LM-04K037 May 27, 2004

Applications of Ab Initio Modeling to Materials Science: Grain Boundary Cohesion and Solid State Diffusion

GA Young, R Najafabadi, W Strohmayer, J Vollmer, C Thompson, W Hamm, C Geller, E Wimmer, J Sticht, A Mavromaras and J Harris

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States, nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

Applications of Ab Initio Modeling to Materials Science: Grain Boundary Cohesion and Solid State Diffusion

Medea User's Group Meeting, Orcas Island, WA, June 17-20, 2004

George A. Young, Reza Najafabadi, Walter Strohmayer, James Vollmer, Charles Thompson, William Hamm

Lockheed Martin Corporation Schenectady, NY 12301-1072

Clint Geller

Bechtel Bettis, Inc. West Mifflin, PA 15122-0079

Erich Wimmer, Jurgen Sticht, Alexander Mavromaras, John Harris

Materials Design Inc. Angel Fire, NM 87710-1318

Background

- I. Grain boundary cohesion
 - Metallurgical understanding
 - Account for multiple elements
 - Effect of H concentration
 - Mechanisms of embrittlement
 - He embrittlement
 - SCC resistance

- II. Solid State Bulk
 Diffusion
 - Work of Wolverton *et al*.
 - Proof of principle for H in nickel
 - Determination of D₀ and Q from first principles
 - H diffusion in HCP Ti and Zr
 - H diffusion in FCC Fe effect of lattice parameter

Computational Procedure: Pure nickel, Σ 5-{100} twist grain boundary, 0 K

Geometry of impurity atoms on nickel Σ 5 {100}

Interstitial impurities

Geometry of impurity atoms on nickel Σ 5 {100}

Substitutional impurities

Structure / energy mapping: degree and extent of electronic interactions

Electronic charge changes around a P impurity atom in Ni

Tendency to migrate to grain boundary, surface, or bulk (Note boron)

Fundamental effects of impurities on grain boundary strength

Metallurgical strengthening of grain boundaries

- Boron a known strengthener of Ni grain boundaries
- Theories (Donachie from <u>Superalloys Source Book</u>):
 - Boron alters grain boundary precipitate structure
 - Boron has a beneficial interaction with a deleterious element (*e.g.* ties up sulfur ?)
 - Boron reduces the grain boundary diffusivity (slows S segregation ?)

Why does boron promote grain boundary strength (but carbon doesn't) ?

B-2p electrons overlap with Ni-3d \rightarrow bonding

Mechanism of "He Embrittlement"

$${}^{10}_{5}B + {}^{1}_{0}n \rightarrow {}^{7}_{3}Li + {}^{4}_{2}He$$

- After irradiation and annealing, He bubbles on nickel grain boundaries have been observed
- But you embrittle before you observe physical bubbles – intrinsic He embrittlement (see Mills et al.)
- Need to assess B loss and Li embrittlement, kinetics of He and Li diffusion

Bill Mills *et al.* 7th Env. Deg. Proceedings

0.lum

B loss + Li embrittlement + He embrittlement

\rightarrow Need to understand kinetics of Li and He migration back to grain boundary

He and Li embrittlers, B strengthener

Effect of H concentration on cleavage energy with and without S and P impurities

- Linear superposition good first approximation
- No significant synergistic effects
- S and H act additively

Need to account for multiple effects: (1) GB strength and (2) effect on H uptake

Grain Boundary Phosphorus (at. %)

Relative Grain Boundary Strength = $-4.86[He] - 3.77[Pb] - 1.58[Li] - 1.00[H] - 0.86[C] - 0.18[Zr] + 0.23[P] + 0.41{Fe} + 0.45[Mn] + 1.09[Nb] + 1.27[Cr] + 2.64[B]$

SCC of X-750: Similar heats with different response to SCC initiation and growth

X-750 Condition HTH (2025°F/1hr + 1300°F/20 hrs)

Heat	Ni	Cr	Fe	Ti	Al	Mn	С	В	Р	S	Nb+Ta
Α	72.43	15.54	7.93	2.60	0.79	0.07	0.039	0.0037	0.007	0.001	0.86
В	71.47	15.25	8.15	2.66	0.73	0.15	0.043	0.0022	0.002	0.002	0.97

Heat	YS (ksi)	UTS (ksi)	% El	%RA	
A (Good)	118	172	27	32	
B (Bad)	117	176	26	36	

Heat "B" shows shorter initiation times and faster crack growth rates

See Young *et al.* in 11th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors, Skamania, WA, August 2003.

Heat A - typical $Cr_{23}C_6$ carbides Heat B - unusually high # of $Ni_{23}B_6$

 Loss of atomic boron

 No Cr depletion around borides

 Faster SCC initiation and growth

Summary

- Ab Initio atomistic modeling gives unique insight into metallurgical effects
 - Explain alloying effects: Boron intrinsically strengthens Ni grain boundaries by helping to fill the Ni 3d orbital
 - De-convolute complex embrittlement phenomena: boron transmutation / stress corrosion cracking
 - Quantitatively assess the effects of multiple grain boundary impurities

EmbrittlingNeutralStrengtheningAl He O PbLiSHCZrPFeMnNbCrMoB

Ab Initio Modeling of Solid State Diffusion: Hydrogen in Structural Metals

Ab initio modeling of solid state diffusion

- Phonon capability in MedeA/VASP is a significant advance, allowing accurate determination of things like enthalpy, and entropy as a function of temperature → free energy
- Phonons enable first principles studies of diffusion, solubility, etc. that are often experimentally difficult and subject to significant controversy, *e.g.* H diffusion in Al, Ti, O solubility in Ni, etc.
- Examples
 - Chris Wolverton on H in Al
 - Present work on H in Ni, Ti, Zr, and Fe

Experimental difficulties in diffusion

- Often large noise / small signal
- Oxide or other surface films often diffusion barriers
- Effects of traps often not considered
- May be difficult to ensure "lattice diffusion" control
- Electrochemical methods: charging solutions can degrade sample (pitting)
- Vacuum methods: time lag between charging and measurement
- etc., etc.

Hydrogen diffusion in aluminum

- H diffusion both fundamental and technically important to Al and Al alloys
- Large controversy in literature
- See:
 - Young and Scully, Acta Mat.
 Vol. 46, No. 18, pp. 6337-6349
 - Wolverton *et al.*, Phys. Rev.
 B, 69, 144109, 2004

Barrier for lattice diffusion is relatively low, vacancies are strong trapping states

Desorption Energies in Aluminum (kJ/mol)									
Researcher	Lattice	Dislocation	Vacancy						
Young (experimental)	15.3 ±4.8	43.5 ±17.5	84.8±32.2						
Wolverton (<i>ab initio</i>)	17		52						

Diffusion Equation – see Wert and Zener Phys. Rev. Vol. 76, No. 8, Oct. 15, 1949, pp. 1169-1175.

$$D = \underbrace{n \,\alpha \,a^2 \,\nu \,\exp\{\Delta S \,/\,R\}}_{P} \exp\{-\Delta H \,/\,R\,T\}$$

n: number of nearest neighbor jump sites

 D_0

- α: numeric coefficient that depends on the location of the interstitial positions
- a: lattice parameter (net jump distance, *l*)
- v: vibrational frequency
- ΔS : activation entropy
- ΔH : activation enthalpy (Q)
- *R*: gas constant, *T*: temperature

Diffusion procedure: consider temperature dependence of ΔS and ΔH (and ν)

$D = n \alpha l^2 \nu \exp\{\Delta S(T) / R\} \exp\{-\Delta H(T) / RT\}$

- Determine low energy site Determine low energy path *n*, α, and *l*
- Vibrational frequency (relatively T independent) \mathbf{Y} v
- Entropy change $f(T) \} \Delta S$
- Enthalpy change $f(T) \ge \Delta H$

Octahedral site and indirect diffusion path via transition state

Vibrational frequency via VASP/Phonon

- Frequency at stable octahedral site =25.8 THz
- Frequency in tetrahedral site =39.9 THz (less space than octahedral interstice)
- At the transition state, negative eigenvalue → imaginary frequency

Temperature has little effect on the vibrational frequency of H in nickel (0 K to ~1000 K)

Medea User's Group Meeting, Orcas Island, WA, June 17-20, 2004

ΔS and ΔH vary with temperature. Typical assumption of constant D_0 is an approximation

Medea User's Group Meeting, Orcas Island, WA, June 17-20, 2004

Variation of Q and D_0 with temperature: note "balance" at temperatures >200 K

Medea User's Group Meeting, Orcas Island, WA, June 17-20, 2004

Excellent agreement between first principles calculations and experimental methods

Large disagreement in experimental data for α -Ti. Modeling line gives an impressive "best fit"

Limited data for H in α -Zr. Results for H in Ni and α -Ti give confidence that modeling is accurate

For γ -Fe: Larger than typical error between calculated and experimental lattice parameter

Metal	Computed Lattice Parameters (Å)	Experimental Lattice Parameters (Å)	Deviation (%)		
Ni	a=3.492	3.5239	-0.9		
Ti	a=2.904 c=4.652	2.950 4.683	-1.6 -0.7		
Zr	a=3.213 c=5.210	3.233 5.148	-0.6 +1.2		
γ -Fe a=3.433		3.6599	-6.2		

Calculations for H diffusion in γ -Fe highlight the strong effect of the lattice parameter, *a*

Summary of parameters

ŧ	Table I. Summary of Calculated Diffusion Parameters											
	Metal	Crystal Structure	Interstitial Site	n	α	Approximate l‡ (cm)	(THz)		∆S (J/mol-K)		<i>∆H</i> (kJ/mol)	
							0 K	1000 K	0 K	1000 K	0 K	1000 K
	Ni	fcc	octahedral	24 1/12		2.5 x 10 ⁻⁸	25.8	21.3#	0	-14.9	49.1	40.2
	Ti	hcp	octahedral	(n α) ≈ 1		2.3 x 10 ⁻⁰⁸	27.7	Not Calculated	0	-8.3	52.7	42.4
	7r	hcp	octahedral			2.6 x 10 ⁻⁰⁸	21.8	Not Calculated	0	-16.0	40.7	30.9
	21		tetrahedral			1.7 x 10 ⁻⁰⁸	37.1	Not Calculated	0	-5.5	35.5	30.8
	Fe⁺	fcc	octahedral	24	1/12	2.5 x 10⁻ ⁸	28.4	Not Calculated	0	0.2	50.3	43.7

*Results based on lattice parameter of a=3.53 Å

 $t_{i}^{\dagger} = (a\sqrt{2}/2)$ for the fcc oct.-oct. transition, ~c/2 for the hcp oct.-oct. transition and ~c/3 for the hcp tet.-tet. transition

#Estimated from expanding the lattice parameter from a=3.492 Å to a=3.581 Å, since the effect of temperature is relatively small; the 0 K attempt frequencies are used in the subsequent calculations.

Summary

- Excellent agreement between first principles calculation of H diffusion in nickel
- Calculations help resolve controversy in systems where experimental data are in disagreement:
 - H in α -Ti

and guide predictions where there are sparse data:

- H in α -Zr
- Results for H in γ-Fe show strong influence of lattice parameter
- Calculations give new insight into diffusion paths and temperature dependencies
- Techniques have broad applicability to Materials Science, e.g. diffusion, solubility, entropy, enthalpy, free energy, ...