89

[9] J. Dongarra and P. Luszczek and A. Petitet. “The LINPACK Benchmark: Past,

Present, and Future”, Concurrency and Computation: Practice and Experience 15,

pp, 1-18, 2003

[lo] J. Dongarra, IS. Duff, D.C. Sorensen and H.A. van der Vorst. “Solving Linear

Systems on Vector and Shared Memory Computers”. Society for Industrial and

Applied Mathematics, 1991.

[ll] S. Huss-Lederman, E. M. Jacobson, A. Tsao, T. Turnbull and J. R. Johnson, “Im-

plementation of Strassen’s algorithm for matrix multiplication”, Proceedings of the

1996 ACM/IEEE conference on Supercomputing, p.32-es, November 1996, Pitts-

burgh, United States.

[12] B. Grayson and R. van de Geijn, “A High Performance Parallel Strassen Implemen-

tation,” Parallel Processing Letters, Vol 6, No. 1, 1996.

[13] M.S. Thottethodi, S. Chatterjee and A.R. Lebeck. “Tuning Strassen’s Matrix Mul-

tiplication for Memory Efficiency”, Proceedings of Supercomputing ’98, November

1998.

[14] S. Toledo “Locality of reference in LU decomposition with partial pivoting”, SIAM

J. Matrix Anal. Appl. 18, no. 4, 1065-1081, MathSciNet, 1997.

[15] J. W. Demmel and R. S. Schreiber, “Stability of Block LU Factorization”, Numerical

Linear Algebra with Applications, 2(2):173-190, 1995.

[161 K. Hwang and 2. XU, “Scalable Parallel Computing: Technology, Architecture,

Programming”. McGraw-Hill, Inc., New York, NY, 1998.

1171 J. May, “Parallel 1/0 for High Performance Computing”.

San Fkanscisco, CA: Morgan Kaufmann Publishers, 2001.

90

[18] A. Grama, et al. Introduction to Parallel Computing.

New York: Addison Wesley, 2003.

E191 C. Lawson, R.Hanson, D.Kincaid and F.Krogh. “Basic Linear Algebra Subprograms

€or Fortran Usage”. ACM Transactions on Mathematical Software, (308-325), Sept

1979.

[ZO] J.J. Dongarra, 3. DuCroz, S. Hammarling and R. Hanson. “An Extended Set of

Fortran Basic Linear Algebra Subprograms”. ACM Transactions on Mathematical

Software,(l-32), March 1988.

[21] J.J. Dongarra, J, Du Croz, S. Hammarling and I S . Duff (1990).“A set of level 3

basic linear algebra subprograms”. ACM Transactions on Mathematical Software,

(1-17), March 1990.

[22] A. Chtchelkanova, J. Gunnels, G. Morrow, J. Overfelt and R. Van De Geijn, “Par-

allel Implementation of BLAS: General Techniques for Level 3 BLAS” , Tech. Rep.

TR95-49, Department of Computer Sciences, UT-Austin, 1995.

[23] M. J. Quinn.. “Parallel Programming in C with MPI and OpenMP” . Dubuque,Iowa:

McGraw-Hill, 2003.

[24] H. Pfneiszl and G. Kotsis. “Benchmarking Parallel Processing Systems: A Survey”.

Technical Report, University of Vienna, 1996.

[25] T. Guignon. “BLASTH, a BLAS library for dual SMP computer”. Laboratoire

ASCI, Orsay, France, 1999.

[26] C. Addison, V. Getov, A. Hey, R.W. Hockney and I.C. Wolton. “Benchmarking

for Distributed Memory Parallel Systems: Gaining Insight from Numbers”. Parallel

Computing, 1653-1668,Vol 20, Nov 1994.

91

[27] J. Dongarra, I. S. Duff, D.C. Sorensen and H. van der Vorst. “Numerical Linear

Algebra on High-Performance Computers”. Society for Industrial & Applied Math-

ematics,PhiIadelphia,PA, 1998.

I281 E. Rosti, G. Serazzi, E. Smirni and M.S. Squillante, “Models of Parallel Applications

with Large Computation and 1/0 Requirements”, IEEE Transactions on Software

Engineering, Vol. 28, No. 3, pp. 286-307, March 2002.

[29] E. Smirni, R. A. Aydt, A. A. Chen.and D. A. Reed, cLI/O Requirements of Scien-

tific Applications: An Evolutionary View”, Proceedings of the High Performance

Distributed Computing (HPDC ’96), p.49, August 06-09, 1996.

[30] R. Oldfield and D. Kotz. “Scientific applications using parallel I/07’. In Hai Jin, Toni

Cortes, and Rajkumar Buyya, editors, High Performance Mass Storage and Parallel

I/O: Technologies and Applications, chapter 45, pages 655-666. IEEE Computer

Society Press and John Wiley & Sons, 2001.

1311 D. G. Feitelson, P. F. Corbett, S. J.Baylor and Y.Hsu, “Parallel 1/0 Subsystems

in Massively Parallel Supercomputers”, IEEE Parallel and Distributed Technology:

Systems & Technology, v.3 n.3, p.33-47, September 1995.

E321 M.Cohen Austrowiek and P.Grassi, “UNIX 1/0 Performance Measurement Method-

ologies Applied To Old And New Storage Technologies”, CMG-Italia and EuroCMG

2002.

[33] T.M. Ruwart, “File System Benchmarks, Then, Now, and Tomorrow”, Projceed-

ings, 18th IEEE Symposium on Mass Storage Systems and Technologies / 9th NASA

Goddard Conference on Mass Storage Systems and Technologies, 2001.

[34] S.Toledo, “A survey of out-of-core algorithms in numerical linear algebra” , External

memory algorithms, American Mathematical Society, Boston, MA, 1999.

I ~ ~

92

[35] J. S. Vitter, “External Memory Algorithms and Data Structures: Dealing with

MASSIVE DATA”, ACM Computing Surveys, 33(2), June 2001, 209-271.

[36] J. Nieplocha and I. Foster, “Disk Resident Arrays: An Array-Oriented 1/0 Li-

brary for Out-Of-Core Computations”, Proceedings of the 6th Symposium on the

Frontiers of Massively Parallel Computation, p.196, March 27-31, 1996.

1371 S. Asami, N. Talagala and D. Patterson, “Designing a Self Maintaining Storage

System” ,Proceedings of the 1999 IEEE Symposium on Mass Storage Systems, 1999.

1381 D. Kotz, “Disk-directed 1/0 for an Out-of-Core Computation’,, Technical Report:

PCS-TR95-251, Dartmouth College, Hanover, NH, 1995.

[39] M. Kandemir, J. Rarnanujam and A. Choudhary, “Improving the Performance of

Out-of-Core Computations”, International Conference on Parallel Processing (ICPP

’97).

[40] E. Masciari, C. Pizzuti, G. Raimondo and D. Talia, “Using an Out-of-Core Tech-

nique for Clustering Large Data Sets”, Proceedings DEXA 2001 Workshops, IEEE

Computer Society Press, pp. 133-137, Munich, September 2001.

[41] R. Rabenseifner and A. E. Koniges, “Effective Communication and File-1/0 Band-

width Benchmarks”, Proceedings of the 8th European PVM/MPI Users’ Group

Meeting on Recent Advances in Parallel Virtual Machine and Message Passing In-

terface, 24-35, 2001,

[42] Z. Li, J.H. Reif and S.K.S. Gupta, “ Synthesizing Efficient Out-of-Core Programs for

Block Recursive Algorithms Using Block-Cyclic Data Distributions”, IEEE Trans-

actions on Parallel and Distributed Systems, March 1999.

93

E431 S. Chatterjee, V.V. Jain, A.R. Lebeck, S. Mundhra and M. Thottethodi, “Nonlinear

array layouts for hierarchical memory systems” , Proceedings of the 13th interna-

tional conference on Supercomputing, p.444-453, June 20-25, 1999, Rhodes, Greece.

[44] C.E. Leiserson, S. Rao and S. Toledo, “Efficient out-of-core algorithms for linear

relaxation using blocking covers” , Journal of Computer and System Sciences, v.54

n.2, p.332-344, April 1997.

[45] S. Toledo and F.G. Gustavson, “The design and implementation of SOLAR, a

portable library for scalable out-of-core linear algebra computations”, Proceedings

of the fourth workshop on 1/0 in parallel and distributed systems: part of the

federated computing research conference, p.28-40, May 27-27, 1996.

[46] W.C. Reiley and R.A. van de Geijn, “POOCLAPACK: Parallel Out-of-Core Linear

Algebra Package”, University of Texas at Austin, Austin, TX, 1999.

[47] J. Dongarra and E.F. D’Azevedo, ”The Design and Implementation of the Par-

allel Out-of-core ScaLAPACK LU, QR and Cholesky Factorization Routines”,

ORNL/TM-13372, April 1997.

[48] J.J. Dongarra, S. Hammarling and D. W. Walker, “Key Concepts for Parallel Out-

Of-Core LU Factorization”, Parallel. Computing, Vol. 23, pages 49-70, 1997.

[49] ATLAS (Automatically Tuned Linear Algebra Software) project. Latest version

relemed December 2003. Available at http://math-atlas.sourceforge.net/

[50] R. Thakur, W. Gropp and E. Lusk. “A case for using MPI’s derived datatypes to

improve 1/0 performance”. In Proceedings of SC98: High Performance Networking

and Computing, November 1998.

http://math-atlas.sourceforge.net

, -,. , _. , , , ,. . . ,,.. .. , ,

94

[51] R. Rew and G. Davis. “NetCDF: An interface for scientific data access”. IEEE

Computer Graphics and Applications, 10(4):76-82, July 1990.

1521 HDF5-A New Generation of HDF. Accessed July 22, 2004. Online HDFS documen-

tation at http://hdf.ncsa.uiuc.edu/HDF5/

[53] J. Barkes, M.R. Barrios, F. Cougard, P. Crumley, D. Marin, H. Reddy and T.

Thitayanun, “GPFS: A Parallel File System”, IBM International Technical Support

Organization, April 1998. Available at www .redbooks .ibm.com

[54] S. Soltis, G. Erickson, K. Preslan, M. O’Keefe and T. Ruwart,“The Global File

System: A File System for Shared Disk Storage”, IEEE Transactions on Parallel

and Distributed Systems, October 1997.

[55] D. Womble, D. Greenberg, R. Riesen and S. Wheat, “Out of core, out of mind:

Practical parallel I/O” . In Proceedings of the Scalable Parallel Libraries Conference,

pages 10-16, Mississippi State University, October 1993.

[56] P.M. Chen and D.A. Patterson, “A new approach to 1/0 performance evaluation:

self-scaling I/O benchmarks, predicted 1/0 performance”. Proceedings of the 1993

ACM SIGMETRICS conference on Measurement and modeling of computer sys-

tems, May 1993.

[57] MS. Wu, S. Aluru and R. Kendall, “Mixed Mode Matrix Multiplication”. IEEE

International Conference on Cluster Computing (CLUSTER’02)’ Sept 2002.

http://hdf.ncsa.uiuc.edu/HDF5
http://ibm.com

95

ACKNOWLEDGMENTS

This work was performed under auspices of the U. S. Department of Energy under

contract W-7405-Eng-82 at Ames Laboratory operated by the Iowa State University of

Science and Technology. The United States government has assigned the DOE Report

number IS-T 2196. Funding wxi provided by the Mathematical, Information and Com-

putational Science division of the Office or Advanced Scientific Computing Research.

This research was performed in part using computational resources of the National En-

ergy Research Scientific Computing Center.

I would like to take this opportunity to express my thanks to those who helped me

with various aspects of conducting research and the writing of this thesis. First and

foremost, Dr. Ricky Kendall for his guidance, patience and support throughout this

research and the writing of this thesis. His insights and words of'encouragement have

often inspired me and renewed my hopes for completing my graduate education. I would

also like to thank my committee members €or their efforts and contributions to this work:

Dr. Simanta Mitra and Dr. Mark Gordon

I am indebted to my parents for providing me with all affection and support at all

times of needs. My graduate study would not have been possible without their moral

'support, I would like to thank all my friends who have been a part of my graduate study.

Special thanks to Melanie Eckhart for making me feel at home at school ever since the

first day I joined Iowa State University.

