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I.  Grain boundary 
cohesion

Metallurgical 
understanding
Account for multiple 
elements
Effect of H concentration
Mechanisms of 
embrittlement

He embrittlement
SCC resistance

Background

II.  Solid State Bulk 
Diffusion

Work of Wolverton et al.
Proof of principle for H in 
nickel
Determination of D0 and Q 
from first principles
H diffusion in HCP Ti and 
Zr
H diffusion in FCC Fe –
effect of lattice parameter
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Computational Procedure: Pure nickel, Σ5-
{100} twist grain boundary, 0 K 

Relaxation of 
pure grain 
boundary Cleavage

Determination 
of impurity site 
and relaxation

Relaxation of 
free surfaces
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Geometry of impurity atoms on nickel Σ5 {100}

pure Ni B CH

Interstitial impurities
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Geometry of impurity atoms on nickel Σ5 {100}

He P S Cr Fe

Substitutional impurities
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Structure / energy mapping:  degree and 
extent of electronic interactions

Electronic charge changes around a P impurity atom in Ni

(a) (b) (c)

Gain LossGain (red), loss (green)
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Tendency to migrate to grain boundary, 
surface, or bulk (Note boron)
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Fundamental effects of impurities on grain 
boundary strength
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Metallurgical strengthening of
grain boundaries

Boron a known strengthener of Ni grain boundaries

Theories (Donachie from Superalloys Source Book):

Boron alters grain boundary precipitate structure

Boron has a beneficial interaction with a deleterious 
element (e.g. ties up sulfur ?)

Boron reduces the grain boundary diffusivity (slows S 
segregation ?) 
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Why does boron promote grain boundary 
strength (but carbon doesn’t) ?

B-2p electrons overlap with Ni-3d → bonding
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Mechanism of “He Embrittlement”

After irradiation and
annealing, He bubbles on 
nickel grain boundaries 
have been observed
But you embrittle before 
you observe physical 
bubbles – intrinsic He 
embrittlement (see Mills 
et al.)
Need to assess B loss and 
Li embrittlement, kinetics 
of He and Li diffusion

10 1 7 4
5 0 3 2B n Li He+ → +

n
B

α

Li

Bill Mills et al. 7th Env. Deg. Proceedings
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B loss + Li embrittlement + He embrittlement

B

n
α

Li

He

Li

He

Li

Boron transmutation releasing
helium and lithium

Helium and lithium collect at
the grain boundary.  Is the

rate of Li > He?

Boron loss, helium atoms, and
lithium atoms all lower the
grain boundary toughness

~1 µm
~3 µm

Need to understand kinetics of Li and He 
migration back to grain boundary
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He and Li embrittlers, B strengthener
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Effect of H concentration on cleavage energy 
with and without S and P impurities

Linear superposition 
good first 
approximation

No significant 
synergistic effects

S and H act additively
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Need to account for multiple effects:
(1) GB strength and (2) effect on H uptake  
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SCC of X-750:  Similar heats with different 
response to SCC initiation and growth 

 
Heat Ni Cr Fe Ti Al Mn C B P S Nb+Ta 

A 72.43 15.54 7.93 2.60 0.79 0.07 0.039 0.0037 0.007 0.001 0.86 
B 71.47 15.25 8.15 2.66 0.73 0.15 0.043 0.0022 0.002 0.002 0.97 

 

Heat YS 
(ksi) 

UTS 
(ksi) % El %RA 

A (Good) 118 172 27 32 
B (Bad) 117 176 26 36 

X-750 Condition HTH (2025oF/1hr + 1300oF/20 hrs)
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Heat “B” shows shorter initiation times and 
faster crack growth rates

Heat A Heat AHeat B Heat B

Heat CGR at 680oF 
K=35 ksi√in 

A 1.1 mils/day 

B 1.8 mils/day 
 

See Young et al. in 11th International Symposium on Environmental Degradation of 
Materials in Nuclear Power Systems – Water Reactors, Skamania, WA, August 2003.
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Heat A - typical Cr23C6 carbides
Heat B - unusually high # of Ni23B6

Heat B

Ni23B6

Heat A

M23C6

Loss of 
atomic 
boron

No Cr 
depletion 
around 
borides

Faster SCC 
initiation 
and growth
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Summary

Ab Initio atomistic modeling gives unique insight 
into metallurgical effects 

Explain alloying effects: Boron intrinsically 
strengthens Ni grain boundaries by helping to fill the 
Ni 3d orbital
De-convolute complex embrittlement phenomena:  
boron transmutation / stress corrosion cracking
Quantitatively assess the effects of multiple grain 
boundary impurities

Al He O Pb  Li  S  H  C  Zr  P  Fe  Mn Nb Cr Mo B
Embrittling StrengtheningNeutral
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Ab Initio Modeling of Solid State Diffusion:  
Hydrogen in Structural Metals
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Ab initio modeling of solid state diffusion

Phonon capability in MedeA/VASP is a significant 
advance, allowing accurate determination of things 
like enthalpy, and entropy as a function of 
temperature free energy
Phonons enable first principles studies of diffusion, 
solubility, etc. that are often experimentally difficult 
and subject to significant controversy, e.g. H 
diffusion in Al, Ti, O solubility in Ni, etc.
Examples

Chris Wolverton on H in Al
Present work on H in Ni, Ti, Zr, and Fe
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Experimental difficulties in diffusion

Often large noise / small signal
Oxide or other surface films often diffusion barriers
Effects of traps often not considered
May be difficult to ensure “lattice diffusion” control 
Electrochemical methods:  charging solutions can 
degrade sample (pitting)
Vacuum methods:  time lag between charging and 
measurement
etc., etc.
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Hydrogen diffusion in aluminum
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H diffusion both 
fundamental and 
technically important 
to Al and Al alloys
Large controversy in 
literature 
See: 

Young and Scully, Acta Mat. 
Vol. 46, No. 18, pp. 6337-
6349 
Wolverton et al., Phys. Rev. 
B, 69, 144109, 2004
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Barrier for lattice diffusion is relatively low, 
vacancies are strong trapping states

52---17
Wolverton
(ab initio)

84.8±32.243.5 ±17.515.3 ±4.8
Young

(experimental)

VacancyDislocationLatticeResearcher

Desorption Energies in Aluminum (kJ/mol)

2#
dE

3#
dE

1#
dE
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Diffusion Equation – see Wert and Zener Phys. Rev. 
Vol. 76, No. 8, Oct. 15, 1949, pp. 1169-1175.

{ } { }TRH
D

RSanD /exp/exp

0

2 ∆−∆=
444 3444 21

να

n:  number of nearest neighbor jump sites
α:   numeric coefficient that depends on the            

location of the interstitial positions
a:  lattice parameter (net jump distance, l)
ν:  vibrational frequency

∆S:  activation entropy
∆H:  activation enthalpy (Q)

R:  gas constant, T: temperature
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Diffusion procedure:  consider temperature 
dependence of ∆S and ∆H (and ν)

Determine low energy site
Determine low energy path
Vibrational frequency (relatively T independent) } ν
Entropy change f (T) } ∆S
Enthalpy change f (T) } ∆H

} n, α, and l

{ } { }TRTHRTSlnD /)(exp/)(exp2 ∆−∆= να
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Octahedral site and indirect diffusion path via 
transition state
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Vibrational frequency via VASP/Phonon

39.3 THz
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At the transition state, 
negative eigenvalue →
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Temperature has little effect on the vibrational 
frequency of H in nickel (0 K to ~1000 K)
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∆S and ∆H vary with temperature.  Typical 
assumption of constant D0 is an approximation

Hydrogen in Nickel Octahedral Interstice
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Variation of Q and D0 with temperature:  note 
“balance” at temperatures >200 K
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Excellent agreement between first principles 
calculations and experimental methods
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Large disagreement in experimental data for α-
Ti.  Modeling line gives an impressive “best fit” 

Reciprocal Temperature (K-1)
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Limited data for H in α-Zr. Results for H in Ni and 
α-Ti give confidence that modeling is accurate

Reciprocal Temperature (K-1)
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For γ-Fe:  Larger than typical error between 
calculated and experimental lattice parameter
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Calculations for H diffusion in γ-Fe highlight the 
strong effect of the lattice parameter, a
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Summary of parameters
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Summary

Excellent agreement between first principles calculation of H 
diffusion in nickel
Calculations help resolve controversy in systems where 
experimental data are in disagreement:

H in α-Ti

and guide predictions where there are sparse data:
H in α-Zr

Results for H in γ-Fe show strong influence of lattice 
parameter
Calculations give new insight into diffusion paths and 
temperature dependencies
Techniques have broad applicability to Materials Science, 
e.g. diffusion, solubility, entropy, enthalpy, free energy, …


