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Fully turbulent inflow past a 'shallow cavity is investigated far the configuration of an 
axisymmetric cavity mounted in a pipe. Emphasis is on conditions giving rise to coherent 
oscillations, which can lead to locked-on states of flow tones in the pipe-cavity system. 
Unsteady surface pressure measurements are interpreted using three-dimensional representations 
of amplitude-frequency-inflow velocity; these representations are constructed for a range of 
cavity depth. Assessment of these data involves a variety of approaches. EvaIuation of pressure 
gradients on plan views of the three-dimensional representations allows extraction of the 
frequencies of the instability (Strouhal) modes of the cavity oscillation. These frequency 
components are correlated with traditional models originally formulated for cavities in a free- 
stream. In addition, they are normalized using two length scales: inflow boundary-layer thickness 
and pipe diameter.' These d e s  are consistent with those employed for the hydrodynamic 
instabiIity of the separated shear layer, and are linked to the large-scale mode of the shear layer 
oscillation, which occurs at rdatively long cavity length. In fact, a simple scaling based on pipe 
diameter can correlate the frequencies of the dominant peaks over a range of cavity depth. 

The foregoing considerations provide evidence that pronounced flow tones can be generated 
from a filly-turbulent inflow at very low Mach number, including the limiting case of hlly- 
developed turbulent flow in a pipe. These tones can arise even for the extreme case of a cavity 
having a length over an order of magnitude longer than its depth. Suppression of tones is 
generally achieved if the cavity is sufficiently shallow. 

1. INTRODUCTION 
A conceptual framework for the generation of flow tones requires, first of all, consideration of 
strictly hydrodynamic oscillations in an acoustic-free system, then the coupling of such 
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oscillations with the acoustic mode@) of a resonator. These concepts, as well as related issues 
and objectives, we described below. 

1.1 C4 WTY OSCILL4 TTUNS IN A N  ACOUSTIC-FREE SYSTEM 
The origin, or stimulus, of locked-on flow tones is the inherent, organized unsteadiness of the 
velocity and vorticity fields along the cavity. Figure la  shows the essential features of self- 
sustaining cavity oscillations: (a) vorticity concentration(s) incident upon the trailing corner of 
the cavity; @) upstream influence of the vorticity distortion at the trailing corner to the sensitive 
region of the shear layer formed from the leading comer of the cavity; (c) conversion of the 
upstream disturbance arriving at the leading-edge to a fluctuation in the separating shear layer; 
and (d)'ampIifiation of this fluctuation in the shear Iayer as it develops in the streamwise 

direction. To be sure, for the case of fidly turbulent inflow, organized unsteadiness of the shear 
layer dong the cavity may not be immediately evident; nevertheless, the shear Iayer may exhibit 

a predisposition for broadband undulations. The basic elements associated with self-sustained 
oscillations described in Figure l a  were defined in the early investigation of Powell (1961) for 
the simpIer case of a planar jet impinging upon a leading-edge. Since then, Rockwell and 
Naudascher (1978, 1979), Rockwell ( I  983), Blake (1986), Howe (1 997), and Rockwell (1 998) 

have described these elements for a variety of configurations of impinging shear iayers, 

including the cavity configuration. 

1.2 CA VTTY OSCILU TITONS IN AN ACOUSTIC-RESONANT SYSTEM 

Flow past a cavity in presence of an acoustic resonator, such as a long pipe, can exhibit coupling 

with one or more resonant modes of the pipe. This type of lock-on has conceptual similarities to  

that occurring in a wide variety of other flow-amustic configurations. Rockwell and Naudascher 
(1978, 1979), Rockwell (1983, 1998) and Blake (1986) summarize extensive investigations of 

lock-on flow past cavity configurations, including not only quasi-two-dimensional geometries, 
but atso circular, triangular, and whistle-shaped cavities. Representative systems that exhibit 

lock-on behavior are described below. 

&t mitation of a lung organ pipe. Large amplitude osciIIations of the jet at the mouth of an 
organ pipe occur during resonant coupling with a pipe mode(s). Cremer and Ising (1967) 

visuaiize the jet oscillations and analyze the jet-organ pipe as a controlled system. Techniques 

for determining the amplitude and phase of the controller are also addressed. This Same class of 
resonant coupling is reviewed by Fletcher (I979), who describes hrther aspects of the jet-organ 
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pipe codguration fiom a systems perspective. Moreover, hrther aspects of nodinear 
interactions in organ flue pipes are analyzed in works summarized by Fletcher ( I  979). 

Jet-sequential orifice plates. Resonant coupling of the jet instabdity through a series of orifice 
plates, ie,,  baffles, simulates the coupling that occurs in segmented solid rocket motors. In this 
case, the acoustic wavelength is the same order, or less than, the bafTle spacing. In other words, 

the resonator is the cavity. Flatau and Van Moorham (1990) emphasize the importance of 
distinguishing between the resonance of inlet and nozzle cavities, relative to resonance of the 
total test section. Further insight into this type of lock-on configuration is provided by Hourigan, 
Welsh, Thompson and Stokes (1990). They employ a discrete vortex simulation, in conjunction 
with the theoretical concept of Howe (1975, 1980), to assess the generation of instantaneous 
acoustic power. A recent investigation of locked-on flow tone generation in a baffle system by 

Stoubos, Benocci, Palli, Stoubos, and Olivari (1999) emphasizes the empirically-determined 
amplitude and frequency response characteristics of the tone as a fimction of flow velocity 
through the baffle system. AI1 of the foregoing investigations are, in certain respects, related to 
early experiments on the fluid mechanics of whistling undertaken by Wilson, Beavers, DeCoster, 
Holger, and Regedbss (1971). In their work, a set of two sequential orifice plates, each having 
rounded edges, gives rise to well-defined whistles or tones, and the nature of the jet instability 
related to these types of flow tones is similar to those of the foregoing studies. 

Wake from aflutplaie in a test sectiun. Vortex shedding from the blunt trailing-edge of a flat 

plate in the test section of a wind tunnel gives rise to highly coherent resonant coupling with the 

acoustic mode(s) of the plate-test section system. These modes are often referred to as Parker 
modes, based on investigations of Parker (1966), which are summarized by Cumpsty and 

Whitehead (1971). The latter provide a theory that allows the amplitude of the forced acoustic 

mode to be predicted from the pressure field below resonance and the measured damping factor 
of the acoustic mode. Stoneman, Hourigan, Stokes, and Welsh (1988) have recently undertaken 
an additional, in-depth investigation of a similar Iock-on phenomena involving two plates in 
tandem in a duct. 

Cavig shear Zayer = cuvig resonator. For the case of an orifice in a wall bounded by a closed 

cavity, DeMetz and Farabee ( I  977) determined the response characteristics of the coupled shear 
layer-cavity resonance as a hnction of the character of the inflow boundary layer, i.e.,.whether it 

is laminar or turbulent. Elder (1978) provides a systems model in conjunction with 

7 



measurements. Elder, Farabee, and DeMetz (1982) give detailed spectra and mode 
characterization of flow tone generation due to both laminar and turbulent boundary layers 
approaching the cavity. Moreover, a model is formulated for the seIf-excited osdIations. 
Nelson, Halliwell, and Do& (1981, 1983) have undertaken detailed measurements of the time- 
averaged unsteady shear layer in relation to the overall response characteristics of the coupled 

system. In their more recent study, momentum and energy balances are employed to  characterize 

the physics of these oscillations. 

Cavity shear layer - si& branch riucaipe. Early characterization of the frequency and 
amplitude characteristics in a jet-pipe (side branch) resonator was undertaken by Pollack (1980). 

Coupled resonant oscillations that occur in a pipe branch system have been addressed both 
theoretically and experimentally by Bruggeman, Hirschberg, van Dongen, Wijnands, and Gorter 
(1989, 1991) and Kriesels, Peters, Hirschberg, Wijnands, Iafiati, Riccaradi, Piva and 

Bruggemann (1995). In essence, this configuration represents the flow past a deep cavity. Both 
experiments and theory are employed to explain the acoustic and hydrodynamic conditions for 
resonance. This analysis leads to a concept that provides the ratio of acoustic to steady flow 

amplitudes. Ziada and BuehImann ( I  992) and Ziada and Shine ( I  999) characterize this class of 
coupling for various side branch configurations. 

Cavity shear Iayer - long pipeline. The radiated sound due to lock-on of flow past a cavity 

inserted in a long pipeline has been experimentdly characterized in a series of investigations 
extending from Davies (1981) to Davies (1996qb). Sound propagation within, and radiation 
fiom, various configurations is summarized therein. The primary emphasis of these 
investigations has been identification of the locked-on remnant frequencies. VirtuaIIy no 

attention was given to the underlying physics. Rockwell and Schachenmann (1982, 1983) 
provided the first measurements of the physical behavior of the unsteady shear Iayer along the 
mouth of a circular cavity at the end of a long pipe, in conjunction with the locked-on and non- 
locked-on states. Concepts of linearized, inviscid stability theory were employed as a guide to 
determining the phase shifts and amplitude spikes across the shear Iayer. In addition, they 
characterized the streamwise phase difference, which is essential to the locked-on condition. 
Moreover, they also showed that during lock-on, the magnitude of the fluctuating velocity due to 

acoustic resonance can be of the Same order as that associated with the hydrodynamic (vorticity) 

fluctuations. This coexistence of acoustic and instability waves can give rise to fdse standing 
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wave patterns along the core of the jet in an acoustically-resonant system, 8s emphasized by 
Rockwell and Schchenmann (1980). Such false, short waveIength patterns are not limited to 
locked-on, self-excited Cavity oscillations. They also occur in acoustically-forced jets 
investigated by the Berlin group, originating with Pfizenmaier ( I  973). 

Further insight into the lock-on phenomena that occur in the cavity-pipeline system is 
provided by Rockwell and Karadogan (1982). Using zero-crossing statistics, in conjunction With 

recursive digital fdtering, they determined the self- and cross-probability density of velocity and 
pressure. The degree of phase fluctuation of organized osciUations of turbulent jet flow through 
the cavity was characterized in terms of a mean phase deviation from the locked-on condition. 
In this manner, it is possible to characterize phase fluctuations as the phase-locked condition is 
approached. 

Finally, attenuation of pipeline-cavity oscillations has been undertaken by Rockwell and 

Karadogan (1983). A variety of attenuation configurations were considered. Among them, small- 
scale vortex generators were shown to be very effective in attenuating the lock-on oscillations. 

1.3 CAWTY OSCILLATIONS IN AN ACOUSTIC-RESOPANT PIPE SYSTEM: UNRESOLVED 
1 S S W  AhrD OWECi'7VES 

Very little is known of self-excited oscillations of a hlly turbulent inflow past a cavity, which is 
bounded on either side by a pipe. Coherent osciIlations are expected to occur when an acoustic 
resonant mode of the pipe-cavity system is compatible with an inherent instability of the 

turbulent shear layer past the cavity. The major unresoIved issues are: 

(a) The possibility of locked-on flow tones arising from a fblly turbulent M o w  and, in the 
limiting case, of a fully developed turbulent flow in a pipe, has not been clarified. The onset 
of such flow tones would require growth of an inviscid instability on the turbulent 

background of the separated shear layer past the cavity. 

(b) Flow tones in relatively shallow cavities at very low values of Mach number have not been 
addressed. More specifically, when the acoustic wavelength is much longer than the length 
of the cavity, then acoustic resonance cannot occur within the cavity. Most investigations of 
flow tones at low Mach number have involved sufficiently deep cavities, such that the large- 

d e  instability of the separated shear layer develops in a relatively unhindered fashion. As 
the cavity becomes relatively shallow, it is anticipated that the growth of large-scale vortical 



structures is hindered, and conditions for the onset of shear layer-resonator coupling, leading 
to flow tones, may not be attainable. 

(c) The appropriate dimensionless scaling for the frequencies of dominant pressure amplitude 
peaks of flow tones, provided they exist, has not been established. It is expected that, for a 
relativeiy deep cavity, which is sufficiently long such that the large-scale vortical structures 
develop, scaling based on pipe diameter D would be appropriate. In this case, it is 
anticipated that the vortical structures would correspond to the hlly-deveIoped 
axisymrnetric instability of the jet-like shear layer through the cavity. The possibility of 
extending this type of scaling to extremely shallow cavities has not been addressed. 
Furthermore, the sensitivity of this d i n g  based on diameter D to variations in the inflow 

boundary Iayer thickness has not been clarified. If the large-scale instabiIity evolves to the 

same form along a relativeIy long cavity, irrespective of the initial boundary layer thickness, 
the case for d i n g  of the dimensionless frequency based on D would be even more 
compelling. 

(d) The manner in which the amplitudes of flow tones are attenuated as a fimction of depth of a 

shallow cavity is unknown. Furthermore, the possibility of the non-existence of flow tones 

at a very small cavity depth is an important limit that has not been defined. A hrther, 
important aspect is whether discernible spectral peaks, which would represent a Iow level 
instability in absence offlow tone generation, can be detected in very shallow cavities. 

(e) The effect of mode spacing of the resonant modes of the pipe-cavity system, its well as the 

absolute frequency of the lowest mode of the pipe-cavity system, may influence the types of 
transformation between the resonant modes of the pipe-cavity system when the inflow 

velocity is altered. This feature has not been addressed for either deep or shallow cavity-pipe 

configurations. 

The objectives of the present investigation are centered on these unresolved issues. 
Pressure measurement techniques will be employed in conjunction with: three-dimensional 
images of the pressure amplitude response; and techniques for assessing these images. 



2. EXPERIMENTAL SYSTEM AMI TECHNIQUES 

2.1 U ~ V T E W U F ~ ~ ~ N T ~  SYSTEM 

The experimental system was designed and manufactured in the Fluid Mechanics Laboratones at 
Lehigh University. In essence, the system consists of two principal subsystems. The first is the 

air supply system, and the second is the actual pipeline-Cavity system. These two subsystems are 
located in different rooms, with a thick ceramic wall between them, in order to isolate 
mechanical vibrations associated with the compressor system. 

2.2 rn SWPL Y SYSTEM 
The air supply system involves an air compressor, which provides air to a compressed air 
plenum. Within the compressed air plenum, the air is maintained at a gauge pressure of 
552-689 kPa (80-100 psig). The air exhausts fiom the plenum into an air dryer where water is 
separated from the air. A filter system extracts undesirable particles from the air. The air is then 
transmitted through the isolation wall into the room housing the main experimental facility. 

An overview of the pipeline-cavity system is given in Figure 2a. A pipe-valve 

arrangement for regulating low and high flow rates to the pipeiine-cavity system is located at its 
upstream end, When low velocities through the pipeline-cavity system are desired, air is sent 

through a series of two pressure regulators to accurately control the flow rate. The first regulator 

operates at high pressures and takes the air input fi-om approximately 621 kPa gauge (90 psig) to 
138 kPa gauge (20 psig). The second regulator then limits the air output to a maximum of 
approximately 14 kPa gauge (2 psig), which corresponds roughly to a maximum of 9.1 m/s 

(30 fvs) through the pipe. When it is desired to generate higher velocities through the pipeline- 

cavity system, the second regulator, which operates at lower pressures, is bypassed. In this case, 
the maximum centertine velocity through the pipe system is approximately 61 ds (200 Als). In 

summary, the role of this pipe-valve system is to provide a regulated, constant air supply to the 
inlet plenum of the main pipeline-cavity system, as indicated in Figure 2a. 

2.3 PIPELNE-Gl VXTY SYSIZM 
Inlet plenum The inlet plenum of the pipehe-cavity system is shown in the plan and side views 
of Figure 2a. It is constructed from Plexiglas, and houses a 2.5-inch thick layer of honeycomb, 

which acts as a flow straightener. Moreover, the inside of the plenum is lined with acoustic 
damping foam to minimize local acoustic resonances. The exit of the plenum contains a 

contraction, which was designed to prevent localized separation in the pipe inlet. To ensure that 
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the large changes in pressure gradient near the exit of the n o d e  did not produce localized 
perturbations that would propagate downstream and, firthemore, to generate a fully-turbulent 
boundary layer, a trip ring was located immediately downstream of the exit of the plenum 
contraction. This rhg was located a distance of 35 mm fiorn the pipe inlet. It had a thickness of 
1 mm, and was 4 mm long. Its geometry involved a series of adjacent triangular cuts along the 
leading-edge of the ring. 

Rpeline-cavib arrangemen& The main pipeline-cavity arrangement was located downstream of 
the inlet plenum, as indicated in Figure 2a. The first version of this system, shown in Figure 2% 

consists of two 2.4 m (8 ft) segments of 25.4 mm (I  in) ID duminum piping, located on the 
upstream and downstream sides of the Plexiglas cavity. This aluminum pipe had a thickness of 
3.2 mm. A total of three pressure transducers were located in the inlet (upstream) pipe. They 
were positioned at distances of 127, 1213, and 2365 rnm upstream of the exit of the inlet 

(upstream) pipe. Furthennore, a similar system of transducers was mounted on the exhaust 
(downstream) pipe. They were located at distances of 78 mm and 1218 mm upstream of the exit 
of the pipe. 

The second version of the pipeline-cavity system employed the Same inlet plenum and 

cavity; however, shorter idet (upstream) and exhaust (downstream) pipe sections were 
employed. These sections had a length of 30.48 cm (12 in). One pressure transducer was located 
in the idet (upstream) pipe at a distance of 125 mm from the pipe exit. Regarding the exhaust 

(downstream) pipe, one transducer was also mounted along this pipe at a distance of 152 mm 

from the pipe exit. 

Mounting arrangement for pressure thnsducers The pressure transducers located dong the 

inlet (upstream) and exhaust (downstream) pipes were PCB high sensitivity transducers (Model 

TL7103A02); the Same transducers were employed for measurements within the cavity system, as 
described subsequently in Section 2.4. The design for mounting the transducers on the pipe was 
based on the recommendations of PCB. The diameter and depth of the hole drilled into the 

aluminum piping was kept as small as possible, so that the flow was not distorted. Moreover, the 
mounting arrangement shown ensures, for the range of frequencies of interest in this 

investigation, that no acoustic resonant effects were generated in the region between the face of 

the transducer and the surface of the pressure tap at the interior of the pipe. 



2 4  CAMTYSUISYSTEM 
The cavity system is shown in Figure 2b. The idet (upstream) aluminum pipe, designated as 

pipe A, is maintained in a fixed position on the pipe supports. The left end of the Plexiglas tube 
slides along the exterior of a smoothly-machined exterior surface of the inlet (upstream) pipe A. 

In essence, this sliding arrangement allows adjustment of the cavity length L with a high degree 
of accuracy and repeatability, This adjustment was achieved by employing a traverse mechanism 
(see the pipe translation system in Figure 2a), which translated the entire pipe B and the 

Plexiglas tube attached to it. The junction between the interior of the PlexigIas tube and the 
exterior of the exhaust (downstream) aluminum pipe B is fixed. The internal diameter D of the 

two pipes A and B is 25.4 mm (1 in). 
The downstream end of pipe A and the upstream end of pipe B form the leading- and 

trailing-edges of the cavity, respectively. In order to obtain different values of cavity depth W, 
the exterior diameters of pipes A and B were altered. This was accomplished by placing 
PiexigIas deeves around the ends of pipes A and €3. Correspondingly, the interior diameter of 

the Plexiglas tube was altered as well. Since it was desired to investigate a total of four values of 
cavity depth W* = W/D = 1.25, 0.5, 0.25 and 0.125, in which D = 25.4 mm (1 in) this meant that 

four different aluminum pipe-Plexiglas-tube combinations were manufactured. 
Pressure transducers were deployed in order to obtain pressure measurements on the 

trailing- (impingement-) corner of the cavity, as well as on the floor of the cavity. In subsequent 

notations of pressure measurements, the pressure transducer in the pipe upstream of the cavity is 

designated as p3, that at the corner as p5, and that on the cavity floor as p4 (see Figure 2b). 

Since both of these transducers (p4 and ps) were fixed with respect to pipe B and the Plexiglas tube 

attached to it, their position, relative to the trailing-corner of the cavity, remained unaltered when the 

cavity length L was varied. 

2.5 P-URE MEASUREMENTS 

fiessure transducers. PCB transducers (Model No. U103A02) were employed for pressure 
measurement. These transducers have a nominal sensitivity of 1727 mv/psi. The outputs from 
the transducers were connected to a PCB Piezotronics multi-channel signal conditioner, Model 
48A. This multi-channel conditioner allowed independent adjustment of the gains of the pressure 

transducer signals. Generally speaking, however, it was possible to empioy the same value of 



gain for all pressure measurements. This gain adjustment is important in order the meet the 

required voltage input levels of the A/D (analog/digital) board. 

Acquisithn of pressure signals. The conditioned pressure signals were transmitted to ports on a 
National Instruments board (Model PCI-MIO-16E-4). This board, when operating in the single 
channel acquisition mode, can sample at the rate of 250 KS/sec, in which K = lo3 and S is the 
number of samples. In the present scenario, a total of eight pressure transducers were employed, 
so the effective sampling rate is reduced by a factor of eight, i.e., it takes on a value of 31 K S / w  
per channel. In essence, there are two considerations to determine whether this sampling rate is 
adequate. First of all, for characterization of pressure in the frequency domain, the sampling rate 
should be at least twice the maximum frequency of interest. For representations in the time 

domain, a minimum of five samples per cycle is required, but a minimum of ten samples per 
cycle is desirable. Considering these requirements together, the acquisition system should have a 
sampling rate at least ten times as high as the maximum typical fie-quency of interest in the 

present investigation, which corresponds approximately to 1 .S x lo3 HZ. This requirement is 

approximately a factor of twenty lower than the acquisition rate of 3 1 KS/sec per channel. It is 
also important to realize that this type of board basically consists of one A/D (analog digital) 
converter, and the acquisition of eight pressure signals is accomplished using a mukiplexing 
technique, The scan interval is defined as the time required to go from a recorded point 

corresponding to pressure transducer No. I ,  through the sequence of the other seven transducers, 
and return to the channel of transducer No.1. This scan interval is basically the inverse of the 

maximum data acquisition rate per channel from i.e. U(3I.25 x IO3), which corresponds 

approximately to 3 2 microseconds. 

Processing of pressure signals A Pentiurn I1 350 MHz computer and LabView software were 

used to process the pressure transducer signals. The major parameters for spectral anaIysis using 
the Fast Fourier Transform (FFT) must be properly defined so that adequate resolution in the 

fiequency domain is accomplished, while at the Same time minimizing the amount of collected 
data. In order to determine which values of each parameter were adequate, a series of averaging 

tests were performed using broadband noise input. For a given set of parameters, the number of 
averaged hles was varied to determine the minimum number of files and, hence, the minimum 
number of data samples needed to properly represent the system response. 



The parameters were: (i) the number of samples acquired per data set; Qi) the sampling 

rate; and (iii) the number of data sets employed to obtain an average. The sampling rate must be 
twice as high as the maximum frequency of interest. Therefore, the necessary sampling rate 
varied directly with the maximum frequency of interest for each experiment. The value of the 

frequency resolution (Af) is equal to the sampling rate (5) divided by the number of samples per 

data set (Q). Once the sampling rate was determined for each experiment, the number of 
samples was calculated according to n, = fAM 

In order to determine the value for My another set of averaging experiments was 

performed. Values of Af were varied. These tests showed that Af = 0.5 Hz adequately 

characterized the system response, wide providing acceptable frequency resolution at both the 

low and high ends of the fiquency range of interest in this research program. At the lowest and 
highest fiquencies of interest, approximately 35 and 1,500 Hz, Mf has its maximum and 

minimum values of 0.014 and 0.00034 respectively. 
During acquisition of final experimental data, the sampling rate was set to 4,096 samples 

per second, which resulted in a Nyquist frequency of 2,048 H z ,  well above the maximum 
frequency component of interest for this research, which was approximately 1,500 Hz. The 

number of samples per data set (nJ was then specified, while &ntaining Af = 0.5 Hz, rksuhing 

in 213 = 8,192 samples per data set. Each of the spectra represented herein was obtained by 

averaging a total of 42 data sets. 
Unless otheMrise indicated, all pressure measurements herein correspond to a reference 

location (i.e., at pressure transducer p3 as defined insection 2.4) in the pipe resonator. 

Comparisons of measurements at different locations are given in Section 6. 

2-45 PELOCITYMEASUREMENTS 
In order to characterize in detail the mean and fluctuating velocity distributions at the exit of the 
inlet (upstream) pipe A, hot wire anemometry was employed. A miniature hot-wire probe was 

traversed across the pipe exit. The traverse system was equipped with a linear variable 
displacement transducer (LVDT), so that the position of the hot-wire probe could be positioned 
with a precision of approximately 0.1 mm. In-house software was used to calculate the mean 

and fluctuating veIocity components from the raw hot-wire signal. 
For the wide range of measurements during the course of this investigation, it was 

necessary to have an accurate and repeatable means to determine the time-averaged centerline 



velocity iim . This was accomplished by using a pressure tap on the side of the inlet plenum and 

a tap located at the exit of the o f i ce  plate, which was attached to the downstream end of the 
plenum. The difference between these two pressure measurements provided a reference value for 
CalcuIating the centerhe velocity of the flow through the pipe. This pressure difference was 
calibrated against the centerline velocity at the exit of the exhaust (downstream) pipe B using 

two different approaches. The first involved the calibrated hot-wire, described in the above, and 
the second was based on the measurement of total pressure by means of a Pitot probe at the exit 
of the pipe. The total pressure was measured using one of two Validyne transducers, model 
DP103-104 for smaller values of flow velocity and model DP15-24 for higher values of flow 

velocity. 

3. I N n O W  CONDITIONS 
A major purpose of the present investigation is to determine whether self-excited flow tones can 

be generated when the innow conditions are hlly turbulent. Proper specification of the inflow 
conditions is important in several respects. First of d1, it is desirable to ensure that quasi-laminar 
or transitional phenomena do not exist in the approach flow. For the limiting case of laminar 
inflow, i.e., a laminar bundary layer, self-excited coherent oscillations, which have pronounced 

spectral peaks, can be generated even in the absence of a coexisting acoustic resonance of the 
cavity or itn adjacent pipe. 

A second reason for speclfjnng details of the inflow conditions is to facilitate the scaling 
'of  the dimensionless kequencies of oscillation. Geometric parameters are often used to 

characterize the frequency of oscillation, e.g., W, in which L is the cavity length and U is the 
characteristic velocity or fD/U, where D is the diameter of the inflow pipe, Such geometric 
scaling does not account for the variations of boundary layer thickness that exist in different 
practical configurations. 

 he momentum thickness = J iii / U, XI - ii /ii,)dy is typically employed to represent 

the charactenstic thickness of a shear flow. In this investigation, velocity ii is the average 

streamwise velocity at any location, and IT, is its value at the centerline of the pipe. The value of 

0 was determined for the extreme cases of velocity distributions described in this section. The 

distributions of mean and fluctuating velocity are considered for two basic cases: (a) a long pipe, 
having a length to diameter ratio of 96, which ensures a fully-developed flow at the pipe exit; 
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and (b) a relatively short pipe having a length to diameter ratio of 12, which has a turbulent 
boundary layer at its exit that is not fully-developed. As indicated in Section 2, a boundary layer 
trip ring was located at the pipe inlet for both cases of the long and short pipes. This trip 

promotes the rapid onset of turbulence, which was especially important for the case of the short 
pipe. 

Prior to characterizing the values of momentum thickness for the long and short inlet 
pipes, efforts were focused on ascertaining the turbulent nature of the flow at the exit of each 

pipe. This involved determination of distributions of normalized root-mean-square velocity urn 

across the pipe. These distributions were found to be in agreement with established resuits. In 
addition, the logarithmic form of the velocity distribution was pursued. The traditional semi- 
logarithmic representation of the mean velocity distribution at the exit of the long pipe is given in 

Figure 3a. In this plot, 9 = E/u,.  That is, the lo& mean velocity Ti is normalized with respect 

to the wall friction vefocity u,. This dimensionless velocity is plotted as a hnction of log q, in 

which, q = yu./v. The purpose of this type of plot is to show the nature of the logarithmic and 

inner viscous layers. These data are compared with the standard distributions provided by 

Schlichting (1968). The log region is represented by 4 = 5.75 iog q f 5.5. In addition, this 

region of the boundary layer is compared with the so-called one-seventh power law distribution 
t$ = 8.74 q'". In the innermost region of the boundary layer, Le., the viscous sublayer, the 

dimensionless velocity is according to 4 = q. This region corresponds to an extremely thin layer 

next to the wall. 
Considering first the log region of the boundary layer, the data exhibit a generally linear 

variation in this region, corresponding to an actual logarithmic distribution. In the inner layer, 

the data generally follow the reference curve 4 = q, except for departures at the highest value of 

velocity. 

Distributions of dimensionless mean velocity Ti/Tim as a function of dimensionless 

distance y I R  from the pipe wall are exhibited in Figure 3b for the short (top plot) and long 

(bottom plot) inlet pipes. Considering first of all the distributions of mean velocity given at the 

top of Figure 3b, a relatively flat region exists from approximately y/R = 0.4 to 1.0, 

corresponding to the "core" region of the pipe flow. Data for the velocities 70.7 I U, I 131.5 

are remarkably coincident. For these velocity distributions, the dimensionless momentum 



. 

thickness falls in the range of 0.029 I I 0.035. The definition of 

8, = ~ y = R @ / i i m )  (1 -ii/Em)dy was employed. 
Y=O 

The bottom plot of Figure 3b represents the corresponding velocity distribution €or the 
case of the long inlet pipe, The values of momentum thickness 9, normalized by the pipe radius 

R lie in the range 0.088 5 9JR 5 0.096. 

4. OVERVIEW OF CBAIRACTENSTICS OF PRESSURE FI,WCTUATIONS 

The nature of unsteady pressure fluctuations arising 6 o m  flow past a shalIow cavity is 
complicated by variations in the cavity depth. In contrast to the overwhelming share of previous 

investigations, where the cavity depth is much larger than the characteristic thickness of the 
inflow shear layer, the existence of a sufficiently shallow caV;ty is expected to substantially alter 
the onset and growth of instabilities in the separating shear layer. The consequence is a rich 
variety of possible flow states within the cavity. In the present investigation, emphasis is on the 

case of a sufficiently long cavity length Lm such that, for a deep cavity, the fully-evolved 
axisymmetric instabihty of the separated shear layer occurs. This limiting case is well studied for 

the corresponding case of a free axisymmetric jet. In fact, as will be discussed, the scaled 
fiquencies of a sufficiently deep Cavity agree remarkably well with this limiting, reference case. 
Moreover, preliminary diagnostics showed that the largest amplitude spectral peaks occurred for 
this long cavity length L,,,, irrespective of the cavity depth W. The present results provide 
extensive characterization of the unsteady pressures as a function of i d o w  velocity U, cavity 
depth W, and the thickness of the inflow shear layer. 

4.1 S ~ Y U F R A N G E S U F P A R A M E T E R T  

The cavity length was adjusted to a fixed vahe of L', = W = 2.5, which, as indicated in the 

foregoing, allowed the fully-evolved axisymmetric instability mode to develop in the deepest 
cavity. The cavity depth was then vakd according to W* = W/D = 1.25, 0.5, 0.25, and 0.125. 

The largest value of depth W* = i.25 should, in concept, represent a sufficiently deep cavity, 
such that the instability in the free shear layer develops in a relatively unhindered fashion. At the 

other extreme, W' = 0.125 is small in comparison with the pipe diameter D, and thereby 

represents the case of a very shallow cavity. The inflow velocity U was varied up to a maximum 
value of approximately 200 Wsec, depending upon the particular experimental configuration. 



Furthermore, the characteristic thickness of the intlow boundary layer was altered by attaching 

both long and short inlet pipes; this approach led to extreme values of momentum thickness 8, 
as described in Section 3. nt p r t r $ , r e  -1 L b  tJ Cbv 

-fip e ~ ~ c ~ , 4 f  b-9-r 1 dl b r  

w r C L c i r 3  M Y ~ ~ J  7 4.2 METHODS OFPRESENTATTON OFDATA 
Features of the fluctuations are represented by pressure spectra. For a given experimental run, a 

relatively large number of spectra are acquired. It is therefore useful to develop a unified, 
comprehensive presentation of families of spectra. This was accomplished by developing a 

color-coded, isometric view; a representative image of this type is given in Figure 4a. h 
constructing these representations, a total of 37 to 40 spectra were employed. In the case where 
velocity was varied during the experimental run, values of spectral amplitude were interpolated 
along the velocity axis. SimiIarly, for the case where the cavity length was altered, interpolation 

was carried out in the direction of the cavity length. The magnitudes of pressure were color- 
coded, such that gradations of color are evident in three-dimensional space, thereby providing an 
overview of the conditions for which relatively high-pressure amplitudes are generated. Since 

the focus of this program is on conditions for the onset of flow tones, most of the  changes in 
color level are concentrated at lower values of pressure amplitude. Once a threshold value of 
amplitude is exceeded, the color magnitude is maintained the Same for all higher values. This 
d o r  was, in fact, white. As a consequence of this approach, it is not possible to determine, in 
certain cases, the maximum amplitude of the pressure spectra based on the three-dimensional 

color plots. Complete families of spectra are therefore provided in a separate compendium, so 

that the reader can easily deduce details of each individud spectrum. 
A plan view of each isometric, three-dimensional color plot is also provided in each case. 

It allows a perspective on a phne of velocity vs. fiquency and identification of high values of 
pressure amplitude. This type of view also gives a rapid indication of the extent of each locked- 
on mode of a flow tone. 

Further representations of the pressure variations involve either isometric or plan views 
of logarithmic, as opposed to linear, pressure amplitude. This type of view emphasizes the 
variation of the background fluctuations, in addition to the resonant values associated with 

generation of flow tones. 
Finally, effort was devoted to implementing a means of detecting peaks in the plot of 

logarithmic pressure amplitude. The principd aim here was to educe low-level p& of 
pressure, which otherwise remain undetected in simple plots of logarithmic pressure amplitude 



or linear pressure amplitude. Once these peaks were identified, they could be represented on the 
plane of velocity vs. frequency, in order to determine the variation of the inherent instabiiity 
frequency of the shear layer, i.e., Strouhal frequency, that gives rise to vortex formation. A 

successful approach to educing low level peaks involved, first of all, taking the derivative of the 
logarithmic pressure amplitude with respect to velocity. This derivative may be written as: 

Once this derivative is evaluated, it is plotted in a color-coded form on either the velocity vs. 
frequency plane or the velocity vs. cavity length plane. The magnitudes of the derivatives are 
color coded in such a manner that a pressure peak, which corresponds to an essentially 
discontinuous change in the sign of the slope, according to equation (4.1), is represented by a 
sharp junction between two distinctive colors. A line passing through these detected peaks is 

then plotted on the aforementioned plan view of pressure amplitude as a hnction of velocity vs. 

frequency or, alternately, on the plan view of pressure amplitude in relation to cavity length vs. 
veiocity. This is a very effective approach to identlfy a low amplitude peak that is not associated 
with a flow tone, but nevertheless represents a localized peak due to the inherent instability mode 
of the shear layer, which is accentuated by presence of the resonator. 

In the foliowing, the types of color representations described in the foregoing are shown, 

first of all, for: (a) variations of the inflow velocity; and (b) alterations of the cavity length L 

4.3 PRESSURE FLUCTUATIONS FOR IWUATIONS OF INFLU W YELOCITY 

The pressure response characteristics of the pipeline-cavity that correspond to variations of inflow 

velocity are examined for the two extreme inflow shear layers defined in Section 3. As described 

therein, these different inflow conditions are generated via attachments of long and short inlet 

pipes. 

4.3. Z Long Inlet pipe-Cavity System 

Figures 4a through 4f exhibit the pressure amplitude response that corresponds to variations of 
inflow velocity U c Urn, i.e., the averaged veIocity at the centerline of the pipe. The cavity 

length L is maintained at its maximum value, designated as I-. Variations of cavity depth W are 

considered. Figures 4a,b show the case of a relatively deep cavity and, at the other extreme, 

Figure 4f represents the shallowest cavity. 



For the case of the deepest cavity exhibited in the top image of Figure 4a, pronounced 
peaks of pressure amplitude are evident at values of innow velocity of the order of 70 Wsec and 
higher. Han~~onics of these peaks are either very small or indistinguishable. The peaks shown in 
this image coincide with the resonant modes of the long pipe-cavity system having frequencies 
approximately in the range from 300 to 600 Hz. The bottom image of Fjpre 4% which shows a 

plan view of the variation of pressure amplitude over the plane of frequency versus inflow 
velocity U, indicates clearIy the sequential excitation of higher modes of the resonant pipe-cavity 

system with increasing velocity. The thm, elongated white regions correspond to the peaks 
exhibited in the isometric view, i.e., in the top image of Figure 48. At the center of each of these 
peak (white) regions, the amplitude of the pressure in the neighboring resonant modes is small. 
On the other hand, near the edges of a gven peak (white) region, there is clearly simultaneous 
excitation of two neighboring resonant modes. This feature is inherent to excitation of flow 

tones in resonant systems having muitiple resonant modes. The black lines indicated in the 
bottom image of Figure 4a represent constant values of dimensionless frequency fUU. They pass 

through the pressure peaks. Although the line having the largest slope passes through distinct 
and highly visible peaks, the remaining two h e s  pass through peaks that are less well defined. 

In order to extract these peaks, the plan view corresponding to the bottom image of Figure 4a 

was directly compared with the bottom image of Figure 4b, which employs the criterion for 
identification of peaks. 

The top image of Figure 4b shows a plan view of the pressure amplitude on the velocity- 

frequency plane. It is based on the Same data as Figure 4% except the pressure is expressed in 
terms of its logarithmic value, Le., log p. This plot shows further features of locally high values 

of pressure amplitude outside the clearly distinct peaks. The bottom image of Figure 4b is a plan 

view of the variation of the parameter d(logp)/dUover the velocity vs. frequency plane. As 

addressed in the foregoing, this parameter aids in peak identification. At locations of the peaks, 
the slopes on either side of the peak abruptly change from positive to negative values, and 
thereby the colors show an abrupt change. It should be emphasized that this type of 
representation shown in the bottom image of Figure 4b is simply intended to serve as an aid in 

extracting peaks. By no means does it provide an indication of lock-on associated with 

generation of flow tones. This concept of lock-on will be addressed subsequently. 
Figures 4c,d represent the case of a shallower cavity having a depth W* = 0.5. The most 

striking feature of the top image of Figure 4c, in comparison with the case of the deeper cavity 



corresponding to Figure 4a, is that the velocity for onset of a pronounced peak is shifted to a 

higher value of approximately 120 ft/sec, which is approximately 50% larger than the onset 
velocity for the deep cavity of Figure 4a. Generally speaking, however, the overall form of the 
distribution of peaks is similar to that of Figure 4a for the deep cavity. Observations of the 
bottom image of Figure 4c are, in many respects, similar to the corresponding plan view of 
Figure 4a. Lines of constant fLJ l  are iinear and pass through the sequence of pressure peaks. In 
Figure 4d, the plot of logarithmic pressure amplitude is shown in an isometric view (top image), 
in order to krther emphasize the locally large values of pressure amplitude, in addition to the 
weILdehed peaks evident in Figure 4c. This plot also clearly shows the increase in background 

pressure fluctuation amplitude 8s the velocity is increased. The plot of magnitude of qlog p)/iXJ 
on the plane of velocity versus frequency, represented by the bottom image of Figure 4d, is 
directly analogous to the corresponding plot of Figure 4b. 

A hrther decrease in cavity depth to a value of W* = 0.25 is represented in Figure 4e. 

The top image of Figure 4e shows the generation of a number of well-defined peaks, which are 

coincident with the resonant modes of the pipe-cavity system. An important observation is that 

these peaks are generated only at very high values of inflow velocity, i.e., of the order of U = 150 

Wsec and larger. Although there may be a tendency to  interpret these peaks as an indication of 
locked-on flow tones, this may not be the case; fhrther assessments are required and are 
addressed in Section 6. The plan view of linear pressure amplitude on the plane of velocity vs. 
fiquency is represented in the bottom image of Figure 4e. The white regions, which indicate the 
highest amplitude peaks, generally do not have the Same sharpIy-defined symmetrical form as 

exhibited previously in the bottom images of Figure 4a and 4c. Nevertheless, there is a tendency 

for these white, peak-like regions to follow a constant W. i.e., the black h e  having the 
greatest slope in the bottom image of Figure 4e. As in the previously described cases 

corresponding to deeper cavities, the black h e  of the lower slope was constructed with the aid 

of the pressure gradient concept defined by equation (4.1). 

The case of the shallowest cavity, W' = 0.125, is shown in Figure 4f The top image of 
Figure 4f reveals that significant peaks are attainable only at the highest values of flow velocity 
of the arder of U = 200 Wsec. Since these peaks have very low amplitude, it is possible to 
observe an increase in pressure amplitude for all of the pipe-cavity modes as the inflow velocity 
increases. Considering the bottom image of Figure 4f, which shows the plan view of linear 
pressure amplitude p o n  the plane of velocity VS. frequency, it is clew that isolated, distinct 



pressure peaks cannot be defined in the same manner as for deeper cavities, i.e., in the bottom 
images of Figure 4a through 4e. It is therefore not possible to construct lines of constant fLLJ. 
This lack of a clearly defined Strouhal line of constant axJ was hrther reaffirmed by 

examination of contours of constant pressure gradient calculated according to equation (4.1). 

An overview of the pressure amplitude response for extreme values of cavity depth W is 
given in Figure 4g. These three-dimensional images are taken from Figures 4a, 4e and 4f The 

transformation from sharply-defined pressure peaks to a larger number of less sharply-defined 
peaks having much lower amplitude is clearly indicated for decreasing values of cavity depth. 
Further observations are as follows: shallower cavities require a higher value of minimurn flow 
velocity to attain a locked-on flow tone; for a sufficiently small cavity depth, lock-on is not 
attainable; and, for deeper cavities, Iower order resonant modes lock-on because the critical flow 
velocity decreases. All of these features are most likely reIated to the manner in which the 
unsteady shear layer develops along the Cavity. Presumably, for deeper cavities, the occurrence 

of large-scale vortex formation proceeds in a relatively uninhibited fashion, whereas for the 
shallowest cavity, it may not occur. This aspect will be addressed in a forthcoming investigation. 

4.3.2 Short Inlet Pipe-Cavity System 
A short inlet pipe to the cavity system was employed to: (i) examine the consequence of a 

smaller characteristic thickness of the inlet boundary layer; (ii) address the consequence of a 
higher value of absolute frequency for the lowest pipe-cavity resonant modes, i.e., N = 1 ,  2 and 

3; and (iii) resolve the manner in which widely spaced resonant modes, which are attainable for 
the short pipe system, influence the onset of flaw tones, relative to the closely-packed modes 
existing in the long pipe-cavity system, shown in Figures 4a through 4E 

The top image of Figure 5a represents the case of the deepest cavity. Clearly-defined 

peaks of pressure occur at resonant pipe modes centered approximately at 550 Hz,  1100 Hq and 

1600 Hz. These excited modes are clearly much more widely spaced than for the corresponding 

case of the long pipe-cavity system shown in the top image of Figure 4a. Two remarkable 
similarities exist, however, between the plots of Figure 5a and Figure 4a. First of ail, the value 

of inflow velocity U for the onset of a clearly-definable peak of pressure amplitude is of the 
order of 70 Wsec for both cases of Figures 5a and 4a. This similarity is perhaps more evident by 
comparing the plan view of pressure amplitude on the plane of velocity versus fiequency, 
represented by the bottom image of Figure 5% With the corresponding image at the bottom of 

Figure 4a. Note that, at a given velocity, as many as three well-defined peaks exist; moreover, 



they are, in an approximate sense, harmonicaliy related- This suggests that multiple Strouhal 
modes may coexist in the separated shear layer. In the absence of an acoustic resonator, it is 

known that an unstable shear layer can exhibit a number of coexisting, well-defined fiquency 
components as shown by Knisefy and Rockwell (1982). 

The second notable feature of the plots of Figure 5a is that the dominant resonant mode in 
Figure Sa is of the order of 550 H z ,  while in Figure 4% the excited modes extend fiom 
approximately 300 to 600 Hz. The Same range of frequencies is therefore associated with the 
generation of large-amplitude pressure peaks. This observation, which suggests that the same 

mechanism of shear-layer instabfity is present in both cases, will be addressed subsequdy. 
The plan view of pressure amplitude p shown in the bottom image of 5a exhibits a black line 
passing through the peak pressure amplitude. As in the previous cases for the long pipe-cavity 
system, this line corresponds to a constant value of fUU.. 

In Figure 5b, the top image shows hrther features of the pressure amplitude response, in 
the form of logp on the plane of velocity U versus frequency f In this plot, the increase in 

amplitude of the pressure fluctuation as flow velocity increases is clearly evident. Regarding the 
plot at the bottom of Figure 5b, a number of sharp changes in sign of a(log p) / 8U occur along 

each band of constant frequencies BS velocity is increased. As in the corresponding figures for 
the long pipe-cavity system, the abrupt change in color corresponds to the locations of the peaks, 

For the case of a shallower cavity, represented by W' = 0.5 and shown in Figure 5c, the 
overall response characteristics are generally similar to those of the deeper cavhy of Figure 5a. 

Considering., first of all, the top image of Figure 5c, the pressure peaks are not quite as consistent 
with variations of velocity, relative to those of Figure 5a. With regard to the plan view of the 
pressure amplitude p, shown in Figure 5c, the value of velocity for the onset of the first, large ' t  

amplitude peak, is of the order of U = I 0 0  Wsec. This compares with an approximate value of 

U = 120 Wsec for the fist, large amplitude peak of Figure 4c. 
The plot of logarithmic pressure amplitude log p shown in the top image of Figure 5d 

clearly shows the increase in background amplitude with the increase of velocity and the emergence 

of well-defined peaks above the background level at suficiwtly high values of velocity. The 
variation of the amplitude of d(logp)/iXJ, shown in the bottom image of Figure 5 4  exhibits 

correspondence between abrupt changes in slope (Le., color) and the pressure amplitude peaks 

evident in the plan View of the bokom image of Figure 5c. 



If the cavity depth W is decreased still krther to a value of W* = 0.25, as represented by 
the images of Figure 5e, sharplydefined pressure peaks are still evident, At the same value of 
W' = 0.25 for the long inlet pipe, shown in Figure 4e, such sharply-defined peaks do not occuf. 

Note, however, that the peak occurring at the lowest value of velocity in the tap image of Figure 
5e, hrther evident in the bottom image of Figure 5e, is within the band of approximately 5 0 0  to 
600 Hz. For the case of the long inlet pipe, shown in Figures 5a and 5c, resonant peaks occur in 

this same band of ffequencies. A S i a r  instability mechanism therefore appears to be operative 

in both cases. The instability mechanism most likely associated with the generation of large 
scale vortical structures will be addressed subsequently. The m e r  in which these large-scale 

structures develop may be a hnction of the momentum thickness 8, at separation, which, as 

described in Section 3, differs for the long and short inlet pipes. The momentum thickness 8, of 

the short pipe system is one-third that of the long pipe-cavity system. A hrther factor that may 
influence the difference between Figures 4e and 5e is the difference of damping of the long and 

short pipe-cavity systems. 

, 

The variation of the logarithmic pressure amplitude, logp, over the velocity vs. 

fkquency plane, is represented by the top image of Figure 5f The increase in the pressure 
amplitude, along a Line of constant frequency, say a frequency of the order of 500 Hz, is evident 
at a relatively low value of velocity U of the order of 35 Alsec; this situation contrasts with 
excitation of sharply-defined peaks at higher velocities. This observation suggests that an 

inherent instability mode of the shear layer is effective in buffeting the resonator of the pipe- 

cavity system at lower values of velocity. Confirmation of the peaks of pressure amplitude, 
which are indicated in the bottom image of Figure 5e, is evident in the abrupt change in sign of 

i?(log p)/ XJ in the bottom image of Figure Sf. Moreover, this parameter @log p) I brings out 

additional peaks at lower value of flow velocity for the first two resonant modes; these peaks are 

not evident in the raw pressure plot at the bottom of Figure 5e. 

Finally, the case of the shaUowest cavity, W* = 0.125, is represented in Figure 58. The 

values of pressure amplitude generally remain very small, of the order of 2 x lo4 psi. Moreover, 

sharply-defined peaks are not evident. It is possible, however, to identrfy a broader peak, as 
shown in the plan view of the bottom image of Figure 5g; this broader peak serves 8s the basis 

for the construction of a bIack line representing a constant value of fLA.J. This peak, as well as others 
that might be inferred from the bottom image of Figure 5g, are not sufficiently sharp to produce a 



consistent pattern of large gradients of d(logp)/dU, evident from examination of the 

corresponding image of these gradients, which is not shown herein. 

4.4 S W N G  UFPRESTURE FLUCTUATIUNS: AMPUTUDE UMTlSAND CUNDIlTONS FOR 

Ln the foregoing sections, emphasis has been on the description of the organized peaks of 

pressure fluctuations that emerge above the background. These pronounced peaks are evident in 
most of the three-dimensional (isometric) plots of the respective images of Figures 4a through 
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5g. In the summaries that follow, the focus is on tbe dimensionless representations that dictate 
the onset and existence of well-defined peaks. They are: dimensionless fiequencies; 
dimensionless cavity length and depth; dimensionless pressure amplitudes; and values of 

velocity, All of these parameters are characterized using detectable peaks in Figures 4a through 

5g. 
The modes of oscillation observed in the present investigation are defined as large-scale 

modes. That is, the present emphasis is on oscillations occurring for a limiting value of cavity 

length L, such that for a sufficiently deep cavity, the fully-evolved axisymmetric instability 
mode is allowed to develop. As indicated in the foregoing, this asymptotic case corresponds to 

the largest pressure amplitudes observed in preliminary experiments over a range of cavity 
length. In view of the fact that they occur for relatively long cavjties, i.e., cavities of length L 

significantly larger than the pipe (or jet) diameter D, these oscillations are designated as large- 

scale modes. Furthermore, as will be addressed, when the fiequencies at which the peaks occur 
are scaled according to D/U, then the values lie within a range corresponding to fully-evolved 

(large-scale) vortex formation in an unbounded free-jet. This observation provides a hrther 

reason for characterizing these oscillations as l a rge -de  modes along sufficiently deep cavities. 

In the following, several characteristics of these large-scale modes are addressed. 

Frequency af uscillotiotz Considering the data shown in Figures 4a through 5g, the values of 
frequency for the observed peaks extend over the range of approximately 300 Hz to 600 Hz. In 
turn, these fiequencies correspond approximately to dimensionless values in the band 0.3 I fD/V 

I 0.6. This issue of frequency scaling is addressed in further detail at the end of Section 5 ,  i.e. 

Section 5.2. 

Pressure amplitudes. The magnitude p of the pressure fluctuations can be normalized in two 

physically significant ways. The first involves normalization by the dynamic pressure of the 



inflow, dehed  as pU2/2, in which p is the density of air under standard conditions and U is the 

averaged centerline velocity, i.e. U This nomahation involved the range of data for 

which detectable peaks were observed in Figures 4a through 5g. Peak pressure amplitudes 8s. 

high as p/(pU2/2) E 0.6 can be attained for the short inlet pipe, the deepest cavity, and a high 

inflow velocity (Figure Sa). At the other extreme, values as low as p/(pU2/2) E 0.007 were 

observed for the long inlet pipe, a moderate depth cavity, and a relatively low inflow velocity 

corresponding to the onset of an initial peak amplitude (Figwe 4c). 

E,. 

An alternate normalization for pressure is of the form p/pUc, in which c is the speed of 
sound. For the ideal case of one-dimensional wave propagation, this normalhtion may be 
interpreted as ufl, in which uu: is the magnitude of the acoustic velocity. In other words, this 
pressure normalization represents the ratio of the acoustic velocity uC to the mean inflow 

velocity U at the centerline of the pipe. Values of p/pUc = 0.04 (Figure sa) are attainable. On 

the other hand, values as low as p/pUc = 0.0003 (Figure 4c) occur. These extreme values 

correspond to the same conditions as for the aforementioned vdues of p/(pU2/2). 

The extreme values of dimensionless pressure described in the foregoing are compared at 
the top of Table I ;  they are designated as large-scale modes therein. A hrther comparison of 

peak values of pressure amplitude using individual spectra, as well as the plots discussed in 

Section 4.3, reveals that, for a given cavity length and depth, the shorter pipe system yielded 
significantly higher amplitudes than the longer pipe system. This general observation is due to 
the difference of damping of the short and long pipe systems; it is proportional to the pipe length. 

The experiments of Kriesels, Peters, Hirschberg, Wijnands, Iafrati, Riccaradi, Piva and 
Bruggemann (1995) show the consequence of damping, represented by pipe length, for the 
configuration of a closed side branch resonator. Extreme values of dimensionless pressure 

attained with long and short pipes in their investigation are indicated at the bottom of Table 1. 

Additional investigations of Rockwell and Schachenman (1982), Elder, Farabee, and 
DeMetz (1 982) and Hourigan, Welsh, Thompson and Stokes (1 990) are also included in Table 1, 
in order to illustrate that the values of dimensionless pressure attained in the present investigation 
can have values of the Same order of magnitude as found in other flow tone investigations, 
despite differences in system configuration and damping. 

When comparing values of normalized pressure, as in the foregoing, it should be 
emphasized that the intermittency of the instantaneous states of the flow past the cavity, and 



thereby intermittency of the instantaneous pressure signals, can contribute to a substantially 
lower value of time-averaged peak pressure, relative to the cases where the instantanems states 

are locked-on, with no intermittency. This issue has not been accounted for in any investigation 
to date. 

Persisterne of pressure p e d s .  Examination of the plots of Figures 4a through 5g reveals that as 
the cavity depth W decreases, the peak pressure amplitude tends to decrease as well. Pronounced 
peaks can occur, however, at values of cavity depth as low as W/D = 0.25, Le., even for very 
shallow cavities having a length to depth ratio of 10. 

Suppresswn of amplitude peaks. For values of cavity depth sufficiently small, pronounced 
amplitude peaks are no longer evident. This range of suppression occurs for W' = W/D Z 
0.125. It should be noted, however, that the occurrence of preferentially-excited pipe modes is 
stiII identifiable at W* = 0.125, over the aforementioned range of frequencies falling roughly in 
the band 0.3 ?: fD/U 2 0.6. These preferentially excited modes exist in absence of any apparent 
lock-on. 

Threshold veZucities. Considering the range of data exhibited in Figures 4a through 5g, the 

velocities for onset of pronounced peaks, accounting for both short and long inlet pipes, range 
from approximately 70 Alsec to 120 Wsec. These velocities represent the values required to 

trigger the first amplitude peak, and presumably the fist occurrence of a flow tone (addressed in 
Section 6), over a range of cavity depths, for both short and long inlet pipes. Dimensionless 
representations of these velocities, based on power concepts, is currently under consideration. In 
essence, one expects the vorticity-based contribution to the acoustic power P, to d e  according 
to P, - pU2u, for a given value of cavity length L. Sufficiently large values of P, can be 

achieved either by increasing the value of inflow velocity U or the self-excited acoustic velocity 

ur. These features must be taken into consideration for dimensionless representation. 

Preferred nwdes of resonator. The foregoing considerations have addressed the scaling and 

limiting values of the system parameters. An additional consideration is the determination of 
whether all modes of the acoustic resonator, Le., pipe-cavity system, are susceptible to coupling 

phenomena that lead to generation of flow tones. For the entire range of experiments, tones are 
generated only for the even modes, i.e., n = 2, 4, . . . of the pipe-cavity system. This observation 

is compatible with the existence of a pressure node and a velocity antinode at the location of the 
cavity. An interpretation of the excitation of even modes is as follows. Effctive perturbation of 
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the separating shear layer requires reiatively large amplitudes of acoustic velocity fluctuations in 
the vicinity of shear layer separation, i.e., in the most sensitive, or receptive, region of the shear 
layer along the mouth of the cavity. This occurs €or even resonant modes. With this concept in 
mind, an interesting issue is the effect of asymmetry of the pipe sections located at either end of 
the cavity, and whether a small amount of asymmetry can effectively attenuate the amplitude of 
the self-excited oscillations, presumably by displacing the pressure node, i.e., the velocity 
antinode, away' fiom its most effective location. This matter will be addressed in a forthcoming 
stage of the investigation. 
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p/pu2/2 U(ft/sec) I P/pUc Notes AUTHORS/ 
CONFIGURATION 

1 I 
I I 1 

Large-scale 
mode 

[VD = 2.51 Present 
Cavity in pipeline 

Rockwell and 
Schachenmam (1 982) 
Pipeline-cavity-onj?ce 

0.36 65 0.017 

0.24 

0.014 

0.022 

0.00055 
Elder et al. (1982) 
Sidesavi@ in wall 

Hourigan et al. (1990) 
Orifice-baffle system 0.048 35 0.192 

NA 0.79 

[Short side pipe] Kriesels et al. (1995) 
Closed side pipe NA 1 0.02 I 54 I 

Table 1 : Comparison of representative values of dimensionless pressure. 



5. mQUENCIES OF OSCILLATION: CORRELATION AND SCALING 
Identifiable peaks in the data given in Section 4.3, and the manner in which they vary with either 
inflow velocity or cavity length, provide a basis for: (i) correlations with traditional models; and 
(ii) frequency scaling based on concepts of inviscid stability. In the following, these two classes 
of assessments are addressed in detail. 

5.X CORREUITONS OF FXQUENCIES OF OSCIUAlTON RlTH EXISTING MUBELS 
BASED ON CXMTYLENGlX 

5.1.1 overview of ModeLr 
Over the years, a great deal of effort has been devoted to the devetopment and revision of models 
for the dimensionless frequency of oscillation. They have the general form: 

fLAJ = wm(n f 4, ( 5 4  

in which U is taken to be the fieestrearn velocity, W, is the convective speed of a vortex or 
instability wave through the shear layer, n is the stage of oscillation and u is an end correction. 
This type of model has its genesis in the early formulations of Rossiter (1962, 1964), whose 
more general formulation accounted for variations of Mach number, and Powell (I96 1 , 1964), 

who actually employed this type of relationship for a jet-edge, as opposed to a cavity 
configuration. In the application of most models, the ratio U$u and a are viewed to be 
adjustable constants. Various types of arguments have been made, however, for relating the 
dimensionless phase velocity UJIJ to values determined from stabiiity theory. In' doing so, 

however, a constant value of UJU is defined; in contrast, inviscid spatial stability theory 
indicates that UJU is actually a hnction of frequency. Recent efforts in the theoretical direction 

aim to specify values of UJU and a without recourse to empiricism. Such models employ an 
infinitesimally thin shear layer. They include the works of Crighton (1992) for the case of a jet- 

edge configuration and Howe (1 997, 1998) for edge and cavity configurations. 
For purposes of correlating the present experimental data, the following relations will be 

employed: 

(a) fLAJ = 0.61(n - 1/4), which is due to Elder (1978) and Pollack (1980); 

@) €/L./lJ = 0 ,qn  f 1/6), which is due to Howe (1997, 1998); and 
(c) f W U  = 0.6% which serves as a reference curreIation that does not account for any end 

effects, Le., a = 0. This correlation was also deduced on the basis of phase measurements by 
Rockwell and Schachenmann (1 982). 



It should be emphasized that the correlations (a) and 0) have been employed almost 

exclusively for the c8se where there is a well-defined fieatream, as opposed to the present 

situation of flow through a pipe. When the pipe flow is My-developed, a freestream velocity 

does not exist. The characteristic velocity, 0.86U = 0.86U,, which represents the spatially- 

averaged or bulk-averaged velocity through the pipe, is employed herein. It should be noted that 
use of this normaIizing velocity 0.86U can also be interpreted as follows. It is equivalent to 

employing an equivalent fieestream velocity U and a lower value of a dimensionless phase speed 

0.86 WJU. 

5.1.2 Correlutiom for Variations of Inflow Vdocig 
Figures 6a through 6c show comparisons between the correlations of Section 5. I .  1 and 

'the data of Figures 4a through 4e, which exhibit well-defined peaks. In each figure, the top plot 
represents a best fit through the data of the form fLN = K, in which K is simply the constant that 
provides the best Linear fit. In other words, this fit does not involve any of the aforementioned 
correlations. En the bottom plot of each figure, direct correlation with the foregoing models (a) 

through (c) is given. In all figures presented herein, the normalizing velocity is 0.86 U = 0.86 

t, which, as described in the previous section, corresponds to the bulk velocity at the pipe exit. 

Figure 6a represents the case of the deepest cavity W* = 1.25. The top plot shows that the 
normalized fkequencies fUU are related to each other in an approximately harmonic fashion. 

The lower plot of Figure 6a shows correlations with stages n = 2, 4, and 6. Reasonable 
agreement is attained with the correlation fu(0.86 u> = 0.6 n. 

The correlations of Figure 6b correspond to the shallower'cavity W' = 0.5. In this case 
the upper plot shows fits according to WU = 1 .OO, 1.45 and 1.98. In other words, in addition to 

a harmonic mode, an apparent intermediate mode &/U = 1.45 exists. In the lower plot of Figure 
db, however, the data are recently well fitted using stage, or mode, numbers n = 2, 3 and 4 and 

with the end correction corresponding to n = 1/4. 

For the case of the shallowest cavity, W* = 0.25, for which detectable peaks could still be 

identified, the data are represented in Figure 6c. The correlation at the top of Figure 6c shows 
that harmonics of the hndarnental mode fUU = 1.0 are not present. Rather, only a so-called 

intermediate mode fIAJ = 1.47 is apparent. As indicated in the bottom plot of Figure 6c, the 

w e  of n = 2 is well correlated for the equation with (n = lM), while neither n = 2 or n = 3 shows 



an acceptable correlation with the intermediate mode, represented as fUU = 1.47 in the 
corresponding upper plot of Figure 6c. 

5.1.3 Gexisdeme of Multiple M& 
A mmmon feature of the correlations discussed in Sections 5.1.2 is the coexktence of two or 
more fiequency components at a given value of velocity U. The criterion employed for defining 
these fiequency components simply involves detection of an organized peak@) in the pressure 

spectrum. These peaks are associated with the hydrodynamic unsteadiness of the shear layer 
past the cavity. In other words, only selected frequency components in the corresponding figures 
of Section 5.1.2 represent flow tones for which the organized unsteadiness of the shear layer, Le., 
a Strouhal mode, couples with the acoustic resonant mode of the pipe-cavity system. 

It is important to recognize that multiple hydrodynamic modes can exist in absence of 
acoustic resonant phenomena. This is evident fiom the early correlations of Rossiter (1962, 

1964) for the limiting case of zero Mach number, and the wide range of theoretical and 

experimental investigations of impinging flows over the past two decades, including not only 

cavity, but also jet-edge and jet-orifice systems. Most recently, the theoretical model of Howe 
(1997) analyzes, using a vortex sheet representation, the multiple modes present for the case of 
flow past a cavity at low Mach number. As shown by Knisely and Rockwell (1982), actual 

experimental characterization of the unstable shear layer past a cavity, emerging fiom initially 
laminar conditions, show the existence of a substantial number of frequency components at a 
given value of cavity length. These multiple frequency components need not be harmonically 

reiated to each other; in fact, sum and difference fiequency components are also present. Such 
strictly hydrodynamic considerations provide a basis for interpreting the multiple fiequency 
components, or modes, present at a given value of inflow velocity U in Section 5.1.2. Detectable 
frequency components generally h e  up with one of the resonant acoustic modes of the pipe- 
cavity system. If conditions are appropriate for coupling, a pronounced flow tone may result. 

5.2 S W N G  OF FEQVENCY OF OSCILLATION ON BASIS OF JET DL4METER 
The correlations of the preceding section attempt to provide overd guidance for the occurrence 
of self-sustaining osciilations in accordance with variations of inflow velocity. An alternate, and 

more rigorous, indicator of the origin of the oscillation involves scaling the Frequencies on the 

basis of stability concepts. It should be emphasized again that, far all cases considered herein, 
the inflow is hl ly  turbulent, and it is assumed that application of inviscid stabhity theory to the 



time-averaged base flow, which itself is influenced by the presence of turbulence, can provide 
guidance for determining the frequency of the predominant fluctuation. This type of scaling is 
based on a representative thickness of the shear layer, in contrast to the use of a geometrical scale 

such as cavity length or depth. These scaling parameters are: momentum thickness 80, evaluated 

at the exit of the inlet pipe (see Section 3); and the pipe diameter D, which is an approximation to 
the jet diameter, ie., the distance between the inflection points of the jet shear layer. Generally 

speakin& use of the momentum thickness 80 is most relevant for the case of a thin shear layer 

instability, which initially occurs in the immediate vicinity of the nozzle exit, and is expected to 
give rise to formation of smaller-scale vortices. On the other hand, the jet diameter D provides a 
suitable scale for a fully-evolved instability of the entire jet, typically associated with large-scale 

vortex formation. 
The present emphasis is on the large-scale mode of oscillation. This mode is defined to 

occur at a long cavity length., which allows development of a hlly-evolved axisymmetric 
instability (Section 4.4). It is expected to scale on the jet diameter D. Considerable experimental 
work for the case of a fiee axisymmetric jet subjected to loudspeaker excitation or, alternately, to 
feedback fiom an impinging jet, allows one to deduce the predominant fiequency fD/U, which is 
taken to represent the generation of la rge-de  vortical structures, often referred to as "puffs". 
These experiments, along with an overall correlation of the data, are described by Blake (1986). 
Relevant investigations include Browand and Laufer (1975), Crow and Champagne (1971), Lau, 

Fisher and Fuchs (2972), and Nosier and Ho (1982). Based on this range of experimental 
studies, the dimensionless fiequency of the l a rge -de  vortex formation in the jet is expected to 

lie in the range of 0.3 I D/U 5 0.6.  

Scaling of the fiquencies of the predominant peaks exhibited in Figures 4a through 5g 

according to fD/U showed that they generally lie in the range of 0.35 

are in remarkable agreement with the expected values of 0.3 5 DAJ I 0.6 defined in the 

foregoing. Figure 7 exhibits the data corresponding to the predominant amplitudes, which have 
dimensionless frequencies fD/u in this range. This plot emphasizes the collapse of the data for 

different thicknesses of the i d o w  boundary layer, and its relative invariance with flow velocity, 

or more appropriately, with Reynolds number U D h .  

D/U s 0.4. These values 

Perhaps the most remarkable observation, if one views the entire set of data, is that the 

&ling relation fDAJ proves accurate irrespective of the cavity depth. That is, the unstable 



frequency of these d e d  large-scale modes is DAJ z 0.4, even for relativejy shallow cavities 

for which large-scale vortex formation is not expected to occur. Peaks of the l a r g e - d e  mode at 

fD/U E 0.4 are detectable for values of cavity depth as s d  as W/D = 0.25. Moreover, even for 
the shallowest cavity WiD = 0.125, for which pronounced peaks do not occur, the excitation of 
the pipe modes shows preferential values clustered in the vicinity of D/U = 0.4. Details of the 
development of this instability, and mechanisms for sustaining it, deserve krther consideration. 

In this regard, the possible existence of a global (absolute) instability should be 
addressed. It contrasts with the aforementioned instabilities, which are of the convective type. 

In essence, this type of instability is likely to occur in configurations where regions of negative 
streamwise velocity occur as a result of, for example, the local reverse flow in the recirculation 

mne in a shallow cavity. In an analogy with the corresponding global (absolute) instability 

occurring in the wake behind a cylinder of diameter D, for which the instability d e s  according 

to fDN, it is expected that the cavity unsteadiness would scale according to fW/U if it is globally 

unstable. That is, the only representative transverse length scale would be the cavity depth W. 

Preliminary indications suggest that such a global instability does not exist, since the frequency 
scales remarkably well according to fD/U = 0.4 for all values of cavity depth W. Scaling of the 

form WKJ would produce a fivefold variation of the values of W/U, corresponding to the range 
of W/D extending from 1.25 to 0.25. Nevertheless, the role of the recirculation zone in 

maintaining the cavity oscillations is worthy of hrther consideration. 

. 

6. ONSET OF LOCKED-ON FLOW TONES 
A primary issue is whether highly coherent, locked-on flow tones can arise in the presence of a 

fully-turbulent inflow, as described in the references cited in Section 1. Nearly all previous 
investigations of this class of flows have considered the case of laminar, transitional, or 
undefined inflow conditions. Moreover, even in those timited cases where the idow boundary 
layer was hlly turbulent, means to characterize the onset of lock-on were not explicitly 
addressed using simple criterion. 

61 GENERAL FEAZTRE3’UFLKKUN 

It is generally accepted that locked-on flow tones exhibit the following characteristics: 

(a) Amplitude increme with increase of inflow veloc@. An abrupt increase in amplitude of the 
unsteady pressure occurs as the flow velocity is increased in the regon of the onset or lock- 

on. It is expected that, if spatial resolution along the velocity coordinate is adequate, the plot 



of unsteady pressure amplitude versus velocity will not necessarily be a disconthuity. 
Rather, it should be possible to  characterize a slope of peak pressure amplitude P versus U 
associated with the occurrence oflocked-on flow tones. This slope could be considered as a 
deviation from the slope prior to the onset of lock-on, where it is due to a change in either 
the background turbulence level or an underlyhg coherent instability, i.e., the StrouhaI 

source. 

(b) Ampliturk peak above backpurrd Attainment of sufkiently high amplitude of the 

pressure peak P above the background pressure level pbg would be a further criterion for 
identification of a locked-on flow tone. As noted in (a), this background pressure amplitude 
would be due to either the underlying turbulence or the inherent instability (Strouhal 

source), or a combination of them. It is expected that the incompressible pressure amplitude 
due both to turbulence and to the inherent instabaity will change with velocity according to 
a power law. The exponent in the power law would take on different values for each of these 
two origins. It is, however, diEcult to decompose the background pressure into turbulence 
and inherent instability components, due to the manner in which the instability wave grows 

upon the turbulent background. Nevertheless, it would be desirable to characterize the peak 
pressure ampIitude P that occurs for locked-on flow tones in terms of a value of excess 

pressure above the background pbg, Le., turbulendinherent instability wave components. 

An important issue regarding the pressure amplitude is the fact that not only the magnitude 
of the inherent instability (Strouhal source), but also the magnitude of the turbulence will be 
enhanced by the presence of a resonator, even when lock-on does not occur. It is therefore 

desirable to have a criterion that would allow a straightforward estimate of the maximum 

attainable pressure amplitude due to turbulentlinstability excitation of a resonator in the 
absence of lock-on; then, any excess pressure p above this value would presumabIy be 
associated with the lock-on features of the inherent instabirity (Strouhal source), 

(c) Frequency coincidence. Coincidence of the frequency of the inherent instability wave, 
which presumably gives rise to vortex formation, with the frequency of a given mode of the 
resonator, is a fbrther criterion for the Occurrence of locked-on flow tones. In situations 
where the inflow i s  laminar, it is relatively easy to distinguish between the frequency of the 

inherent instabiIity and the resonator frequency prior to the occurrence of lock-on. Although 

well-defined peaks due to both of these ongins may exist in the region away from lock-on, a 



single frequency occurs during lock-on. In the event that the innow is &fly turbulent, the 
fiequency of the inherent hstability is more d a d t  to detect. In fact, a pre-existing 
coherent oscillation may not be readily detectable prior to coupling with the resonator. 

d 2 NON-LXXELWN BUFFETING OF A WONATOR:  A MECWMCAL Ah?ALOCY 
Incompressible turbulence or an instability wave can effectiveiy excite a resonator. A 

consequence of this excitation may be a detectable peak or bump in the spectrum of the pressure 
fluctuation. A mechanical analogy to this process involves flow-structure interaction, or more 
explicitly, turbulent buffeting of an elastically-mounted body, Whereas very little effort has 

been devoted to understanding the nature of turbulent buffeting of a resonator, the buffeting of a 

body or structure has received considerable attention. It can serve as a basis for characterkg 
the Limiting pressure amplitude due to turbulent buffeting of a resonator. 

' 

Consider a discrete mechanical system with a mass m, a spring having a stiffness C, and a 
dashpot having damping coefficient B. This system has a naturd fiequency f, 0J211. The Q- 

factor of this mechanical system is determined by the damping coefficient 6, i.e., Q = 1/26. This 
a system may be excited by, for example: a relatively broadband turbulence, a combination of 

turbulence and an instability wave; or simply an instability in the form of a vortex. Irrespective 

of the type of excitation, one may represent the spectrum of the consequent turbulent/instability 

force F as Sdf). The mechanical admittance of the system is, in accordance with the 

terminology of Naudascher and Rockwell (1 994): 

in which C is the mechanical stifhess of the spring. The relationship between the spectrum of 

the displacement response Sdf) and the turbulent forcing hnction is simply: 

The form of S#) is arbitrary. According to equation (6.1), for defined values of C and mn, the 

magnitude of the displacement at a given value of fiequency o = 2xf will be maximized when 

the value of Q takes on its largest value. In other words, when the Q-factor becomes large, it 
represents a very lightly damped system and the displacement amplitude becomes large, The 
converse holds, of course, when Q is small. An analogous relationship to equation (6.i), and 
similar reasoning, holds for a distributed (mulii-degree freedom) resonator as well, 



In a general sense, a 5uid resonator can be considered analogous to the resonant 
structural system described in the foregoing. All resonators of the standing wave type are 

inherently distributed, rather than discrete. Nevertheless, these distributed resonators do have, at 
a single value of excitation frequency, a spec& value of damping, or Q-factor. If an analogous 

linear relationship between spectra of the response pressure amplitude, resonator admittance, and 

the incompressible turbulencd instability wave exists in parallel with equation (6.2), it is 
possible to make the following, simple argument. Consider the schematic of the pressure 
spectrum and its Q-f&or defined in Figure 8, The response pressure amplitude at frequency &, 
Le., Sp(f& due to buffeting of a resonator having a quality-factor Q can itself have a maximurn 
quality factor of Q. In other words, for the case of harked, turbulent buffeting of a resonator, 
no mechanism exists for inducing a pressure amplitude response having a Q-factor in excess of 
the Q-factor of the resonator. It is known from an earlier phase of this investigation that the 
maximum Q-factor of a resonator occurs in absence of mean flow; therefore, the no flow value 
of Q would provide an upper (bounding) limit for the Q-factor of the pressure amplitude 

response, i.e., the Q-factor of the spectrum of the pressure. In essence, this means that if the 
spectrum of the response pressure has a Q-factor in excess of this upper bound, a mechanism for 

coupling, Le., the onset of locked-on flow tone generation, must be present. 

6 3  CRITERU FUR EV~UA3101VUFFLUWTONELUCKUN 
The background information outlined in the foregoing leads to several criteria for characterizing 
the onset of locked-on flow tones. Generic cases were selected fiom the relatively large number 

of experiments described in Section 4.3. The following types of assessments are expected to 

lead to identification of locked-on flow tones. 

(a) Variation, Le., slope, of peak pressure amplitude P of the pressure spectrum as a function of 

inflow velocity U; 

@) Value of the peak pressure ampIitude P relative to the local amplitude of the background 

pressure pbg; 

(c) Variation of the Quality (Q)-factor of the pressure spectrum as 8 function of either inflow 
velocity U or cavity length L; this type of Q-factor is defined in Figure 8. 

Emphasis herein will be on criteria (b) and (c). 



44 CHAR4CTi5RLZ4~01v OF lTIE ONSET OF L W K 4 N  FOR A G E N  W U N M  
ACOUSTIC MODE 

The range of data described in Section 4.3 can be examined in order to determine the onset of 
lock-on, in accord with the approaches dehed in Section 6.3. Of particular interest with regard 

to the onset and eventual attainment of lock-on are the following: 

(a) The Goflsequence of cavity depth on the lock-on process, and the nature of lock-on at a 

sufficiently large flow velocity such that a relatively large pressure peak is generated. 

(b) The initial onset of a locked-on state as flow velocity is varied. This initid state will most 
likely exhibit a relatively low amplitude peak of pressure amplitude. 

In the following, these features are addressed using selected data fiom Section 4. 

64.1 Egad  of CaviQ Depth on the Lock-on of Large-Scale Mode 
Figure 9a shows the variation of peak pressure amplitude P (determined from spectra p2(f)) and 
quality factor Q 8s a firnction of the flow velocity for various values of cavity depth W. The 

cavity length Lo has its largest value L', = L, / D  = 2.5 and is maintained constant. The plots of 

P in the left column are to becompared respectively with Figures 4c, 4e and 4f representing plots 
of cavity depths W' = 0.5, 0.25, and 0.125. The peak pressure amplitude P may occur at a 
frequency that deviates €?om the frequency of the resonant acoustic mode when flow velocity is 
increased. It is therefore necessary to search for the peak P over a defined band of frequencies at 

a given velocity. The lower and upper frequencies of this band are designated by fL  and fK and 

are defined in the inset of each figure. Moreover, a zoomed-in View, which corresponds to 

stretching of a portion of the image of amplitude response in a corresponding figure in Section 4, 
is provided for each of the plots in the left column of Figure 9a. In each of these insets, the 
direction of increasing velocity is vertically upwards and the left and right m g h s  correspond to 

values of f L  and fH. Considering the peak magnitude in each of the pressure plots in the first 
column, it is evident that as the Cavity depth is decreased, this amplitude decreases as well. 
Moreover, only for the deepest cavity, W' = 0.5, represented by the top plot, does a well-defined 
peak region exist, Milder peaks are evident in the middle and bottom plots. 

Variations of the Q-factor with velocity are given in the right column of Figure 9a. The 

Q-factor is calcuIated fiom the spectrum, p*(f) versus f, as defined in Figure 8. Let f, be the 

*frequency at which the peak occurs and f2 and f1 represent the frequencies at which half-values 

of p2(f) occur. The quality Q-factor is U(f2 - fi). As determined in the preliminary stage of this 
- 1  



program, substantial uncertainties in Q-factor are unavoidable, and the Q-factor plots of Figure 
9a show siguficant deviations. For the top plot of the Q-factor, corresponding to the cavity 

depth W*' = W/D = 0.5, large values of Q of the order of IO3 are attainable. Since the 
theoretically determhed Q-factor for a simple pipe, in absence of both a cavity and throughflow, 
has a much lower value of a p p r o h t e l y  SO, and in accordance with the discussion of Section 

6.2, the peak having Q = lo3 is therefore taken to represent a locked-on flow tone. In contrast, at 

smaller values of cavity depths W* = W/D = 0.25 and 0.125, discernible, small-amplitude and 
rounded peaks of the Q-factor are generally evident at locations of the corresponding mild peaks 
of the pressure amplitude distributions in the left column of Figure 9a. It is clear, however, that 

sufficiently large Q-factor above the background value are not attained, and it is therefore 

concluded that no locked-on flow tone exists for these states. It should be cautioned, however, 
that these observations are only for the longest cavity length, for which the large-s.de mode of 

vortex formation presumably becomes well-developed. At short values of cavity length, where 
smaller-scale vortices may be present, locked-on states may be attainable. This issue is currently 

under investigation. 
Figure 9b provides fbrther representations of the variation of peak pressure amplitude P. 

The top left plot directly compares P versus velocity U. Note that the values of P for the 

shallower cavities W* = W/D = 0.25 and 0.125 have been multiplied by a factor of 10 for this 

comparison. The case of the deepest cavity W* = 0.5 produces a sharply-defined peak at a 
relatively low value of velocity U = 130 Wsec. For the case of the shallower cavity W* = 0.25, a 
peak is not obtained until a much higher velocity of U = 200 Wsec and, moreover, this peak is 
not sharply-defined. Finally, for the shallowest cavity W* = 0.125, the peak is extremely mild at 

a velocity of approximately U = 170 Wsec. 
The upper right plot of Figure 9b compares the shape of each peak on ordinates of peak 

amplitude P versus normaked velocity UN-. This plot again brings forth the sharpest 

response for the deepest cavity. In the lower plot Figure 9b, the plot of log P versus log U 
emphasizes the increase in the pressure amplitude prior to attainment of the pressure peak. 

Curves of approximately the same slope are fitted through each set of data for each value of 
cavity depth W. 

Finally, Figure 9c shows the variation of slope dP/dU for the two deepest cavities 
W* = 0.5 and 0.25. Both the magnitude and gradient of the slope are sharpest for the deeper 

cavity. The magnitude of the maximum slope is approximateIy two orders of magnitude higher 
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for W* = 0.5, relative to W* = 0.25. The individual data points on each of these plots correspond 
to the local value of slope calculated f?om the original data set, and the smooth awes represent a 

best fit through these independently determined, local slopes. 

64.2 I td idSWts  of Luck-uH 
The series of plots shown in Figure 10 address the nature of the initial locked-on state as the 
velocity is varied for several representative inflow and cavity configurations. Often, these states 

have relatively low amplitude pesks. The pressure amplitude plots shown in the left column 
correspond respectively, fiom top to bottom, to Figures 4c, Sc, and 4a. The top and bottom plots 

of peak pressure amplitude P versus flow velocity U in Figure 10 compare the effect of cavity 
depths W' = W/D = 0.5 and 1.25. It is evident that, for the larger value of cavity depth 

W' = 1 . 2 ~ ~  the onset of a first, pronounced pressure peak occurs at a relatively [ow inaow 
velocity of the order of U = 70 Alsec (bottom plot), in comparison with the case Wo = 0.5, for 
which the first peak is at U = 120 Wsec (top plot). The presumption is that the deeper cavity 
allows more effective development of a large-scale vortex over the relatively long cavity. For 
both the W* = 1.25 and 0.5 cavities, the magnitude of the Q-factor shows a relatively large value 

at the location of the first peak. 
The middle set of plots of Figure 10 corresponds to the case of the cavity depth W' = 0.5 

with the short inlet pipe, for which the momentum thickness is approximately one-third the value 
of the long inlet pipe employed for the case of the top row of plots of Figure 10. In this case, a 

detectable peak is evident at a relatively low velocity U = 60 ftlsec and, correspondingly, the piot 

of Q-factor shows a significant peak as well. This low vdue of onset velocity may be due to the 
lower total damping of the short pipe-cavity system, relative to the long pipe-cavity system. In 
addition, the initial development of the separated shear layer from the short inlet pipe has an 
influence on the manner in which large-scale vortices eventually evolve; this difference in 
evolution might promote a welldefined oscillation at a substantially lower velocity. 

In summary, these results of Figure 10 suggest that larger values of ratio of cavity depth 

to pipe diameter, Le., larger W* = WD, promote the onset of flow tones at significantiy lower 

velocities for a pipe-cavity system of constant length. In addition, larger W/9 together with a 
shorter length of the pipe-crrvity system promote lower onset velocities. 



6 5  S-YUF UBSERVATTUNS OFLOCKUNBASED ONSELECTED C2WERI.4 
The evaluations of lock-on, presented in Figures 9a and 10, are representative of those occurring 

over a broad range of inflow velocity and cavity length, and it is possible to arrive at genera! 
observations, which should be applicable to all of the specific cases addressed in this program. 
Two principal criteria for defining lock-on are the focus of our present considerations: (a) a 

quality Q-factor of the square of the pressure amplitude as a f ic t ion of fiequency, i.e., the 
spectrum of the power p2(f) of the pressure fluctuation; and (b) the amplitude of the pressure 

‘4 peak,P normalized by the background pressure pbgr Le., P / b .  The background pressure pbg is 

defined in the top plot of Figure 9a. It represents the value, obtained by extrapolation, of the 

magnitude of the background pressure that would exist at the frequency of the peak pressure in 
the absence of any significant lock-on. In the following, these criteria are defined, then assessed 
for representative cases. 

6.5. I Definition of Lmk-un According to Quality Q- Fatur 

According to the concept described in Section 6.2, in the absence of any coupling between flow 

unsteadiness and a resonator, the quality-factor Q of the pressure response spectrum cannot have 
a value exceeding the Q of the resonator. In principle, this criterion provides B basis for 

determining the occurrence of the initial state of lock-on, provided uncertainties in deviations of 
evaluated Q-factors are accounted for. In an initial phase of the present investigation, values of 

Q-factor were determined for the pipecavity system subjected to external excitation, as well a s  
to self-excited excitation via throughnow. Despite use of adequate frequency resolution and 

averaging over a very large number of cycles, significant deviations about a mean value were 

discernible. In fact, these deviations are evident in virtually all of the Q-factor plots in Figures 9a 

and 10. Such deviations are due, at least in part, to the uncertainty of evaluating the Q-factor. 

In the present investigation, the nominal upper limit of the Q-factor approximately corresponds 

to the theoretically-determined value in the absence of mean flow, if one excludes regions where 
either well-defined peaks or certain “bumps” occur. Values of Q-factor can extend substantially 

below this limit due to the effects of mean Aow. Inspection of the trends of Q-factors for the data of 
Figures 9a and I O  suggest the occurrence of organized “bumps”. The maximum values of these 
“bumps” do not exceed a value of Q of approximately 180, Le.. Q z 180. 

On the basis of these data, values of Q-factor substantially in excess of Q = 180 are taken 
In fact, considering the entire range of data to represent Occurrence of a locked-on state. 



6.6 CHARQCTERIZAl70NOFLUCK-ONFORA G R E N S m O W  m B E R  
In the foregoing sections, 6.4 and 6.5, emphasis has been on the onset of lock-on along a given 

resonant mode, Le., pipe mode of the pipe-Cavity system. The inflow velocity LJ was varied, and 
the consequent variations of the peak pressure amplitude P and quality factor Q were observed as 
8 function of U. This approach provides the most straightforward, and conventional, 
interpretation of lock-on. It does not, however, provide a comparison of pressure peaks 

corresponding to a number of pipe modes, which are negotiated by varying the inflow velocity 
U, while maintaining a constant value of Strouhal number fUU. A fbrther reason for considering 
this type of representation is the possible occurrence of ordered deviations of pressure amplitude 
p between resonant modes as either inflow velocity U or cavity length E is increased. 

This type of representation involves taking vertical cuts through the types of three- 

dimensional plots shown in Section 4. These cuts are taken coincident with a constant Strouhal 
line, Le., a line corresponding to constant value of fUU. They are represented as straight black 

displayed in Figures 9a and 10, the s d e s t  value of Q-factor of the well-defined peak 
amplitudes is Q = 500, and the maximum value is Q = 2,000. 

a5.2 k k - u n  According tu Peak Pressure A m p k t l e  
The variations of peak pressure amplitude P can be directly compared with the corresponding 
variations of Q in each of the plots of Figures 9a and 10. It is readily apparent that large peaks of 

Q essentially correspond to large values of peak pressure P above the background. 

Values of (P/& were evaluated for each of the cases of 9a and 10. The background 
pressure pbg is dehed in the top plot of Figure 9a. Parallel with the aforementioned 
considerations for the Q-factor, where small-amplitude "bumps" of Q-factor are discernible, it is 
possible to consider the corresponding 'bumps" of the distributions of peak pressure P versus 
velocity U in 9a and 10. For all cases considered, the maximum dimensionless amplitude of a 

"bump" was P / h  E 2.0. 

Consider the well-defined peaks of distributions of amplitude P, given in 9a and 10. The 
values of (P/& range from 40 to 100. In pardel with reasoning for the aforementioned 
Q-factor criterion, a peak amplitude ratio P/pbg in excess of 2.0 is taken to be an indication of a 

pronounced lock-on and, in fact, the smallest value of 40 indicates that this Iimit is indeed well 

exceeded. 



lines on the plan views of Figures 4a, 4c, and 4e for a long pipe on either end of the cavity and 
Figures 5% 5c, and 5e for a short pipe on either end of the cavity. 

Consider fitst the case corresponding to Figure 4c, i.e., a cavity length L* = 2.5 and depth 
W' = 0.5. The plan view of Figwe 1 la  is the same View as Figure 4c, but with different reference 
Lines, corresponding to the straight black solid and dashed lines. The dashed line indicated by 

the symbol I passes through the peak values of pressure amplitude. Lines designated as a = 4.5 

and a = - 0.742 define the boundaries of the domain on the velocity versus frequency plane. 

Vertical cuts are made through these lines, as well as Lines lying between them. Representations 
of these cuts are given in Figure 1 Ib. It is a three-dimensional plot of log p as a function of log f 
and log u. The bold Lines therein represent typical spectra on the log p versus log f axes. 

Orthogonal to these bold black lines are thin black lines, which correspond to the aforementioned 
vertical cuts. 

Cuts at various values of a, using the data of Figure 1 1 a, are given in Figure 1 1 c. For all 

values of a, over the lower range of d o w  velocity U, the pressure peaks are not sharp, For the 

cuts corresponding to u = 4.66, 4.68 and -0.70, there is onset of large amplitude, sharply- 

defined peaks at a sufficiently high value of flow velocity. 

A zoomed-in View of case u = -0.68 is shown in Figure 1 Id. As the value of velocity U 
is increased, peaks tend to occur in pairs, and these paired peaks coalesce at the highest values of 

velocity to produce single, sharply-dehed peaks. In analogy with the classical Q-factor for a 

typical spectrum, p2(f), it is possible to define a sharpness factor as: SI = Ud(v2 - Ut), In 
addition, an alternate sharpness factor may be defined according to: Sz = A/(Wz - VI), in which 

A is the amplitude of the local pressure peak. Representative values of SI and Sz are indicated 
adjacent to the two peaks designated in Figure f ld,  one occurring at a reiatively low value of 
velocity U, and the other at the relatively high value of U. The values of both SI and Sz increase 
by approximately a factor of 5 as velocity U is increased. 

The results for a shallower cavity are represented by Figure 12% which is the same data 
set as exhibited in Figure 4f. A reference line is indicated as I, and boundaries of the region 

considered extend from u = - 0 . 5  to a = -0.7. Sectional cuts are shown in Figure 12b. 

Irrespective of the cut employed, sharply-defined peaks do not emerge, suggesting a non-locked- 
on response, A zoomed-in View of a representative series of peaks, corresponding to the cut 

a = -0.76, is given in Figure 12c. Values of the sharpness factor SI exhibit little change over the 



relatively wide range of innow velocity U. In fact, the sharpness factor defied as Sa actually 

decreases at the higher vdue of inflow velocity. 
For the case of the short pipe mounted on either end of the cavity, a representative data 

set corresponding to  Figure 5c was selected. The plot of Figure 13a corresponds to Figure 5c. A 
predominant pressure amplitude peak intersects the Line designated as I. The boundaries of the 

domain extend fkom u = -0.6 to Q = 4.8 .  As shown in Figure 13b, emergence of a sharply- 

d e h d  peak is evident at u = -0.76, -0.78 and 4.8. A zoomed-in view of the case a = -0.78 is 
given in Figure 13c. The sharpness factor SI increases by approximately a factor of 8 and SZ by 

about a factor of 7 as the vdue of LJ is increased. 

. 7. CONCLUDINGRE=MARKS 
An overview of the principal findings of the present investigation is provided in this section. 
Detailed values of parameters and other specifics related to these findings are summarized at the 
end of each of the preceding sections. In the followin& the onset of self-excited oscillations is 
addressed with respect to the inherent instability of the shear layer past the cavity and its relation 

to the generation of relatively large-scale modes of flow tone lock-on, the dimensionless 
fiequencies and pressure amplitudes associated with these modes, and the criteria for lock-on. 

7.1 TRAhCSFUMTToN FROM FUUY-TURBT%LEIVT INFLOW TU HIGHLY CUHERENT 
FLU W TUNES 

A central issue in this investigation is generation of highly coherent flow tones fiom a hlly 
tuhulent inflow. Considerable effort was devoted to the generation of h l l y  turbulent shear flow 
at the inlet of the cavity, including the case of a fblly-developed turbulent pipe flow. For 
appropriate ranges of parameters, highly coherent flow tones emerge. It is hypothesized that the 

inherent, inviscid instabiity of the shear iayer past the cavity is reinforced by coupling with an 
acoustic resonant mode of the pipe. This process would then dominate the background 
turbulence of the inflow. The fact that the inviscid instability of the shear layer plap a clear role 
is suggested by agreement between dimensionless fiequencies of the flow tone and fhquencies 
of instabilities of the shear layer predicted from inviscid theory. This observation suggests that 
the time-averaged turbulent background flow can serve as the mean Bow for the deveIopment of 

the inviscid instability in the shear layer. 



7.2 G E N E R ~ ~ O N A N V S C ~ W N C O F  FLOW T O N E S ~ N ~ L A R G E S C A L E M U D E  
Of primary interest in this investigation is generation of flow tones in a large-de mode, which 

is defined to occur at relatively long cavity lengths. Its frequency scales with the pipe diameter. 
This mode occurs for extremes of boundary Iayer thickness generated at the cavity inlet, thereby 
r e d k t i n g  the scaling based on pipe diameter. 

Flow tones in the large-scale mode can be generated in very shallow, long cavities, where 
the length of the cavity is an order of magnitude larger than its depth, and the cavity depth is as 
small as one-fourth the pipe diameter. Generally speaking, the peak amplitude of the fluctuating 
pressure decreases as cavity depth decreases. In the limit, if the cavity depth is dciently 
shallow, of the order of oneeighth of the pipe diameter, flow tones cannot be generated in the 
large-de mode. 

Scaling of the pressure fluctuations involves two types of dimensionless groups. For 
sufficiently deep cavities and minimum damping comesponding to the short pipe system, the 

dimensionless pressure amplitude of a flow tone, using the inflow dynamic pressure for 

normalization, is p/(pU2/2) - 0.6; correspondingly, the pressure amplitude normahzed on inflow 

velocity and the speed of sound can attain values as high as p/(pLJc) - 0.04. On the other h d ,  

for shallower cavities and relative high damping corresponding to the long pipe system, flow 

tones having low amplitudes of p/(pU2/2) - 0.007 and p/pUc - 0.0003 can be generated. For this 
case, it is hypothesized that a degree of intermittency of the lock-on process may contribute to 

low-pressure magnitudes, even though the pressure response characteristics are sharp and 
indicate lock-on. A detailed summary of the concepts and issues related to this type of scaling is 
given in Section 4.4. 

Scaling of the 6equencies of the flow tones of the large-scale mode involve, first of d, 
d i n g  based on the pipe diameter D; Le., D/U = constant. Remarkable is the fact that this 

scaling holds for all values of cavity depth W for which flow tones are generated, even for 
cavities sufficiently shallow such that large-scale vortex formation is not expected to occur. 

Apparently, a mechanism for a long wavdength, large-scale mode persists. Moreover, even for 
the shallowest cavity for which flow tones do not occur, excitation of the pipe modes occurs over 

a band of preferential frequencies that satisfy the fD/U scaling. This scaling is described in 

detail in Section 5.2. 
The frequencies of flow tones can also be scaled in accordance with the cavity length, 

i.e,, fUU = K. A variety of scaling correlations have been compared with the present set of data, 

I .  



but no single correlation a d e q ~ e l y  characterizes the flow tone frequency fTAJ over the wide 
ranges of parameters addressed herein. Generally speakmg, however, the large-scale mode tends 
to OCCUT at the second mode, or stage, n = 2 defined by these correlations. The results of this type 

of dimensionless scaling are described in Section 5.1.2. 

7.3 NATURE OF LUCKEDUN FLOW TONES 
Criteria, or indicators, for assessing the occurrence of locked-on flow tones have been addressed 
and evaluated. The first is the quality Q-factor of the power spectrum of the pressure fluctuation. 
M e r  considering a range of representative, locked-on flow states, it is apparent that two types of 
peaks can occur in variations of Q-factor with inflow velocity or cavity length. The first are 
s d  amplitude, organized "bumps" of the Q-factor. The maximum value of Q-factor that occurs 
for these "bumps" is approxhtely Q = 180. The second type of peak in the variation of Q- 
factor is much larger; it exceeds by a substantial margin the values of the Q-factors for the so- 
called bumps. In fact, these Q-factors range !?om Q = 500 to 2,000. The fact that these values of 
Q are decisively larger than those occurring h the aforementioned band of Q-factors suggests 
that they represent robust locked-on flow tones. 

The second criterion is the normalized pressure amplitude (P/Pbg)max, in which P is the 

amplitude peak of the pressure spectrum and ppg is the background pressure magnitude that 

would exist in the absence of flow tone coupling. Analogous observations hoId for the ratio 

Omu;. for cases where innow velocity is varied. Small "bumps" of this ratio have a 

maximum value of (P/pbpxIyx 2 2.0. On the other hand, the onset of pronounced peaks yields 

values of (P/& from 40 to 100. For cases where cavity length is varied, similar bumps and 
peaks of Ip/pb8xRu occur, but their correspondence with the features of the Q-factor is not as 

consistent. 
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10. FIGURE CAPTIONS 

Figure 1: (a) Principal elements of self-sustaining oscillation of turbulent flow past cavity; and (b) 
hypothesized flow pattern within a very shallow cavity. 

Figure 2a: Overview of pipelinecavity system 

Figure 2b: Details of cavity subsystem. 

Figure 3a: Variation of nonnakd . mean velocity acruss pipe on semi-log coordinates to emphasize 
region of logarithmic yelaity vari+tim. 

Figure 3b: Direct COmpariSOfl of themean velocity variations across short inlet pipe (top plot) and long 
inlet pipe (bottom plot). 

Figure 4n: I h c  view (top huge) and plan View (bottom huge) of pressure amplitude as a function 
of frequency and velocity. Lines shown on plan view represent fits through peak values of pressure 
amplitude, Cavity length L' = LJD = 2.5 and depth w' = W/D = 1.25, where D is pipe diameter. Long 
pipes of equal length are located at either end of the cavity. 

Figure 4b: Plan view of logarithmic pressure amplitude as a function of velocity and fresueacy (top 
image); and plan view of magnitude of the derivative of the loganthic pressure amplitude with respect 
to velocity, a(logp)/aU (bottom image). Cavity length L' = LJD = 2.5 and depth w' = W/D = 1.25, 
where D is pipe diameter. Long pipes of equal length are located at either end of the cavity. 

Figure 4c: Isometric view (top image) and plan view (bottom image) of pressure amplitude as a function 
of fresuency and velocity. Lines shown on plan view represent fits through peak values of pressure 
ampIitude, Cavity length L* = UD = 2.5 and depth w' = W/D = 0.5, where D is pipe diameter. Lung 
pipes of equal length are I d  at either end oft& cavity. 

Figure 4d: Isometric view of logarithmic pressure amplitude as a hction of velocity and frequency (top 
image); and pian view of magnitude of the derivative of the logarithmic pressure amplitude with respect 
to velocity, a(logp)/aU (bottom huge). Cavity length L* = LID = 2.5 and depth w' = W/D = 0.5, where 
D is pipe diameter. Long p i p  of equal length are located at either end of the cavity. 

Figure 4e: Isometric view (top %e) and plan View (bottom w e )  of pressure amplitude as a hct ion 
of frequency and velocity. Lines shown on plan view represent fits through peak values of pressure' 
amplitude. Cavity 1- L' = L(D = 2.5 and depth w' = WID = 0.25, where D is pipe diameter, Long 
pipes of equal length are located at either a d  of the cavity. 

Figure 41: Isometric view (top image) and plan View (bottom image) of pressure amptitude as a function 
of fiequer~cy and velocity. Cavity length L* = UD = 2.5 and depth W' = W/D = 0.125, where D is pipe 
diameter, Long pipes of equal length ate located at either end of the cavity. 

Figure 4g: Overview of effect of Cavity depth on threedimensional representation of pressure amplitude 
as a fUadion of velocity and fiquency. In dI cases, cavity Iength is constant at L' = LJD = 2.5. Cavity 
de th varies accordulg to W' = W/D = 1.25 (top m e ) ,  w' = W/D = 0.25 (middle image), and wp= WID = 0.125 (tmom image). 



Figure 5a: Isometric view (top image) and plan view image) of pressure amplitude as a function 
of fresuency and velocity. Line shown on plan view represents a fit ttuough peak values of pressure 
amplitude. Cavity length L' = UD = 2.5 and depth w' = W/D = 1.25, where D is pipe diamar. Short 
pipes of qual length are located at either end of the cavity. 

Figure 5b: Plan view of logarithmic presnm amplitude as a fuudon of velocity and fj-equency (top 
image); and plan view of magaitude of the derivative of the logarithmic pressure amplitude with respect 
to velocity, a(hgp)/iXJ (bottom image). Cavity length L' = LiD = 2.5 and depth w' = W/D = 1.25, 
where D is p i p  diameter. Short pips of equal leflgth are located at either ead of the cavity. 

Figure 5c: Isometric view (top image) and plan view (bttan image) of pressure amplitude as a function 
of frequency and velucity, Line shown on plan view represents a fit b g h  peak dues of pressure 
amplitude. Cavity length L' = L/D = 2.5 and depth w' = W/D = 0.5, where D is pipe diameter. Short 
pipes of equal length are located at either end of the cavity. 

Figure 5d: Isometric view of logarithmic pressure amplitude as a function of velocity and frequency (bop 
image); and plan view of magaitude of the derivative of the logarithmic pressure amplitude with respect 
to velocity, a(logp)/tXJ (bottom image). Cavity length L* = YD = 2.5 and depth w' = W/D = 0.5, where 
D is pipe diameter. Short pipes of equal length are located at either end of the cavity. 

Figure 5e: Isometric view (top image) and plan view (bottom image) of pressure amplitude as a function 
of kequency and velocity. Line shown on plan view represents a fit through peak values of pressure 
amplitude, Cavity length L' = UD = 2.5 and depth w' = W/D = 0.25, where D is pipe diameter. Short 
pipes of equal length are located at e i h r  end of the cavity. 

Figure Sfi Plan view of logarithmic pressure amplitude as a b c t i o n  of velocity and frequency (top 
image); and plan view of magnitude of the derivative of the logarithmic pressure amplitude with respect 
to velocity, qIogp)/aU (bottom m e ) .  Cavity length L' = L/D = 2.5 and depth w' = W/D = 0.25, 
where D is pipe diameter. Short pipes of equal l@ are located at either end of the cavity. 

Figure 5g: Isometric view (top Image) and pian view (bothn image) of pressure amptituck as a fimctmn 
of i7equency and velocity. Line shown on plan view represents a fit through peak values of pressure 
ampfitude. Cavity lengtb L' = LJD = 2.5 and depth w' = W/D = 0.125, where D is pipe diameter. Short 
pipes of equal length are located at either end of the cavity. 

Figure 6a: Plots of values of frequency ~ 0 r r e s p o d . q  to amplitude peaks in Figures 4a and 4b. Top plot 
shows lines correspona to the best fit of the dimensionless frequency W U  through each set of data 
points. Bottom plot shows lines correspondmg to three dfferent correlations €or fUU. Velocity U 
corresponds to the time-mean centerline velocity at the center of the pipe, i.e., U = ii, . In the lower plot, 
the bulk velocity of the pipe flow, 0.86 U, is employed as the nomraliqation velocity. 

Figure 6b: Plots of values of frequency correspndmg to amplitude peaks in Figures 4c and 4d. Top 
plot shows lines correspondmg to the best fit of the dunensionless fiquency fUU through each set of 
data points. Bottom plot shows lines correspondmg to thre different correlations for fwu. Velocity U 
corresponds to the time-mean centerline velocity at the center of the pipe, i.e., U = tim. h the lower plot, 
the bulk velocity of the pipe flow, 0.86 U, is empbyed as the normalization velocity. 



Figun 6c: Plots of values of hquency m m e  to amptituck peaks in Figure 4e. Top plot shows 
linesco~~tathe~fitoftbedimensionless~u~~througheachsetofdata'points. 
Bottom plot shows lines correspodmg to three different correlations for fUU. Velocity U curresponds to 
the time-mean centerliae velocity at tbe center of the pipe, ].e., U = Urn. In the lower plot, the bulk 
velocity of the pipe flow, 0.86 U, is employed as the normalization velocity. 

Figure 7: Superposition of values of dimensionless hquemcy CO- to the maximum ampIitude 
peaks for each cavity configuration. 

Figure 8: Schematic illustrating &hition of Quality (Q) h r  based on pressure spectrum p2(f), 

Figure 9a: Effect of cavity depth on ozlset of flow tones. Plots show peak pressure amplitude P and 
quality factor Q as a M o n  of centerline velocity U for dab correspomhg to Figures 4c,d (top set of 
plots), 4e (middle set of plots), aad 4f (bo#om set of plots). Images in the inset of each pressure 
amplitude plot correspond to a zoomed-in version of a portion of the plan view of the aforementioned sets 
of plots. 

Figure 9b: Direct coxnparisocl of Variations of peak pressure amplitude P With centerhe velocity U 
correspdmg to data of Figure 9a. 

Figure 9c: Variation of slope of peak pressure ampiitude P as a function of velocity U for data 
correspondrng to the top and middle sets of plots in Figure 9a. 

Figure 10: Onset of initial flow tones. Plots show peak pressure amplitude P and quality factor Q as a 
function of centerline velocity U for data corresponding to Figures 4c,d (top set of plots), 5c,d (middle set 
of plots), and 44b (bottom set of plots). Images in the inset of each pressure amplitude plot currespond to 
a zoomed-in version of a portion of the p h  view of the aforeanenticid sets of plots. 

Figure l la: Plan view of pressure ampIitude response un plane of velocity versus frequency 
cur rap& to Figure 4c. Dashed line represents predominant Strouhal mode I. Solid lines correspond 
to boundaries of vettical cuts through three-dimensional plot of pressure amplitude - velocity - 
fiequenc . Values of u are extreme reference values for these cuts. Cavity length L* = LJLl = 2.5 and 
depth WSI = W/D = 0.5, where D is pipe diameter. Long pipes of equal length are located at either end of 
the cavity. 

Figure l l b :  T h r e e d i m a i d  representation of vertical cuts defined by extreme values of a in Figure 
I la. Bdd lines represent spectra. Thin lines are vertical cuts mhcident with the constant value of LI in 
Figure 1 la. Logarithmic values of parameters are employed. 

Figure l lc :  Vertical cuts through the plot of Figure 1 la. AIL cuts are dong a line of coflstant Strouhal 
number W, but at different values of a lymg between the extreme values defined in Figure 1 la. 

Figure l ld: Zoomed-in view of vertical cut selected from series of Figure 1 IC. This cut Corresponds to 
the largest amplitude, sharpest-peak response at larger values of inflow velocity. Parameters SI and S1 are 
sharpness factors analogous to Qquality factors. 

Figure 12a: Plan View of pressure amplitude response on plane of velocity versus fresuency 
c o m a e  to Figure 4f. Dashed h e  represents predominant Strouhal mode I. Solid lines correspond 
to bomhes of vertical cuts of threehensional plot of pressure amplitude - velocity - frequency. 
Vdues of LI are extreme reference values for these cuts:CaVity length L = LrD = 2.5 and cavity depth 
W' = W/D = 0.125, where D is pipe diameter. Long pipes of qual length are located at either end of the 
cavity. 



Figure 12b: Vertical cuts through the plot of Figure 12a. AU cuts are along a Line of constant Strouhal 
number fL/U, but at different values of a lying between the extreme values defined in Figure I2a. 

Figure Ik: z0orned-h view of vertical cut selected from series of Figure 12b. Parameters SI and S2 are 
sharpness b r s  analogous to Qqualiiy factors. 

Figure 13a: Plan view of pressure amplitude response 011 plane of velocity versus fiquency 
c.urrs-@ to Figure 5c. Dashed line represents predornhmt Strouhal mode I. Solid Lines correspond 
to boundaries of vertical cuts of threedimensional plot of pressure amplitude - velocity - frequency. 
Values of a are extreme referenF values for these cuts. Cavity length L' = UD = 2.5 and depth 
w' = W/D = 0.5, where D is pipe diameter. Short pipes of eqd length are located at either end of the 
cavity. 

Figure 13b: Vertical cuts through the plot of Figure 13a. AU cuts are along a line of constant Strouhal 
number fUJ, but at different values of a lying between the extreme values defined in Figure 13a. 

Figure 13c: zoomed-in view of vertical cut sekcted fim series of Figure 13b. Parameters SI and SZ are 
sharpness fhctors d o g o u s  to Qquality factors. 
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Figure 6a: Plots ofvalues of frequency corresponding to amplitude peaks in Figures 4a and 4b. Top 
plot shows lines corresponding to the best flit of the dimensionless tiequency fwu through each set 
of data points. Bottom plot shows lines corresponding to three different correlations for W. 
Velocity U corresponds to the time-mean centerline velocity at the center of the pipe, Le,, U = L. In 
the lower d o t  the bulk veiocitv oftheuhe flow. 0.86 U. is erndoved as the normalization ve1ocit-v - ?. 
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Figure 6c: Plots of values of frequency corresponding to amplitude peaks in Figure 4e. Top plot 
shows Lines corresponding to the best fit of the dimensionless frequency fL/U through each set of data 
points. Bottom plot shows lines corresponding to three different correlations for fL/U. Velocity U 
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