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Abstract. We present a result for linearizing a nonlinear MIMO system by employing partial 
feedback - feedback at all but one input-output channel such that the SISO feedback linearization 
problem is solvable at the remaining input-output channel. The partial feedback effectively enhances 
the relative degree at the open input-output channel provided the feedback functions are chosen to 
satisfy relative degree requirements. The method is useful for nonlinear systems that are not feedback 
linearizable in a MIMO sense. Several examples are presented to show how these feedback functions 
can be computed. This strategy can be combined with decentralized observers for a completely 
decentralized feedback linearization result for at least one input-output channel. 
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1. PROBLEM STATEMENT 

We start by looking at nth order nonlinear sys- 
tems with m inputs and m outputs 

m 

i=l 

yi = h i ( t ) ,  i =  1, ..., rn 
where it is assumed that f(t) and gi(z) are 
smooth vector fields, and hi(.) are smooth func- 
tions defined on an open set of R". We seek con- 
trol laws of the form ui = Ki(yi, vi), i = 1 , .  . . , m 
which will render the system (1) linear with a non- 
linear change of coordinates. The v; are external 
inputs available to control the linearized system. 
In general, the output feedback functions Ki will 
be nonlinear, and we assume they are smooth. It 
is also assumed in this paper that the individual 
input-output pairs (ui, yi) are SISO, though this 
is easily generalized to multivariable input-output 
channels. An additional assumption is that the 
control vector fields gi(t) form a complete set 
about a given point to. 

The MIMO exact linearization problem has been 
solved in Cheng et ai. (1988), and a key concept in 
the proof of this result is that of a vector relative 
degree. For a SISO nonlinear system the relative 
degree is the number of times one must differenti- 

For a MIMO nonlinear system the relative degree 
is a vector {TI,. . . , rm} wherein each ri is the 
number of times one has to differentiate the ith 
output to have at least one of the na inputs appear 
explicitly. The conditions for the existence of this 
relative degree, defined about some point to, are 
stated in Isidori (1989) and are not repeated here. 
The important point is that the state space exact 
linearization problem for (1) is solvable (about to) 

if and only if there exists some vector relative de- 
gree{rl, ..., r m } a t z o a n d r l + r ~ + - . - + r m  =n. 

If this relative degree condition is not satisfied 
and one has freedom to choose new output func- 
tions (say yi = Xi($)) then there exist necessary 
and sufficient conditions to find these Ai(.) such 
that the relative degree condition is satisfied (see 
Isidori (1989) for details). If none of these condi- 
tions are satisfied then the best that one can do 
is to linearize the input-output response provided 
that some relative degree does exist at a certain 
point. In this case the state space response can- 
not be completely linearized resulting in zero dy- 
namics (Byrnes and Isidori, 1984; Isidori, 1989). 
We are primarily interested in full state space lin- 
earization whenever possible. 

The MIMO linearization problem requires the 
system's vector relative degree (sometimes called 
characteristic numbers) to be satisfied such that 
r l + .  . . + rm = n. Then the standard MIMO lin- 
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earizing feedback (see Ref. Isidori (1989) for de- 
tails) can be chosen to exactly linearize the state 
space as well as the input-output relationship in 
appropriately chosen coordinates. In this paper, 
we're interested in systems of the form (1) that 
do not satisfy this relative degree condition. It 
has been shown Isidori (1989) that this vector rel- 
ative degree condition is necessary and sufficient 
for exact state space linearization. Our approach, 
however, is to transform the MIMO system to a 
SISO system via state feedback at all but one of 
the input-output pairs. The feedback functions 
are chosen to satisfy the necessary conditions to 
achieve the proper relative degree for the SISO 
linearization problem. 

Remark 1 The above problem seeks to linearize 
the input-state response and the input-output re- 
sponse with respect to the j t h  input-output pair 
in a neighborhood of to. Thus, the input-output 
responses at the other m - 1 input-output pairs 
will remain nonlinear in the linearizing coordi- 
nates. Presumably one would choose the j t h  
input-output pair to be the channel of most inter- 
est to the designer. That is, one may wish for one 
particular input-output response to be linearized 
while the others are employing state feedback to 
enable this linearization. This structure is illus- 
trated in Fig. 1. 

We present two examples of multi-input systems 
that are not feedback linearizable in a MIMO 
sense, but with our method they can be linearized 
in a SISO sense. I t  should be noted that the idea 
of feedback to  all but one input/output channel to 
enhance some property (e.g., controllability, ob- 
servability, etc.) from the standpoint of the re- 
maining input/output channel is well known in de- 
centralized control for linear subsystems (see Ref. 
Corfmat and Morse (1976)). 

2. DESIGN STEPS 

For discussion purposes, the standard relative de- 
gree definition for a SISO system is repeated here 
Isidori (1989). A SISO system ( m  = 1) has a 
relative degree T at a point to if 

L,Ljh(z) = 0 (2) 

for all t in a neighborhood of to and all k < T -  1 
and 

L,L;-'h(to) # 0 .  (3) 

The method takes systems of the form (1) for 
which linearization is desired and transforms them 
to SISO systems via state feedback. The prin- 
ciple is as follows. Choose feedback functions 
ui = Kj(t), i = 1,. . . , m - 1 such that the SISO 
relative degree of the mth output channel is equal 
to n. We formally state this as follows. 

Definition 1 The Feedback Linearization En- 
hancement Problem for (1) is to find feedback 
functions uj = Ki(z ) ,  I' is the index set of all such 
i ,  r C { 1, . . . , m), such that the SISO system 

has relative degree r = n about some point to for 
at least one j 4 r. 
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Fig. 1. Illustration of the feedback method for lin- 
earization. 

The main idea behind the solution of the problem 
is to choose the feedback functions &(z) to solve 
the partial differential equations (2), (3). One nor- 
mally would only attempt to solve this problem if 
the MIMO exact linearization problem is not solv- 
able. If the vector relative degree condition for 
state space linearization is met then one can ob- 
tain linearization of all input-output pairs via the 
MIMO linearizing feedback (see Isidori (1989)). 
The following theorem states the conditions for 
solvability of the feedback linearization enhance- 
ment problem. 

Theorem 1 Necessary conditions for the solvabil- 
ity of the Feedback Linearization Enhancement 
Problem for (1) ( n  > 1) are: 
i.) there must exist at least one i E { 1,. . . , m} 
such that Lga hi = 0. 
ii.) for at least one of these i, there must ex- 
ist at least one j E (1,. . ., m},j  # i such that 
L g j  hi # 0. 

Proof: Consider the system (1). Without loss of 
generality, choose i = m as the open input-output 
channel. We then obtain the equivalent SISO sys- 



tem A check of this system's relative degree yields 
r1 = 1 and r2 = 1 which is not sufficient for the 
MIMO feedback linearization problem to be solv- 
able. However, Lg,h2 = 0, thus let u1 = K~(x). 
This results in the new SISO system 

m- 1 

li. = f(z) + gj(+)Kj(Z) + gm(x)um (6) 
j=1  

(7) 

Unless the system is first order (which is unre- 
alistic for a MIMO system), the relative degree 
conditions for state space linearization require 
Lg,hm = 0. This would have to be the case for 
any i E { 1, . . . , m} one would wish to choose as 
the open input-output channel. If not the case, 
then no feedback functions, Ki(x), can enhance 
the relative degree since r = 1 in this case. This 
proves condition i.) is necessary. 

Assuming condition i.) is true (with i = m), we 
continue to the function L j h ,  where 

Again, assuming that the relative degree of the 
mth input-output channel is insufficient, we re- 
quire that at least one Ki( t )  be able to sat- 
isfy the relative degree conditions. That is, 
we require L j h ,  # 0. This implies L f h ,  + 
Cj",;'(L,h,)Kj # 0 .  From this it can be seen 
that at least one j E { 1, . . . , rn- 1) must exist such 
that L,  h,  # 0 otherwise no Kj  will be available 
to enhance the relative degree. This shows that 
condition ii.) is necessary. 0 

Remark 2 The necessary conditions in the above 
theorem are easy to check on most systems, how- 
ever they are not sufficient. The above theorem 
is meant to eliminate classes of systems for which 
the method would prove fruitless. The problem 
of relative degree enhancement is most effectively 
demonstrated by example. 

3. EXAMPLES 

Example 1 Consider the following third-order 
nonlinear system 

sin21 + x2 
a : =  

+ [ T I u 1 + [  I].. 
Y1 = 21 , Y2 = 1 3  ' 

(9) 

Y2 = 23  

T where G =  [ 1 0 0 ] and i = x 3 .  

Since L j i  = 0, we proceed to the next step of the 
SISO relative degree definition which requires 

This can be satisfied by letting Kl(z) = -x: + 
Ki (t2,x3). Finally, we require 

dK' L - L ~ - ~  = 2 x 1 2  $: o 
g f  8x2 

which can be solved with (among infinitely many 
solutions) Ki(22 ,23)  = e - = Z .  This results in the 
feedback function 

Kl(2) = -x; + e-xa  . 

Substituting (15) into (12) does indeed yield r = 
n = 3 as required. Furthermore, the point to 
about which this result holds is any (z?, xg, xg) 
such that xy # 0. 

Remark 3 The above example shows that the 
feedback function Kj( t )  that solves the problem 
(if one exists) is far from unique. One may have a 
great deal of freedom to choose feedback functions 
that are easier to compute or require only readily 
available states. For instance, in the above ex- 
ample, one could have chosen Kf = 2 2  which is 
less expensive to compute than an exponential in 
a real-time control situation. However, one would 
then have to impose t; # 0 as an additional re- 
quirement on the operating point t'. 

Example 2 Next, consider the fourth-order sys- 
tem 



0 

+ [~ 
y1 = 21 , y2 = 2 3 .  (17) 

Determination of the system's vector relative 
degree yields r1 = 2 and r 2  = 1, but the 
input-output decoupling matrix as defined in Ref. 
Isidori (1989) is singular. Thus, this system has 
no relative degree, and the state space response 
cannot be exactly linearized. However, Lg,hi = 0 
for i = 1,2. We choose to let u1 = Kl(x) which 
results in the SISO system 

x:: + 2 2  

x: + 23x4 

22x3 + 2; + xzKi(x) 
21 + 2 2  + 21x4 + I(l(x) x =  [ 

+ '  [ i].. 
y2 = 23 ( 19) 

T where i j=  [ 0 0 0 1 ] and i = x 3 .  

Again, we have Lg i  = 0. Proceeding as before, 
we require 

which has the solution K ~ ( x )  = -21x4 + 
K ; ( x ~ , x ~ ,  23). Continuing the calculations, we 
get 

which results in Ki = -82  + K r ( x 1 ,  x3). Finally, 
we have the condition 

L-L% = 2x4 - x1x2 # o (22) g f  

which does not place a condition on K ~ ( x ) .  The 
simplest feedback then that we can apply is 

1<1(x) = - 2 2  . (23) 

This yields r = n = 4 as we require, and the 
operating point xo can be any (xy, . . . , 2:) such 
that 

2x: - -2y.p # 0. (24) 

Remark 4 In both examples it is important to 
note that the state space and input-output re- 

sponses have been linearized for the u2/y2 input- 
output pair only. To realize this linearization, 
one must carry out the coordinates transforma- 
tion and linearizing feedback for the SISO system 
(u2/y2) as detailed in Ref. Isidori (1989). The 
ul/yl response will remain nonlinear in general. 

Remark 5 We assume that each input-output pair 
has the full state x available for feedback. Thus, 
this is not strictly a decentralized technique, 
however the observer result of Schoenwald and 
Ozguner (1991) could be combined with this re- 
sult to produce local control laws. This can be 
done in the following way. Suppose we are inter- 
ested in SISO state space linearization at the t th  
input-output channel for the system (1) with the 
conditions of Theorem 1 satisfied. Let I' be the in- 
dex set of input-output channels utilizing output 
feedback to allow observer construction at certain 
channels. Let 52 be the index set of these certain 
channels. Then the input-output channels in 52 
will apply full state feedback (from the observed 
state constructed at these channels) to enhance 
the relative degree of the Lth channel. This sys- 
tem is written as 

j. = f(z) + csi(x)K:(Yi) 
iEF' 

+ si(z)Kie(x) + se(t)w (25)  
j E n  

ye = he(x) 

where Kf(yj) is the output feedback necessary 
to allow observer construction at all j E 52, and 
Kf(x) is the state feedback that enhances the rela- 
tive degree at the Lth input-output channel. Since 
the observer construction at all j E 52 requires 
only signals at those channels, the result is com- 
pletely decentralized. 

4. CONCLUDING REMARKS 

A new method has been presented for lineariz- 
ing a nonlinear MIMO system by utilizing feed- 
back at all but one of the input-output channels 
such that the SISO linearization problem is solv- 
able at the remaining input-output channel. The 
method has been shown to work via example for 
systems that are not feedback linearizable in a 
MIMO sense. Thus, the feedback functions at 
these input-output channels can be viewed as en- 
hancing the solvability of the SISO feedback lin- 
earization problem, The examples show that it 
is not computationally difficult to find these feed- 
back functions for low-order systems, but becomes 
more difficult as the system order and the number 
of input-output pairs rise. 

Applications for this strategy would include large- 



scale nonlinear systems such as flexible structures 
undergoing slewing maneuvers, power systems, 
aircraft, automotive systems, and space struc- 
tures. 
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