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Abstract 

Hybrid finite element (FE) - boundary integral (BI) analysis of infinite periodic arrays 
is extended to include planar multilayered Green’s functions. In this manner, a portion 
of the volumetric dielectric region ci~n be modeled via the finite element method whereas 
uniform multilayered regions can be modeled using a multilayered Green’s function. As 

such, thick uniform substrates can be modeled without loss of efficiency and accuracy. 

The multilayered Green’s function is analytically computed in the spectral domain and the 
resulting 3 1  matrix-vector products are evaluated via the fast spectral domain algorithm 
(FSDA). As a result, the computational cost of the matrix-vector products is kept at 

O ( N ) .  Furthermore, the number of Fioquet modes in the expansion are kept very few 
by placing the BI surfaces within the computational unit cell. Examples of frequency 
selective surface (FSS) arrays are analyzed with this method to demonstrate the accuracy 
and capability of the approach. One example involves complicated multilayered substrates 
above and below an inhomogeneous filter element and the other is an optical ring-slot array 
on a substrate several hundred wavelengths in thickness. Comparisons with measurements 
are included. 

. 

1 Introduction 

Despite the availability of fast computational techniques for solving electromagnetics problems, 

the infinite array model is still an important approach for analysis and design of large finite 

arrays. A key aspect of the periodic array model is the use of periodic boundary conditions 

(PBCs) to reduce the computational domain down to a single unit cell, thus significantly 

speeding up analysis and reducing memory resources. 

Early analyses on arrays and frequency selective surfaces concentrated on the application 

of Floquet’s theorem to construct periodic Green’s functions in the context of integral equation 



(IE) formulations. Typically, the spectral domain (SD) of the Green’s function is used [I] cou- 

pled with cascading for dealing with multilayer structures. The spectral domain formulation 

has also been extended to multilayered planar structures such as aperture coupled microstrip 

patches [2, 31. More recently, the free periodic Green’s functions have been incorporated into 

hybrid finite element (FE)-boundary integral (BI) methods [4, 5, 6 ,  7, 8, 91 for analysis of 

full three-dimensional (3D) structures (FSS and antennas) which may include inhomogeneous 

sections. In this context, the FE method is employed to model a unit cell representing the 

array and the BI provides for a rigorous mesh truncation at  the upper and/or lower surfaces 

of the discretized unit cell. 

Many array configurations can be analyzed by employing the appropriate half-space pi+ 

riodic Green’s functions for the BI. However, modern array designs often require complex 

substrates and superstrate codgurations, In the case of thick, possibIy multilayered sub- 

strates/superstrates, it is not efficient to use the FE method to model the dielectric region. 

Instead, it is more appropriate to employ the multilayer Green’s function in the context of the 

FE-BI method+ 

In this manner (see Fig. l), the FE method is only used to mode1 the inhomogeneous 

section of the domain which may involve metallizations or imperfect surfaces whereas the 

thick multilayer substrates/superstrates can be modeIed using the multilayer spectral Green’s 

functions. When compared with the standard implementations, the key difference in the 

proposed hybridization is the placement of the BI a t  the interface separating the multilayer 

region with the finite element domain. In previous FE-BI formulations, the BI had been 

placed at the interface of the FE domain with the free space region. The multilayer Green’s 

function has been used in the context of the FE-BI in [lo, 111 but not for periodic array 

applications. When dealing with periodic structures in the presence of multilayered layers, 

the SD form of the Green’s function is particularly attractive. Of particular importance is the 

use of the SD representation of the multilayer Green’s function in the recently introduced fast 

spectral domain algorithm (FSDA) [9] to attain O ( N )  CPU and memory requirements. In 

this manner, very thick substrates can be modeled accurately even though they span several 

hundred wavelengths as is the case with millimeter wave and infrared filters. 

Below, we begin by presenting the FE-BI formulation in a manner that incorporates the 

multilayered Green’s function. This is followed by the FSDA implementation for carrying out 



the rnatrix-vector products. The method is validated by comparing the results with measured 

data for an  infrared FSS on a 670 wavelengths thick substrate, 

2 Formulation 

2.1 Basic Hybrid FE-BI Formulation 

Since the basic hybrid FE-BI formulation for the treatment of infinite periodic array configu- 

rations can be found in many references such as [4, 5 ,  81, we only give the necessary equations 

to define notation and carry out the implementation of the multilayered Green’s function. 

As usual, an ejWt time dependence is assumed and suppressed throughout. Also, the array 

is assumed to be generated by periodic repetition of the unit cell, as shown in Fig. 1. The 

periodicity is in the zy-plane defined by the lattice vectors pa, pb via the shifting relation 

where rn and n are integers. On invoking the periodicity conditions given in [SI, electromag- 

netic analysis can be carried out by minimizing the functional 

(2) 
S 

for the volume V o f  the FE portion of the unit cell, shown in Fig. 1. Here, E is the usual 

electric field, E d  is the solution of the adjoint field problem, Jint denotes an excitation current 

interior to the FE domain, S represents the bounding surface of the FE domain, ii is the unit 

surface normal directed out of the FE domain, (/.ir,Er) are the relative dielectric constants 

of the medium, and ko, 20 are the wave number and characteristic impedance of free space, 

respectively. 

The quantity H x f i  in the surface integral of (2) must be replaced by an expression in 

terms of E to obtain a well-posed formulation for solving E .  The BI method will be employed 

for this purpose. Further, since an arbitrary number of planar layers can be located outside 

the FE domain, the BI Green’s function must be constructed to include the influence of these 

layers. Consequently, a dyadic Green’s function GP must be assumed and an appropriate BI 



relation for the magnetic field intensity H applicable in the top and bottom 31 surfaces S is 

given by 

N ( r )  = / p p ( r ,  T I )  * (E(r‘)  x fi) ds’ + Wexc(T). (3) 
S 

By virtue of the infinite planar surface separating the FE and multilayer domain, we can follow 

the approach in [8, 91 and introduce equivalent magnetic currents Ms = E x h above the FE 

surface. As such, E field continuity is maintained and this is the basis of (3) .  

The magnetic currents can radiate on a fictitious metallic surface, and the possible external 

excitation field H e x c ( ~ )  must be computed in the presence of these metallic interfaces. 

Substituting (3) in the FE functional (2) enforces continuity of the magnetic field across 

the FE domain interface and results in a well-posed weak formuIation of the array probIem. 

The FE and the BI discretization can next be performed as discussed in [8, 91 except that a 

multilayered Green’s function given below must be used and consequently appropriate modi- 

fications to the FSDA algorithm are also required, 

2.2 Muhilayer Green’s Function 

In accordance with the FSDA formulation [9], we proceed to transform (3) into the spectral 

domain (indicated by the “-”) expression 

~ ( r )  = ///Gp(nz, kY) * (ii(kz, k,) x ti) e - j k z z e - j k u Y  dkz dk, + H e x c ( r ) ,  (4) 
k z k ,  

- 
where GP(IF,, kv) denotes the spectral representation of the periodic Green’s function, given 

p = - m  q=-m 

where 6 ( k )  represents the usual delta function. The constant A = lpa xpbl is the cross-sectional 

area of the unit cell’s top/bottom bounding surfaces, 

and 



is the so-called reciprocal lattice vector. Also, &(k,, kv) is the Fourier transform of the electric 

field intensity on the top/bottom apertures of the unit cel’s FE domain. - 
The notation G(k,, ky ) denotes the non-periodic spectral domain multilayer Green’s func- 

tion that can be derived analytically for arbitrarily planar layered structures on top and below 

the FE domain (see Fig. 2). For the numerical implementation of the hybrid method, only 

the 5- and y-components of the fields must be considered in the BI surface ( z  = z’ = 0) 

and the corresponding Green’s function elements can be computed using the homogeneous 

transmission line formalism discussed in 1121. The resulting components of the dyadic spectral 

Green’s function are found to be 

where the yii are the piecewise homogenous transmission line Green’s functions for the line 

currents in section i with a unit voltage source excitation in the same section i as shown in 

Fig. 2. The superscripts TE and TM indicate transversal electric and transversal magnetic 

fields, respectively (for further details see [ZZ, 131). Once the individual Green’s function com- 

ponents are evaluated and tabulated for the required wavenumbers ktpq, the spectral domain 

BI is evaluated in accordance with the fast spectral domain algorithm (FSDA) discussed in [9]. 

The multilayered structures above and below the FE unit cell can thus be considered without 

any additional computational cost (except for the initialization of the Green’s functions). 

3 Results 

For practical array problems, far field patterns or array transmission and reflection coefficients 

are typically computed. Thus, plane wave excitations and the plane wave fields radiated from 

the BI currents must be computed in the presence of the multilayered structures on top and/or 

below the FE unit cell. 

An excellent example illustrating the strength of the presented hybrid fast spectral domain 

multilayer F S B I  algorithm is the “artificial puck plate” frequency selective surface (FSS) de- 

picted in Fig. 3, presented and analyzed in [5, 8, 91. The structure consists of several dielectric 
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layers above and beIow a thick metallic plate penetrated by a dielectric-filled cylindrical hollow 

waveguide with circular metallic irises in its apertures. Moreover, the unit cell is skewed at 

an angle of 60". When the BI surfaces are placed above the top layer and below the bottom 

Iayer (as done in [8, 9]), our unit cell FE mesh comprises 104769 volume and 2160 surface 

unknowns in each of the top and bottom BI surfaces. On applying the multilayer Green's 

function approach proposed in the present work, the FE mesh is reduced down to 18373 vol- 

ume edges (about 5 times less). Further, we note that the BI surfaces are slightly shifted away 

from the thick metallic plate (i.e., away from the strongly diffracting edges) so that only a few 

Floquet modes are needed (9 Floquet modes in total, -1 < p < 1 and -1 < q < 1 in ( 5 ) ) .  The 

transmission and reflection results obtained using this new hybrid method are compared with 

method of moments (MOM) data from [5] in Fig. 4. The curves show quite good agreement 

except for slight differences at higher frequencies (about 1 dB €or the transmission coefficient), 

but these differences are the same as those already found with the standard hybrid FE-BI 

computations in [8, 91. Nevertheless, a speed-up by a factor of 7 (over the standard FE-BI 

method) is observed when using the new hybrid FE-BI approach with the multilayer Green's 

function. 

The second investigated array structure is an optical ring-slot FSS filter on a very thick 

substrate with a unit cell as shown in Fig. 5,  The substrate thickness o f t  = 670 pm is up 

to several hundred wavelength in the frequency range of interest, and thus it is impossible to 

model the substrate by finite elements. An analytical multilayer Green's function is required 

to correctly model this substrate. Therefore, OLE new hybrid approach is appropriately suited 

to analyze this structure. Three FE layers of thickness 0.05 pm were placed above and below 

the gold metallization to keep the number of Floquet modes low for the simulation. The 

required computer time for one frequency point (using a total number of 9 Floquet modes) 

was on the order of 10 to 20 sec. depending on the number of iterations (Pentium I1 PC with 

a 400 MHz processor). The computed power transmission coefficient of the array at normal 

incidence axe given in Figs. 6 and 7 as a function of frequency/wavelength of the incident wave. 

The narrowband results in Fig. 6 are highly oscillatory and certainly cannot be observed in 

practical configurations. Therefore, broadband (incoherent) results were obtained by applying 

a moving average scheme using a Gaussian filter having a 3 dB bandwidth of 0.35 THz. These 

results are shown in Fig. 7 and demonstrate good agreement with the measured data obtained 



by Spector et al. [14]. 

4 Discussion and Conclusions 

We presented a new hybrid finite element (FE)-boundary integral (BI) formulation that em- 

ploys the multilayered Green’s function in the BI for periodic array analysis. Such a formu- 

lation is very advantageous when the BI is evaluated with a recently introduced fast spectral 

domain algorithm (FSDA) since it reduces the computational cost of the iterative solver down 

to O ( N ) .  In contrast to traditional FE-BI formulations, the proposed method allows the 

flexibility of modeling part of the inhomogeneous dieIectric using the FE method whereas the 

muhilayer region is accounted for in BI via the multilayer Green’s function. The resulting 

periodic array analysis code is thus extremely flexible and can be easily adapted to eficiently 

analyze a great variety of array configurations that may reside on very thick substrates. An- 

other feature of the formulation is that the BI can be shifted away from resonating elements 

or other material inhomogeneities to keep the number of required Floquet modes low, thus 

simplifying the evaluation of the multiIayer Green’s function. 



References 

[l] R. Mittra, C. H. Chan, T. Cwik, Techniques for Analyzing Frequency Selective Surfaces 

- A Review, Proc. IEEE, vol. 76, No. 12, pp. 1593-1615, Dec. 1988. 

[Z] R. Pous, D. M. Pozar, A Frequency-Selective Surface Using ApertureCoupled Microstrip 

Patches, IEEE Tkans. AP, vol. 39, No. 12, pp. 1763-1769, Dec. 1991. 

[3] H. Aroudaki, V. Hansen, H.-P. Gemiind, E. Kreysa, Analysis of Low-Pass FiIters Con- 

sisting of Multiple Stacked FSS’s of Different Periodicities with Applications in the Sub- 

millimeter Radioastronomy, IEEE TYans. AP, vol. 43, No. 12, pp. 1486-1491, Dec. 1995. 

[4] D. T. McGrath and V. P. Pyati, “Phased Array Antenna Analysis with the Hybrid Finite 

Element Method,” IEEE Zlans. Antennas Propagat., vol. 42, no, 12, pp. 1625-1630, 

Dec. 1994. 

[5] E. W. Lucas and T. W. Fontana, “A 3-D Hybrid Finite Element/Boundary EIement 

Method for the Unified Radiation and Scattering Analysis of General Infinite Periodic 

Arrays,’ IEEE Bans. Antennas Propagat,, vol. 43, no. 2, pp. 145-153, Feb. 1995, 

[6] D. T. McGrath and V. P. Pyati, “Periodic Structure Analysis Using a Hybrid Finite 

Element Method,” Radio Science, vol. 31, no. 5, pp. 1173-1179, Sep/Oct. 1996. 

[7] J. D’Angelo and I. Mayergoyz, “Phased Array Antenna Analysis,” in Finite Element 

Software for Microwave Engineering, Edited by T. Itoh, G .  Pelosi, and P. P. Silvester, 

John Wiley & Sons, Inc., 1996. 

181 T. F. Eibert, J. L. Volakis, D. R. Wilton, and D. R. Jackson, “Hybrid FE/BI Modeling of 

3D Doubly Periodic Structures Utilizing ‘Ikiangular Prismatic Elements and a MPIE For- 

mulation Accelerated by the Ewald Transformation,” lEEE ZIans. Antennas Propagat., 

vol. 47, no. 5, pp. 843-850, May 1999. 

[9] T. F. Eibert and J. L. Volakis, “Fast Spectral Domain Algorithm for Hybrid Finite 

Element/Boundary Integral Modeling of Doubly Periodic Structures,” IEE Proceedings 

Microwaves, Antennas and Propagation, vol. 147, no. 5, pp. 329-334, Oct. 2000. 

[lo] T. F. Eibert and V. Hansen, “3D FEM/BEM-Hybrid Approach for Planar Layered Me- 

dia,” Electromagnetics, vol. 16, no. 3, pp. 253-272, May-June 1996. 



[11] T. F .  Eibert and V. Hansen, “3D FEM/BEM-Hybrid Approach Based on a General 

Formulation of Huygens’ Principle for Planar Layered Media,” IEEE Zlansactions on 

Microwave Theoryand Techniques, vol. 45, no. 7, pp. 1105-1112, July 1997. 

[12] L.B. Felsen, N. Marcuvitz, Radiation and Scattering of Waves, IEEE Press Series on 

Electromagnetic Waves, Piscataway, 1994. 

[IS] K. A. Michalski, D. Zheng, “Electromagnetic Scattering and Radiation by Surfaces of 

Arbitrary Shape in Layered Media, Part I: Theory,” IEEE Tkans. Antennas Propagat., 

vol. 38, no. 3, pp. 335-344, Mar. 1990, 

[14] S. J. Spector, D. K. Astolfi, S. P. Doran, T, M. Lyszczarz and J. E. Raynolds, “In- 

frared Frequency Selective Surfaces Fabricated Using Optical Lithography and Phase 

Shift Masks,” J.  Vuc. Sci. Technol. B, vol. 19, no. 6, pp. 2757-2760. 



Figure Captions 
Figure 1: Array unit ‘cell with indication of BI and periodic boundary condition (PBC) 

surfaces. 

Figure 2: Unit cell configuration for the derivation of the multilayer Green’s function. 

The parameters ( E i r p i )  refer to the dielectric constants in each layer. 

Figure 3: Unit cell of the “artificial puck plate” FSS as presented in [5, 8, 91. 

Figure 4: Reflection and transmission curves of the ”artificial puck plate” FSS for TE- 

incidence (6 = O”, cp = 0’) as compared with the method of moments results given in [SI. 

Figure 5: Unit cell of an optical ring-slot filter, t = 670 prn, w = 118 am (black surface 

on top of silicon refers to gold metallization). 

Figure 6: Power percentage transmittance of the ring-slot array in Fig. 5 €or normal 

incidence (narrow band, Iossfree) . 
Figure 7: Broadband power percentage transmittance of the ring-slot array in Fig. 6 for 

normal incidence as compared with measured data, The broadband simulation results were 

obtained by applying moving-average of the narrow band data using a Gaussian filter curve 

having a 3 dB bandwidth of 0.35 THz. The term tan6 in the figure refers to the loss tangent. 
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