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Disclaimer 

 

This report was prepared as an account of the work sponsored by an agency of the United States 

Government. Neither the United States Government nor any agency thereof, nor any of their 

employees, makes any warranty, express or implied, or assumes any legal liability or 

responsibility for the accuracy, completeness, or usefulness of any information, apparatus, 

product, or process disclosed, or represents that its use would not infringe privately owned rights. 

Reference herein to any specific commercial product, process, or service by trade name, 

manufacturer, or otherwise does not necessarily constitute or imply its endorsement, 

recommendation, or favoring by the United States Government or any agency thereof. The views 

and opinions of authors expressed herein do not necessarily state or reflect those of the United 

States Government or any agency thereof. 
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Project Summary 

 

Many processes involved in coal utilization involve handling of fine particles, their 

pneumatic transport, and their reactions in fluidized beds, spouted beds and circulating fluidized 

beds. One of the factors limiting our ability to simulate these processes is the hydrodynamics 

encountered in them. Two major issues that contribute to this limitation are lack of good and 

computationally expedient models for frictional interaction between particles, and models to 

capture the consequences of mesoscale structures that are ubiquitous in gas-solid flows. This 

project has focused on the development of these models through a combination of computer 

simulations and experiments.  

The principal goal of this project, funded under the DOE Vision 21 Virtual Demonstration 

Initiative is better simulation of circulating fluidized bed performance. The principal challenge 

funded through this cooperative agreement is to devise sound physical models for the rheological 

characteristics of the gas-particle mixtures and implement them in the open-domain CFD code 

MFIX. During the course of this project, we have made the following specific advances.  

(a) We have demonstrated unequivocally that sub-grid models are essential to capture, even 

qualitatively correctly, the macroscale flow structures in gas-particle flows in vertical 

risers. To this end, we developed sub-grid models of different levels of detail and 

exposed the sensitivity of the results obtained in coarse-grid simulations of gas-particle 

flow in a riser to the level of sophistication of the sub-grid models.  

(b) We have demonstrated that sub-grid model for the fluid-particle drag force is the most 

important additional feature and that the corrections for the granular phase viscosity and 

pressure are of secondary importance. We have also established that sub-grid models for 

dispersion of heat and mass are of secondary importance only. 

(c) We have brought forth the general character of the sub-grid model for the drag force. 

(d) We have performed for the first time in the literature a detailed analysis of the impact of 

unipolar electrostatic charges on gas-particle flow characteristics in a riser. 

(e) We have examined in detail the effect of wall friction and particle-particle contact 

(frictional) stresses on fluidization and defluidization behavior of particle assemblies, and 

brought forth their importance for stable operation of standpipes in a circulating fluidized 

bed circuit. 
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(f) We have demonstrated that the general characteristics of contact stresses in particle 

assemblies and wall friction are similar for many different particles, establishing that a 

simple model framework can be widely applicable. 

(g) We have developed constitutive models for frictional regime, implemented them in 

MFIX and demonstrated the capability of simulating dense gas-solid flows in the 

frictional regime. 

(h) We have also performed detailed experiments to expose the nature of the stick-slip flows 

in silos, as a simple model system for under-aerated standpipes. 

 

All theoretical advances made in the study are implemented in MFIX and are available for 

public use. 
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1. Introduction 

 

The principal goal of our project, funded under the DOE Vision 21 Virtual Demonstration 

Initiative is better simulation of circulating fluidized bed (CFB) performance. Virtual 

demonstration of CFB performance requires modeling and simulation of the entire spectrum of 

gas-particle flow conditions ranging from dense phase flows in standpipes to dilute phase flow 

conditions of risers.  

We had proposed enabling a virtual demonstration tool, which is based on the open-domain 

CFD code MFIX, originally developed at NETL. MFIX is based on a model framework in which 

the gas and particle phases are treated as interpenetrating continua. The general structure of 

Eulerian equations of motion for each of the phases is well understood, although specific 

constitutive equations describing the rheological behavior of gas-particle suspensions are still 

being developed. MFIX includes the capability to carry out reactive flow simulations, so the tool 

that we have set out to develop will permit both cold flow and reactive flow simulations. The 

principal challenge funded through this cooperative agreement is to devise and implement in 

MFIX sound physical models for the rheological characteristics of the gas-particle mixtures. 

These models address issues related to performance of standpipes, fluidized beds and risers, 

which are the main components of a circulating fluidized bed. 

 

2. Specific Objectives of Proposed Research 

 

One of the objectives of our research is to develop methodologies for practical simulation of 

gas-particle flows in fast-fluidized beds and risers, where the particle concentration is typically in 

the range of 1-30 volume %. We have shown that meso-scale structures that take the form of 

clusters and streamers, which have been observed in risers, can be captured qualitatively through 

transient integration of continuum equations for the gas and particle phases. These structures 

arise as a result of two instability mechanisms, both of which are accounted for in a rheological 

model deduced in the literature by adapting the kinetic theory of gases to gas-particle mixtures. 

These meso-scale structures are too small in size to be resolved in simulations of flow in large 

process vessels, and are invariably invisible in the coarse-grid simulations. Yet, they affect the 

flow characteristics profoundly; in particular, they alter the effective interaction force that 
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couples the gas and particle phases, and dramatically increase the effective viscosities of the two 

phases.  We set out to develop a more practical approach, where we simulate the dynamics of 

only the large clusters using coarse grids and account for the effects of smaller, unresolved 

clusters through suitable sub-grid approximations. Specifically, we had proposed to develop such 

sub-grid models and implement them into MFIX. 

The second objective of our study is concerned with dense flows. The volume fraction of 

particles in dense fluidized beds, standpipes and valves is usually sufficiently large that the 

particles make enduring contact with multiple neighbors. In such instances, stress transmission 

between particles, and between particles and bounding solid surfaces occurs predominantly 

through frictional interactions. In this regime of flow, when the strength of frictional interaction 

between particles becomes sufficiently weak, flow of gas-solid suspension becomes unstable and 

a bubbly suspension results. Once formed, these bubbles dictate the macroscale flow 

characteristics, and therefore detailed CFD simulation of suspensions in this regime should 

account for the dynamics associated with the gas bubbles. This is possible only if frictional 

stresses are modeled properly. With this in mind, we set out to develop and implement a model 

for frictional rheology into MFIX, thus creating a framework for realistic representation of 

frictional stresses. We also proposed to devise procedures for evaluating frictional model 

parameters experimentally.  

 

3. Accomplishments 

 

In order to achieve these objectives, we had proposed a three year long research program 

involving computational experiments on statistical characteristics of mesoscale structures and a 

combination of simple laboratory experiments on frictional stress in dense gas-particle systems. 

We now summarize briefly the major accomplishments.  

 

3.1 Mesoscale Structures in Gas-Particle Flows through Risers 

 

Studies performed in our group and elsewhere have established concretely that continuum 

models for gas-particle flows, such as those based on the kinetic theory of granular materials, can 

capture at least qualitatively correctly the occurrence of meso-scale structures in fluidized gas-
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particle suspensions. Details of these can be found in Agrawal et al. (2001), included here as 

appendix A. A more general discussion of instabilities in fluidized suspensions is presented by 

Sundaresan (2003), included here as appendix B.  

Detailed simulation of flow over small domains reveal that spatiotemporal fine structures, 

whose length scale is of the order of ten or so particle diameter, are present in these flows. 

Therefore, to fully resolve these structures, grid sizes of the order of few particle diameters are 

needed. However, such fine grids are impractical in any industrial scale problem (e.g., see 

Sundaresan, 2000), where simulations can only be performed using coarse grids. These 

simulations would resolve the larger flow structures, but not those smaller than the grid size. We 

have demonstrated that these unresolved flow structures contribute appreciably to the momentum 

exchange between the gas and particle phases, and that stress transmission from one grid to 

another in the coarse-grid analysis (Agrawal et al., 2001). The challenge is then to develop sub-

grid models to capture the essential consequences of the unresolved sub-grid structures.  

We have carried out a number of highly resolved simulations of the continuum equations for 

gas-particle flows in spatially periodic domains (both two-dimensional and three-dimensional), 

whose size is commensurate with grid sizes typically used in coarse-grid simulations of gas-

particle flows. Through such calculations we ascertained that meso-scale structures arise 

spontaneously through a local instability and can be sustained even in the absence of macro-scale 

shear. We examined the extent to which the macro-scale shear modifies the consequences of the 

meso-scale structures (i.e. those which will be unresolved in coarse-grid simulations) and found 

that the shear had a modest effect in 2-D simulations and a much weaker influence in 3-D 

simulations. Quite importantly, the results obtained in 2-D and 3-D simulations were very 

similar, suggesting that much of the concept development could be done via 2-D computational 

experiments. Furthermore, as macro-scale shear had only a weak effect on the meso-scale 

structures, the effect of this shear was deemed to be of secondary importance in the sub-grid 

models. With this in mind, much of the work on sub-grid model development was performed 

through highly resolved computational experiments in unsheared fluidized suspensions in small 

2-D periodic domains. Through these simulations, we examined how the effective drag 

coefficient, normal stresses and particle phase viscosity varied with size of the domain, particle 

volume fraction and other particle properties. (A detailed discussion of these results can be found 

in appendix A.)  
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We constructed ad hoc sub-grid models of different levels of sophistication through detailed 

simulations in small periodic domains. Specifically, we considered a set of sub-grid corrections 

referred to as the time-averaged sub-grid model and a more detailed stochastic sub-grid model. 

To examine the consequences of these sub-grid models on the predicted behavior of gas-particle 

flows in a riser, a number of coarse-grid simulations were carried out. A detailed account of 

these results has been reported by Andrews et al. (2004), included here as Appendix C. The main 

findings of this work are summarized below. 

We have performed many 2-D coarse-grid simulations of gas-particle flow in a vertical 

channel to assess the impact of the sub-grid models and the sensitivity of the results to various 

components of the sub-grid models. Our study clearly showed that the results obtained in coarse-

grid integration of the microscopic equations for gas-particle flows in large process vessels 

change appreciably if sub-grid corrections to account for the effects of unresolved structures are 

included. The most dramatic difference occurred in our simulations when a simple time-

averaged sub-grid model was added to the no sub-grid model case. Although the level of 

sophistication of the sub-grid model did make a difference in the quantitative results in our 

simulations, even a simple time-averaged sub-grid model was able to capture the main 

qualitative effects.   

The simple time-averaged sub-grid model is, in a strict sense, flawed, as there is no 

separation of time scales between the unresolved (sub-grid) structures and those resolved in the 

coarse-grid simulations. To account for this lack of separation of time scale, an enhancement of 

the time-averaged sub-grid model that took the form of a stochastic correction to the drag 

coefficient was implemented. It was found that such a stochastic sub-grid model yielded 

qualitatively the same results as the time-averaged sub-grid model. Thus the lack of separation of 

time scales does not appear to be a severe deficiency.    

We have also examined the effect of stochastic fluctuations at the riser inlet on the flow 

structure produced in the riser, and demonstrated that the inlet fluctuations aid the development 

of time-dependent flow structures in the riser, and eliminates spurious solutions which can be 

predicted by simulations under some conditions. 

Through these studies, we have not only shown that sub-grid models are essential, but also 

devised a method to evaluate the sub-grid models for a given problem through simple 
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computational experiments. We have also demonstrated how to incorporate these sub-grid 

models in MFIX. 

 

3.2 Sub-grid models for mass and heat dispersion induced by meso-scale structures 

 

We have also studied the role of meso-scale structures on gas dispersion in gas-particle 

flows. Tracer gas dispersion is an important and commonly used tool for experimental 

characterization of flows in risers and other fluidized suspensions. The influence of fluctuations 

at different scales (more specifically, those resolved in a coarse-grid simulation and those 

unresolved in these calculations) on the dispersion process was probed in our studies. Unresolved 

flow structures contribute to the dispersion of mass and heat, in addition to the momentum 

considered above – we performed highly resolved simulations in small periodic domains to 

assess the magnitude of sub-grid correction for the dispersion resulting from the structures which 

would have been invisible in coarse-grid simulations. Details of this study have been reported by 

Loezos & Sundaresan (2002), included here as Appendix D. Our coarse-grid simulations 

revealed that macro-scale dispersion arose primarily due to the hydrodynamic fluctuations which 

were resolved in the flow calculations and that the sub-grid corrections played only a negligible 

role. Therefore, we concluded that sub-grid models are important for hydrodynamic analysis, but 

less so for heat and mass transport calculations. 

 
3.3 Effect of electrostatics on riser flow characteristics 

 

A significant effort that we undertook in this cooperative agreement concerns the effect of 

electrical charges carried by the particles on the flow behavior. In the past few years, this issue 

has emerged as a possibly very important, but completely overlooked phenomenon in riser 

performance. We began with a thorough literature search of typical level of charges carried by 

particles in riser flows and in pneumatic conveying applications. We then formulated a simple 

model for fully-developed flow of gas-particle mixtures in vertical pipes where we postulated 

that the particles carried specified levels of charge. Much to our surprise, we found that even at 

very small charge levels, a significant electric field can develop inside the riser and that it can 
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lead to appreciable segregation of particles towards the riser walls (Al-Adel et al., 2003). 

Appendix E describes this study in detail.  

 

3.4 Dense Gas-particle Flows in fluidized beds and standpipes  

 

A few years ago, we performed experiments where we examined the CFB performance 

characteristics at different levels of standpipe aeration, probing specifically the flow behavior in 

the standpipe and the conditions at which the loop instability sets in (Srivastava et al., 1998). It 

was clear from that study that contact stresses in the particle phase and wall friction played 

important roles in imparting stability to CFB hydrodynamics. Yet, a robust modeling framework 

to handle frictional stresses in CFD codes such as MFIX was unavailable prior to the present 

study. 

We undertook as a part of this cooperative agreement a study to understand contact stresses 

and wall friction in a quantitative sense. We performed simple fluidization and defluidization 

experiments in tubes of various diameters to extract information on the compressive yield 

strength of particle assemblies at various volume fractions and wall friction parameters. We then 

used information on wall friction and contact stresses extracted from fluidization and 

defluidization experiments to show that the standpipe performance data could be explained 

quantitatively on the basis of wall friction and granular stresses (Srivastava & Sundaresan, 2002, 

included here as Appendix F). 

Having ascertained that granular stresses and wall friction played important roles in 

standpipe flows, we set out to understand the general characteristics of these quantities for a 

variety of particles. This study (Loezos et al., 2002, included here as Appendix G), demonstrated 

the robustness of the dependence of granular stress on particle volume fraction (for seven 

different types of particles) and the consistent role of wall friction. This led us to focus our 

efforts on the development of a general model framework to incorporate the contact (frictional) 

stresses between the particles and particle-wall friction into the two-fluid models for gas-particle 

flows. 

We have developed a multi-dimensional frictional-kinetic model for gas-particle flow which 

combines the flow characteristics in the dense regime with those at the dilute rapid granular flow 

regime. This model and friction boundary conditions at bounding surfaces have been 
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implemented into MFIX and used to study model discharge problems, thus demonstrating the 

robustness of the model and the CFD implementation. Further details can be found in Srivastava 

& Sundaresan (2003), included here as Appendix H. 

We felt that it is very important to understand the manner in which stick-slip flow occurs in 

dense granular flow through pipes, in order to develop a better physical understanding of the 

flow patterns in such a flow regime. Such stick-slip flow, for example, occurs in under-aerated 

standpipes of circulating fluidized beds. To this end, we devised a simple experiment, where we 

studied the manner in which particles discharged from a tube equipped with a central orifice at 

the bottom. The details of this study by Muite et al. (2004) is included here as Appendix I. This 

study provides new insight on vibration of the structure associated with stick-slip flow, and an 

accompanying phenomenon known as silo music.  

 

4. Deliverables  

 

 The deliverables in this project consist of advanced process models for a virtual 

demonstration tool. We believe that the work performed through this cooperative agreement has 

significantly advanced the knowledge base in the field of gas-solid flow, which is critical 

element in DOE’s Vision 21. The specific deliverables that we have made from our research are 

as follows: 

 

a) A fundamentally based sub-grid model for effective drag force, stresses and dispersion, 

which is deduced through scores of computational experiments and theoretical analysis, and 

can be used in coarse-grid simulation of gas-solid flows. 

b) A version of MFIX code to NETL with the above sub-grid model implemented and tested. 

c) A mathematical model for frictional stresses in dense suspensions, which is supported by 

experimental data on a variety of powders. 

d) A simple experimental protocol to determine the parameters appearing in this frictional 

model, and methodology to determine these parameters from experimental data. 

e) A version of MFIX code to NETL, with this frictional model implemented and tested. 
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The role of meso-scale structures in rapid
gas–solid flows

By K A P I L A G R A W A L1, P E T E R N. L O E Z O S1,
M A D H A V A S Y A M L A L2

AND S A N K A R A N S U N D A R E S A N1†
1Department of Chemical Engineering, Princeton University, Princeton, NJ 08544, USA

2Fluent Inc., P.O. Box 880, Morgantown, WV 26507-0880, USA

(Received 6 January 2000 and in revised form 2 May 2001)

Meso-scale structures that take the form of clusters and streamers are commonly
observed in dilute gas–particle flows, such as those encountered in risers. Continuum
equations for gas–particle flows, coupled with constitutive equations for particle-phase
stress deduced from kinetic theory of granular materials, can capture the formation of
such meso-scale structures. These structures arise as a result of an inertial instability
associated with the relative motion between the gas and particle phases, and an
instability due to damping of the fluctuating motion of particles by the interstitial
fluid and inelastic collisions between particles. It is demonstrated that the meso-
scale structures are too small, and hence too expensive, to be resolved completely in
simulation of gas–particle flows in large process vessels. At the same time, failure
to resolve completely the meso-scale structures in a simulation leads to grossly
inaccurate estimates of inter-phase drag, production/dissipation of pseudo-thermal
energy associated with particle fluctuations, the effective particle-phase pressure and
the effective viscosities. It is established that coarse-grid simulation of gas–particle
flows must include sub-grid models, to account for the effects of the unresolved meso-
scale structures. An approach to developing a plausible sub-grid model is proposed.

1. Introduction
Experimental studies on high-velocity gas–particle flows in vertical pipes have

revealed that particles are usually distributed over the cross-section of the pipe in
a non-uniform fashion (e.g. see Weinstein, Shao & Schnitzlein 1986; Bader, Findlay
& Knowlton 1988). This non-uniformity may introduce downflow of particles and
gas in some regions, usually near the pipe wall, even though the cross-sectional
average flows of particles and gas are upward. Riser flows are inherently unsteady
with large fluctuations in suspension density (Schnitzlein & Weinstein 1988). It is now
well established that meso-scale structures, namely clusters and streamers of particles,
whose characteristic size is on the order of 10–100 particle diameters, are present
in such flows (Grace & Tuot 1979; Gidaspow 1994; Horio 1995; Tsukada 1995).
These structures affect the overall flow behaviour significantly and should therefore
be accounted for in computational fluid dynamic (CFD) simulations of riser flows.

† Author to whom correspondence should be addressed: sundar@princeton.edu
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Unfortunately, the meso-scale structures cannot be adequately resolved in CFD
simulations of typically sized risers. It will be demonstrated in this paper that a sub-
grid model to account for the effect of the unresolved meso-scale structures must be
developed and incorporated into the coarse-grid simulations. Small-scale structures
in gas–particle flows arise because of local instabilities and macro-scale shear is not
necessary to induce them. Macro-scale shear modifies the small-scale structures and
produces anisotropic normal stresses and a shear-thinning behaviour.

A brief review of the evolution of continuum models for riser flows is presented
in § 2. The origin of meso-scale structures is discussed in § 3, where we show that
continuum models based on the kinetic theory of granular materials (for example, see
Gidaspow 1994) do contain the essential physics needed to capture the clusters and
streamers in a qualitatively correct manner. The various routes to cluster formation
are discussed in § 4, where we argue that these structures arise as a result of two
mechanisms operating in parallel: an instability due to damping of the fluctuating
motion of particles by the interstitial fluid and inelastic collisions between particles
and an inertial instability associated with gas–particle slip.

In § 5, we demonstrate that coarse-grid simulations which fail to recognize the
sub-grid microstructure (i.e. small clusters and streamers) overestimate the drag force
and underestimate the rate of production and dissipation of pseudo-thermal energy,
effective viscosities of the gas and particle phases and the effective normal stress
in the particle phase. An approach to developing a sub-grid model for coarse-grid
simulation of gas–particle flow in risers is also described.

2. Continuum modelling of gas–solid flows
Model equations

The total number of particles typically present in most gas–particle flows of practical
interest is extremely large, making it impractical to solve for the motion of each
particle. Consequently, gas–particle flows in large process units are usually modelled
via averaged equations of motion (Anderson & Jackson 1967). The model equations
we work with in this paper are given in table 1. Equations (1)–(4) are the continuity
and momentum balance equations for the particle and gas phases. Here, φ is the
volume fraction of particles; v and u are the local average velocities of the particle
and gas phases, respectively; ρs and ρg are the densities; σs and σg are the stress
tensors associated with the two phases expressed in a compressive sense; f is the
interaction force between the phases per unit volume of the bed; and g is the specific
gravity force.

The concentration of particles in riser flows is sufficiently large that direct inter-
action of particles through collisions occurs easily and rapidly. In such situations,
it is now common to invoke the kinetic theory of granular materials to close the
solids-phase stress (Sinclair & Jackson 1989). This closure requires that we augment
the above equations with a balance of pseudo-thermal energy (PTE) of particle vel-
ocity fluctuations as the solids phase stress depends directly on this quantity (e.g. see
Lun et al. 1984; Gidaspow 1994). Equation (5) represents the PTE balance, where
T denotes the granular temperature. The first term on the right-hand side of this
equation represents the diffusive transport of PTE, with q denoting the diffusive flux
of PTE. The second and third terms represent rates of production of PTE by shear
and gas–particle slip, respectively. The fourth and the fifth terms denote rates of
dissipation of PTE through inelastic collisions and viscous damping, respectively.
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∂φ

∂t
+ ∇ · (φv) = 0, (1)

∂(1− φ)

∂t
+ ∇ · [(1− φ)u] = 0, (2)[

∂(ρsφv)

∂t
+ ∇ · (ρsφvv)

]
= −∇ · σs − φ∇ · σg + f + ρsφg, (3)[

∂(ρg(1− φ)u)

∂t
+ ∇ · (ρg(1− φ)uu)

]
= −(1− φ)∇ · σg − f + ρg(1− φ)g, (4)[

∂
(

3
2ρsφT

)
∂t

+ ∇ · ( 3
2ρsφT v

)]
= −∇ · q − σs :∇v + Γslip − Jcoll − Jvis. (5)

Gas-phase stress tensor
σg = pg I − µ̂g [∇u+ (∇u)T − 2

3 (∇ · u)I ] . (6)

Gas-particle drag (Gidaspow 1994)

f = β(u− v), β =
3

4
CD

ρg(1− φ)φ|u− v|
d

F(φ), F(φ) = (1− φ)−2.65, (7)

CD =

{
(24/Reg)(1 + 0.15Re0.687

g ), Reg < 1000

0.44, Reg > 1000,
Reg =

(1− φ)ρgd|u− v|
µg

. (8)

Solids stress

σs = [ρsφ(1 + 4ηφgo)T − ηµb(∇ · v)]I
−
(

2 + α

3

){
2µ∗

goη(2− η)
(1 + 8

5φηgo)(1 + 8
5 η(3η − 2)φgo) + 6

5ηµb

}
S . (9)

Pseudo-thermal energy flux vector

q = − λ
∗
go

{(
1 + 12

5 ηφgo
) (

1 + 12
5 η

2(4η − 3)φgo

)
+

64

25π
(41− 33η) η2φ2g2

o

}
∇T , (10)

S = 1
2 (∇v + (∇v)T )− 1

3 (∇ · v)I . (11)

Rate of dissipation of pseudo-thermal energy

Jcoll =
48√
π
η (1− η)

ρsφ
2

d
goT

3/2, (12)

µ∗ =
µ

1 +
2βµ

(ρsφ)2 goT

, λ∗ =
λ

1 +
6βλ

5 (ρsφ)2 goT

, (13)

µ =
5ρsd
√
πT

96
, µb =

256µφ2go

5π
, λ =

75ρsd
√
πT

48η (41− 33η)
, η =

(1 + ep)

2
, (14)

go =
1

1− (φ/φmax)1/3
, φmax = 0.65, α = 1.6, (15)

Jvis = 3βT , Γslip =
81φµ2

g |u− v|2
god3ρs

√
πT

. (16)

Boundary conditions for particulate phase (Johnson & Jackson 1987)

n · σs · t +
π

2
√

3φmax

φ′ρsφgoT 1/2vsl = 0, (17)

n · q =
π
√

3

6φmax
φ′ρsφgoT 1/2|vsl |2 − π

√
3

4φmax
(1− e2

w)ρsφgoT
3/2, (18)

vsl = v − vw.
Table 1. Model equations for gas–particle flows.
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The solids-phase stress, the PTE flux and the rate of dissipation of PTE due to
inelastic collisions are expressed in a manner very similar to that proposed by Lun
et al. (1984), see (9)–(15). The particles are assumed to be smooth hard spheres of
diameter d and only binary interactions (characterized by a single parameter, namely
the coefficient of normal restitution, ep) are considered. The role of the interstitial fluid
was not considered by Lun et al. (1984), but has been studied by several researchers
since (S. B. Savage 1987, personal communication; Koch 1990; Ma & Ahmadi 1988;
Gidaspow 1994; Balzer, Boelle & Simonin 1995; Boelle, Balzer & Simonin 1995;
Koch & Sangani 1999). Following Savage (1987), Ma & Ahmadi (1988), Balzer et
al. (1995) and Boelle et al. (1995), we have accounted for the role of the interstitial
fluid in these expressions through the terms µ∗ and λ∗, see (13). The expressions for
the granular viscosities (µ and µb) and thermal conductivity (λ) given in (14) are the
same as those in Lun et al. (1984).

The rate of dissipation of PTE by viscous damping is modelled in most of our
simulations following Gidaspow (1994), see (16). We will also present some results
obtained using an alternative model for this term proposed by Koch & Sangani
(1999),

Jvis =
54φµgT

d
2 Rdiss,

Rdiss = 1+
3φ1/2√

2
+

135

64
φ lnφ+11.26φ(1− 5.1φ+16.57φ2− 21.77φ3)− φgo ln εm,


(19)

where εm = 0.01 and demonstrate that the major findings of our study are not sensitive
to the differences between the two different choices for Jvis.

The expression shown in (16) for the rate of production of PTE by gas–particle
slip, Γslip, without the go term appearing there, was derived by Koch (1990) for dilute
systems. More recently, Koch & Sangani (1999) have proposed that

Γslip =
81φµ2

g|u− v|
god3ρs

√
πT

Ψ (20)

where

Ψ =
R2
d

(1 + 3.5φ1/2 + 5.9φ)
,

Rd =


1 + 3(φ/2)1/2 + (135/64)φ lnφ+ 17.14φ

1 + 0.681φ− 8.48φ2 + 8.16φ3
, φ < 0.4

10φ

(1− φ)3
+ 0.7, φ > 0.4.

(21)

The expression for Γslip given in (16) simply corresponds to setting Ψ to unity. Most
of our simulations are based on (16), and we will demonstrate that including the
correction factor, Ψ changes the results quantitatively but not qualitatively.

Equation (6) is a simple Newtonian closure for the effective gas phase stress. In the
regime investigated in the present study, ρsφ � ρg(1 − φ), and the contribution due
to the deviatoric part of the gas-phase stress is negligible. This will be demonstrated
by considering several different models for the effective viscosity of the gas phase, µ̂g .

In our analysis, it is assumed that the gas–particle interaction force, f, is only due
to drag. Equations (7) and (8) are the drag correlation used in our simulations (Wen
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d Particle diameter 7.5× 10−3 cm
ρs Solids density 1.5 g cm−3

ρg Gas density 1.3× 10−3 g cm−3

µg Gas viscosity 1.8× 10−4 g cm−1 s−1

Table 2. Physical properties of gas and solids used in simulations.

& Yu 1966). It can be shown readily that this model for drag, when applied to the
problem of uniform sedimentation of particles in a fluid, yields a Richardson–Zaki
(1954) coefficient of 4.65 at low Reynolds number, Rep (= ρgvtd/µ) and 2.325 at high
Rep. Typical physical properties of systems considered in our study are shown in
table 2. For such systems, Rep ∼ O(1) and the drag coefficient estimated from (8) and
(9) is not very different from

18µgφ(1− φ)−2.65

d2
.

As we will see later, in our simulations, T 1/2 ∼ 0.1vt, and hence the Stokes number
(St), based on ρs, d, T

1/2 and µg (e.g. see Wylie & Koch 2000), is O(102). At such
large values of St, µ∗ ∼ µ, λ∗ ∼ λ. The Froude number, Frp(= v2

t /gd), is ∼ 60 for
the combination of physical parameters shown in table 2. It is well known that dense
fluidized beds of such particles bubble (Wilhelm & Kwauk 1948).

We will demonstrate in this paper that this system of equations is able to capture
the meso-scale structures in gas–solid flows in a qualitatively correct manner. To this
end we will discuss in the next section previous work on this problem and trace
the origin of these structures. It will become clear that the meso-scale structures are
driven by inherent instabilities and not macro-scale shear associated with boundaries.

Most of the results discussed in this paper are concerned with simulations performed
in spatially periodic domains. However, we will present a few simulation results to
demonstrate that the meso-scale structures persist even in the presence of solid
boundaries. At such solid boundaries, we cover a range of possible scenarios by
considering three different choices of boundary conditions – no slip, free slip and
partial slip. Partial slip boundary conditions for particle–wall interactions have been
discussed in the literature by a number of researchers (for example, see Johnson &
Jackson 1987; Jenkins 1992; Jenkins & Louge 1997; Jenkins & Richman 1986). As
a simple example of partial slip boundary condition, we have employed (17) and
(18) (table 1) proposed by Johnson & Jackson (1987), where ew is the particle–wall
coefficient of restitution and φ

′
is the specularity coefficient.

Upon casting these equations in a dimensionless form using ρs, vt and v2
t /g as

characteristic density, velocity and length, respectively, the following dimensionless
groups result: Rep, Frp, ρg/ρs and µ̂g/µg . The analysis described in this paper is
restricted to Rep ∼ O(1) or smaller, Frp � 1 and ρg/ρs � 1, which is representative
of most gas–particle flows encountered in risers, where we also have St� 1.

2.1. Previous work on continuum models for riser flows

Sinclair & Jackson (1989) examined whether the continuity and momentum equations
for the two phases coupled with the pseudo-thermal energy balance equation ((1)–(5)
in Table 1) can predict a non-uniform distribution of particles over the cross-section
of a vertical pipe under steady and fully developed flow conditions. In their analysis,
they neglected the possible consequences of persistent fluctuations and the presence
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of clusters and streamers. This model was able to yield rather good agreement with
experimental data under some restrictive assumptions about the dissipation of PTE
(Sinclair & Jackson 1989; Pita & Sundaresan 1991, 1993; Yasuna et al. 1995). Louge,
Mastorakos & Jenkins (1991) and Bolio & Sinclair (1995) expanded this model by
adding the effect of gas-phase turbulence and found that even in very dilute particle-
laden flows where the flow patterns are largely dictated by the turbulent gas flow,
particle–particle interactions can play a significant role.

Dasgupta, Jackson & Sundaresan (1994) viewed the fluctuations associated with the
clusters as ‘particle phase turbulence’ and derived time-averaged equations of motion
for the fully developed flow of the two phases by Reynolds averaging equations (1)–(4).
Their analysis revealed that particles are driven to regions having a low intensity of
particle-phase velocity fluctuations from regions of high intensity at rates proportional
to the gradients in the intensity of fluctuations. These authors employed a speculative
K–ε model for the particle-phase turbulence in order to illustrate the occurrence of
segregation. Hrenya & Sinclair (1997) have expanded this work by integrating kinetic
theory for granular materials and a model for particle-phase turbulence. Collectively,
these studies have helped establish that meso- and macro-scale fluctuations occurring
on length scales much larger than that of individual particles must be included in
any model for gas–particle flows designed to capture the non-uniform distribution of
particles over the cross-section of the riser.

At the same time, various research groups (Enwald & Almstedt 1999; Enwald,
Peirano & Almstedt 1997; Enwald et al. 1999; Nieuwland et al. 1995, 1996; Samuels-
berg & Hjertager 1996; Tsuo & Gidaspow 1990; Gidaspow 1993, 1994) have pursued
research on simulation of riser flows through direct numerical integration of the
locally averaged equations. These simulations do reveal the presence of persistent
fluctuations and particle clusters. Such an approach where one tries to capture the
time-averaged flow patterns through transient integration of the locally averaged
equations is computationally very intensive. Furthermore, the sheer size of the prob-
lem, and that of the duct through which the gas–particle mixture is flowing, necessitate
the use of coarse grids in the numerical calculations. Such calculations reveal large-
scale spatial patterns occurring on a length scale larger than the grid size. It will be
shown in this paper that when one uses finer and finer meshes in an attempt to test
for grid-size independence of the results, it is invariably found that the features of
the flow continue to change at all length and time scales. Therefore, it is not always
clear if the computed results are the true consequences of the differential equation
models that one is trying to solve. An example to highlight the effect of grid size on
the results will be presented later in this paper.

The effect of grid size reveals clearly that unresolved details of flow in a given
simulation have an influence on the features occurring on a scale larger than the
grid size. The lessons learned from these different attempts to model riser flow using
volume-averaged equations of motion can be summarized as follows:

If one wishes to simulate the events occurring at meso- and macro-scale in their
entirety, direct numerical integration of the governing equations is the obvious route;
however, a fully resolved simulation where the results are independent of the grid size
is yet to be demonstrated.

Spatial non-uniformities that are present in a time-averaged sense may be captured
by a system of steady-state equations derived by time-averaging the volume-averaged
equations of motion. The meso-scale structures and the macro-scale spatio-temporal
patterns are erased through such an averaging procedure, but their consequences
appear in the final equations as additional terms for which closure relations must be
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postulated. K–ε models fall in this category. Although some progress has been made
in this type of modelling approach, the reliability of these models for simulation of
developing flows has not been validated.

Intermediate to these two approaches is the coarse-grid simulation of two-phase
flow (the analogue of large-eddy simulation of single-phase turbulent flow), where
one simulates spatial and spatio-temporal patterns occurring at the macro-scale, but
accounts for the effects of meso-scale structures occurring at a scale smaller than the
grid size through additional closure relations.

One can immediately recognize that the three approaches are practised in simu-
lations of single-phase turbulent flow. The cascade of energy associated with fluc-
tuations in single-phase flow and two-phase flow are very different. In the former
the energy flow is predominantly from large scale to small scale, while in the latter
it is more complicated. Meso-scale structures, such as clusters and streamers, form
initially at small length and time scales and grow into larger scales, so there is almost
certainly some energy flow from the very small scale to larger scales. One may also
anticipate a flow of energy from large scale to smaller scales, just as in the case of
single-phase flow. Understanding the origin and nature of clusters and streamers in
riser flow of gas–particle mixtures will pave the way for the development of bet-
ter closures for the correlations appearing in the Reynolds-averaged model and the
coarse-grid simulation model, and will also help us determine the requirements for a
fully resolved direct numerical integration of the locally averaged equations such as
those summarized in Table 1.

3. Origin of clusters in gas–particle flows
Risers are most commonly encountered as components of circulating fluidized

beds (CFBs) in industrial practice. The interaction of the various components of a
CFB is known to give rise to instabilities which propagate through the loop. It is
therefore useful to inquire if meso-scale structures such as clusters and streamers
observed in risers are manifestations of local events or are directly attributable to
phenomena associated with the entire loop. It is clear from experimental studies on the
dynamics of gas–particle mixtures in a circulating fluidized bed (Srivastava et al. 1998;
Zhang, Jiang & Fan 1998) that the loop instability manifested itself as low-frequency
oscillations in pressure and hold-up. The propagation of this instability through the
loop can be recognized from the pressure signals gathered at different locations in
the loop. Zhang et al. (1998) have shown that the low-frequency components of the
oscillations observed at different locations of their CFB apparatus were correlated,
while the high-frequency components of the fluctuations (in pressure) at different
locations were not. High-frequency fluctuations persist even under conditions where
loop instability was not observed (Srivastava et al. 1998). It follows that clusters and
streamers, which are most likely to be associated with the high-frequency fluctuations,
arise from local processes and not because of the loop instability. It is therefore
reasonable to conclude that the origin and nature of the clusters can be probed by
considering a small segment of the riser.

3.1. Riser flow simulations

To probe the origin of clusters further, we performed two-dimensional simulations of
gas–particle flow in a segment of a vertical channel, as described below. The MFIX
code (Syamlal, Rogers & O’Brien 1993) was modified extensively for solving the
system of equations described in table 1. In order to isolate a section of the riser,
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Figure 1. Instantaneous greyscale plots of solids volume fraction. 25 × 100 grids. Frh = 0.0972;
ep = 0.9; Frp = 64.8; Rep = 1.18; A = 4. Average solids volume fraction = 0.05. Gas is allowed
to slip freely at the walls. Boundary conditions for the particle phase: (a) partial slip (specularity
coefficient, φ′ = 0.5; ew = 0.9); (b) free slip; (c) doubly periodic domain; (d) doubly periodic domain
and fixed T . In (a) the pressure drop in the gas phase is 99% of the weight of bed, while in (b)–(d)
the pressure drop balances the weight of the bed.

periodic boundary conditions were imposed in the axial (vertical) direction. Two-
dimensional simulation results for a domain with an aspect ratio, A(= height/width),
of 4 and an average solids volume fraction of 0.05 are presented in figure 1. In
dimensionless form, the width of the box, ∆h, translates to the inverse of a Froude
number, Frh = v2

t /g∆h. In these simulations, Frh = 0.0972. (For the combination of
parameters in table 1, this translates to a domain width of 5 cm. Note that even
though this is a rather small domain when compared to the typical size of risers, the
total number of particles is already prohibitively large to track the motion of each
and every particle through a Lagrangian simulation. Thus, structures visible in this
figure can be examined realistically only through solution of continuum equations of
motion.) This figure shows a grey-scale plot of solids volume fraction at one instant
of time and for four different wall boundary conditions. In all these simulations,
both the solid and gas phases were initially at rest and the volume fraction of solids
was uniform at 0.05. Transient integration was then carried out using four different
wall boundary conditions and the evolution of non-uniform structure was followed.
Figure 1(a) shows a snapshot obtained when a partial slip boundary condition
proposed by Johnson & Jackson (1987), see table 1, was used for the particle phase,
while allowing the gas to slip freely at the wall. Figure 1(b) presents a snapshot
obtained when both the gas and solid phases were allowed to slip freely at the wall
(but not penetrate it). Similar results were obtained with no-slip boundary conditions
as well (not shown). It is thus clear that details of the particle–wall interactions are
not essential for producing these meso-scale structures.

We then replaced the walls of the channel with periodic boundary conditions
(figure 1c), so that both the particles and the gas could penetrate the virtual wall and
reappear at the other side. Figure 1(d) describes a snapshot obtained when only the
continuity and momentum balance equations were solved using periodic boundary
conditions in both directions, while fixing the value of the granular temperature at the
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value corresponding to the uniformly fluidized state and treating it as independent
of time and position. While a direct comparison cannot be made between the four
parts of figure 1, all of them show the presence of non-uniform strand and cluster-like
structures.

These results indicate that, in this class of flow problems, macroscopic shear arising
from the presence of boundaries is not required to induce meso-scale structures.
Therefore, one should be able to identify the different routes that lead to cluster
formation by simply examining the stability of uniform flow of gas–particle mixtures
in unbounded domains.

4. Various routes to formation of clusters in gas–particle flows
Although attractive inter-particle forces can give rise to aggregation of fine particles,

this is not likely to be a dominant route to cluster formation under the high-velocity,
rapid shear flow conditions encountered in typical riser applications. Therefore, it is
reasonable to focus our attention on flow-induced inhomogeneities and ask if such
structures arise as a result of instabilities that can be recognized by a stability analysis
of the averaged equations of motion. To this end we briefly review the stability of
several simple, idealized flows.

4.1. Stability of the uniformly fluidized state

Returning to equations (1)–(4), consider first the uniformly fluidized state of a gas–
particle suspension. This problem has been investigated by a number of researchers
who have sought to elucidate the origin of bubbles in dense fluidized beds and the
distinction between bubbling and non-bubbling systems. A detailed discussion of this
stability analysis, including the history, can be found in recent articles by Anderson,
Sundaresan & Jackson (1995) and Glasser, Kevrekidis & Sundaresan (1996, 1997).
Focusing on gas–particle systems, it can now be asserted that dense fluidized beds
are most unstable to vertically travelling wavefronts having no horizontal structure,
and that bubbles emerge through a loss of stability of these wavefronts to horizontal
perturbations. In these analyses, a simple Newtonian form has been assumed for
the particle- and fluid-phase stress tensors, where the particle-phase pressure, ps, and
viscosity, µs, were taken to be monotonically increasing functions of the solids volume
fraction, φ, and the effective viscosity of the gas phase was simply set to be that of
the gas itself. The gas was assumed to be incompressible and the gas-phase pressure
pg was found by solving the equations of motion. The drag coefficient was modelled
using the Richardson–Zaki equation (Richardson & Zaki 1954).

Glasser, Sundaresan & Kevrekidis (1998) have extended this stability analysis to
uniformly fluidized suspensions covering the entire range from dense fluidized beds to
dilute systems representative of riser flow. It was found that for every value of particle
volume fraction the uniformly fluidized state is most unstable to vertically travelling
wavefronts having no horizontal structure. Furthermore, a loss of stability of this
vertically travelling wavefront to transverse perturbations gives rise to a travelling
wave having a lateral structure in exactly the same manner, irrespective of whether
we are considering a dense fluidized bed or a dilute gas–particle suspension. The
structure of solutions having both vertical and lateral non-uniformities in the velocity
and particle volume fraction fields changes smoothly from a bubble in the case of a
dense fluidized bed to a cluster of particles in the case of a dilute suspension. Thus,
it has been shown that bubbles in dense beds and clusters in dilute systems emerge
through the same instability and that the averaged equations (1)–(4) with simple
phenomenological closures can capture the formation of these structures. These
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structures arise because of an interaction between inertia associated with the particle
phase, gravity and gas–particle drag. Their dominant length scale, L, is given by
L = (µsvt/ρsg)1/2. Physically, this particular route to cluster formation arises because
of the existence of a relative motion between the particles and the gas. Redistribution
of a uniform suspension of particles into clusters surrounded by a region containing
a comparatively lower concentration of particles creates a path of lower resistance
for the particles to fall down under the action of gravity and the gas to rise.

4.2. Non-uniform structures arising from inelastic collisions

Clusters form as a result of inelastic collisions both in granular materials under rapid
shear and in the cooling of granular gas. Hopkins & Louge (1991) noted in their
simulation of plane shear flow of inelastic disks that a non-uniform microstructure
could arise when the collisions between the disks are sufficiently inelastic. This work
has spawned particle dynamics simulations (e.g. see Goldhirsch, Tan & Zanetti 1993;
McNamara & Young 1996; Tan & Goldhirsch 1997) and experiments (e.g. see
Kudrolli & Gollub 1997) on clustering due to inelastic collisions.

The extent to which the formation of clusters as a result of inelastic collisions
between particles can be captured by continuum equations of motion for the granular
material has also been investigated extensively (e.g. see Savage 1992; Tan 1995;
McNamara & Young 1996; Tan & Goldhirsch 1997; Nott et al. 1999). Collectively,
these studies suggest that the kinetic theory of granular materials does reveal the
existence of such clustering.

Given that inelastic collisions and inertial instability associated with fluidization
can individually give rise to clusters and streamers, it is hardly surprising that these
two mechanisms, when acting together, can also lead to such structures. When an
interstitial fluid is present, the damping of the fluctuating motion of the particles by
this fluid augments the tendency to form clusters (Wylie & Koch 2000).

Several researchers have investigated the dynamics of fluidized beds and circulating
fluidized beds, using discrete particle simulation (or the discrete simulation Monte
Carlo method) to follow the motion of the particles and an averaged equation of
motion for the gas (Ito et al. 1998; Hoomans et al. 1996; Ouyang & Li 1999; Tanaka,
Yonemura & Tsuji 1995; Tanaka et al. 1997; Tsuji, Kawaguchi & Tanaka 1993; Tsuji,
Tanaka & Yonemura 1998). Structures, such as bubbles and slugs in dense fluidized
beds and clusters in dilute systems, form readily in these simulations. Thus, the meso-
scale structures seen in our transient integration of a continuum hydrodynamic model
are indeed physical entities.

Let us now return to the problem of gas–particle flows in risers and take stock of
what one can say with some degree of confidence. High-velocity gas–particle flows in
risers do show persistent fluctuations and are accompanied by the presence of clusters
and streamers. Figure 1 presented earlier has confirmed the ability of the averaged
equations of motion for two-phase flow, coupled with an additional equation for the
particle-phase kinetic energy, described in table 1 (henceforth referred to as micro-
scale equations), to capture clusters and streamers, and predict persistent fluctuations
in velocity and particle concentration fields. It is also clear that these non-uniform
structures arise as a result of local instabilities and not because of instabilities
associated with the entire circulation loop of CFBs. Furthermore, the presence of
tube walls is not required for the formation of these structures (figure 1). Instead,
they arise because of (a) instability associated with the relative motion between the gas
and particle phases and (b) dissipation of fluctuating energy of particles by inelastic
collisions between particles and viscous damping.
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While the micro-scale equations summarized in table 1 are not exact, they do
seem to capture qualitatively the known routes to meso-scale structures. It would
therefore seem reasonable to expect that the numerical integration of these equations,
using a sufficiently fine grid structure, should reveal the flow behaviour at both
meso- and macro-scales. The typical length scale of meso-scale structures estimated
from a stability analysis of the micro-scale equations is of the order of 10–50 particle
diameters. This is consistent with the cluster sizes reported by Horio (1995). Therefore,
if we truly wish to resolve these meso-scale structures in a numerical integration of
the micro-scale equations, the grid size should be of the order of a few particle
diameters. Such a highly resolved simulation is simply impractical and will not be a
useful design tool for industrial applications.

One is usually most interested in the macro-scale structures and how changes in
process design influence them. At the same time, meso-scale structures cannot be
ignored as these have a significant effect on the macro-scale features and structures
seen in process units such as riser reactors. Indeed some researchers have found
that the pressure drop in a FCC riser could not be predicted by their coarse-grid
simulations unless an apparent particle size (larger than or equal to the true size),
parameterized in terms of a Reynolds number and void fraction, was used in the drag
law (O’Brien & Syamlal 1994).

Let us now take a closer look at what is implicitly assumed in every coarse-grid
simulation of a riser. In the finite volume method, which is the most commonly used
method to solve such equations, the domain of interest is divided into a number of
cells and balance equations are written for each cell. In simulations of industrial scale
risers, the cells are typically hundreds of particle diameters in each direction.

In coarse-grid simulations being performed today, the dependent variables are
assumed to be uniform inside such cells. We know, however, that meso-scale structures
can and will form in riser flows (see figure 1) and that they are only a few tens of
particle diameters in size, which is much smaller than the typical computational cell
size. These structures will not be resolved in the coarse-grid simulation.

It is worthwhile to digress at this point to turbulent flow of an incompressible
single-phase fluid where no sub-grid-scale instability is present to induce sub-grid
flow structure. The dissipative sub-grid-scale processes convert mechanical energy
to thermal energy, and therefore, to sustain the sub-grid structure, kinetic energy
associated with macro-scale (i.e. a length scale larger than the grid size) motion must
be converted continually to that associated with sub-grid-scale flow. This is possible
only when macro-scale shear is present. Indeed, the effective viscosity in large-eddy
simulations depends on the grid size and the macro-scale shear rate (e.g. see Ferziger
& Peri 1996; Smagorinsky 1963). Returning to the present two-phase flow problem,
it is therefore natural to expect the corrections to the effective stresses and the inter-
phase interaction force to depend on the macro-scale shear rates in the particle and
gas phases. However, the presence of a macro-scale shear is not necessary for inducing
a sub-grid structure in our problem.

5. Some results on effects of meso-scale structures
The meso-scale structures due to local instabilities can be understood better by

performing highly resolved simulations of a small region of a riser. Furthermore, as
the presence of boundaries is not necessary to induce the formation of meso-scale
structures, one can isolate a region of the riser by simply utilizing periodic boundary
conditions in all directions. With this in mind, we performed a number of two- and
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three-dimensional simulations† of the equations in table 1 in rectangular domains and
invoked periodic boundary conditions in both lateral and vertical directions. (Such
statistical properties may also be gathered by particle dynamics simulations.)

In these simulations, the gas pressure varied periodically in the lateral direction,
while in the vertical direction it was partitioned into a periodic part and a linear part.
The linear part contributed to a mean pressure gradient in the vertical direction whose
value was chosen to balance the total gravitational force acting on the suspension.
Henceforth, when we say that periodic boundary conditions are imposed in the axial
direction, it is implicitly understood that gas pressure is treated in this manner.

Before discussing results gathered from our simulations in periodic domains, it is
important to reiterate the connection between these simulations and a coarse-grid
CFD simulation of gas–particle flows in a large riser. The coarse-grid simulations
do not resolve the meso-scale structures which are smaller than the grid size. Our
ultimate goal is to devise a sub-grid model to account for the role of the sub-grid-
scale structure. Our present objective is to bring forth the general features of the
sub-grid model. The sub-grid structure is dictated by a combination of sub-grid-scale
instabilities and macro-scale shear. We focus first on the former and briefly touch
upon the latter at a later stage.

We consider below gas–particle flows in periodic domains whose dimensions are
comparable to the grid size in typical coarse-grid CFD simulations, and perform as
highly resolved simulations (using a second-order discretization scheme, see Syamlal
1998) as we can with our computational resources. From these computations we have
gathered statistical data on the effects of meso-scale structures.

We first present in figure 2 an example to demonstrate that as one increases the
resolution, finer and finer structures are revealed. The average solids volume fraction
in the domain is 0.05. The initial conditions represent a very slight perturbation of the
uniform solution afforded by the equations of motion in table 1. Figure 2(a) shows a
(representative) snapshot of the solid volume fraction field at one particular instant
of time obtained in a simulation using 25× 10 equally sized grids. As we increased
the resolution, meso-scale structure in the form of many thin strands and clusters
were observed. Figure 2(b) shows a snapshot obtained with 25× 100 grids, while that
in (c) corresponds to 50×200 grids. The simulation in (a) clearly smears the fine-scale
features seen in (b) and (c).

5.1. Effect of meso-scale structure on drag and pseudo-thermal energy
production/dissipation

It is natural to inquire if the meso-scale structure, which may get resolved by fine-
grid simulations, really has any bearing on quantities averaged over the domain. To

† Ideally, one should perform only three-dimensional simulations; however, each three-
dimensional simulation of the type we would like to carry out requires nearly 100 times more
CPU time than a corresponding two-dimensional calculation. As we need to perform many sets
of simulations to bring out the fundamental ideas discussed in this paper, three-dimensional simu-
lations are simply beyond our current resources. While the two-dimensional calculations are less
satisfactory than the three-dimensional simulations, they suffice to make a convincing case for the
need for sub-grid models. It should be noted that two-dimensional simulations are not useful in
single-phase calculations, as there is no meaningful equivalent of vortices (eddies) in two-dimensions.
In the case of the present two-phase flow problem, the large-wavenumber portion of the energy
spectrum is primarily controlled by the local instabilities. As all the known local instabilities in the
gas–solid systems are revealed by the equations at the two-dimensional level itself, there is some
basis for hoping that two-dimensional simulations can provide an initial glimpse of the sub-grid
model.
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Figure 2. Instantaneous greyscale plots of solids volume fraction. Frh = 0.0972; ep = 0.9; Frp = 64.8;
Rep = 1.18; A = 4. Average solids volume fraction = 0.05. Number of grids: (a) 25×10; (b) 25×100;
(c) 50× 200.

address this issue, consider the results of a simulation presented in figure 3. The
parameters are the same as in figure 2(c). Figure 3(a) shows the temporal evolution
of the spatially Favre-averaged granular temperature. (Henceforth, we refer to such
an average as the domain-average.) After an initial induction period (whose duration
depends on the initial conditions), the domain-average temperature shows persistent
fluctuations. Typical time step in these simulations is 10−2 dimensionless units. The
average temperature for this fluctuating state is quite different from that in the uniform
state (which was the starting value of the temperature in this figure). Such averaging
is typically done for a minimum of 50 units of dimensionless time. (Henceforth,
we refer to the time-averaged value of any domain-average quantity simply as the
average value of that quantity.) The corresponding spatially Favre-averaged velocities
of the gas and particle phases in the vertical directions were also calculated as
functions of time. The difference between these two velocities, i.e. the domain-average
slip velocity, is plotted in figure 3(b). Again we see that the average slip velocity in
the fluctuating state is substantially different from that in the (initial) uniform state.
Stated differently, the slip velocity needed to produce a specified amount of drag force
is larger in the presence of meso-scale structure when compared to a corresponding
uniform structure. It is also important to note that the instantaneous value of the
domain-average slip velocity fluctuates appreciably in the statistical steady state,
indicating the dynamic nature of the meso-scale structures.

The two panels on the right are the same as those on the left except that the
so-called model B, where the gas-phase pressure gradient appears only in the gas-
phase momentum balance, was used for the micro-scale equations. The inter-phase
interaction term in model B will differ from that of model A by a factor (1 − φ)
(Bouillard, Lyczkowski & Gidaspow 1989), so both models yield identical uniform
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Figure 3. Temporal evolution of the Favre-averaged granular temperature and the Favre-averaged
axial slip velocity. (a, b) Model A; (c, d) Model B: 50×200 grids. Frh = 0.0972; ep = 0.9; Frp = 64.8;
Rep = 1.18; A = 4. Average solids volume fraction = 0.05.

state solutions. In the absence of viscous terms, model A is ill-posed, while model B is
not. It is clear from figure 3 that both models A and B predict persistent fluctuations.
Indeed the average granular temperature and the slip velocity are almost the same in
the two cases.

Figure 4 illustrates the effect of grid resolution on the average slip velocity, Wslip,
and the average granular temperature. As the grid size is decreased, the meso-scale
structures are better resolved, resulting in appreciable changes in the slip velocity
and average granular temperature. Both the average granular temperature and Wslip

become roughly independent of grid resolution, as the meso-scale structures become
better and better resolved. The small grid-size dependence seen in figure 4 at the
three smallest grid sizes is much smaller than the standard deviation of the temporal
fluctuations (e.g. see figure 3). Examination of the power spectra of the variable fields
also indicates convergence: as the resolution is increased the power spectra at the
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Figure 4. Effect of resolution on domain-averaged quantities. Frh = 0.486; ep = 0.9; Frp = 64.8;
Rep = 1.18; A = 1. Average solids volume fraction = 0.05. (a) Dimensionless slip velocity;
(b) dimensionless granular temperature. X denotes 1/N, where N is the number of grid points
in each direction. X = 1 corresponds to uniform state, where Wslip = 0.85 and T = 0.0034.
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Figure 5. Effect of aspect ratio on domain-averaged quantities. Frh = 0.486; ep = 0.9; Frp = 64.8.
Rep = 1.18. Average solids volume fraction = 0.05. (a) Dimensionless slip velocity; (b) dimension-
less granular temperature. Resolution: (16 × 16A) grids. At the uniform state, Wslip = 0.85 and
T = 0.0034.

lower wavenumbers do not change (Agrawal 2000). It can therefore be said with
confidence that meso-scale structures begin to appear at modest grid resolution, and
they persist as we continue to increase the grid resolution. Thus, the effects of the
meso-scale structures seen in our simulations are not numerical artifacts.

Figure 5(a, b) shows that the average temperature and slip velocity decrease upon
increasing the aspect ratio, and become essentially independent of A for A & 4.
Snapshots of particle volume fraction field, presented in figure 6, clearly show that
the meso-scale structures obtained at different aspect ratios are very similar.

We have carried out two-dimensional simulations such as the one shown in figures
3–5 (using model A) for several different combinations of parameters. After each
simulation has been run for a long enough duration to ensure that a statistical steady
state has been reached (typically at least 50 units of dimensionless time), statistics
on a variety of fluctuating quantities have been obtained. The effect of ep on various
domain-averaged quantities is illustrated in table 3. This table presents the magnitude
of each quantity at the uniformly fluidized state and its average value obtained from
transient simulations in a periodic domain with an aspect ratio of 4 and Frh = 0.486
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Uniform state Statistically steady state

ep 0.8 0.9 0.9* 0.9** 0.99 0.8 0.9 0.9* 0.9** 0.99
Wslip 0.85 0.85 0.85 0.85 0.85 1.60 1.46 1.49 1.68 1.27
T 0.0032 0.0034 — .0041 .0036 0.015 0.018 0.016 0.017 0.025

Jcoll(×10−4) 1.11 0.63 — .83 0.07 73.58 52.78 50.71 59.14 8.5
Jvis(×10−4) 5.5 5.77 — 10.29 6.14 32.36 39.16 35.54 85.6 52.2
Γshear(×10−4) 0 0 — 0 0 101.7 88.27 86.25 129.18 57.33
Γslip(×10−4) 6.4 6.58 — 11.12 6.21 4.21 3.68 — 15.56 3.41

Ps,KT 0.0002 0.00023 — 0.00026 0.00024 0.0019 0.0022 0.0021 0.0024 0.0029
Ps,meso,x — — — — — 0.028 0.032 0.031 0.032 0.020
Ps,meso,y — — — — — 0.018 0.015 0.016 0.025 0.012

Table 3. Effect of coefficient of restitution on dimensionless domain-averaged quantities obtained from two-dimensional simulations. Frh = 0.486;
Frp = 64.8; Rep = 1.18; A = 4. Average solids volume fraction = 0.05. Here, subscripts x and y denote the horizontal and vertical directions,
respectively. Resolution: 16× 64.



Role of meso-scale structures in gas–solid flows 167

0 5 10 15 20 25

Solids volume (%)

(a) (b) (c) (d )

Figure 6. Instantaneous greyscale plots of solids volume fraction, revealing meso-scale structures.
Frh = 0.486; ep = 0.9; Frp = 64.8; Rep = 1.18; (a) A = 1; (b) A = 2; (c) A = 4; (d) A = 8.
Resolution: (16× 16A) grids.

using 16× 64 grids. According to the model, the slip velocity in the uniform state is
independent of ep, while this is not the case in the statistical steady state. Furthermore,
the granular temperature in the statistical steady state is appreciably larger than that
in the uniform state in the entire range of ep values shown in table 3. It should be
noted that the closure relations for the stresses, conductivity of PTE and the rate of
dissipation due to inelastic collisions derived by Lun et al. (1984) are valid for only
slightly inelastic collisions. We have explored a somewhat wider range of ep values in
table 3 to demonstrate that the effect of ep on the average quantities is only gradual.

It is also interesting to discuss at this stage the relative importance of the different
routes for production and dissipation of PTE. Let us first consider the production of
PTE due to gas–particle slip (see (16) in table 1). In the absence of this term, the PTE
of the particles in a uniformly fluidized suspension is zero. Thus, this term gives the
particle phase in a uniformly fluidized suspension a small, but non-zero, PTE, which,
in turn, imparts the particle phase with a non-zero pressure and viscosity. Once the
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Figure 7. Variation of effective slip velocity with voidage. Both are domain-averaged quantities.
ep = 0.9; Frp = 64.8; Rep = 1.18. •, Frh = 0.486; A = 4; resolution: 16 × 64. ©, Frh = 0.243;
A = 2; resolution: 32× 64. Solid line: uniform state.

uniform state of the mixture has given way to a non-uniform distribution consisting
of meso-scale structures, production of PTE occurs predominantly through shear (see
rows labelled Γshear and Γslip in table 3).

In one simulation, with ep = 0.9, the slip-production of PTE was turned off after
the system developed a non-uniform structure and the simulation was continued
for a sufficiently long period of time to gather statistics. The results obtained in
this numerical experiment are shown in table 3 as a separate column (labelled 9∗).
Also show in this table are the results obtained in another numerical experiment
(also at ep = 0.9) where the full expressions for Γslip and Jvis proposed by Koch &
Sangani (1999), described earlier in (19)–(21) were used (see column labelled 9∗∗). A
comparison of the entries in the three columns labelled ep = 0.9 reveals clearly that
slip is of secondary importance in the system being simulated.

Table 3 also summarizes the statistical average values of the rates of PTE dissipation
by gas–particle slip and by inelastic collisions. In the uniform state and φ = 0.05,
Jvis � Jcoll . In contrast, both routes are equally important in the statistical steady state.
It is intuitively obvious that as the loading level decreases, the viscous damping will
become increasingly more important, and vice versa. It can also be seen from this table
that the average rate of dissipation in a state of non-uniform microstructure is actually
larger than that in the corresponding uniform state. Thus, a higher average granular
temperature is sustained in the non-uniform state through enhanced rate of production
of PTE by shear and not because of a lowering of the rate of dissipation. Comparing
the statistical steady states shown in the three columns labelled 9, 9∗ and 9∗∗, we see
that the expression derived recently by Koch & Sangani (1999) predicts a considerably
larger Jvis than the simpler expression we used in the bulk of our simulations.
Simultaneously, Wslip is also larger, possibly due to larger clusters and streamers,
which, in turn, causes larger magnitudes of velocity gradients and larger Γslip.

Let us now return to the question of what is needed to properly simulate gas–particle
flows in large vessels. It is clear from the examples described above that coarse-grid
simulations which completely ignore the sub-grid microstructure will overestimate the



Role of meso-scale structures in gas–solid flows 169

drag force and underestimate the rates of production and dissipation of PTE. A rather
simple correction for the drag force term may be determined as follows. Suppose we
wish to simulate gas–particle flow in a large process unit using grids of a particular
size. Taking this grid size to be used in the coarse-grid simulation of the large unit as
the domain size, and imposing periodic boundary conditions in all directions, one can
carry out simulations of the type described above for various mean volume fractions.
The average values of the slip velocity at various particle loading levels may then
be used to extract an approximate drag law. This is illustrated in figure 7, where the
statistical average slip velocities obtained in simulations carried out over a doubly
periodic domain with Frh = 0.486 and A = 4 are shown by filled circles. These data
can be captured satisfactorily by some expression of the form 〈v〉/vt = F1(φ), where
vt is the terminal velocity of a single particle. A plausible functional representation of
the apparent drag, which directly utilizes F1(φ), is given in Appendix A. (It should,
however, be noted that a proper representation of the effective interaction force
between the gas and particle phases, which must be used in coarse-grid simulations,
should include both mean and fluctuating components. This may necessitate the use
of a stochastic model. See Appendix A for further details.)

The variation of the apparent slip velocity as a function of voidage (shown in
figure 7 by filled circles) is quite different from that for the uniform state (the solid
line in figure 7). The apparent slip velocity first increases as the voidage decreases.
This is a result of the formation of denser clusters for higher mean solids volume
fraction (see figure 8a, b). The denser clusters fall faster relative to the surroundings.
Gas bypassing the clusters is clearly evident in figure 9. But as the voidage is decreased
further, the clusters start interacting and intersecting one another, making it more
difficult for the gas to bypass the dense regions (see figure 8d). As a result, the slip
velocity starts decreasing with decreasing voidage. At a certain voidage there is a
transition from the formation of clusters to the formation of voids (see figure 8e).
For lower voidages still, the system forms voids, or bubbles, instead of clusters (see
figure 8f). It should be emphasized at this stage that the apparent slip velocity for a
specified mean solids fraction is dependent on grid size to be used in the coarse-grid
simulations. To highlight this point, we have also included in figure 7 the apparent
slip velocities obtained for some simulations in a doubly periodic domain that is twice
as wide (open circles in figure 7). The domain height is the same for both cases. The
apparent slip velocities in this case are larger than those for the narrower domain;
the trend, however, is similar.

As the size of the domain decreases, the apparent slip velocity decreases towards
the value corresponding to a uniform state (equivalently, the apparent particle size
decreases toward the true particle size). Needless to say, the sub-grid model for
apparent drag obtained in this manner by simply averaging over the domain is crude
and closer scrutiny of the details of the meso-scale structure is needed for more
fundamental sub-grid models. It should be emphasized, however, that even the crude
sub-grid model sketched above for the apparent drag is a rational improvement over
an utter disregard of the meso-scale structure.

We performed a limited number of three-dimensional simulations in periodic do-
mains to demonstrate that the meso-scale structures and their effects are not artifacts
of two-dimensional simulations. Figure 10 shows a vector plot of gas velocity, super-
imposed on a three-dimensional density plot of solids volume fraction field. The
tendency of the gas to bypass the dense regions is clearly evident. Figure 11 shows
surface plots of solids volume fraction, revealing a gradual transition from clusters
to bubbles as the mean solids volume fraction increases.
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Figure 8. Instantaneous greyscale plots of solids volume fraction at various mean solids volume
fraction levels. ep = 0.9; Frp = 64.8; Rep = 1.18; Frh = 0.486; A = 4. Resolution: 16× 64.

A comparison of the average axial slip velocities at various values of mean voidages
obtained in two-dimensional and three-dimensional simulations at a comparable
resolution is presented in figure 12. It is abundantly clear that the effect seen in
two-dimensional simulations earlier (figure 7) is present in three-dimensional as well.
It is easier for the gas to bypass clusters in three than in two dimensions, making
the effect more pronounced in the former. In spite of the quantitative differences,
it is apparent that two-dimensional simulations do capture the effect of meso-scale
structures qualitatively.



Role of meso-scale structures in gas–solid flows 171

25

20

10

5

0

15

φ (%)

Figure 9. Gas bypassing clusters and strands. Snapshot at one instant of time. Vector plot of gas
velocity field is superimposed on greyscale plot of solids volume fraction. ep = 0.9; Frp = 64.8;
Rep = 1.18; Frh = 0.486; A = 4. Resolution: 16× 64. Average solids volume fraction = 0.05.

5.2. Role of meso-scale structure on effective stresses

The effective gas- and particle-phase stresses in coarse-grid simulation of gas–particle
flows in large vessels should include the micro-scale stresses (appearing in equations
(3) and (4) in table 1) and those due to the sub-grid-scale structures. In large-eddy
simulation of single-phase turbulent flow, the latter usually dominates the former. We
will now illustrate that this is indeed the case in our problem as well.

Dimensionless meso-scale normal stresses, Ps,meso,x and Ps,meso,y , and microscale
pressure, Ps,kt, in two-dimensional simulations were computed as follows. The domain-
averaged values of σs and φvv were first computed as functions of time. These were
then time-averaged to obtain 〈σs〉 and 〈φvv〉, respectively. Finally,

Ps,meso,x = 〈φvxvx〉 − φ̄ṽxṽx + 〈σs,xx〉, Ps,meso,y = 〈φvyvy〉 − φ̄ṽyṽy + 〈σs,yy〉,
where φ̄ is the average solids volume fraction in the domain and ṽ is the Favre-average
velocity of the particle phase with respect to the mass-average velocity of the mixture
(the averaging being done over both space and time). The values of Ps,kt (defined as
(1/3) tr〈σs〉), Ps,meso,x and Ps,meso,y for a representative set of simulations are shown
in table 3. The generation of PTE by shear associated with meso-scale structures
increases the value of Ps,kt by an order of magnitude over the value at the uniform
state. Ps,meso,x and Ps,meso,y are even larger, showing that fluctuations associated with
the meso-scale structures contribute significantly to the effective normal stresses in
coarse-grid simulations.

Figure 13(a, b) summarizes Ps,meso,x, Ps,meso,y and Ps,kt values obtained for several

different values of φ̄, corresponding to the conditions shown by filled circles in
figure 12. At every value of φ̄ shown in figure 13(a, b), Ps,meso,x and Ps,meso,y are
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Figure 10. Snapshot of solids volume fraction and gas velocity fields in a three-dimensional
simulation. Cones represent gas velocity, with orientation and length indicating direction and
magnitude, respectively. A contour plot of surface in the interior of the domain where φ = 0.05 is
shown. The solids volume fraction at points on the faces is as in the greyscale (provided φ here
exceeds 0.05). Mean solids volume fraction = 0.05. ep = 0.9; Frp = 64.8; Rep = 1.18; Frh = 0.486.
Resolution: 16× 16× 64. Aspect ratio of the box 1 : 1 : 4.

significantly larger than Ps,kt (which, in turn, is much larger than Ps,kt corresponding
to the uniform state).

The values of horizontal and vertical meso-scale stresses and Ps,kt obtained in

three-dimensional simulations at various values of φ̄, corresponding to the conditions
presented earlier by open circles in figure 12, are shown in figure 14(a, b). The
horizontal normal stress in three dimensions is noticeably smaller than that in two
dimensions, while Ps,kt (three-dimensional) is larger than that in two dimensions.
Recall that, in our simulations, the shear due to the meso-scale structures produced
PTE and gave rise to Ps,kt. If the meso-scale structures were not resolved in the
simulations, the value of Ps,kt would have been much smaller (see columns marked
‘uniform state’ in table 2). Therefore, it can be concluded that coarse-grid simulations,
which do not account for the particle-phase pressure due to the sub-grid-scale clusters
and streamers, are grossly inaccurate.

The contribution of the meso-scale structure to the effective gas-phase pressure is
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Figure 11. Snapshots of solids volume fraction fields in a three-dimensional simulation. A contour
plot of surface in the interior of the domain where φ = 0.05 is shown. The solids volume fraction
at points on the faces is as in the greyscale (provided φ here exceeds 0.05). ep = 0.9; Frp = 64.8;
Rep = 1.18; Frh = 0.486. Resolution: 16× 16× 64. Aspect ratio of the box 1 : 1 : 4.

not included in table 2. As we have treated the gas phase as incompressible, the gas
pressure is solved to satisfy incompressibility and the meso-scale contribution to the
pressure (Pg,meso) can simply be absorbed into the pressure term. Strictly speaking, this
term needs to be included in the effective pressure in the gas phase in compressible
flow problems.

Table 4 presents an illustration of the sensitivity of the values of various average
quantities to the choice of model for the effective viscosity of the gas phase. In
all the simulations discussed thus far, the effective viscosity of the gas phase was
simply taken to be that of the gas itself, and the results obtained with this choice
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Figure 12. Variation of effective slip velocity with voidage. Both are domain-averaged quan-
tities. ep = 0.9, Frh = 0.486. •, two-dimensional; aspect ratio 1 : 4; resolution: 16 × 64.
©, three-dimensional; aspect ratio 1 : 1 : 4; resolution: 16× 16× 64. Solid line: uniform state.
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Figure 13. Variation of two-dimensional (a) meso-scale normal stresses Ps,meso,x (•) and Ps,meso,y (�),
and (b) Ps,kt (©) with average solids fraction. ep = 0.9; Frp = 64.8; Rep = 1.18; Frh = 0.486. Aspect
ratio 1 : 4. Resolution: 16× 64. Here, subscripts x and y denote horizontal and vertical directions,
respectively.

are shown as the first column of numbers in this table. The next column employs a
standard Smagorinsky (1963) model for viscosity. It is clear from a comparison of
these two columns that the average quantities shown there are hardly sensitive to the
value of µ̂g . The final column of numbers was obtained by arbitrarily increasing the
Smagorinsky viscosity by a factor of ten, where a small, but detectable, effect of the
effective gas-phase viscosity is apparent.

In addition to generating a meso-scale pressure, the meso-scale structures also serve
to generate additional deviatoric stresses in the two phases when macro-scale shear is
present. We have carried out two-dimensional and three-dimensional simulations in
periodic domains, while allowing for the presence of macro-scale shear. In gas–solid
flows in vertical risers, axial variation of lateral velocity is present only in a transient
fashion but not in a time-averaged sense, whereas lateral variation of axial velocity
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µ̂g = µg µ̂g = µg + µg,t µ̂g = µg + µg,t

Wslip 1.46 1.48 1.52
T 0.018 0.018 0.018

Ps,KT 0.0022 0.0023 0.0024
Ps,meso,x 0.032 0.033 0.030
Ps,meso,y 0.015 0.016 0.018

Table 4. Dependence of various domain-averaged quantities on the effective viscosity for the gas
phase. Frh = 0.486; ep = 0.9; Frp = 64.8; Rep = 1.18; A = 4. Average solids volume fraction = 0.05.
Simulations were carried out in two-dimensional periodic domains. Here, subscripts x and y denote
the horizontal and vertical directions, respectively. Resolution: 16 × 64. In the second and third
columns of numbers, gas-phase viscosity (dimensional quantity) is given by µg,t = ρg(C∆)2(Sg:Sg)
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Figure 14. Variation of three-dimensional (a) meso-scale normal stresses Ps,meso,x,z (•) and Ps,meso,y
(�), and (b) Ps,kt (©) with average solids fraction. ep = 0.9; Frp = 64.8; Rep = 1.18; Frh = 0.486.
Aspect ratio 1 : 1 : 4. Resolution: 16 × 16 × 64. Here, subscripts x and z denote horizontal and
vertical directions, respectively, while y denotes the vertical direction. Ps,meso,x = Ps,meso,z ≡ Ps,meso,x,z .

exists even in a time-averaged sense. This consideration prompted us to focus for
the time being only on macroscopic shear in the form of lateral variation of axial
velocities of the gas and solid phases.

A schematic of such a simulation in two dimensions is shown in figure 15. From
such simulations, we determined 〈σs〉, and 〈φvv〉, which were then used to compute
Ps,meso,x, Ps,meso,y , Ps,kt µ,kt and µ,meso. Here,

µs,kt = −1

γ̃
〈σs,yx〉, µs,meso = −1

γ̃
〈φvxvy〉+ µs,kt.

Both µs,kt and µs,meso are dimensionless quantities, where corresponding dimensional
quantities have been scaled in terms of a characteristic viscosity, ρsv

3
t /g. γ̃ denotes

a dimensionless shear rate (= γvt/g where γ is the shear rate). In general, these
viscosities were difficult to compute accurately, requiring long periods of integration
(typically over 100 units of dimensionless time). This difficulty stemmed from the
large temporal fluctuations of the domain-averaged meso-scale deviatoric stress.

Figure 16(a–d) shows the effect of γ̃ on Wslip, T , Ps,kt and µkt, for three different

values of φ̄. Here, µkt is defined as the average value of kinetic theory viscosity. This
is, in general, different from µs,kt. However, µkt and µs,kt were found to be within a
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Figure 15. Schematic representation of two-dimensional simulations in periodic domains with
imposed shear.

factor of two in our exploratory simulations. For example, at φ = 0.05, γ̃ = 1.113
and all other parameters as in figure 16, µkt = 1.96 × 10−4 and µs,kt = 1.0 × 10−4.
Therefore, we simply report in figure 16(d) only µkt (which could be evaluated more
accurately). At low shear rates, all four quantities increase modestly with γ̃. The fact
that these quantities change only modestly with shear rate clearly illustrates that the
meso-scale structures arose in these simulations because of inherent instabilities, and
were modified by the imposed macro-scale shear. Figure 17(a, b) shows the dependence
of Ps,meso,x and Ps,meso,y on the dimensionless shear rate. The former decreases with γ̃,
while the latter increases with γ̃.

Figure 17(c) shows the effect of γ̃ on µs,meso. It is clear from figures 16(d) and
17(c) that µs,meso is larger than µkt by more than an order of magnitude. Thus, the
meso-scale fluctuations cause the system to be more ‘viscous’ on the macro-scale.
It can be shown readily from the equations in table 1 that µkt of a gas–particle
mixture with uniform φ increases with shear rate (i.e. shear thickening). When this
uniform system gives way to a non-uniform time-dependent structure, the apparent
viscosity, µs,meso, becomes scale-dependent (i.e. dependent on Frh and A) and for the
combination of Frh and A corresponding to figures 16 and 17, it overwhelms µkt.
There is also a qualitative change, namely that at the meso-scale the system now
shows a shear-thinning behaviour.

Qualitatively similar behavior is obtained in three-dimensional simulations as well.
This is illustrated by the results presented in figure 17(a–c) as filled triangles. Our
finding that the meso-scale normal stresses and viscosity overwhelm the corresponding
quantities at the particle level clearly shows that the dynamics of the meso-scale
structures (characterized by the cluster velocity variance and the associated correlation
time) is most relevant for estimating the effective rheological quantities.

The above discussion on the meso-scale stresses clearly suggests that coarse-grid
simulations that do not recognize the rather large apparent normal stress and viscosity
of the particle phase resulting from sub-grid-scale structure are grossly inaccurate.
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Figure 16. Effect of shear rate on (a) Wslip, (b) T , (c) Ps,kt and (d) µkt, for three different values

of φ̄. ep = 0.9; Frp = 64.8; Rep = 1.18; Frh = 0.486. Aspect ratio 1 : 4. Resolution: 16 × 64.

©, φ̄ = 0.025; �, φ̄ = 0.05; •, φ̄ = 0.10.

One can readily anticipate that the apparent (meso-scale) viscosity of the gas phase
will also be significantly larger than the viscosity used in the detailed simulations.
Our efforts to estimate the apparent viscosity of the gas phase due to meso-scale
structures, µapp,g , were often unsuccessful because of large (temporal) fluctuation in
the domain-averaged value of the (1− φ)uxuy . In any case, there is no doubt that in
all our simulations, µapp,g is much smaller than µs,meso.

The observed effects of shear rate on meso-scale normal stresses and viscosity are
easy to rationalize. At low shear rates the streamers are oriented in a more random
fashion and they swing sideways more readily. As the shear rate is increased, they
exhibit an increased tendency to orient themselves in the vertical direction.

We performed a limited number of two-dimensional simulations to explore how
the average quantities are affected by various dimensionless groups appearing in the
model equations.

The dimensionless particle size (1/Frp) enters the model in several places:

(i) In the class of flow problems studied here, the local dimensionless slip velocity
is typically O(1). Hence, the importance of Frp on the drag term can be assessed by
considering a situation where the local slip velocity is close to the terminal velocity.
In the limit of Stokes drag (Reg � 1) and when Reg > 1000, Frp does not appear in
the interphase drag term in the dimensionless equations of motion. In these limits,
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Figure 17. Effect of shear rate on the meso-scale normal stresses and viscosity. ep = 0.9; Frp = 64.8;

Rep = 1.18; Frh = 0.486: ©, two-dimensional; aspect ratio 1: 4; resolution: 16 × 64. φ̄ = 0.025;

�, two-dimensional; aspect ratio 1: 4; resolution: 16 × 64. φ̄ = 0.05; •, two-dimensional; aspect
ratio 1: 4; resolution: 16× 64. φ̄ = 0.10; N, three-dimensional with aspect ratio 1: 1: 4; resolution:
16 × 16 × 64. φ̄ = 0.10. (a) Horizontal meso-scale normal stress, Ps,meso,x. (b) Vertical meso-scale
normal stress, Ps,meso,y . (c) Meso-scale viscosity, µs,meso.

the drag force model described in table 1 can be rewritten formally in terms of the
terminal velocity and Richardson–Zaki: exponent (n):

f = β(u− v), β =
(ρs − ρg)gφ
vt(1− φ)n−2

,

with n assuming values of 4.65 and 2.325 at the two limits, respectively. When this
is cast in dimensionless form, the only dimensionless group which will appear in this
term is (∆ρ)/ρs, which is close to unity in the gas–solid flow problems. At intermediate
values of Reg and a drag model as in table 1, Frp does appear in the dimensionless
interphase drag force term. However, it is easy to argue that its influence is quite
weak for modest changes in Frp.

(ii) It appears through the kinetic theory viscosity (µ), conductivity (λ) and the
terms representing generation and dissipation of PTE, see table 1. Our computational
experiments suggest that the effect of dimensionless particle size on the meso-scale
characteristics through the second route is also weak.

This is illustrated in table 5, where we have presented various average quantities for
three different values of Frp and a fixed value of Frh. In these simulations, Rep is
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Frp 97.19 64.79 48.59
Wslip 1.46 1.46 1.48
T 0.018 0.018 0.021

Ps,KT 0.0023 0.0022 0.0026
Ps,meso,x 0.032 0.032 0.030
Ps,meso,y 0.015 0.015 0.017

Table 5. Effect of Frp on dimensionless domain-averaged quantities obtained from two-dimensional
simulations. Frh = 0.486; Rep = 1.18; A = 4. Average solids volume fraction = 0.05. Here, subscripts
x and y denote the horizontal and vertical directions, respectively. Resolution: 16× 64.

still O(1). This demonstrates that the effect of particle size (dimensional quantity) is
felt largely through its effect on settling velocity (dimensional quantity) and how it
changes the value of Frh (for a given dimensional box width).

In typical riser flows, the mass loading of particles is much larger than unity, and
consequently gas-phase inertia plays only a secondary role; in this regime of flow,
the density ratio also has only a small influence on the meso-scale structures. The
Reynolds number appears in the model only through the drag correlation and as
such its effect is felt primarily via the terminal velocity. Therefore, its direct influence
on the meso-scale structures is minimal.

Therefore, the average values of various quantities are determined largely by the
values of φ, A, Frh and γ̃. As discussed earlier, for sufficiently large A (which is
typically the case in almost all riser flow simulations), the average quantities are only
weakly dependent on A, leaving φ, Frh and γ̃ as the main parameters.

We have carried out a limited number of two-dimensional simulations to explore
the effect of Frh on slip velocity, granular temperature, meso-scale normal stresses
and viscosity, and the results are summarized in figure 18(a–e). (A typical range
of Frh relevant in riser simulations is 0.05–1.0, with the explored range of 0.2–0.5
being more common.) In the range of volume fractions shown in this figure, the
granular temperature, meso-scale stresses and meso-scale viscosity clearly increase
with particle volume fraction. In contrast, the effective slip velocity reveals a more
complex dependence, which can be easily traced to the fact that the particle volume
fraction at which the maximum slip velocity occurs (e.g. see figure 7 or 12) changes
with Frh.

All the data shown in figure 18, with the exception of those shown as filled symbols,
suggest that, as the domain size increases (Frh → 0), the effects of the meso-scale
structures reach finite asymptotic values. Physically, the existence of such limits may
be interpreted as the saturation of quantities, such as velocity variance and correlation
time, that characterize the meso-scale structures. On the other hand, the data shown
as filled symbols suggest a more complex Frh scaling. Many more simulations need to
be performed before the Frh-dependence of all of these quantities can be determined
with confidence.

6. Summary
Meso-scale structures that take the form of clusters and strands, which have

been observed in gas–particle flows, can be captured qualitatively through transient
integration of continuum equations for the gas and particle phases. These structures
arise as a result of two instability mechanisms, both of which are accounted for in a
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Figure 18. Effect of Frh on domain-averaged quantities. ep = 0.9; Frp = 64.8; Rep = 1.18;

two-dimensional. Aspect ratio 1: 4. Resolution: 16 × 64. ©, φ̄ = 0.025; 4, φ̄ = 0.05; �, φ̄ = 0.10.
No macro-scale shear was imposed. (a) Slip velocity. (b) Granular temperature. (c) Horizontal
meso-scale normal stress, Ps,meso,x. (d) Vertical meso-scale normal stress, Ps,meso,y . (e) Meso-scale
viscosity of the solid phase, µs,meso.

rheological model deduced in the literature by adapting the kinetic theory of gases
to gas–particle mixtures. These meso-scale structures are too small to be resolved in
simulations of flow in large process vessels, and are invariably invisible in the coarse-
grid simulations. Yet, they affect the flow characteristics profoundly; in particular,
they alter the effective interaction force that couples the gas and particle phases,
and dramatically increase the effective viscosities of the two phases and the normal
stresses in the particle phase. In this paper, we have presented examples to illustrate
these points.
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In large-eddy simulations of turbulent flow of an incompressible single-phase
fluid, the sub-grid structure is sustained through macroscopic shear. In the gas–solid
flow problem studied here, sub-grid-scale structure arises spontaneously through a
sub-grid-scale instability and can be sustained even in the absence of macro-scale
shear. We have taken a closer look at instability-driven sub-grid structure and have
shown that it does alter the effective drag, viscosities and particle-phase pressure
appreciably. We have also presented some calculations which include the effect of
macro-scale shear. These results suggest that at low shear rates the sub-grid-scale
structure and fluctuations are influenced predominantly by the sub-grid instability
and not the macro-scale shear. At higher shear rates, the macro-scale shear alters the
fluctuation characteristics substantially by serving to align the meso-scale structure in
the axial direction. This leads to a highly anisotropic meso-scale normal stress and a
shear-thinning behaviour. Our work demonstrates the need for a sub-grid model to
account for the effect of the sub-grid structure, and also outlines a possible approach
to developing such a model.

We close by reiterating the practical value of the present line of investigation.
Coarse-grid simulation of multiphase flows is highly desirable for exploring the effects
of choices made in process design/redesign, as it allows us to analyse the problem
with a manageable number of spatial nodes which, in turn, permits much larger time
steps to be taken when compared to the simulations with very high spatial resolution
(since the maximum time step is related to the grid size through a Courant instability
criterion). At the same time, the results of a coarse-grid simulation that ignores the
sub-grid processes cannot be trusted as true solutions of the model equations for
rapid gas–particle flows one is trying solve. Given the complex nature of the sub-grid
processes, it appears doubtful if simple extensions of classical K–ε models will be able
to account for the effect of meso-scale structures discussed here. Thus, a physically
sound sub-grid model is not simply interesting, but is a must.

This work was supported by the National Science Foundation (CTS-9421661),
Exxon Research & Engineering Company, Sandia National Laboratory, and more
recently by US Department of Energy CDE-FC26-00NT40971. We are grateful to
Thomas O’Brien at the National Energy Technology Laboratory and Roy Jackson
for their support and helpful suggestions.

Appendix
Consider, for illustration, a two-dimensional simulation of gas–particle flow in a

vertical riser. Let us suppose that we discretize the domain using equally sized, but
coarse, grids. Let us further suppose that the system of equations given in table 1 is
the microscopic model we wish to simulate. The continuity and momentum balance
equations of the corresponding coarse-grid model, obtained by Favre averaging over
the meso-scale (sub-grid) structures, will have a form identical to equations (1)–(4) in
table 1, but σs, σg , and f appearing in these equations will be replaced by σ∗s , σ∗g and
f∗, representing the effective quantities.

In order to construct a simple sub-grid model for the effect of meso-scale structures
resulting from sub-grid-scale instabilities, one can perform highly resolved simulations
of the type described in the text in a doubly periodic domain whose size is exactly the
same as the grid size of the coarse-grid simulation. Such simulations are performed
for various mean solids volume fractions and various shear rates. The results are then
used to compute effective slip velocity, Ps,meso, µs,meso and µapp,g as functions of the
mean solids volume fraction and shear rates.
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The slip velocity data are then correlated, as illustrated in figure 6 for the case
γ = 0. One can then write an effective drag law of the form

f∗ = β∗(u− v), β∗ =
(ρs − ρg)g(1− φ)φ

vtF1(φ)
. (A 1)

Similar calculations can be performed at various shear rates to include the effect
of shear.

As described in the text, solid-phase stress induced by the meso-scale fluctuations
is significantly larger than the kinetic theory stress and so the latter can be neglected.
This, of course, does not mean that the kinetic theory stress plays no role in the
macro-scale features of gas–particle flow. It simply means that the primary role of the
stress due to the micro-scale fluctuations, captured by the kinetic theory, is confined to
the sub-grid processes; these micro-scale fluctuations control the meso-scale structure
and, therefore, appear indirectly in the macro-scale through the solid-phase stress
induced by the meso-scale fluctuations. A simple model for σ∗s is then written as

σ∗s = Ps,meso − 2µs,mesoS ,

which is similar in form to that used by Tsuo & Gidaspow (1989). Ps,meso (a diagonal
tensor) and µs,meso are empirical expressions obtained by fitting the data obtained in
the highly resolved simulations alluded to above. The expressions should account for
the dependence on the solids volume fraction and the rate of deformation.

Following the same approach, we can express σ∗g as

σ∗g = pgI − 2µapp,gSg

where pg is simply the gas pressure, µapp,g , and will depend on the solids volume
fraction and the rate of deformation.

In this simple model, it is not necessary to include the PTE balance in the coarse-
grid simulations, as long as the grid size is sufficiently large that the PTE balance is
relevant only at the sub-grid level.

Note that such an approach focuses on time-averaged (sub-grid-scale) quantities,
which fluctuate rapidly around a statistical mean (e.g. see figure 3). Time-averaged
quantities suffice only if a complete separation of scales exists between the meso- and
macro-scales. Figure 3 suggests that such a separation of scales may not exist, and so
it is possible that the fluctuating nature of the interphase interaction force and the
effective stresses must be accounted for in coarse-grid simulations. Recall that, in our
problem, instabilities begin at a small scale and grow to larger scales. Introducing
(stochastic) terms to capture the fluctuating nature of the interphase interaction force
and the effective stresses (arising from spatio-temporal meso-scale structures) may
allow us to initiate and sustain fluctuations in coarse-grid simulations.

It appears reasonable to retain the inflow and outflow boundary conditions that
are currently used in CFD simulations. At bounding walls, the normal velocity of
the two phases should obviously equal that of the wall. Wall boundary conditions
for the tangential components of gas and particle velocities, suitable for coarse-grid
simulations, remain a challenge. Nevertheless, for the specific problem of gas–particle
flow in wide risers, it seems adequate to use simple free-slip boundary conditions for
both phases, as the wall resistance is known to contribute only minimally.

It is straightforward to extend this idea to three-dimensional simulations with
equally sized grids.

When the grids are unequally sized, the approach outlined here becomes much
harder, as one now has to do highly resolved simulations for large number of domain
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sizes. This clearly shows why a more elegant and fundamentally based sub-grid model
that explicitly accounts for the coarse grid size, and does not require the highly
resolved simulations, must be developed.
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■ Abstract This paper reviews recent advances in our understanding of the ori-
gin and hierarchy of organized flow structures in fluidized beds, distinction between
bubbling and nonbubbling systems, and stages of bubble evolution. Experimental data
and theory suggest that, at high particle concentrations, the particle-phase pressure
arising from flow-induced velocity fluctuations decreases with increasing concentra-
tion of particles. This, in turn, implies that nonhydrodynamic stresses must be present
to impart stability to a uniformly fluidized bed at very high particle concentrations.
There is ample evidence to support an argument that, in commonly encountered gas-
fluidized beds, yield stresses associated with enduring particle networks are present
in the window of stable bed expansion, where the particles are essentially immobile
until bubbling commences. However, some recent data on gas-fluidized beds of ag-
glomerates of cohesive particles suggest that there exists a window of bed expansion
where the bed does manifest a smooth appearance to the naked eye and the particles
are mobile; at higher gas velocities the bed bubbles visibly. The mechanics of such
beds remain to be fully explained.

1. INTRODUCTION

Fluidized beds are commonly classified on the basis of their appearance as either
bubbling (aggregative) or nonbubbling (particulate). Particulate beds maintain a
smooth appearance and expand progressively as the fluid flow rate is increased.
In contrast, aggregatively fluidized beds are traversed by rising pockets of fluid,
which are reminiscent of gas bubbles in liquids. Typical examples of particulate and
aggregative beds are 1-mm glass beads fluidized by water and 200-µm glass beads
fluidized by ambient air, respectively. Over 50 years ago, Wilhelm & Kwauk (1948)
concluded on the basis of their experimental observations that a fluidized bed
manifested particulate behavior ifFrm = u2

m/gdp ¿ 1, whereum is the minimum
fluidization velocity anddp is the particle diameter. The transition from particulate
to aggregative behavior as the Froude number,Frm, is increased has been a subject
of much research in the past 50 years.

It turns out that the mechanics of fluidized beds is much more complex than
the simple classification by Wilhelm & Kwauk (1948). Careful fluidization and
sedimentation experiments have revealed that liquid-fluidized beds, which were
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termed particulate by Wilhelm & Kwauk, display fascinating organized flow struc-
tures, whereas some aggregative gas-fluidized beds manifest a region of stable bed
expansion before they start to bubble. This article reviews our current understand-
ing of (a) the various stages of bubble evolution, (b) the origin and hierarchy of
the organized flow structures in liquid-fluidized beds, (c) the distinction between
bubbling and nonbubbling fluidized beds, and (d) the true nature of a gas-fluidized
bed in the interval of stable bed expansion.

Early attempts to distinguish between bubbling and nonbubbling fluidized beds
were based on linear stability analysis of the uniformly stabilized state (Jackson
1963), and an in-depth review of these studies can be found elsewhere (Jackson
2000). It now appears that this distinction is linked to high-amplitude solutions
(Anderson et al. 1995, Glasser et al. 1997, Homsy 1998, Duru & Guazzelli 2002),
so this review concentrates on various stages of evolution of nonuniform structures.

In general, evolution of nonuniform structures occurs very rapidly in ground-
based gas-fluidized beds. In contrast, it occurs sufficiently slowly in liquid-fluidized
beds so that ground-based experimental interrogation is feasible. Indeed, tremen-
dous insight has emerged in recent years through studies of liquid-fluidized beds
(see Section 2). The state of a gas-fluidized bed of particles in the interval of stable
bed expansion has been studied quite extensively in the past decade to probe the
origin of stability (Section 3). Section 4 summarizes the highlights and outstanding
questions.

2. STUDIES ON LIQUID-SOLID SYSTEMS

2.1. Experiments on the Hierarchy of Nonuniform Structures

Anderson & Jackson (1969) observed that a bed of 2-mm glass beads fluidized
by water (in a 1.5′′ ID vertical cylindrical tube) was traversed by a succession
of essentially one-dimensional traveling voidage wavefronts (1-DTWs) having
no horizontal structure. They also observed that the amplitude of these waves
initially increased exponentially with distance from the distributor, establishing
that they arose owing to an instability and that this bed, which fell in the category
by Wilhelm & Kwauk of particulate beds, was by no means truly uniform beyond a
modest extent of bed expansion. Figure 1 (taken from Duru et al. 2002) illustrates a
spatiotemporal plot of voidage in the 1-DTWs forced at 1 Hz through an oscillatory
motion of the distributor.

El-Kaissy & Homsy (1976) and Didwania & Homsy (1981) conducted exper-
iments in a two-dimensional liquid-fluidized bed and observed two-dimensional
destabilization of the 1-DTWs leading to a brief appearance of bubble-like voidage
pockets. More recently, using water as the fluidizing medium, Duru & Guazzelli
(2002) conducted similar experiments with various particles. Figure 2, recorded by
Duru & Guazzelli (2002) in a bed of 685-µm glass beads (ρp = 2.55 g/cm3, Frt =
u2

t /gdp ≈ 1.58, Frm ≈ 0.0045, Stm = ρpumdp/µ f ≈ 10.7, and Rem = ρ f umdp/

µ f ≈ 4.2, whereStm and Rem denote Stokes and Reynolds numbers, respectively,
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Figure 1 Spatiotemporal plot of one-dimensional traveling waves in a bed of
1220-µm glass beads fluidized by 35-wt% glycerol-water mixture.ρs = 4.08 g· cm−3;
bed diameter= 3 cm;ρ f = 1.1 g· cm−3; µ f = 3 cP. φo = 0.540. The wave was forced
at 1 Hz. Only 15 cm of the bed, shot during 8 s, is shown. Lighter shade of gray indicates
regions of higher voidage. Source: Duru et al. (2002). Reprinted with permission from
The Cambridge University Press.

evaluated using the minimum fluidization velocity,Frt is a Froude number based
on terminal velocity,ρp andρ f are the densities of particles and fluid, andµ f is the
viscosity of the fluid), illustrates the smooth evolution of transverse modulation
of 1-DTWs. Two-dimensional destabilization also occurred in a water-fluidized
bed of 1220-µm beads (ρp = 4.084 g/cm3, Frt ≈ 3.68, Frm ≈ 0.033, Stm ≈ 110.6,

Rem ≈ 27), where a more complex set of events could be observed (Duru &
Guazzelli 2002) (see Figure 3). After an initial period of growth of the ampli-
tude of the 1-DTW (Figure 3a), the waves buckled, and relatively higher voidage
“holes” appeared (Figure 3b,c) and accelerated upward. At higher elevations in the
bed, the “holes” disappeared (Figure 3d–f ), and the resulting state did not have any
recognizable structure. At slightly higher flow rates, the two-dimensional destabi-
lization proceeded as in Figure 3, but at higher elevations in the bed, a structure
reminiscent of oblique traveling waves (Figure 4) emerged.

Duru & Guazzelli (2002) observed that two-dimensional destabilization of 1-
DTWs in a bed of 1-mm stainless beads (ρp = 7.96 g/cm3,Frt ≈ 12.8,Frm ≈ 0.092,
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Figure 2 Grayscale plot showing transverse modulation of 1-DTWs. The position
z= 0 is arbitrary and does not correspond to the bottom of the bed.φo= 0.538. In the
legend, 560570 stands for 0.560< φ < 0.570 and so on. Source: Duru & Guazzelli
(2002). Reprinted with permission from The Cambridge University Press.

Stm ≈ 265, Rem ≈ 33) led to bubble-like voids that persisted (see Figure 5). Thus,
we now have direct experimental evidence for the hierarchy of structures in liquid-
fluidized beds. One-dimensional traveling waves emerge even at extremely small
values ofFrm. ForFrm ∼ O(10−3), two-dimensional destabilization of the 1-DTWs
invariably occurs, unless suppressed by using narrow beds. ForFrm ∼ O(10−3),
the two-dimensional structure evolves smoothly and appears to saturate. When
Frm ∼ O(10−2), bubble-like voids appear briefly after the two-dimensional desta-
bilization but disappear subsequently, yielding a state with no recognizable struc-
ture; however, it appears that the final attractor may be oblique traveling waves.
ForFrm ∼ O(10−1) or larger, the bubble-like voids persist.

2.2. Particle-Phase Stress and Stability of a
Uniformly Fluidized Bed

Through a linear stability analysis of a continuum model where the particles and
the fluid are treated as interpenetrating continua, Anderson & Jackson (1967,
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Figure 3 Grayscale plot showing two-dimensional destabilization of 1-DTWs at a su-
perficial velocity of 3.1 cm/s. The position z= 0 is arbitrary and does not correspond to
the bottom of the bed.φo= 0.550. (a) t = 0 s, (b) t = 0.16 s, (c) t = 0.28 s, (d) t = 0.32 s,
(e) t = 0.40 s, and (f ) t = 0.56 s. In the legend, 585600 stands for 0.585< φ < 0.600
and so on. Source: Duru & Guazzelli (2002). Reprinted with permission from The
Cambridge University Press.

1968) concluded that the state of uniform fluidization is most unstable to verti-
cally traveling wavefronts that have no horizontal structure. Indeed, experiments
on liquid-fluidized beds have shown conclusively that the development of such 1-
DTWs is the first stage in the growth of nonuniform structures in fluidized beds. It
is now well understood that this instability is driven by particle inertia (associated
with the relative motion between particles and the fluid) as well as the dependence
of drag on particle volume fraction and that the uniform state can be stabilized by a
sufficiently large particle-phase bulk elasticity (Garg & Pritchett 1975, Batchelor
1988). The relative motion between the particles and the fluid in a uniformly flu-
idized state can be expected to impart to the particles a fluctuating velocity that,
in turn, endows the particle phase with bulk elasticity. Batchelor (1988) proposed
a second source of bulk elasticity arising from hydrodynamic dispersion and sug-
gested that the hydrodynamic dispersion contributes more significantly than the
velocity fluctuations to bulk elasticity. Ham et al. (1990) performed fluidization
experiments using a variety of particles and liquids, examined the frequency of the
traveling waves at various flow rates to accurately pinpoint the conditions at which
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Figure 4 Grayscale plot showing oblique traveling waves resulting from two-
dimensional destabilization of 1-DTWs. Same bed as in Figure 3, except with the
superficial velocity of 3.3 cm/s. The position z= 0 is arbitrary and does not correspond
to the bottom of the bed.φo= 0.536. In the legend, 585600 stands for 0.585< φ < 0.600
and so on. Source: Duru & Guazzelli (2002). Reprinted with permission from The
Cambridge University Press.

the beds first became unstable, and concluded that hydrodynamically generated
bulk elasticity arose mostly from the velocity fluctuations, contrary to Batchelor’s
suggestion.

The velocity fluctuations endow the particle phase with a pressure(ps) and a
viscosity (µs). When a uniform state is perturbed, the spatial variation of particle-
phase pressure resulting from variations in voidage and the relative velocity be-
tween the two phases drive a redistribution of the particles and thus contribute to
either stabilization or destabilization (Koch & Sangani 1999). At the simplest

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Figure 5 Transverse destabilization of a 1-DTW leading to the formation of a bubble.
(a) t = 0.0 s, (b) t = 0.12 s, (c) t = 0.20 s, (d) t = 0.32 s, and (e) t = 0.4 s. Each white
spot is the individual reflection from a single bead. Source: Duru & Guazzelli (2002).
Reprinted with permission from The Cambridge University Press.
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phenomenological level, the spatial variation ofps and µs is captured through
ps = ps(φ) andµs = µs(φ), whereφ is the volume fraction of the particles and
dps/dφ is the bulk elasticity mentioned earlier. By demanding that their exper-
imental data on saturated 1-DTWs (generated by periodically forcing the dis-
tributor plate in liquid-fluidized beds operated with several different particles
and fluids) be captured by a continuum model of the type used by Anderson
et al. (1995), Duru et al. (2002) found that (a) µs(φ) ≈ 0.18ρputdp/(φrlp − φ),
whereφrlp denotes the particle volume fraction at random loose packing, and
(b) dps/dφ ≈ 0.2ρpu2

t or 0.7ρ f u2
t , which is roughly independent ofφ, for φo − φ

in the range (0, 0.08). In the regionφ > φo, dps/dφ decreased rapidly and even
became negative. Hereφo refers to the average solids fraction in the fluidized bed,
and the experiments coveredφo values in the range 0.50–0.57. The two choices
for dps/dφ in terms of solid or fluid density reflect the uncertainty in the mea-
surement and analysis as well as the fact that the densities of the particles used in
their experiments fell in a narrow range (2.48–4.08 g· cm−3). Theφo dependence
observed in this study is curious and not understood.

Zenit et al. (1997) measured collisional pressure in beads of glass, plastic, and
steel particles of various sizes fluidized by water (Ret = 440–3,665;Stt = 630–
28,500, where Ret and Stt are the Reynolds and Stokes numbers, respectively,
based on the terminal velocity of the particles), using a flush-mounted piezo-
electric pressure transducer. In a later publication, Zenit & Hunt (2000) analyzed
voidage fluctuations measured in the same experimental unit and found the low-
frequency voidage fluctuations to be reminiscent of traveling waves, whereas the
high-frequency component appeared to be random. They observed that the root
mean square (RMS) value of the high-frequency fluctuations (δφhf) increased sys-
tematically with increasingStt, getting closer and closer to an expression based on
the Enskog model for dense gases:

δφ2
hf = φ2

[
1 +

(
φ

φrlp

)1/3
] [

1 + 1

3

(
(φ/φrlp)1/3

1 − (φ/φrlp)1/3

)]−1

.

The RMS value of the total fluctuations was roughly twiceδφhf for 0.05< φ < 0.40,
was somewhat larger in the range 0.40 < φ < 0.50, and rapidly decreased toδφhf

at higher values ofφ.
The normalized collisional pressure,ps/(0.5ρpu2

t ), determined by Zenit et al.
(1997), increased almost exponentially withφ for 0.1< φ < 0.3 and decreased
with increasingφ for φ > ∼0.5. Their results obtained with glass beads of vari-
ous sizes suggest that the normalized collisional pressure increased monotonically
with Stt. The theory developed by Koch & Sangani (1999) for uniformly flu-
idized suspensions of elastic particles withStt À 1 and Ret ¿ 1 predicts much
smaller particle-phase pressures and, more strikingly, a decrease in the normal-
ized particle-phase pressure with increasingStt. Currently, a theory does not exist
for particle-phase pressure in fluidized suspensions where bothStt and Ret are
large, corresponding to the conditions encountered in the experiments of Zenit
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et al. (1997). As noted by Zenit et al. (1997), the extent to which the presence
of traveling waves contributed to the measured collisional pressure is unknown.
Campbell & Wang (1991) showed that the particle-phase pressure measured in a
bubbling gas-fluidized bed by a wall-mounted probe correlated with bubble rise
velocity, which suggests that traveling waves could have contributed appreciably
to the collisional pressure measured by Zenit et al. (1997).

In spite of these uncertainties, it seems reasonable to conclude from the ex-
perimental data by Zenit et al. (1997) and Duru et al. (2002) and the theoretical
work by Koch & Sangani (1999) that the normalized particle-phase pressure in
a fluidized bed increases withφ for smallφ, reaches a maximum value at some
φ(= φ∗, say), and decreases with increasingφ for φ > φ∗. There is considerable
uncertainty about the value ofφ∗. The analysis by Koch & Sangani (1999) sug-
gests thatφ∗ ≈ 0.5. Duru et al. (2002) obtained a somewhat larger estimate for
φ∗(≈0.52–0.59), but they foundφ∗ to depend onφo. Zenit et al. (1997) observed
in their experiments with glass beads of various diameters thatφ∗ increased with
Stt, although their values ofφ∗ were smaller (≈0.4–0.5).

It is well known that an unbounded uniformly fluidized bed can be linearly
stable only ifdps/dφ is greater than zero and is sufficiently large to overcome the
destabilizing effect resulting from particle inertia and the voidage dependence of
the drag. Thus, one can readily conclude that a uniformly fluidized bed cannot be
stabilized purely by hydrodynamically generated particle-phase pressure for any
φo > φ∗; such a bed will give way to traveling waves containing domains with even
more compact assemblies of particles until the compaction is stopped by formation
of particle networks where nonhydrodynamic stresses become important. A stable
fluidized bed atφo > φ∗ is therefore possible only if nonhydrodynamic stresses
become active.

In general, in a fluidized (or sedimenting) suspension of noncohesive parti-
cles, hydrodynamic (kinetic and collisional) stresses will be the dominant con-
tributors to the particle-phase stress forφ below some threshold value,φmin. For
φmin < φ < φcp, whereφcp denotes particle volume fraction at close packing, the
relative importance of the hydrodynamic and frictional contact stresses will depend
on the prevailing intensity of fluctuating motion available to break the networks
(Savage 1998). Our current understanding of the stresses in the region where the
presence of velocity fluctuations interferes with the formation of particle networks
is primitive. As we learn more about the state of the particle assembly in a stable
fluidized bed and in the dense plugs in traveling waves, we will perhaps better
understand the stresses in this frictional-collisional regime.

2.3. Two-Dimensional Destabilization of 1-DTWs

Batchelor (1993) and Batchelor & Nitsche (1991, 1993) explained two-dimensional
destabilization of 1-DTWs as a gravitational overturning instability and proposed
this as the second stage of the development of nonuniform structures in flu-
idized beds. Through an analysis of the linear stability of 1-DTWs against
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two-dimensional perturbations, Anderson et al. (1995), G¨oz (1995), and Glasser
et al. (1996, 1997) verified the existence of the overturning instability. The early
experiments by El-Kaissy & Homsy (1976) and the more recent results by Duru
& Guazzelli (2002) provide conclusive evidence for this stage of structure evolu-
tion. Glasser et al. (1996, 1997) found the overturning instability mechanism to be
robust, independent of the closure relations forps(φ) andµs(φ).

The manner in which the structure evolves following two-dimensional desta-
bilization has been probed by Anderson et al. (1995) and Glasser et al. (1996,
1997) through transient integration of two-phase equations of motion in periodic
domains; the latter authors also computed the fully developed solutions through bi-
furcation analysis and numerical continuation. The numerical simulations by these
authors do capture several features seen in the experiments by Duru & Guazzelli
(2002). The development of bubble-like voids following two-dimensional desta-
bilization and the upward acceleration of these voids, leading to a state with no
recognizable structure, as shown in Figure 3 for a nonbubbling system, were pre-
dicted by the transient integration of two-phase equations of motion coupled with
simple closures (see Figure 6). Even the manner in which the voids disappear is
predicted correctly; see Anderson et al. (1995) for a detailed discussion. These sim-
ulations postulated center symmetry in the periodic domain and thereby suppressed
oblique traveling waves. However, the experiments suggest that the ultimate at-
tractor may very well be an oblique traveling wave; so it will be interesting to
repeat the computational analysis by allowing oblique waves to develop (using the
experimentally determined closures).

Batchelor postulated the emergence of bubble-like voids with an internal fluid
circulation as the third stage of bubble development. Bubble-like voids are seen
in Figures 3, 4, and 5, but it is not known if internal fluid circulation occurred in
these voids (although it seems reasonable to expect such a circulation). As noted
by Anderson et al. (1995) and Duru & Guazzelli (2002), in a nonbubbling system,
the rate at which particles enter the voids from the top exceeds the rate at which
they leave the void at the bottom, hence the voids fill back.

In a bubbling system, more particles leave the void than enter, and the bubble
becomes progressively more depleted of particles. Batchelor & Nitsche (1994)
attributed this to the expulsion of particles from the buoyant blob by centrifugal
action and referred to this expulsion as the fourth stage of bubble development.
Glasser et al. (1997) sought to identify the parameter in the two-phase flow model
that serves to differentiate between bubbling and nonbubbling systems. They con-
cluded that the particle-phase pressure determined the critical bed expansion level
above which nonuniform structures emerged, but not whether the system bubbled.
On the other hand, the viscosity of the particle phase did not affect the critical
bed expansion level, but rather contributed to the differentiation between bubbling
and nonbubbling systems. Glasser et al. (1997) employed a closure of the form
µs(φ) = 9ρputdpφ/(1− (φ/φcp)1/3), where9 was a parameter. This form differs
from the expression deduced by Duru et al. (2002), but by comparing these two
functional forms,9 ≈ 0.16–0.20 for 0.50< φ < 0.60. Glasser et al. (1997) also
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Figure 6 Grayscale plots showing the growth of a two-dimensional perturbation of
the uniform state for 1-mm glass beads (ρp= 2.2 g· cm−3) fluidized by water.φo= 0.57.
Simulations were performed in a periodic box. Snapshots at four different times during
the destabilization: (a) buckling of a 1-DTW, wave speed,c= 0.201ut; (b) the formation
of a bubble-like void that begins to accelerate,c= 0.209ut; (c) depletion of particles in
the void, leading to further acceleration,c= 0.243ut; and (d) breakup of the void into
two pieces, one of which begins to fade, while the other is still accelerating,c= 0.262ut.
The upper void is more depleted of particles, but it is also slowly shrinking. Source:
Glasser et al. (1997). Reprinted with permission from The Cambridge University Press.
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found that bubbles developed easily whenFrt À 1009 and that bubble-like voids
appeared only briefly (if at all) whenFrt ¿ 1009. Inserting the above estimate
for 9, we getFrt ≈ 16–20 as a rough cut-off separating bubbling and nonbubbling
systems. Duru & Guazzelli (2002) found experimentally that beds withFrt of 12.8
and 3.58 bubbled and did not bubble, respectively. Although the estimate made
by Glasser et al. (1997) is close, it is not satisfactory. The added mass term, not
included in the analysis by Glasser et al., may be responsible for the discrepancy
between the experiments and computations.

It will be interesting to conduct experiments of the type performed by Duru
et al. (2002) and Duru & Guazzelli (2002) for gas-solid systems under reduced
gravity conditions so that one can observe the evolution of nonuniform structures
in them.

3. STUDIES ON GAS-SOLID SYSTEMS

Most gas-fluidized beds operate at a pressure of a few bars and employ 50–
150-µm particles. For these particles,Stm, Stt À 1, and particle-particle collisions
can occur readily. In a dense bed made up of such particles, the slip velocity is
sufficiently small that Rem ¿ 1, even though Ret = ρ f utdp/µ f = O(100−1).
Therefore it seems reasonable to use the theory developed by Koch & Sangani
(1999), which is valid forStt À 1 and Ret ¿ 1, to estimate the particle-phase pres-
sure and viscosity (arising from hydrodynamically generated velocity fluctuations)
in a uniform fluidized bed at moderate to highφ. Koch & Sangani (1999) concluded
that whenStt À 1 and Ret ¿ 1, and the particles are subject only to hydrodynamic
interactions and fast binary collisions, an unbounded gas-fluidized bed is unstable
except at the very dilute limit. However, it is now clear that contact stresses play
an important role in generating an interval of stable bed expansion in commonly
encountered gas-fluidized beds.

In his classic paper, Geldart (1973) classified gas-fluidized beds into four cate-
gories. Very fine particles (group C) are cohesive and are difficult to fluidize.
Beds of somewhat larger particles (group A) manifest an interval of stable bed
expansion before bubbling commences. Even larger particles (group B) bubble
immediately after fluidization. Whereas typical, bubble rise velocities in beds of
particles belonging to groups A and B are larger than the interstitial gas velocity
in the dense phase, the opposite is true in beds of very large particles belonging
to group D. As a consequence, the mixing pattern in bubbling beds of group-D
particles differs significantly from those in bubbling beds of particles of groups A
and B.

Geldart (1973) observed that the range of gas velocities for which stable bed
expansion could be achieved for group-A particles decreased as the particle size
was increased. He defined the A-B boundary as the locus of particle diameters for
various gas-solid systems (simply characterized byρp − ρ f ), where this window
becomes unobservably small. The origin of stable bed expansion for group-A
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particles in the interval (umf, umb), whereumb is the gas superficial velocity at which
bubbles first appear spontaneously and in a sustained manner, has been a subject
of much debate (Jackson 2000). Rietema (1973), Mutsers & Rietema (1977a,b),
and Rietema & Piepers (1990) attributed it to cohesive forces at particle-particle
contact. Mutsers & Rietema (1977a) argued that their fluidization data obtained
with various gases are consistent with a stabilizing force whose origin is enduring
contact between particles. Although Rietema’s papers were focused on cohesive
force, we now know that cohesion per se is not required to generate a window of
stable bed expansion and that a compressive yield strength that can arise simply
because of frictional contact between particles in an assembly and wall friction is
sufficient.

Tsinontides & Jackson (1993) fluidized cracking catalyst particles with dry and
humid air. They also measured pressure drop and bed height as functions of gas
flow rate as well as voidage variation as a function of bed depth at various gas
flow rates. On the basis of these data and the hysteretic behavior recorded during
fluidization and defluidization, they concluded that the bed exhibited yield stress
throughout the range of stable bed expansion. Cody et al. (1996) measured acoustic
shot noise in air-fluidized beds of Cataphote glass beads of various diameters (63–
595µm) and narrow size distributions and found the RMS fluctuating velocity of
the particles to be essentially zero until the beds began to bubble. Diffusing wave
spectroscopy measurements led Menon & Durian (1997) to the same conclusion.
All these studies strongly point to yield stress resulting from sustained contact
between particles as the most likely mechanism for stable bed expansion.

The manner in which the yield-stress characteristics of a given material change
as one increases the particle size from group A to group B and the associated
changes in the fluidization behavior have been studied by Loezos et al. (2002).
Figure 7 shows the pressure drop and bed height in a 1.0′′ ID tube as functions of
gas (dry air) velocity for glass beads sieved between 58 and 75µm. Starting from a
fully defluidized bed, as the gas velocity,u, was increased from zero, an essentially
linear relationship between pressure drop andu resulted in the fluidization branch,
while the bed height remained constant. Then, atu= uc, the pressure drop decreased
abruptly and this was accompanied by a sudden increase in bed height. Tsinontides
& Jackson (1993) have described the dynamics associated with this bed expansion
in narrow tubes. The bed expansion begins with a lift-off and upward acceleration
of the entire bed as a plug; as this plug rises, particles erode from the bottom, settle
down on the distributor, and form a new bed.

For all the particles studied by Loezos et al. (2002), spanning average diameters
in the range 63–210µm, the maximum pressure drop achieved atuc exceeded
the bed weight per unit cross-sectional area (mg). Beyondu= uc, the bed height
increased steadily withuuntil umb. In the intervaluc < u< umb, the bed maintained
a smooth appearance with no sustained bubbling.

These authors also performed identical experiments in 0.5′′ and 2.0′′ ID tubes
and found that the pressure-drop overshoot decreased with increasing tube diam-
eter, D. Indeed, the overshoot appeared to become essentially zero as D→ ∞
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for all the particles, which led them to attribute the overshoot entirely to wall
friction (see Figure 8). Tsinontides & Jackson (1993) found the overshoot to de-
pend on tube diameter for fluid cracking catalyst (FCC) particles. Srivastava &
Sundaresan (2002) found similar results for glass beads with a wide size distribu-
tion, a mean size of∼50µm, and a density of 2.35 g· cm−3. In contrast, Valverde
et al. (1998), who worked with very fine particles (discussed below), and Ojha et al.
(2000) found the overshoot to be independent of tube diameter. So, additional work
remains to be done before the effect of wall friction on pressure-drop overshoot
can be established concretely.

Loezos et al. (2002) found the average solids fraction in the bed atumb, φmb

to be roughly independent of tube diameter, suggesting that by the time the bed
began to bubble freely the wall effect had become too small to have a measurable
influence.

Starting from a bubbling bed, and by gradually decreasing the gas flow rate,
Loezos et al. (2002) traced the behavior of the bed in the defluidization branch as
well (see Figure 7). Within the confidence limits of their experiments,umbwas the
same in the fluidization and defluidization branches. Asu was decreased below
umb, the bed entered a regime of stable expansion. The bed height and pressure drop
obtained in this range of stable bed expansion were very different in the fluidiza-
tion and defluidization branches (see Figure 7). This behavior has been noted
previously (see Tsinontides & Jackson 1993). Loezos et al. (2002) found the de-
fluidization branches obtained with different tube diameters to be rather close,
suggesting that wall friction played only a weak role in defluidization branch, in
stark contrast to what was observed in the fluidization branch.

The hysteretic behavior displayed in Figure 7 has been examined in a much more
detailed manner by Tsinontides & Jackson (1993). For example, they did a number
of partial defluidization/fluidization cycles, where the gas flow rate was decreased
gradually along the defluidization branch to some minimum (but nonzero) value
and then increased gradually. Such experiments demonstrated unequivocally that
bed characteristics including the particle-phase stress were path dependent and
provided direct evidence that nonhydrodynamic stresses were involved in a sig-
nificant way.

Jackson (1998, 2000) developed a one-dimensional model for pressure drop,
bed expansion, and the particle-phase stress profile in a fluidized bed, allowing for
particle-phase compressive yield stress and wall friction. He postulated that in the

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 7 (a) Normalized pressure drop (1p/mg) versus scaled gas velocity (u/ur).
(b) Normalized bed height (H/Ho) versus scaled gas velocity (u/ur). ∗, fluidiza-
tion branch;+, defluidization branch.mg denotes weight of particle per unit cross-
sectional area.ur is a reference velocity (equal to 0.52 cm/s). Tube diameter= 1.0′′.
uc ≈ 0.60 cm/s.umb ≈ 0.62 cm/s.φmb ≈ 0.529. Glass beads sieved between 58 and
75 µm. ρp= 2.55 g· cm−3. Solid lines represent model predictions. Source: Loezos
et al. (2002). Reprinted with permission from the authors.
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Figure 8 Pressure-drop overshoot (%) versus (1/D), where D is the tube diameter
in centimeters. Cataphote particles.ρp= 2.46 g· cm−3. (♦) 63-µm data; (◦) 88-µm
data; (¤) 105-µm data. Model predictions: (—) 63µm; (- - -) 88µm; (- · - · ) 105µm.
Source: Loezos et al. (2002). Reprinted with permission from the authors.

defluidization branch the particle assembly was at compressive yield everywhere
and that a simple relationship existed between the particle-phase normal stress
along the vertical direction,σ s, and particle volume fraction,φ. In the packed-bed
state of the fluidization branch (i.e., before the pressure-drop overshoot), theφ-
profile was frozen, whereas theσ s-profile was allowed to change with gas flow rate.
[The same ideas, but without wall friction effects, were introduced by Tsinontides
& Jackson (1993).]

For noncohesive particles,u= uc is defined as the condition whenσ s first be-
comes zero at the bottom of the bed (asu is gradually increased). Jackson (1998)
demonstrated how wall friction could give rise to pressure-drop overshoot atu= uc,
even for noncohesive materials. For these materials, Jackson (1998) suggested that
the bed height foru > uc in the fluidization branch could be estimated to a good
approximation by simply treating this region as an ideal fluidized bed.

Loezos et al. (2002) found that all the trends observed in their experiments
performed with a number of different particles (with size> 60 µm) and three
different tube diameters could be captured reasonably well using Jackson’s model
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Figure 9 Compressive yield strength (in N/m2) versus particle volume fraction,
φ. Cataphote particles.ρp= 2.46 g· cm−3. (1) φmb. Source: Loezos et al. (2002).
Reprinted with permission from the authors.

(see solid lines in Figures 7 and 8). These authors determined independently the
compressive yield strength,σc(φ), of assemblies of the various particles used in
their studies, using a method presented by Valverde et al. (1998). Figure 9 shows
curve fits of theσc(φ) data by Valverde et al. for Cataphote glass beads of var-
ious diameters. At lowφ values,σ c is quite small; asφ increases,σ c increases
slowly at first and then very rapidly for all these particles. For this family of
particles and another family of glass beads, the maximum value ofφ achieved
upon defluidization,φmax, increases with particle diameter. In contrast, Ojho et al.
(2000) foundφmax to be 0.590± 0.004 independent of both tube diameter (0.5′′,
1.0′′ & 2.0′′) and particle size (50–350µm). Because of such variances between
results reported by different research groups, very little can be said in a defini-
tive manner at this stage about the dependence ofφmax on dp. The origin of
this dependence on particle size, should this prove to be real, also remains to be
understood.

We now return to the issue of stability of the bed against sustained bubbling.
When the fluid density is much smaller than that of the particles, a uniformly
fluidized bed of infinite extent is linearly stable (Jackson 2000) if

dps

dφ

∣∣∣∣
φo

> ρpu2
t n2φ2

o (1 − φo)2(n−1) ,
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whereφo is the particle volume fraction in the uniform state,n is the Richardson-
Zaki (1954) index, andps is the reversible pressure (associated with the elastic
deformation) of the particle phase. For elasto-plastic materials, one expects that

dps

dφ
>

dσc

dφ
·

For hard particles, this inequality is expected to be a strong one (i.e.,À). One
can find an upper bound (φu) for the critical particle volume fraction (φcrit) above
which the uniform state is linearly stable by setting

dσc

dφ

∣∣∣∣
φu

= ρpu2
t n2 (φu)2 (1 − φu)2(n−1) .

Loezos et al. (2002) correlated their experimental data on compressive yield
strength as

σc (φ) = C
(φ − φmin)a

(φmax − φ)b ,

whereC, a, b,φmin, andφmaxare positive adjustable parameters. They found thatφu

was only marginally higher thanφmin for all the particles analyzed. Furthermore,
the value ofφmb recorded experimentally (trianglesin Figure 9) was considerably
larger thanφu in every system, which further confirmed that the onset of bubbling
in their system could not be captured by such a linear stability analysis. They also
did not see stable expansion in any system atφ < φmin. These authors suggested
that bubbling sets in when the yield stress in the bed has become small enough
to be overcome by fluctuations in the gas flow rate (and hence gas drag), but a
definitive explanation is still missing.

3.1. Cohesive Particles

We now return to fluidization-defluidization experiments and reexamine the
pressure-drop overshoot observed atu= uc. When the particles interact with each
other and with the distributor plate cohesively,σ s at the bottom of the bed must
become sufficiently negative (i.e., tensile) to overcome this cohesion before the
abrupt change atu= uc can occur. The larger the tensile stress is, the greater the
pressure-drop overshoot atu= uc will be. There is some ambiguity as to what this
tensile stress really represents. If the particle-particle cohesion is much stronger
than that between the particle assembly and the distributor plate, the relevant co-
hesive stress is that resulting from the interaction between the particles and the
distributor; in this case, the tensile stress extracted from the experiments simply
provides a lower bound for the cohesive strength of the particle assembly. On the
other hand, if the particle-distributor interaction is more cohesive than that between
the particles, a monolayer (or a thin layer) of particles will remain stuck to the
distributor, and the estimated tensile strength may be taken as a measure of the
cohesive strength of the particles (Valverde et al. 1998). Tsinontides & Jackson
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(1993) knew that the overshoot was partly due to wall friction and estimated an up-
per bound for the cohesive strength of the FCC particles used in their experiments
by attributing the overshoot entirely to cohesion.

Valverde et al. (1998) performed extensive measurements on the compressive
yield and tensile strengths of two different styrene-butadiene copolymer (xero-
graphic toner) particles with average sizes of 8.5 and 12.7µm. They measured the
compressive yield strength of the particle assemblies at various volume fractions,
σc(φ), by measuring the heights of defluidized beds containing various masses of
particles. Such measurements performed in tubes of different cross-sectional areas
did not reveal any systematic variation, although there was a fair amount of scatter
when the data gathered in various tubes were plotted together. Therefore, Valverde
et al. (1998) assumed that wall friction was negligible and attributed the entire
pressure-drop overshoot upon fluidization to cohesive stress at the bottom of the
bed. They observed that a layer of particles remained stuck to the distributor upon
lift-off, concluded that the tensile stress is a measure of cohesion between the par-
ticles in the assembly, and used the pressure-drop overshoot to estimate the tensile
strength of the assembly at different volume fractions,σt (φ). They examined the
effect of adding various amounts of fine silica particles onσc(φ) andσt (φ) for
assemblies of toner particles. The silica nano-particles formed 40–60-nm agglom-
erates, which, in turn, adhered to the polymer particles. The effect of these silica
agglomerates on the toner particles was to alter the effective interaction between
the polymer particles, and this was reflected in a systematic variation ofσc(φ) and
σt (φ) with the level of silica addition. In particular, silica decreased the level of
cohesive interaction between particles, which allowed the toner particles to pack
at a higherφ for a given compaction stress. Valverde et al. (1998) also found the
tensile strength to be proportional to consolidation stress for all the samples, and
σt (φ)/σc(φ) decreased steadily with increasing silica content. This paper is an
excellent demonstration of the use of fluidization measurements to learn about the
particle-particle interactions. In particular, the experiments with different levels of
silica on the toner particles illustrate the relevance of nonhydrodynamic stresses
in fluidization.

In summary, Koch & Sangani (1999) concluded that hydrodynamically gener-
ated stresses are not strong enough to stabilize an unbounded, homogeneous gas-
fluidized bed except at very dilute conditions. Experiments by Mutsers & Rietema
(1977a), Rietema & Piepers (1990), Tsinontides & Jackson (1993), Cody et al.
(1996), Menon & Durian (1977), and Loezos et al. (2002) indicate that nonhydro-
dynamic stresses are responsible for stable bed expansion in gas-fluidized beds with
particles of sizes greater than about 60µm. However, recent results by Valverde
et al. (2001) seem to suggest that in gas-fluidized beds of finer particles there exists
a window of bed expansion where the bed manifests a smooth appearance to the
eye while the particles are highly mobile.

Valverde et al. (2001) fluidized with dry nitrogen a mixture of yellow and ma-
genta toner particles with an average diameter of 8.53± 2.53µm in a rectangular
fluidized bed. The particles tended to form aggregates, so the effective aggregate
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Figure 10 Behavior of a fluidized bed composed of 50% magenta and 50% yellow
toner particles. The gas pressure drop (¤) is normalized by bed weight per unit cross-
sectional area. Average primary particle diameter= 8.53µm.ρp= 1.199 g· cm−3. Free
volume (♦) is the bed voidage.vm, vc, andvb denote gas velocities at which regime
transition occurs. Source: Valverde et al. (2001).

size of the particles is larger. Figure 10 shows the pressure drop and free volume
(i.e., voidage) as functions of gas velocity in the defluidization branch (the flu-
idization branch was not reported). They also determined the diffusion coefficient
of the magenta particles (see Figure 11). The pressure drop across the bed was
essentially equal to the weight of the bed per unit cross-sectional area for 1 mm/s<

u < 4 mm/s, where the bed maintained a homogeneous appearance and expanded
smoothly with increasingu (see Figure 10). In this region, the scaled diffusivity
D∗ = (D/udp) increased withu almost exponentially at first and then reached a
plateau value (see Figure 11). In contrast, foru < 1 mm/s, the pressure drop was
less than bed weight per unit cross-sectional area, and the diffusivity was essen-
tially zero. Based on the diffusivity data, these authors labeled the regionsu <

1 mm/s and 1 mm/s< u < 4 mm/s as solid-like and fluid-like, respectively. The
bed bubbled visibly foru > 4 mm/s.

Figure 12, supplied by J.M. Valverde, M.A.S. Quintanilla & A. Castellanos
(private communication), reveals another interesting feature; this figure shows the
average solids fractions in two different fluidized beds as functions of gas velocity.
Toner particles (15.4µm) having two different levels of surface coverage with
silica nano-particles were examined in these experiments. Both beds manifested
solid-like, fluid-like, and bubbling regions. As noted earlier, the higher the silica
content, the less cohesive the particles are and the smallerσ c at a given value of
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Figure 11 Dimensionless diffusion coefficient,D∗ = (D/udp), as a function of gas
velocity estimated from the mixing of the magenta toner particles. HereD denotes
diffusivity, u is gas velocity, anddp is primary particle diameter. Particle properties are
as in Figure 10. Source: Valverde et al. (2001).

φ is; therefore, the bed of particles having a higher silica content packed more
compactly in the solid-like region (see Figure 12). The behavior was opposite
in the fluid-like region (where permanent networks were broken), which may be
rationalized as follows: The toner particles with a lower silica content would form
larger aggregates, and the drag on the larger agglomerates would be smaller, so
the bed expansion would be smaller for the bed with a lower silica content. This
crossover of the bed-expansion characteristics across the boundary separating the
solid-like and fluid-like regions appears to corroborate further a change in the
structure of the particle assembly across this boundary. Castellanos et al. (2001)
estimated that the agglomerates had a fractal structure and their size was in the
range of 30–45µm. It will be revealing to perform experiments with primary
nonagglomerating particles in this size range and contrast their behavior with
those of a bed of agglomerated particles.

Let us set aside for the moment the cohesive interaction between the agglom-
erates and simply look at the stability problem on the basis of a Froude number
criterion. For 30- and 45-µm agglomerates with an effective density 0.72 g· cm−3,
where it has been assumed that the porosity of the agglomerates are∼40%, the
terminal settling velocities are∼2 and 4.4 cm/s, respectively.Frt for these ag-
glomerates are then∼1.4 and 4.4 cm/s, respectively. The data on liquid-fluidized
beds by Duru & Guazzelli (2002) suggest that such beds fall in the nonbubbling
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Figure 12 Particle volume fraction,φ, versus superficial gas velocity. Approximate sur-
face coverage of silica agglomerates over the polymer toner particles: (•) 32%; (◦) 8%.
Volume fractions at the regime transitions are marked in the figure. Average toner parti-
cle size is 15.4µm. Source: J.M. Valverde, M.A.S. Quintanilla & A. Castellanos (private
communication).

category but will manifest spatiotemporal structures. Indeed, very recent fiber-optic
probe measurements by Valverde et al. (2002) reveal small-scale spatiotemporal
structures in the fluid-like region, whose characteristic temporal frequency grad-
ually increases with gas velocity. Thus, even though the bed manifested a smooth
appearance (to the naked eye) in the fluid-like region (Valverde et al. 2001), it may
not be truly stable after all. This, however, does not explain why visible bubbles
appear at higher gas velocities (see Figure 10). In any case, there is much still
to be learned from careful measurements of the behavior of gas-fluidized beds of
particles in the 10–60-µm range.

As was mentioned in the Introduction, a number of researchers have attempted to
explain the distinction between bubbling and nonbubbling systems through a linear
stability analysis of the uniformly fluidized state. This article focuses on nonlinear
effects, where the linear stability analysis is either inadequate to get the full picture
(as in the liquid-fluidized beds) or inapplicable (as in the case of gas-solid systems
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where yield stresses are present). It would, however, be incomplete to close the
review without drawing attention to a puzzling criterion for instability deduced by
Foscolo & Gibilaro (1984) through a linear stability analysis. These authors argued
that the fluid-particle drag force should include a (stabilizing) term proportional to
the gradient in the voidage; however, the physical basis for such a term has been
questioned (Batchelor 1988). Using this term and no other terms for hydrodynamic
or nonhydrodynamic particle-phase pressure, the following condition was obtained
for instability of a uniform state atφ = φo:(

ρp − ρ f

ρpFrt

)1/2

< 0.56nφ1/2
o (1 − φo)n−1.

The right-hand side of this inequality vanishes forφo = 0 and 1 and assumes its
maximum value (RHSmax) at some intermediateφo value. If RHSmaxis smaller than
the left-hand side of the inequality, the bed is stable (according to this criterion)
for all φo values; however, some liquid-fluidized beds, which are predicted to be
stable by this condition, manifest primary instability leading to voidage waves
(e.g., see Tsinontides & Jackson 1993). When RHSmax is larger than the left-hand
side of the above inequality, there exists a range ofφo values,φlow < φo < φup, for
which the bed is unstable. Ifφup < φmf, then there will be a window of stable bed
expansion past the point of incipient fluidization. A criterion for the Geldart A-B
transition may then be deduced by demanding thatφup = φmf, i.e.,(

ρp − ρ f

ρpFrt

)1/2

= 0.56nφ
1/2
mf (1 − φmf)

n−1.

This criterion lies in the general vicinity of the empirical A-B transition of Geldart
(1973), which is a surprising finding. Given that all the experimental evidence
points to the presence of appreciable yield stress in the window of stable bed
expansion, it is really puzzling how a criterion that does not address yield stress at
all can come so close to capturing the A-B transition.

4. SUMMARY

This review focuses specifically on dense fluidized beds, i.e., beds with a high
volume fraction of solids. There is much interest in the nature of the instabilities
and structures observed in suspensions at low and intermediate levels of particle
loading (e.g., see Agrawal et al. 2001), but these are not discussed here.

Experiments probing the nature of the voidage waves in liquid-fluidized beds
have been instrumental in establishing that one-dimensional traveling waves first
emerge as manifestations of primary instability then develop into two-dimensional
structures. The manner in which nonuniform structures evolve beyond that stage
depends (at least) on the Froude number. Computational studies do seem to capture
these features qualitatively. The stages of bubble evolution beyond the initial evo-
lution of the two-dimensional structure are also understood reasonably well. But
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quantitative prediction remains elusive. This is due to the limited progress in the
development of theories for particle-phase stresses in fluidized suspensions. The
bulk of the theoretical advances on hydrodynamically generated stresses come
from the work by Koch & Sangani, which is restricted to Ret ¿ 1 andStt À 1.
Every liquid-fluidized bed experiment, where one has probed the evolution of
nonuniform structure, lies outside this restricted range of Ret andStt. Closures for
the hydrodynamic stresses when Ret ≈ O(1) or larger are sorely needed.

It appears that the hydrodynamically generated stresses need to be supplemented
with nonhydrodynamic contact stresses to get a truly stable fluidized bed, but a
definitive statement cannot be made at this time. Closures for the stresses, when
collisional interaction between particles is supplemented with a combination of
short- and long-lived particle networks, are also needed.

The theory by Koch & Sangani (1999) indicates that commonly encountered
gas-fluidized beds cannot be stabilized purely by hydrodynamically generated
stresses. There is ample experimental data showing that beds with solid particles
whose size is larger than∼60 µm manifest a window of stable expansion only
when contact stresses are important. In this region of stable bed expansion, the
particles are essentially immobile.

Gas-fluidized beds of much smaller particles, where cohesive interactions be-
come important and particles form agglomerates, seem to manifest a window of
expansion where the particles are mobile and small-scale flow nonuniformities ex-
ist. At larger gas flow rates, these beds bubble. Much remains to be learned about
the mechanics of such beds.
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Abstract   

 

It is well known that continuum model equations for unsteady gas-particle flows 

in devices such as fluidized beds and circulating fluidized bed risers contain unstable 

modes whose length scale is of the order of ten particle diameters. Yet, because of limited 

computational resources, these flows are routinely simulated by solving the discretized 

version of continuum models over coarse spatial grids. These simulations resolve the 

large-scale flow structures, but not the finer scale structures. In most industrial 

applications involving large devices, it is impractical to resolve all the fine-scale 

structures and therefore the effects of the unresolved structures must be addressed 

through suitable sub-grid models. Using gas-particle flows in a wide and very tall vertical 

channel as an example, we have demonstrated in this study that the results obtained in 

coarse-grid integration of the microscopic equations for gas-particle flows change 

appreciably if sub-grid corrections to account for the effects of unresolved structures are 

included. The addition of a simple time-averaged sub-grid model for the effective drag 

coefficient, and particle phase viscosity and pressure led to a qualitative change in the 

simulation results. Our simulations revealed a lack of separation of time scales between 

the resolved and unresolved structures. This led us to formulate a stochastic sub-grid 

model for the drag coefficient and investigate its consequence. The addition of a 

stochastic correction made quantitative, but not qualitative, changes to the simulation 

results.   

Keywords: riser flow, gas-particle flow, kinetic theory, CFD, sub-grid model, simulation 
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Introduction 

 It is well known that gas-particle flows in vertical risers are inherently unstable, 

and that they manifest fluctuations over a wide range of length and time scales. There is a 

substantial body of literature where researchers have sought to capture these fluctuations 

through numerical simulation of continuum equations for gas-particle flows.1-17 It is well 

known that continuum models for such flows, coupled with either simple 

phenomenological closures for drag and effective stresses18 or closures obtained by 

extending the kinetic theory of granular materials to account for the presence of the 

interstitial fluid,9,19,20 reveal unstable modes whose length scale is as small as ten particle 

diameters. Yet, because of limited computational resources, riser flows in large units are 

routinely simulated by solving discretized versions of the continuum models over a 

coarse spatial grid. Such coarse grid simulations do not resolve the small-scale spatial 

structures which, according to the continuum equations, do indeed exist. The accuracy of 

these simulation results is therefore questionable.21 Such unresolved structures commonly 

arise in single phase turbulent flow, where large eddy simulations strive to incorporate 

the influence of the unresolved structures on those resolved in the simulations through 

sub-grid models; however, such sub-grid corrections have not received much attention in 

the context of heavily loaded gas-particle flows. Our study is aimed at exposing the most 

important ingredients of sub-grid models for coarse-grid simulation of typical circulating 

fluidized bed riser flows.  

Agrawal et al.20 have examined in detail the fate of a uniform suspension of 

particles fluidized by a gas through highly resolved simulations of continuum model 
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equations in two-dimensional and three-dimensional periodic domains, whose size is of 

the order of the typical grid sizes employed in coarse-grid simulation of large scale risers 

and fluidized beds. In their analysis, they employed a kinetic theory closure for the 

particle phase stress,,9,19,22 and a drag force model proposed by Wen & Yu.23 They found 

that the uniformly fluidized state was unstable and that it quickly gave way to persistent, 

time-dependent, mesoscale structures, which assumed the form of clusters and streamers 

at low particle volume fractions and bubbles at high particle loadings. They found that 

the effective drag coefficient obtained by averaging the results over the periodic domain 

(a) was appreciably smaller than that corresponding to a homogeneous state, (b) was 

dependent on the size of the domain and (c) manifested a rather complex, but 

understandable dependence on particle volume fraction. They also found that the 

effective viscosity of and the normal stresses in the particle phase obtained by averaging 

over the mesoscale structures were (a) appreciably larger than those corresponding to the 

homogeneously fluidized state (given by the kinetic theory), and (b) depended on the size 

of the domain. Based on these findings, they concluded that unresolved mesoscale 

structures could contribute appreciably to results predicted by coarse-grid simulations.  

The purpose of the present study is to investigate the influence of sub-grid models 

on the results obtained in coarse-grid simulations. We will demonstrate in this paper that 

one must include sub-grid corrections (for drag coefficient and particle phase effective 

viscosity and pressure), and that because of a lack of separation of time scales between 

resolved and unresolved structures one should, in a strict sense, employ stochastic sub-

grid models. However, simple deterministic sub-grid models seem to capture much of the 

large-scale flow structures obtained with stochastic sub-grid models.  
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It is appropriate to mention, at least in passing, that it has long been recognized in 

industrial practice that CFD simulations based on averaged equations of motion 

underestimate the holdup in fluidized beds and riser flows, unless an apparent particle 

cluster size, which is typically two to ten times the true size of the particles, is used in the 

calculations. Such a larger cluster size leads to a smaller drag coefficient than what would 

be obtained if the true particle size is employed. Thus, one can indeed view the use of an 

apparent particle cluster size as a simple sub-grid model for the drag coefficient. 

Apparent cluster size is sometimes used as a tuning parameter to match the simulation 

results with experimental data.24 A method to estimate the cluster size via an energy-

minimization-multi-scale model has been presented in the literature recently.25 Our study 

differs from these approaches in the sense that we have focused on identifying the 

relationship between the level of sophistication of the sub-grid models and the results 

obtained in coarse grid simulations.   

Approach to coarse-grid simulations 

The purpose of the simulations described in this study is to examine the flow 

behavior of a gas-particle suspension in a vertical channel, whose geometrical details are 

presented later. The starting point of the analysis is a kinetic theory based continuum 

model for gas-particle flow, see Table 1 (and appendix A for a brief description). A 

detailed discussion of these equations can be found in Agrawal et al.20 and will not be 

repeated here. This model consists of continuity and momentum equations for the gas and 

particle phases, and an additional scalar equation for the fluctuation energy per unit mass 

of the particle phase. Henceforth, we will refer to these equations as microscopic (or 

kinetic theory) equations. Table 2 shows typical particle and gas properties. According to 
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this system of microscopic equations, homogeneously fluidized suspensions (with 

properties shown in Table 2) are unstable with dominant instabilities occurring at a length 

scale of the order of ten particle diameters.26 We consider only those situations, where the 

dimensions of the riser are too large to make numerical simulations with grid sizes of the 

order of ten particle diameters impractical even in two-dimensional simulations. 

(Virtually every commercial or medium-scale pilot unit falls in this category.) 

Consequently, if one carries out coarse-grid integration of these microscopic equations 

employing a practically affordable grid resolution, there are bound to be small structures 

which have not been resolved and whose influence is not properly recognized in the 

simulations. This rather obvious point is well known in the literature on single-phase 

turbulent flow and turbulent flow with very dilute loading of particles. Yet, very little has 

been done about the sub-grid scale modeling in the context of densely loaded gas-particle 

flows. (In fact, the very need for sub-grid models has not been widely recognized and 

discussed.) In this manuscript we compare results obtained in simulation of the 

microscopic equations discretized using coarse grids with those obtained in coarse grid 

simulations where the microscopic equations have been augmented with sub-grid models 

of different levels of sophistication. A question of fundamental importance in two-phase 

flows problems is the accuracy of the postulated microscopic equations in capturing the 

microscale physics behind the flow. [The present study does not address this question. 

Instead, we begin with a reasonable set of microscopic equations developed in the 

literature, which captures the known instabilities in simple test problems, and examine 

issues associated with the integration of this given set of equations using coarse grids.] 
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Agrawal et al.20 have already pointed out that the origin of the small-scale 

structures in gas-particle flows through risers is very different from those in single-phase 

turbulent flow. In the latter, the small-scale eddies are dissipative and are largely 

sustained by energy cascade from larger eddies. In contrast, small-scale structures arise in 

riser flows primarily through local instabilities associated with fluidization; energy to 

sustain these structures comes largely from the mean relative motion between the particle 

and gas phases. Consequently, one should not directly apply the sub-grid models, which 

have been developed in single-phase turbulent flows, to the riser flow problem. Agrawal 

et al.20 proposed a simple, preliminary approach where highly resolved simulations of the 

microscopic equations are performed in small periodic domains which are commensurate 

with the grid sizes to be used in the coarse-grid simulations. This is precisely the 

approach we have examined here. 

Although all the results will be presented in dimensionless form, it is useful to 

first present some quantities, such as riser dimensions and typical grid size that would be 

employed in coarse grid simulations, to motivate the specific combination of 

dimensionless variables employed in our test simulations. The vertical channel through 

which the gas-particle mixture flows is 76 cm wide and 30 m tall. In the coarse-grid 

simulation of flow described in this manuscript, the riser is discretized using 2 cm x 8 cm 

grids. These are fairly typical of industrial scale risers whose diameters range from 0.5 – 

2.0 m and height ranges from 20 – 90 m. Three-dimensional simulations invariably 

employ even coarser grids. 
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The microscopic equations were made dimensionless using particle density ( sρ ), 

terminal velocity ( and )tv
2
tv

g
⎛ ⎞
⎜ ⎟
⎝ ⎠

 as characteristic density, velocity and length (as in 

Agrawal et al.20). It then follows that the characteristic time and stress are 

tv
g

⎛ ⎞
⎜ ⎟
⎝ ⎠

and ( )2
s tvρ , respectively. The particle size then appears in the microscopic 

equations as 2
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g 1
v Fr
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⎝ ⎠
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)v∆
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v Fr

⎛ ⎞∆
⎜
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⎟ . Using the 

dimensional quantities presented above as an illustration, A = 4, pFr  ~ 65 and ~ 

0.2434. The larger the difference between 

hFr

pFr  and , the more important the 

contributions of the sub-grid corrections will be. Indeed, Agrawal et al.

hFr

20 found that as 

 decreased, the effects of the mesoscale structures assumed greater and greater 

importance. 

hFr

Simulations to estimate sub-grid corrections 

 Agrawal et al.20 proposed that, as an initial approach to constructing sub-grid 

models, one perform highly resolved simulations of the microscopic equations in small 

periodic domains, whose dimensions are commensurate with the grid dimensions of the 

planned coarse-grid simulations. Such calculations begin with a uniformly fluidized 

suspension of particles, and simulate the evolution of non-uniform structures through 

instabilities inherent to the fluidization problem. Details of such simulations are described 

in Agrawal et al.,20 and will not be repeated here. We simply note that the computations 
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were performed using the MFIX code,27,28 which is based on discretization using 

staggered Cartesian grids and a finite volume method. Spatial and temporal derivatives 

were approximated using a second order discretization scheme and an implicit Euler 

scheme, respectively. As non-uniform structures evolve, the gas will bypass regions rich 

in particles, and the domain-averaged slip velocity between the gas and the particles 

(defined as the difference between domain average values of volume fraction-weighted 

gas and particle phase velocities) required to support the weight of the particles will take 

on a larger value than that for the uniformly fluidized state. The non-uniform structures 

are dynamic in nature, and so will the domain-average slip velocity be. This is illustrated 

in Figure 1, which presents the instantaneous domain-averaged dimensionless slip 

velocity as a function of dimensionless time in one such periodic domain calculation. In 

such simulations, the pressure drop across the bed is chosen to balance the weight of the 

suspension, and therefore the instantaneous domain-averaged dimensionless drag 

coefficient (defined such that the domain-averaged dimensionless drag coefficient 

multiplied by the domain-averaged dimensionless slip velocity is simply the effective 

dimensionless drag force per unit volume in the domain) can readily be extracted from 

the results shown in figure 1. It can be seen from figure 1 that after an initial transient 

period, the flow settles into a statistical steady state with persistent fluctuations. By 

averaging the results obtained in the statistical steady state, one can obtain a time-

averaged value for the domain-averaged slip velocity (shown by the horizontal line in this 

figure) and then a corresponding time-averaged value for the domain-averaged drag 

coefficient. Agrawal et al.20 have already examined the dependence of the time-averaged 

values of the domain-averaged quantities on the grid resolution used in the simulations; 
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we simply note here that we employed 32x128 grids in the simulations presented in 

figure, which was found to be adequate by Agrawal et al.20  

 By repeating simulations of the type shown in figure 1 for different average 

particle volume fractions in the domain and imposed shear rates, one can create a look-up 

table or a simple curve-fit function for the time-averaged drag coefficient in terms of the 

average particle volume fraction and dimensionless shear rate. We found the shear 

dependence of the effective drag coefficient to be weak for typical shear rates 

encountered in riser flows, so that the effective drag coefficient was simply taken as a 

function of the particle volume fraction in the domain. This function will change with 

Frh; however, the value of Frh was not changed in our simulations. Agrawal et al.20 found 

that the domain-averaged quantities had only a weak dependence (if any) on the aspect 

ratio, A, for A > ~ 4. In all our coarse grid simulations, A was four. 

 Agrawal et al.20 proposed the use of the look-up table or the curve-fit function for 

the effective (time-averaged) drag coefficient discussed in the previous paragraph in 

coarse-grid simulations, as a simple model for the effect of the unresolved structures on 

the interphase interaction force. We have examined the impact of such a sub-grid model 

for drag coefficient in our coarse-grid simulations (described later). Such an approach has 

its limitations; for example, its validity in the vicinity of boundaries such as solid walls is 

arguable. Nevertheless, we have applied a sub-grid model generated through this 

approach everywhere in the flow domain, as fluctuations in gas-particle flows in risers do 

not appear to be driven by shear at bounding surfaces – more on this later. 

 Note that the instantaneous domain-averaged slip velocity, and hence the 

instantaneous domain-averaged drag coefficient, fluctuate with time, and the basis for 
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using time-averaged values for these quantities to construct a sub-grid model is 

reasonable if and only if the characteristic fluctuation time scale observed in the coarse-

grid simulation is much larger than that in the sub-grid calculations illustrated in figure 1. 

When a clear separation of time scales does not exist, the consequences of the fluctuating 

drag coefficient seen in the statistical steady state (illustrated in figure 1) should be 

brought into the coarse-grid simulations. We will however, begin with time-averaged 

sub-grid models and evaluate if a separation of time scale exists or not. 

As discussed in detail by Agrawal et al.,20 one can also extract effective particle 

phase normal stresses in the vertical and lateral directions, and effective particle phase 

viscosity from such highly resolved simulations. Once again, one can raise the issue as to 

whether time-averaged sub-grid models for these quantities (which take the form of look-

up tables or curve-fit functions) are adequate if there is no clear separation of time scales.  

Table 3 contains the time-averaged sub-grid models for the specific values of Frh 

and A used in our illustrative examples. The effective dimensionless drag coefficient, β , 

is simply a function of local particle volume fraction, i.e. ( )β β φ= , where φ  is the 

instantaneous volume fraction of particles at any node in the coarse grid simulation (and 

equal to the average volume fraction of particles in the domain in the sub-grid model 

calculations described in this section). The time-averaged dimensionless sub-grid 

horizontal normal stress and effective sub-grid particle phase viscosity ( ,s mesoP  and ,s mesoµ , 

respectively) depended both on φ  and the prevailing macroscale shear rate (see 

expressions in Table 3, where γ  denotes dimensionless ydv
dx

, where vy is the vertical 

velocity and x is the lateral position). Both of these quantities decreased with increasing 
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shear rate, indicating a tendency of the shear to orient the clusters and hinder their lateral 

fluctuations. This shear dependence is exactly opposite of what one obtains in single-

phase turbulent flows where sub-grid viscosity and stresses increase with shear rate. The 

contribution of the vertical normal stress in riser flow simulations is, in general, a very 

small correction to the convective momentum flux, and hence can be ignored with little 

loss of accuracy.  

One can readily observe that the expressions described here are simple ad hoc 

sub-grid models. Fundamentally based models for the sub-grid corrections are certainly 

more desirable and should indeed be developed. However, the goal of the present study is 

to simply investigate if the inclusion of sub-grid models affects the predicted results in a 

significant way, thus establishing whether or not a need exists for an in-depth study of 

sub-grid models in the future. This goal can be achieved using the ad hoc sub-grid 

models presented in Table 3. We will demonstrate below that sub-grid models do affect 

the predicted results profoundly.  

Coarse-grid simulations of riser flow 

We have performed two-dimensional coarse-grid simulations of gas-particle flows 

in a vertical channel equipped with a horizontal splash plate at the top, shown 

schematically in figure 2. [While 3 – D simulations are more desirable, the computational 

costs are prohibitive. Unlike single phase turbulent flow, nonuniform structures in the 

gas-particle flow studied here arise primarily through local instabilities, which are already 

captured in 2 – D analysis. Indeed, Agrawal et al.20 have shown that both 2 – D and 3 – D 

simulations of flows in small periodic domains yield similar results, so that there is some 

reason to expect that the 2 – D and 3 – D coarse-grid simulations will also lead to similar 
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findings.] Gas and particles entered the channel at the bottom and exited through two 

symmetric openings on the sides, located near the top of the riser. The exit pressure (in 

dimensional units) was set to be atmospheric. The gas and particle velocities at the inlet 

were independent of lateral position, and equal to 27.47 and 16.67 dimensionless units, 

respectively. The aspect ratio of the grids used in the coarse grid simulations was 4, and 

the Froude number based on the grid width, Frh, was 0.2434. These are exactly the same 

as the values of A and Frh used in the sub-grid model calculations outlined in the previous 

section.  

The coarse-grid simulations employed the effective drag coefficients determined 

from the sub-grid calculations. We have simply used the sub-grid model for the 

horizontal normal stress as the effective mesoscale pressure model, i.e. the anisotropy in 

the horizontal and vertical sub-grid normal stresses was ignored. This particular choice is 

a reasonable first approximation as the influence of the effective particle phase normal 

stress is unimportant in the vertical momentum balance.  

Agrawal et al.20 have already shown through quantitative examples that, for the 

type of two-phase flow problems addressed here, the contribution from the gas phase 

deviatoric stress – both laminar and turbulent contributions – is negligible when 

compared to that due to the particle phase. Therefore, we did not include any sub-grid 

correction for the effective viscosity of the gas phase.  

The coarse-grid model retains the general form presented in equations (1) – (4). 

The fluid phase stress tensor is still given by (6). The interphase interaction force is 

written as f (u vβ= − ),  where β is given in Table 3. The effective particle phase pressure 
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is now written as , , I 2s s meso s mesoP Sσ µ= − , and the expressions for ,s mesoP  and ,s mesoµ  are 

summarized in Table 3. 

Very little is known about appropriate wall boundary conditions in coarse-grid 

simulations of densely loaded gas-particle flows. In high-velocity flows of densely loaded 

gas-particle mixtures through vertical pipes, the shear stress transmitted through the 

particle phase is generally much larger than that due to the gas; indeed, numerical 

experiments suggest that there is hardly any difference between results obtained with no-

slip and free-slip boundary conditions for the gas phase. Thus, in the class of problems 

addressed here, the gas phase boundary condition at the walls is not a critical factor. 

Visual observations of flows through vertical pipes indicate that particles do slip near the 

wall, and hence a partial or free-slip boundary condition for the particle phase is 

indicated. It is generally believed that in high-velocity flows of densely loaded gas-

particle mixtures through large risers the vertical pressure gradient is largely due to the 

particle holdup and that wall shear is only weakly relevant.29 Thus, the correct boundary 

condition for the large channel flow problem studied here is quite possibly a partial-slip 

condition, which is not far from a free-slip boundary condition. In the simulations 

described in this manuscript, we have examined both no-slip and free-slip boundary 

conditions for the particle and gas-phases at the bounding walls. These two extremes 

serve as bounds (within which the true boundary condition should lie) and thus give an 

idea about the extent of the changes in the mean flow characteristics that can come about 

upon altering the boundary conditions. It also helps us assess whether the need for (and 

the influence of) sub-grid models is dependent on the wall boundary conditions 

employed. 
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Agrawal et al.20 noted that the kinetic theory stresses were dwarfed by the 

mesoscale corrections when Frp exceeded Frh by a factor of ~100, which was indeed the 

case here. Consequently, one need not consider the fluctuation energy equation at all in 

the coarse-grid simulations. Therefore, the issue of appropriate boundary conditions for 

the granular energy equation becomes irrelevant for the present coarse-grid simulations. 

The coarse-grid simulation was always carried out for a long duration (typically 

several thousand units of dimensionless time) and a statistical steady state was allowed to 

establish itself before data on various flow characteristics were gathered. The time-

averaged data presented here were obtained by averaging the simulation results over ~ 

3000 dimensionless units of time.  

Figures 3a and 3b show the time dependence of the slip velocity between the gas 

and particle phases and the particle volume fraction at an arbitrarily chosen location in 

the riser. This location, marked as X in figure 2, is 86.3 dimensionless units of length 

away from the left side riser wall and at an elevation of 2301 dimensionless units of 

length from the bottom inlet. As expected, persistent fluctuations in all the dependent 

variables were observed throughout the riser – figures 3a and 3b are simply typical 

examples. Figure 3c shows the power spectrum corresponding to the results shown in 

figure 3a. Although a single dominant frequency could not be identified from this figure, 

the range of frequencies over which most of the fluctuations occurred in the coarse-grid 

simulations could readily be identified. Very similar results were obtained in coarse-grid 

simulations using free-slip boundary conditions. Thus, the fluctuations seen here are not 

due to the same mechanism that drives turbulent pipe flow of a single-phase fluid. 
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In order to examine if there was indeed a separation of time scale between the 

sub-grid scale simulations (figure 1) and the coarse-grid scale simulations (figure 3), we 

present in figure 4 further details of a representative sub-grid scale simulation. The 

simulation conditions are exactly as in figure 1. Figure 4a shows the instantaneous 

domain-averaged drag coefficient (related inversely to the slip velocity shown in figure 1) 

as a function of dimensionless time. The characteristic time used to make the results 

dimensionless is exactly the same in sub-grid and coarse-grid simulations. Figure 4b 

shows the power spectrum corresponding to figure 4a. It is readily apparent from a 

comparison of figures 3c and 4b that the range of dimensionless frequencies is 

comparable in both cases. Thus, there is no basis for ignoring in the coarse-grid 

simulations the fluctuations in the sub-grid drag coefficient. In other words, the use of a 

time-averaged sub-grid model for effective drag coefficient is, in a formal sense, not 

correct. 

This lack of separation of time scales suggests that the fluctuations observed in 

the sub-grid and coarse-grid simulations are driven by the same mode of instability. 

Given that the sub-grid scale simulations considered only the fluidization instability, it is 

reasonable to attribute the persistent fluctuations seen in the coarse-grid simulations to a 

local instability associated with particle phase inertia, gravity and the dependence of the 

drag coefficient on particle volume fraction. In this physical picture, small-scale 

structures arise as a result of local instabilities and coalesce to produce large scale 

fluctuations observed in coarse-grid simulations.  

In sub-grid simulations (such as those shown in figures 1 and 4), mesoscale 

structures are repeatedly formed and destroyed, and the fluctuations in the slip velocity 
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(and other mesoscale quantities) are tied to the fluctuations in the configuration of the 

mesoscale structure. Thus, the need to include the effect of sub-grid drag coefficient 

fluctuations in the coarse-grid simulations can be interpreted as a need to recognize the 

fact that the instantaneous sub-grid mesoscale structure can vary about a mean 

configuration. It then follows that a proper sub-grid model for the fluctuations should try 

to capture the evolution of the sub-grid structure. As this structure is being convected by 

the flow, it is reasonable to anticipate that a full-fledged sub-grid model for the 

fluctuations should be a dynamic model including convective derivatives. Such a 

dynamic model is rather complex and we have not pursued it in the present study. 

Instead, we consider a very simple localized sub-grid model that treats the fluctuations in 

the effective drag coefficient (see figure 4a) as a random stochastic event. 

Figure 4c shows that the probability distribution function for 1
mesoβ

⎛⎜
⎝

⎞⎟
⎠

 in the 

statistical steady state, corresponding to the results presented in figure 4a, is essentially 

Gaussian. This Gaussian distribution suggests that the formation and breakup of clusters 

and streamers, which drive the fluctuations in the drag coefficient, are essentially 

uncorrelated random events. Figure 4c suggests that, as a simple approximation, one can 

write 

 

1 1

meso

f
β β

⎛ ⎞ ⎛ ⎞+
=⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
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where f is a zero-mean Gaussian random variable with suitably chosen variance, and β is 

the average drag coefficient shown in figure 4a by the horizontal line. The broken line 

shown in figure 4c confirms that such a functional representation does capture the pdf. 

Stochastic sub-grid model 

In order to examine the possible consequence of a lack of separation of time 

scales between the coarse-grid and sub-grid fluctuations, we constructed a simple time-

dependent sub-grid model for the effective drag coefficient. Accordingly, the drag 

coefficient at each node of the coarse-grid simulation was treated as an independent 

stochastic random variable modeled via an Uhlenbeck-Ornstein process.30 Thus, the 

instantaneous drag coefficient, ( ),meso j tβ , of the jth node was written as 

( )
( )( ),

11 j

meso j j

f t
tβ β φ

⎛ ⎞⎛ ⎞ +
⎜ ⎟=⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 

where  is the instantaneous particle volume fraction at that node, ( )j tφ β  is the sub-grid 

model for the time-averaged drag coefficient and jf  is a stochastic random variable with 

zero-mean. The Uhlenbeck-Ornstein (U-O) model to evolve a stochastic random variable 

f can be summarized as follows.  

 If f  denotes the value of a random variable f at time t, its value at time t t t+ ∆ , 

, is set to be ft t+∆ ( ) ( )1 2f ftt t α α σ= + Rn+∆ , where 1 exp( / *)tα τ= −∆  

and 2
2 11α α= − . Here *τ  and σ  are model parameters;  Rn  is a random number with a 

Gaussian distribution, 0Rn = , and 2 1Rn = . The random variable f, evolved in time 
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according to this rule, satisfies 20,  f f 2σ= = and 2 exp(- / *)f f tt t t σ τ= ∆+∆ , 

where  denotes time averaging. 

 The stochastic model parameters *τ  and σ  represent fluctuation time scale and 

standard deviation, respectively. Measurements of dominant fluctuation frequency (figure 

4b) and sample variance in the meso-scale drag coefficient led to estimates for *τ  and σ .  

Figure 5 illustrates the stochastic sub-grid model for drag coefficient, applied to the 

conditions simulated earlier in figure 4. It is remarkable that the simple U-O process 

produces fluctuations similar to those seen in the detailed sub-grid scale flow simulations. 

Thus, it is reasonable to hope that such a stochastic sub-grid model for the drag 

coefficient can be used as a simple vehicle to investigate the possible effect of a lack of 

separation of time scale between the sub-grid and coarse-grid simulations. We found that 

the standard deviation σ and the characteristic time τ*  varied somewhat with particle 

volume fraction. However, for the sake of simplicity, we have assumed in the coarse-grid 

simulations described below that they are approximately constant [σ = 0.25; τ* = 1.12, 

both being dimensionless], as this is sufficient to investigate the consequences of a lack 

of separation of time scales. 

In what follows, when we talk about coarse-grid simulations with a stochastic 

sub-grid model for riser flows, we refer to coarse-grid simulations employing a stochastic 

sub-grid model for the drag coefficient along with time-averaged sub-grid models for 

particle-phase pressure and viscosity. We focused primarily on the drag coefficient, as the 

interphase interaction force term, particle inertia and the gravitational force term are the 

most dominant terms in the vertical momentum balance. Similarly, when we discuss 

coarse-grid simulations using a time-averaged sub-grid model, we refer to coarse-grid 
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simulations employing time-averaged sub-grid models for the drag coefficient, and 

particle-phase pressure and viscosity. Finally, coarse-grid simulations with no sub-grid 

model refer to results obtained by simply solving the microscopic equations (kinetic 

theory model) on a coarse grid without including any sub-grid correction.  

Coarse-grid simulations with different sub-grid models 

We repeated the coarse-grid simulation described earlier in figures 2 and 3, using 

the stochastic sub-grid model. We also performed an identical simulation where no sub-

grid corrections were made. Figures 6a – 6c obtained with the stochastic sub-grid model 

are analogous to figures 3a – 3c discussed earlier in the context of time-averaged sub-grid 

model.  

 It is clear that the addition of a stochastic fluctuation in the drag coefficient has 

not produced any qualitative difference in the fluctuations. Instantaneous snapshots of 

particle volume fraction profiles between these two models also appeared qualitatively 

similar – compare figures 7a and 7b. The same was true for the velocity fields as well. 

Thus, no qualitatively new feature appeared in the simulation results because of the 

addition of the stochastic correction.  

Surprisingly, however, when no-sub-grid model was included, large-scale 

nonuniformities could not be sustained even if we began our simulations with highly 

nonuniform initial conditions in the riser. For example, we carried out coarse-grid 

simulations using a stochastic sub-grid model and allowed a statistical steady state to 

evolve. We then stopped the simulation at different times in the statistical steady state, 

turned off the sub-grid model, and continued the simulation. We found that over a few 

multiples of the residence time in the riser the inhomogeneities washed out of the riser 
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and a nearly homogeneous state with small fluctuations resulted. Thus, in this example, 

inhomogeneities could not be sustained without adding sub-grid models. 

From our coarse-grid simulations, we have obtained the time-averaged profiles of 

various quantities in the statistical steady state, some of which are illustrated below. 

Figure 8 shows the laterally averaged particle volume fraction as a function of riser 

elevation for the three cases: no sub-grid, time-averaged sub-grid, and stochastic sub-grid 

models. We performed simulations with two different initial conditions, one where the 

channel was initially devoid of particles and another where the channel was initially filled 

with a non-uniform distribution of particles. The time-averaged results representing a 

statistical steady state showed no significant dependence on the initial condition. (Some 

small difference was invariably present; however, as the difference decreased with 

increasing sampling time, it was taken as an indication that the data had not been 

averaged for a sufficiently long duration.) 

The result obtained in the no sub-grid model case is qualitatively different from 

those in the other two cases. It proved to be deficient in the sense that it did not reproduce 

the generally known, large scale fluctuations. The axial profiles for the other two cases 

manifest peaks in the laterally averaged particle volume fraction at an intermediate 

elevation in the riser (~ 15% of riser height from the bottom). In simulations with both 

the time-averaged and stochastic sub-grid models, particle rich regions are more 

commonly seen near the wall, and they slowly descend, causing an accumulation near the 

bottom of the riser. However, the upward flow from the inlet tends to push the 

accumulated solids upwards, and these two opposing effects are responsible for the peak 

at the intermediate elevation. It is clear from figure 8 that the time-averaged and 
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stochastic sub-grid models lead to quantitatively different results near the inlet but 

converge at higher riser elevations. Figure 9 shows the lateral profiles of particle volume 

fraction and dimensionless particle flux at an elevation of 80% of the riser height, where 

the laterally averaged particle volume fractions obtained with the stochastic and time-

averaged sub-grid models are fairly close. It is clear from this figure that both models 

predict enrichment of particle concentration and downflow near the wall region. The 

results are quantitatively different, but the difference is not very large. Although we do 

not attempt any comparison with experimental data in this study, we suspect that the 

uncertainties in the experimental data will be at least as large as the differences between 

these two model predictions and that discrimination between these two models by 

comparison with experimental data in the upper elevation of risers is unlikely. On the 

other hand, discrimination may be possible at the lower elevations. However, the details 

of flow at the bottom are probably very sensitive to the spatial nonuniformities and 

fluctuations in the inlet flow (discussed later), and proper discrimination between models 

on the basis of experimental data will be difficult unless one carefully measures the inlet 

flow characteristics.  

In any case, there is no doubt that the addition of a sub-grid model (be it the time-

averaged sub-grid model or the stochastic sub-grid model) has dramatically altered the 

simulation results, establishing that results obtained by integrating the microscopic 

equations without any sub-grid correction are suspect. 

 

 22



Coarse-grid simulations with free-slip boundary conditions 

 As discussed earlier, no-slip boundary condition at the solid walls (used in the 

simulations described above) is by no means accurate and a partial slip boundary 

condition (which is not too far from free slip) is probably more realistic. We explored the 

sensitivity of the coarse grid simulation results to the wall boundary conditions by 

repeating a number of simulations using free slip boundary conditions for both phases. 

Specifically, we started from a highly nonuniform initial state obtained via coarse grid 

simulation using the time-averaged or the stochastic sub-grid model and no-slip boundary 

conditions, and continued the simulation with free slip boundary conditions and desired 

sub-grid model. Once again, the fluctuations were washed out of the channel when no 

sub-grid model was included. With the time-averaged and stochastic sub-grid models, 

fluctuations persisted. Figures 10a and 10b show snapshots of simulations with free slip 

boundary conditions; no dramatic, qualitative difference between the time-averaged and 

stochastic sub-grid models is apparent. Indeed, these snapshots are not much different 

from those obtained with no-slip boundary conditions, suggesting that the gross features 

of the fluctuating flow pattern in a statistical steady state are not driven by specific choice 

of wall boundary conditions. 

 Coarse grid simulations with free slip boundary conditions manifested sensitivity 

to the initial condition. When the above simulations were repeated, starting from an 

initially empty channel, nonuniform distribution of particles and persistent large-scale 

fluctuations in particle concentration did not develop with both sub-grid models. This 

suggested that there are at least two attractors for simulations with free slip boundary 

conditions. Such a multiplicity has not been reported in any experimental study and is 
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therefore likely to be unphysical. In practice, the inlet at the bottom is neither perfectly 

uniform nor steady, and spatial nonuniformities and temporal fluctuations are inevitable 

at the bottom inlet. Indeed, when we introduced stochastic, lateral variation in axial 

particle mass flux at the inlet to a simulation with stochastic sub-grid model, the 

nonuniform distribution of particles and persistent large-scale fluctuations readily 

developed even from a uniform initial condition.31 Thus, nonuniformities or fluctuations 

at the inlet and/or some resistance at the solid walls to flow serve to eliminate spurious 

solutions.   

 Figure 11 presents the axial variation of laterally averaged particle volume 

fraction in the statistical steady state for simulations with free slip boundary conditions, a 

highly nonuniform initial condition, and uniform inlet. Once again, we see that the results 

obtained with the time-averaged and stochastic sub-grid models are qualitatively similar, 

while the result obtained in simulations with no sub-grid correction is grossly different. 

Comparison of figures 8 (no slip) and 11 (free slip) reveal no qualitative differences; 

however, the wall boundary conditions do seem to have a quantitative effect on the 

predicted holdup profile. 

 Figures 12a and 12b show lateral variation of particle volume fraction and 

dimensionless particle flux at an elevation of 80% of riser height. It is clear that the time-

averaged and stochastic sub-grid models yield nearly the same results. Comparison of 

these figures with figures 9a and 9b reveals that a change in wall boundary conditions 

only contributes to a small quantitative change near the wall region. 
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Discussion 

Our simulations show clearly that the dominant fluctuations occurred at 

comparable dimensionless frequencies (which are much smaller than the inverse of 

dimensionless time step) in both coarse-grid and mesoscale calculations. This suggests 

that fluctuations derive from the same process at both scales. As fluctuations do occur in 

mesoscale simulations even in the absence of macroscale shear and in coarse-grid 

simulations with free-slip boundary conditions, we begin by examining instabilities 

associated with the governing equations of motion (without requiring an active role for 

the macroscale shear or exit configuration). In the absence of shear and exit effect, the 

governing equations support a simple solution where the gas-particle mixture travels up 

the channel homogeneously with the slip velocity being adequate to support the weight of 

the particle – that is, the simplest version of riser flow is a vertically traveling 

homogeneous fluidized bed. It is well known that the dominant instability in 

homogeneously fluidized beds, as predicted by the averaged equations of motion with 

simple phenomenological closures where the particle phase pressure and viscosity are 

only functions of particle volume fraction, take the form of one-dimensional, vertically 

traveling wavefronts having no horizontal structure.32 Two-dimensional linear stability 

analysis of a uniformly fluidized bed of infinite extent based on the microscopic (kinetic 

theory) equations used in the present study26 revealed that the most unstable mode is an 

oblique wave, with the horizontal wavenumber being much smaller than the vertical 

wavenumber. Hence it is sufficient to focus our discussion on growth rates of vertically 

traveling wavefronts having no horizontal structure and the amplification of disturbances 
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introduced at the bottom of the riser and convected upwards by the flow. The time 

available for amplification is comparable to the residence time of the mixture in the riser. 

According to the microscopic (kinetic theory) equations, the homogeneously 

fluidized state is unstable to vertically traveling horizontal wavefronts whose wavelength 

is larger than a few particle diameters and the dominant mode has a wavelength of ten or 

so particle diameters. The growth rate of perturbations whose wavelength is much larger 

than that of the dominant mode is much smaller than that of the dominant mode. Thus, a 

homogeneously fluidized bed gives way to nonuniform structures in coarse-grid 

simulations much more slowly (provided it is not stabilized by numerical viscosity), than 

in highly resolved simulations. As a result, appreciable amplification of the initial 

disturbances (which, in turn, can give way to lateral nonuniformities through secondary 

gravitational overturning instability,18,33-35 does not occur in the coarse-grid simulations 

with free-slip boundaries within the time available in the riser flow and the disturbance 

gets washed out of the riser. Our observation that a highly nonuniform initial state 

(coupled with uniform inlet conditions) could not sustain the fluctuating state suggests 

that the basin of attraction for the homogeneous state is fairly large and/or that a 

fluctuating statistical steady state does not exist for the microscopic equations discretized 

on a coarse grid.  

When modest stochastic, lateral variation was introduced in axial particle mass 

flux at the inlet, the fluctuations persisted in the riser (in our simulations of the 

microscopic equations discretized on a coarse grid coupled with free-slip boundary 

conditions); however, the time-averaged solution was only marginally different from that 
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obtained without stochastic fluctuations, clearly suggesting that this solution was only a 

mild perturbation of the homogeneous solution. 

Note that in our riser simulations the gas-particle mixture entered the riser in a 

plug flow manner. When no-slip boundary conditions are employed, both the fluid and 

the particles are forced to slow down near the wall and an increase in particle volume 

fraction must occur purely because of kinematic effect. This represents another form of 

lateral nonuniformity that can, in principle, develop into a fluctuating state. However, the 

particle phase viscosity in the homogeneous state is very small (when no sub-grid 

correction is included). Therefore, the boundary layer near the channel walls did not grow 

rapidly with distance from the inlet in our coarse-grid simulation examples (without any 

sub-grid correction) and the particle concentration near the channel walls did not grow 

appreciably with height. Thus, lateral perturbation to the homogeneously fluidized state 

by the presence of the sidewalls was not large enough to give rise to and sustain the 

highly nonuniform fluctuating state.  

Our computational experiments indicate that nonuniform solutions with sustained 

fluctuations and lateral segregations may develop in coarse-grid simulations of the 

microscopic equations only if pronounced nonuniformity is present at the inlet (such as 

side entrance, large scale fluctuations at the inlet, etc.). 

Adding the time-averaged closure expressions in Table 3 to the microscopic 

model equations did not lead to an increase in the growth rate of perturbations to a 

homogeneously fluidized bed – if anything, the addition of a large mesoscale particle 

phase viscosity should decrease the growth rate! Thus, the difference in the outcome of 

the coarse-grid simulations with and without sub-grid models is not due to a larger 
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growth rate of disturbances in the presence of sub-grid models. This is consistent with 

our observation that the fluctuating state could not be reached from uniform initial 

conditions (and uniform inlet conditions) when free slip boundary conditions were 

employed. The observation that the fluctuating state could be sustained if the simulations 

began with a nonuniform initial condition reveals coexistence of a homogeneous solution 

and a high-amplitude nonuniform solution. [Such coexistence of solutions for these 

equations has been demonstrated previously, see Glasser et al.34,35] We found that adding 

stochastic, lateral fluctuations in particle mass flux at the inlet could eliminate the 

homogeneous state; thus, the homogeneous solution appears to have a small attractor 

basin. When no-slip boundary conditions are used in the simulations using sub-grid 

corrections, the boundary layer grows more rapidly than in the no sub-grid case, as the 

particle phase viscosity is much larger when a sub-grid model is used. Consequently, 

particle accumulation near the wall region is more pronounced when a sub-grid model is 

used and this lateral nonuniformity is apparently enough to take the system into the basin 

of attraction for the fluctuating state.  

Summary 

It is clear from the examples presented here that the results obtained in coarse-

grid integration of the microscopic equations for gas-particle flows in large process 

vessels can change appreciably if sub-grid corrections to account for the effects of 

unresolved structures are included. The most dramatic difference occurred in our 

simulations when a simple time-averaged sub-grid model was added to the no sub-grid 

model case. In view of this sensitivity, the results published in the literature where 

researchers have simply solved the continuum equations without corrections for sub-grid 
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structures should be re-evaluated. Although the level of sophistication of the sub-grid 

model did make a difference in the quantitative results in our simulations, even a simple 

time-averaged sub-grid model appeared to capture the main qualitative effects.   

The simple time-averaged sub-grid model is, in a strict sense, flawed, as there is 

no separation of time scales between the unresolved (sub-grid) structures and those 

resolved in the coarse-grid simulations. To account for this lack of separation of time 

scale, a rather simple enhancement of the time-averaged sub-grid model that took the 

form of a stochastic correction to the drag coefficient was implemented. It was found that 

such a stochastic sub-grid model yielded qualitatively the same results as the time-

averaged sub-grid model. Thus the lack of separation of time scales does not appear to be 

a severe deficiency.    

The approach employed in the present study to construct sub-grid models is 

clearly ad hoc. Such an approach is adequate, in our opinion, for our study as our primary 

goal is to expose the potential importance of sub-grid corrections. More in-depth study of 

the processes occurring at small scales is needed to develop meaningful and broadly 

useful sub-grid models.  

It should also be emphasized that the present analysis only considered a static 

interphase interaction force – even though the stochastic part introduced a time-

dependent character, it does not capture dynamic effects of the type examined by Zhang 

& VanderHeyden,36 who argued that the mesoscale structures can lead to an appreciable 

added mass correction. Additional work is required to verify the existence of such a 

dynamic term – if it does exist, it may slow down the coarse-grid fluctuations appreciably 

and eliminate the need for a stochastic sub-grid model for the drag coefficient. 
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Appendix A 

 Eqs. (1) – (4) describe the continuity and momentum balance equations for the 

particle and gas phases. Here, φ is the volume fraction of particles; v and u are the local 

average velocities of the particle and gas phases, respectively; ρs and ρg are the densities; 

 sσ and gσ are the stress tensors associated with the two phases expressed in a 

compressive sense; f is the interaction force between the phases per unit volume of the 

bed; and g is the specific gravity force. Eq. (5) is the pseudothermal energy (PTE) 

balance, where T is the granular temperature – in this equation, q is the diffusive flux of 

PTE; the second and third terms on the right hand side quantify the rates of production of 

PTE by shear and gas-particle slip, respectively. The fourth and the fifth terms account 

for the rates of dissipation of PTE through inelastic collisions and viscous damping, 

respectively. 

 Eq. (6) describes a simple Newtonian closure for the effective gas phase stress. 

Here g ˆp  and gµ denote fluid phase pressure and effective viscosity, respectively. In the 

regime investigated in the present study, namely, ),(1   gs φ−ρ>>φρ  the contribution due 

to the deviatoric part of the gas phase stress is negligible. 

The gas-particle interaction force, f, is, for all practical purposes, only due to drag. 

Eq. (7) describes the drag correlation used in our simulations.23 Here 

, , ,  and ReD gC d gβ µ denote an effective drag coefficient for the suspension, single 

particle drag coefficient, particle diameter, fluid viscosity and Reynolds number, 

respectively. 

Eq. (8) summarizes a kinetic theory closure for the particle phase stress in the 

fluid-particle mixture. An expanded discussion of this closure can be found in Agrawal et 
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al.20 Here  denotes the coefficient of restitution for particle-particle collisions, and the 

spheres are assumed to be smooth. Eq. (9) is the corresponding closure for the diffusive 

flux of PTE. 

pe

Eq. (10) is the kinetic theory closure for the rate of dissipation of PTE through 

inelastic collisions, while eq. (11) represents the closure due to Koch & Sangani19 for the 

rate of dissipation of PTE by viscous dissipation in the fluid phase.  

 35



Table 1: MODEL EQUATIONS FOR GAS-PARTICLE FLOWS 
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Table 1 – continued 

 
Particle phase stress 
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Table 1 – continued 
 
 
Effect of fluid on particle phase fluctuation energy (Koch & Sangani19) 
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Table 2: Physical properties of gas and solids 
______________________________________ 
d particle diameter  7.5 x 10-3 cm 
ρs  particle density  1.5 g/cm3  
ρg  Gas density   1.3 x 10-3 g/cm3

µg Gas viscosity   1.8 x 10-4 g/cm⋅s  
ep Coefficient of restitution     0.9    

tv  Terminal settling velocity 21.84 cm/s 
2
tv

g
 Characteristic length  0.487 cm 

tv
g

 Characteristic time  0.0223 s 

2
s tvρ  Characteristic stress  715.5 g/cm.s2

______________________________________ 
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Table 3: Computationally generated ad hoc sub-grid model for various 

dimensionless quantities 
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Figure Captions 

Figure 1:  Domain-averaged dimensionless slip velocity calculated in a doubly periodic 

domain with Frh = 0.2434; A = 4; Average particle volume fraction in the domain = 

0.05; Reynolds number based on particle diameter and terminal settling velocity, Rep 

= 1.18. Highly resolved simulation of flow in this periodic domain was performed 

using 32 x 128 grids. Time-averaged slip velocity shown as a superimposed line, and 

was calculated between 200 and 800 dimensionless time units. The imposed shear 

rate in the periodic domain is zero. See Agrawal et al.20 for details on the introduction 

of macroscale shear in the periodic domain calculations. The dominant period of the 

oscillations is ~ 10 dimensionless units of time. For the parameter values listed in 

Table 2, this translates to a period of 0.223 s. 

Figure 2: Schematic diagram showing the geometry used in 2D coarse grid simulations. 

Riser half-width, W = 78.1; Riser height, H = 6164; Exit opening height, B = 102.7 

(all in dimensionless units). Volume fraction of particles at the inlet = 0.04. 

Simulations were done using 38 x 375 grids.  The location designated by “X” will be 

referred to later.   

Figure 3:  Results obtained from a coarse grid simulation with time-averaged sub-grid 

models for drag coefficient and the stresses. (a) Dimensionless slip velocity and (b) 

particle volume fraction as functions of dimensionless time at the location marked as 

X in figure 2.  (c) The power spectrum of slip velocity shown in figure 3a. 

Figure 4:  (a) Dimensionless drag coefficient, βmeso,  vs. dimensionless time.  (b) Power 

spectrum of drag coefficient shown in figure 4a.  (c) Probability distribution function 
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vs. (1 / β meso) corresponding to figure 4a.  Geometry and conditions are the same as 

in figure 1. 

Figure 5: Temporal fluctuations in drag coefficient modeled as a Uhlenbeck-Ornstein 

process. U-O model parameters: characteristic time,  τ* = 1.12  dimensionless time 

units; σ = 0.25.  Particle volume fraction  = 0.05. The time-averaged drag coefficient 

is set to be same as that in figure 4a. (a) Dimensionless drag coefficient, β meso, vs. 

dimensionless time.  (b) Power spectrum of drag coefficient shown in figure 5a.  (c) 

Probability distribution function vs. (1/ β meso) corresponding to figure 5a. 

Figure 6:  Results obtained from a coarse grid simulation with stochastic sub-grid model 

for drag coefficient and time-averaged sub-grid models for the stresses. (a) 

Dimensionless slip velocity and (b) particle volume fraction as functions of 

dimensionless time at the location marked as X in figure 2.  (c) The power spectrum 

of slip velocity in figure 6a. 

Figure 7: Snapshots of particle volume fractions obtained in the coarse-grid simulations. 

(a) Time-averaged sub-grid model, (b) stochastic sub-grid model. No-slip boundary 

conditions for both phases.  

Figure 8: Axial variation of laterally averaged particle volume fraction corresponding to 

statistical steady state.  Results obtained from coarse-grid simulations with stochastic 

(+) and time-averaged (o) sub-grid models are compared. Also shown as (x) are 

results corresponding to kinetic theory (i.e. with no sub-grid models). No slip 

boundary conditions. Uniform inlet conditions. The riser geometry and conditions are 

the same as in figures 2 and 3.  
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Figure 9:  Lateral variations of (a) particle volume fraction and (b) dimensionless 

particle flux at an elevation of 80% of the riser height. Results obtained from coarse-

grid simulations with stochastic (+) and time-averaged (o) sub-grid models are 

compared. Also shown as (x) are results corresponding to kinetic theory (i.e. with no 

sub-grid models). No slip boundary conditions. Uniform inlet conditions. The riser 

geometry and conditions are the same as in figures 2 and 3.  

Figure 10: Snapshots of particle volume fractions obtained in the coarse-grid 

simulations. (a) Time-averaged sub-grid model, (b) stochastic sub-grid model. Free-

slip boundary conditions for both phases.  

Figure 11: Axial variation of laterally averaged particle volume fraction corresponding 

to statistical steady state.  Results obtained from coarse-grid simulations with 

stochastic (+) and time-averaged (o) sub-grid models are compared. Also shown as 

(x) are results corresponding to kinetic theory (i.e. with no sub-grid models). Free-slip 

boundary conditions. Uniform inlet conditions. The riser geometry and conditions are 

the same as in figures 2 and 3.  

Figure 12:  Lateral variations of (a) particle volume fraction and (b) dimensionless 

particle flux at an elevation of 80% of the riser height. Results obtained from coarse-

grid simulations with stochastic (+) and time-averaged (o) sub-grid models are 

compared. Also shown as (x) are results corresponding to kinetic theory (i.e. with no 

sub-grid models). No slip boundary conditions. Uniform inlet conditions. The riser 

geometry and conditions are the same as in figures 2 and 3.  
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THE ROLE OF MESO-SCALE STRUCTURES ON DISPERSION 
IN GAS-PARTICLE FLOWS 

Peter Loezos and Sankaran Sundaresan 
Department of Chemical Engineering 

Princeton University 
Princeton, NJ, 08544 

Abstract 
The effect of fluctuations associated with meso-scale structures on the rate of tracer 

dispersion in gas-particle systems is probed. Coarse-grid simulations of gas-particle flows 
generally do not recognize the influence of fluctuations associated with meso-scale structures 
whose size is comparable to or smaller than the grid size. A sub-grid model for effective 
dispersion resulting from sub-grid scale fluctuations is formulated through computational 
experiments.  

Two-dimensional coarse-grid simulations of hydrodynamics and tracer dispersion in 
vertical channels of various widths reveals that sub-grid scale fluctuations are important to 
capture the macro-scale hydrodynamics accurately, while macro-scale tracer dispersion is 
largely determined by fluctuations which are resolved by the coarse-grid simulations. Apparent 
lateral Peclet numbers obtained from our simulations are comparable to those reported in the 
literature.   

 
Introduction 

Experimental studies on high-velocity gas-particle flows in vertical pipes have 
revealed that particles are usually distributed over the cross section in a non-uniform 
fashion (Bader et al. 1988).  These non-uniformities exist on a wide range of length 
scales, ranging from millimeters to meters.  Meso-scale structures, namely clusters and 
streamers of particles, whose characteristic size is of the order of 10-100 particle 
diameters, have been observed in these flows (Horio 1995).  These meso-scale 
structures arise as result of local hydrodynamic instabilities (Agrawal et al. 2001) and 
they have a strong influence on macro-scale hydrodynamics (Dasgupta et al. 1994; 
Agrawal et al. 2001). The present manuscript is concerned with the effects of such 
meso-scale structures on the rates of dispersion of gas and solid phase tracers in riser 
flows.  

Given that meso-scale structures occur on a continuous spectrum of length scales 
down to about ten particle diameters, it is impractical to resolve them completely in 
CFD simulations of flows in large risers where the use of coarse grids is inevitable 
(Sundaresan 2000).  Agrawal et al. (2001) have already pointed out the need for sub-
grid hydrodynamic models to account for the consequence of the unresolved meso-
scale structures on the effective drag and the stresses. In this paper, we explore the 
dispersion characteristics in these systems.  In particular, we have determined through 
computational experiments effective dispersion coefficients, which characterize 
transport resulting from sub-grid scale fluctuating motion.  These effective dispersion 
coefficients depend on grid size, particle phase volume fraction (φ ), the terminal 
velocity of the particles (vt) and the macro-scale shear rate. An approximate closure for 
the dispersion coefficient, generated through our computational experiments, is 
presented. 



Coarse-grid simulations of hydrodynamics and tracer dispersion have been 
performed, where we have explored the impact of sub-grid corrections on the predicted 
flow and gas dispersion. In the examples described here, the sub-grid corrections for 
hydrodynamic quantities, namely drag and stresses, have a profound influence on the 
results. Sub-grid correction for the effective dispersion coefficient has been found to 
have a much smaller effect, revealing that tracer dispersion on a macro-scale is largely 
dictated by the velocity and concentration fluctuations resolved by the coarse-grid 
simulations.  Our coarse-grid, two-dimensional simulations of tracer dispersion in 
vertical channels suggest that the effective radial Peclet number is only weakly 
dependent on the channel width. 
 
Computational Experiments on Meso-scale Structures 

To probe the effect of meso-scale structures on species dispersion, 2-D simulations 
were performed in highly resolved doubly periodic domains, as the presence of solid 
boundaries is not necessary to induce the formation of meso-scale structures (Agrawal 
et al. 2001).  A detailed discussion of the hydrodynamic equations used in our study 
can be found elsewhere (Agrawal et al. 2001). These equations were augmented by 
non-reactive transport equations for gas and solid phase tracers. The MFIX code 
(Syamlal 1998) was modified to solve these equations. Agrawal et al. (2001) found that 
the domain-averaged hydrodynamic quantities obtained by averaging over the meso-
scale structures were essentially independent of the aspect ratio of the domain, A (= 
height/width), when A ≥ 4. Therefore all simulations described here were performed 
using an aspect ratio of 4.  In dimensionless form, the width of the box, ∆h, translates to 
the inverse of a Froude number, Frh = vt

2/g∆h where g is the specific gravity force.  We 
present below results for two domain sizes, corresponding to Frh of 0.486 and 0.243.  
Typical physical properties for the gas and solids used in our simulations are given in 
Table 1. For this gas-solid system, Frh of 0.486 and 0.243 translate to domain widths of 
10 and 20 mm, respectively.   

In these simulations, the gas pressure varied periodically in the lateral direction, 
while in the vertical direction it was partitioned into a periodic part and a linear part.  
The linear part contributed to a mean pressure gradient in the vertical direction whose 
value was chosen to balance the total gravitational force acting on the suspension.  
Lateral gradients in the concentrations of gas and solid phase tracers were imposed in 
an analogous manner.  These simulations were performed using a second order 
discretization scheme and sufficiently small grid sizes to ensure that the results were 
independent of grid size. Although the state of uniformly fluidized suspension is a 
solution for the hydrodynamic equations, it is unstable and rapidly gives way to 
persistent spatio-temporal (meso-scale) structures. Instantaneous fluxes for both gas and 
solid phase tracers due to the motion of meso-scale structures were determined from 
these computations and were time-averaged to obtain mean fluxes, which were then 
used to a find the effective dispersion coefficients for the two phases ( *

gD , *
sD ).   

Effective dispersion coefficients were computed as follows.  Domain-averaged gas 
and solid phase mass fluxes in the lateral direction, g

msf  and s
msf , were first calculated as 

functions of time.  These fluxes are defined as: 



;     ((1 ) ) (( (1 ) ) ( )g s
ms ms

g
g g g g g s s sf fu D u

x
χ

φ ρ χ φ ρ φ ρ χ
′

′ ′ ′ ′= =
∂

′ ′− + −
∂

′  

where denotes domain average, x is lateral coordinate, gχ ′ and sχ ′ are the local gas 
and solid phase tracer fractions, gu ′ and su ′ are the local lateral velocities,  is the 
binary gas-phase diffusion coefficient and 

gD
φ′  is the local particle volume fraction. 

These were then time-averaged (denoted by over-bar) and used to find the effective 
dispersion coefficients.  

* *(1 ) ;       gg s s
ms g g ms s sf D f D

x x
χ χ

ρ φ ρ φ
∂ ∂

= − =
∂ ∂

 

where gχ  and sχ  are tracer fractions for the respective phases and φ  is the average 
solids volume fraction in the periodic domain. The effective dispersion coefficients 
were made dimensionless using vt and vt/g as characteristic velocity and time. The 
dependence of the effective gas and solid phase dispersion coefficients on φ   
corresponding to Frh = 0.486 and 0.243 are presented in Figures 1a and 1b, respectively. 
The estimated values of *

gD  are one to two orders of magnitude higher than gDg/vt
3.  

Thus, meso-scale structures indeed serve to enhance the dispersion characteristics in 
these systems. It is also clear from these figures that the behavior of the gas and solid 
phase dispersion coefficients are well correlated.  This suggests that the effective 
dispersion in either phase is a direct result of the motion of the meso-scale structures. In 
the region 0.05 < φ <  ~ 0.30, the effective dispersion coefficients increase with φ , 
beyond which the trend reverses (Figure 1a). Agrawal et al. (2001) found that the rms 
value of the fluctuation velocities assumed their maximum values at φ  ~ 0.30 where 
cluster-to-bubbling transition begins to set in for this range of Frh. An explanation of 
the behavior seen in Figures 1a and 1b for φ  < 0.05 is elusive.  

In gas-solid flows in vertical risers, axial variation of lateral velocity is present only 
in a transient fashion, but not in the time-averaged flow, whereas lateral variation of 
axial velocity exists even in a time-averaged sense.  This consideration prompted us to 
explore the effects of macro-scale shear in the form of lateral variation of axial 
velocities of the gas and solid phases.   

The effect of dimensionless macro-scale shear rate (γ) on *
gD and *

sD  is shown in 
Table 2 for different values of φ  and Frh = 0.486.  In these simulations, a prescribed 
macro-scale shear rate is imposed across the domain.  It is clear that the effective 
dispersion coefficients decrease as γ increases.  Physically, this trend can be explained 
by noting that as γ increases, the meso-scale structures tend to align vertically and the 
horizontal fluctuations become more restricted.   

Figure 2, showing *
gD  plotted against *

sD , reveals clearly that these two are highly 
correlated, establishing that they arise through a common underlying mechanism. 
Comparing Figures 1a and 1b, we observe that the effective dispersion coefficients are 
inversely proportional to Frh. As ∆h increases, larger meso-scale structures having 
higher rms velocities and traveling longer distances form, and consequently the 
effective dispersion coefficients increase.  



For the purpose of coarse-grid simulation of gas-phase tracer dispersion, the values 
of *

gD determined through computational experiments described above were correlated 
as:  

g*
3

h t

D g( ) (γ)
Fr vg

f hD φ
= +     (1) 

where ( )f φ  and h( )γ  are simple curve-fit functions.  Sub-grid models for effective 
drag coefficient, particle phase viscosity and normal stresses were also constructed in a 
similar manner (Agrawal et al., 2001). 
 
Coarse-Grid Simulations 

Coarse-grid two-dimensional simulations of hydrodynamics and gas-phase tracer 
dispersion in a vertical channel were performed to probe the importance of unresolved 
meso-scale structures on the overall flow characteristics. To this end, we compare 
results obtained with and without grid-size dependent sub-grid closures for drag 
coefficient, effective viscosities, normal stresses and dispersion coefficients. Our 
simulations, described below, suggest that: 
• closure relations for the effects of sub-grid scale structures on the hydrodynamic 

quantities are important to properly characterize the fluctuating motion resolved by 
the coarse-grid simulations, and 

• the macro-scale mixing characteristics depend primarily on flow behavior that are 
resolved by the coarse-grid simulations and to a lesser extent on the effective 
dispersion attributable to sub-grid scale fluctuations.  
The dimensions of the vertical channel and the operating conditions are shown in 

Figure 3a. Four test cases, representing two different channel widths (0.75 and 1.0 m) 
are described below.  Uniform inflow conditions were used in the simulations, see 
Figure 3a. Figure 3a displays a snapshot of particle volume fraction distribution 
obtained in a coarse-grid simulation of a 1.0 m wide channel using 50x200 cells. Darker 
regions correspond to regions of higher particle volume fraction. A steady stream of 
tracer was injected right at the bottom at the centerline of the channel. In the first set of 
test cases, the effective dispersion coefficient for the gas tracer species (see equation 1) 
was included in the simulations, while in the second set of simulations only the binary 
gas diffusion coefficient was used. In all these cases, the sub-grid scale closure for the 
hydrodynamic quantities were incorporated. We found that flow nonuniformities did 
not develop in these simulations if the sub-grid scale hydrodynamic corrections were 
not included.  

Figure 3b is an instantaneous gray-scale image of the tracer concentration in a 1.0 
m wide channel, revealing rapid lateral spreading of the tracer.  Simulation results were 
averaged over a long period of time to obtain time-averaged tracer concentration 
distribution. Figure 4a shows the lateral variation of tracer species fraction at different 
elevations in the 1.0 m wide channel, when the effective dispersion coefficient was 
included in the simulation.  Rapid spreading of the tracer is readily apparent. Our 
results also reveal a curious pattern near the bottom of the riser, where the tracer 
fraction first decreases and then increases as we go from the centerline toward the 
channel wall. This may be a consequence of the combined action of large-scale velocity 



fluctuations and downflow (of gas and solids) near the channel walls, which transport 
gas pockets with high tracer concentration from the centerline to the wall region.   

Lateral variation of tracer species fraction at different elevations shown in Figure 
4b corresponds to the same conditions employed in figure 4a, with the exception that 
only the binary gas diffusion coefficient was used in the tracer dispersion calculations.  
Figures 4a and 4b reveal very similar tracer spreading, suggesting that the features 
which are resolved by the coarse-grid simulations are principally responsible for macro-
scale dispersion.   

From plots such as those in figures 4a and 4b, apparent macro-scale lateral 
dispersion coefficients, De, may be calculated readily.  Experimental data on tracer 
dispersion are often analyzed by assuming a plug flow of gas and adjusting De to fit the 
data (Werther et al. 1992). It is a straightforward exercise to extract De from the data (in 
the vicinity of the centerline) shown in figures 4a and 4b. They were found to be 91 x 
10-4  and 83 x 10-4 m2/s, respectively. The percentage difference between the apparent 
dispersion coefficients is quite small, when compared with that between *

gD and Dg. 
Therefore, we conclude that the macro-scale dispersion is largely determined by 
fluctuations resolved by the coarse-grid simulations.  

Values for De (extracted from simulations using *
gD ) and lateral Peclet number, 

defined as Pe = UgW/De where Ug is the gas superficial velocity and W is the channel 
width, are presented in Table 3 for two different channel widths. Note that Pe remains 
approximately constant independent of W, i.e. the apparent radial dispersion coefficient 
increases roughly linearly with channel width. We have not made any quantitative 
comparison of our simulation results with experimental data, but we note that the 
computed values of Pe are close to the literature values based on experimental data, 
which lie in the range of 400 – 500 (Werther et al. 1992). Simulations were also 
performed with a narrower channel (W = 0.50 m), where the time-averaged flow 
pattern and the tracer fraction remained appreciably asymmetric even after a long 
simulation time; consequently, we could not extract Pe and De values for this case.  
 
Conclusions 

Fluctuations associated with meso-scale structures serve to enhance the rate of 
tracer dispersion in gas-particle systems.  This may be accounted for in coarse-grid 
simulations through effective dispersion coefficients for the gas and particle phases, 
which depend on grid size, macro-scale shear rate and particle phase volume fraction 
and terminal velocity.  

In order to probe the effects of sub-grid scale fluctuations on coarse grid simulation 
results, two-dimensional simulations of hydrodynamics and tracer dispersion in vertical 
channels of various widths were performed in the regime of fast fluidization.  While 
sub-grid scale fluctuations are important to capture the hydrodynamics accurately, the 
effective dispersion directly attributable to sub-grid scale fluctuations has only a 
secondary effect on macro-scale tracer dispersion.  The values of effective meso-scale 
and apparent macro-scale dispersion coefficients are separated by over an order of 
magnitude (~5 x 10-4  m2/s for the meso-scale, and ~7 x 10-3 m2/s for the macro-scale). 
Thus, macro-scale tracer dispersion is largely determined by fluctuations which are 
resolved by the coarse-grid simulations.  Recall that the magnitude of the meso-scale 



dispersion coefficient is a function of the grid size. Therefore, if simulations were 
performed using a large grid size, the effective meso-scale dispersion coefficient would 
be larger. Assuming our scaling with Frh holds, the effective meso-scale dispersion 
coefficient would be comparable to the apparent macro-scale dispersion coefficient,  
when Frh ~ .017. This suggests that structures approximately 0.30 m in length were 
primarily responsible for dispersion in the flow regime studied.  Apparent lateral Peclet 
numbers obtained from our simulations are comparable to those measured 
experimentally.       
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d, particle diameter 7.5 x 10-5 m 
ρs, solids density 1500 kg/m3 
ρg, gas density 1.3 kg/m3 

Dg, binary diffusivity .165 x 10-4  m2/s 
µg, gas viscosity 1.8 x 10-5 kg/m.s 

vt, terminal settling velocity .2183 m/s 

 
Table 1:  Physical properties used in simulations 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 *
gD          

φ γ  = 0 γ  = 1.12 γ  = 2.2
.05 0.54 0.14 0.002
.10 0.60 0.30 0.01 
.20 0.73 0.27 0.02 
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The Effect of Static Electrification on Gas-Solid Flows in Vertical
Risers

Mahdi F. Al-Adel, Dudley A. Saville, and Sankaran Sundaresan*

Department of Chemical Engineering, Princeton University, Princeton, New Jersey 08544

Steady, fully developed gas-particle flow in a vertical riser is analyzed. The model consists of
axial momentum balances for the gas and particle phases, a radial momentum balance for the
particle phase, and Poisson’s equation for the electric field. Each particle carries a prescribed
charge. Consequently, a radially varying electric field develops spontaneously, and this drives
an electrophoretic flux of particles toward the wall. This is balanced by a diffusive particle flux.
At steady state, these fluxes balance and produce a radially nonuniform particle volume fraction
distribution. This, in turn, affects the axial momentum balance. The model captures important
qualitative features of riser flows: core-annular particle distribution, annular particle downflow
at low riser gas velocities, and annular upflow at high gas velocities. Furthermore, the model
accurately depicts results on riser flows reported by Bader et al.

1. Introduction

Although it has been known widely that static elec-
trification can occur in gas-solid handling devices such
as fluidized beds,1-15 circulating fluidized beds,16-23 and
pneumatic conveying systems,22-41 progress in under-
standing the influence of electrostatic charges on the
mechanics has remained lethargic. Although consider-
able progress has been made in understanding charging
mechanisms,42-44 measuring or calculating electrical
charges on particles in gas-particle systems is far from
simple.2 The charging is primarily a surface phenom-
enon, and the magnitude and sign of the charge are
quite sensitive to the state of the surface and the
characteristics of the ambient gas (e.g., humidity level
and temperature).3,5,6,11,18-21,31,34,37-39 Furthermore, in
some systems, all of the particles appear to carry
charges of the same sign (commonly referred to
as unipolar charging); in others, some particles are
positively charged, while others are negatively charged
(heteropolar charging).11,13,18 In the latter case, particles
tend to agglomerate and complicate the hydrodynamics.
In both cases, nonuniform particle distributions can
arise on a macroscopic scale as a result of static
electrification; this further impacts the hydrodynamics.
For example, it is well-known that the pressure gradient
required for the vertical conveying of particles by
a gas depends on the extent of particle charg-
ing.20,22,23,26,29,30,33,37,38 The excess pressure gradient,
which can be attributed to the presence of charges on
the particles, is often called the “electrostatic pressure
gradient”. There is ample evidence in the literature that
increasing the humidity level (e.g., see ref 20) or adding
antistatic agents16 lowers the pressure gradient re-
quired for vertical conveying. In systems with unipolar
charging, the electrostatic pressure gradient is inti-
mately related to a nonuniform particle distribution over
the pipe cross section.41

The nonuniform distribution of particles over the
cross section is ubiquitous in gas-solids flows. In

horizontal and inclined pneumatic transport lines, non-
uniformities arise from gravitational sedimentation in
the case of large particles. With finer particles, electro-
statics plays a more important role.32,41 Lateral segrega-
tion is also observed in vertical conveying (aka riser
flows), and the origin of such segregation has been a
subject of much research.45-52 Gas-solid flows in risers
are accompanied by density and velocity fluctuations
that vary over a wide range of length and time scales,
and these fluctuations cause lateral segregation.45-52 In
fact, all of the modeling efforts in this area have focused
on hydrodynamic mechanisms for segregation. We are
unaware of any modeling that includes static electrifica-
tion as a significant driving force, even though the
experimental evidence for the influence of electrostatics
is striking.

In the present study, we examined the character and
extent of lateral segregation arising from static electri-
fication in riser flows. Hydrodynamically driven segre-
gation was deliberately suppressed. A comprehensive
model would predict the amount of charge carried by
the particles and how it changes with flow conditions.
Such a model is beyond the scope of the present study.
Instead, we postulate that the particles carry a pre-
scribed charge and then examine the influence of this
charge on the hydrodynamics. The results of calcula-
tions made with our model are fully consistent with the
fully developed flow patterns reported by Bader et al.46

for FCC particles transported in a vertical riser. The
level of unipolar particle charging required to capture
the Bader et al.46 data is comparable to that determined
experimentally by Jiang et al.18 Accordingly, our results
demonstrate that electrostatic effects should be consid-
ered when analyzing gas-solid flows. At the very least,
thorough, quantitative assessments should be made
before their influence is ignored. It follows as a corollary
that more experimental work probing static electrifica-
tion in gas-solid flows is needed.

This paper is organized as follows. Section 2 presents
a brief summary of literature data on electrostatic
charges on particles in gas-solid flows. Here, we
conclude that surface charge densities on the order of
10-7 C/m2 (based on exterior surface area) are consistent
with data reported by many researchers. Section 3
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describes a simple model for the steady, fully developed
flow of a gas-particle mixture in a vertical pipe, where
we assume that all of the particles are of the same size
and carry the same amount of (unipolar) charge. In
section 4, we describe our computational results and
compare them with the data of Bader et al.46 The key
findings are summarized in section 5.

2. Literature Data on Static Electrification in
Gas-Particle Flows

The electrostatic charge content of particles is usually
reported in the literature on a mass basis (C/kg). We
have converted all of these data to an (exterior) surface
charge density using the reported particle size. Table 1
presents a summary of particle charge measured by Ally
and Klinzing38 in their experiments on pneumatic
conveying in a 1-in. vertical pipe. It is clear from this
table that the charge level depends on the tube material,
particles, and humidity level.

Nieh and Nguyen39 studied horizontal pneumatic
transport of 550-µm glass beads in a 2-in. Cu pipe and
found that the charge level increased with gas velocity
and decreased with increasing humidity. A typical value
for the surface charge density reported by these authors
is 1 µC/m2.

It is well-known that the variation of the pressure
gradient with gas velocity (at a fixed particle flux) in
vertical pneumatic conveying is U-shaped. Joseph and
Klinzing20 found that the location of the left limb was
sensitive to the relative humidity (RH), which could be
attributed to the dependence of the extent of static
electrification on RH.

Table 2 summarizes data on charge accumulation on
various materials during pneumatic conveying applica-
tions. Table 3 presents similar results obtained in the
freeboard region of fluidized beds.

Chang and Louge16 presented striking evidence for
the effect of an antistatic agent on riser flow. At a

specified combination of gas and plastic particle fluxes,
the holdup of particles in the riser decreased appreciably
(by over a factor of 2) upon the addition of an antistatic
agent.

Jiang et al.18 studied the transport of FCC particles
at a gas velocity of 2 m/s in a 10.2-cm-i.d. vertical pipe
made of Plexiglas. They found that all of the particles
carried the same sign of charge and that the charge level
varied from 0.2 µC/m2 at a RH of 14% to 0.1 µC/m2 at a
RH of 40%. The presence of the electrostatic charge was
believed to have decreased the tendency of the particles
to form clusters. (In systems such as polymer particles,
the particles tend to acquire bipolar charges, and this
enhances clustering.18) The charge level was found to
be roughly independent of particle mass flux over the
range studied [5-20 kg/(m2 s)]. These authors found a
measurable difference in the solids holdup profile with
humidity level. For example, at a RH of 14% and a solids
flux of 16.1 kg/(m2 s), the volume fractions of particles
in the core and wall regions were 0.01 and 0.04,
respectively. At a RH of 40% and the same solids flux,
the corresponding solids volume fractions were 0.018
and 0.032. Although the precise reason for the depen-
dence of the particle concentration profile on humidity
is not known, it is natural to suspect that static
electrification might have been responsible. As RH
increases, the charge level decreases, and the electro-
phoretic flux toward the wall is diminished.

It is clear from the data summarized here that the
surface charge densities can vary widely from system
to system. At the same time, one can also see that a
surface charge density of ∼0.1 µC/m2 is on the lower
end of the range reported in the literature. It will
become clear in section 4 that even such a small surface
charge density can give rise to an appreciable radial
segregation of particles in riser flows.

3. Model for Steady, Fully Developed Flow in a
Riser

We use a simple model of steady, fully developed flow
of gas-particle mixtures in a vertical pipe. It is assumed
that the particles are uniform in size and that each
carries the same amount of charge. Let the charge
density (based on external surface area) be σ (C/m2), so
that each particle has a charge of πd2σ. A radially
varying electric field develops in the riser because of
the charged particles. The structure of the field follows
from the solution of Poisson’s equation. This field
imparts an electrical force on the particles, which causes
them to drift toward the wall. This electrophoretic flux
increases the concentration of particles near the wall
region and decreases the concentration in the core. This
flux is balanced by a diffusive flux of particles from the
region of high φ (i.e., wall region) to the region of low φ

Table 1. Summary of Data Reported by Ally and
Klinzing38

tube
material particles

charge
(µC/m2)

kg of H2O per
kg of solid

copper P004 glass, 75 µm 500 10-3

crushed glass, 314 µm 0.5 10-2

P008 glass, 150 µm 150 10-3

plexiglas, 145 µm 15 10-2

plexiglas P004 glass, 75 µm 50 10-3

P008 glass, 150 µm 15 10-3

plexiglas, 145 µm 120 10-2

copper, 196 µm 150 10-2

glass copper, 196 µm 2000 10-2

plexiglas, 145 µm 15000 10-3

Table 2. Literature Data on Particle Charge in
Pneumatic Conveying

material
charge density

(µC/m2) reference

Illinois #2 coal (5 µm) 0.01 Gupta et al.28

charcoal (5 µm) 1.0 Gupta et al.28

latex (100 µm) 1-10 Nieh et al.41

alumina (60 µm) 1.0 Nieh et al.41

magnesia (30 µm) 0.01 Soo Trezek40

polystyrene (1 mm) 1-10 Gajewski34

plastic resin (30 µm) 4 Dahn25

plastic (20 µm) 0.6 Dahn25

flour (40 µm) 25.5 Dahn25

HDPE (3 mm) 0.9 Dahn25

glass beads (550 µm) 1-2 Nieh and Nguyen39

FCC particles (76 µm) 0.1-0.2 Jiang et al.18

Table 3. Literature Data on Particle Charge in Fluidized
Beds

material

charge
density
(µC/m2) reference

glass beads (35 µm) 1 Fasso et al.15

porcelain (2 µm) 0.1 Tardos and Pfeffer14

glass beads (200-250 µm) 0.1 Fujino et al.2
neobeads (200-540 µm) 0.1 Fujino et al.2
PMMA (540 µm) 0.1 Fujino et al.2
polyamide (75 µm) 0.003 Ali et al.12

polystyrene (475 µm) 1-10 Wolny and
Kazmierczak11
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(i.e., tube axis). At steady state, these fluxes balance
one another. The particles and the accompanying elec-
trical effects influence the radial momentum balance in
two ways. First, the electric field acting on the particles
provides a body force. Second, the diffusive flux shows
up as a gradient in the particle-phase pressure, ps(φ).

The simple model presented here consists of steady-
state axial momentum balances for the gas and particle
phases, the Poisson equation for the electric potential
and the steady-state radial momentum balance for the
particle phase. To present these equations in dimen-
sionless form we use the particle density (Fs), terminal
velocity (vt), tube radius (R), FsgR and 6R2σ/εod as the
characteristic density, velocity, length, pressure, and
potential, respectively.

The axial momentum balance for the gas phase takes
the form

where p is the dimensionless pressure in the gas phase;
z is the dimensionless axial variable (with the z axis
pointing vertically upward); Vg and Vs are dimensionless
gas- and solid-phase axial velocities, respectively; and
n is the Richardson-Zaki exponent. The deviatoric
stress term is not included as its role is negligible in
flows with high solids mass loadings (e.g., see Agrawal
et al.52).

The axial momentum balance for the particle phase
takes the form

where the three terms represent the gas-particle drag,
the body force due to gravity, and the viscous forces,
respectively. Here, ê and µs denote the dimensionless
radial coordinate and dimensional viscosity associated
with fluctuations at all length and time scales, respec-
tively. The Archimedean buoyancy term is negligible in
our work as Fsφ . Fg(1 - φ).

Poisson’s equation, in dimensionless form, is

where Ψ is the dimensionless potential and ε(φ) is the
effective dielectric constant of the gas-solid mixture.
Here, we have used a simple relation ε(φ) ) 1 + 3.5φ1.25

to represent the effect of the particles.The dielectric
constant of the solid particles was taken to be 4.5, which
is satisfied by this equation. This expression was
obtained by curve-fitting the Bruggeman61 equation for
the effective dielectric constant of a mixture. We simply
mention that we have repeated our simulations for
various functional forms, including ε(φ) ) 1 + 3.5φ and
ε(φ) ) 1, and verified that the general features of the
solutions reported below are not dependent on the
specific choice made for ε(φ).

The radial momentum balance for the particle phase
takes the form

where the first term represents the force due to the
electric field and the second term is the gradient in the
particle-phase pressure. Here, the particle-phase pres-
sure includes contributions arising from fluctuations at
all velocity scales.

Closures for the particle-phase pressure and viscosity
relations are needed before we can proceed further.
Riser flows are accompanied by persistent fluctuations
covering a wide range of length and time scales.52 It is
known that these fluctuations can give rise to a non-
uniform distribution of particles over the cross section
of a riser45-52 even in the absence of any electrostatic
effect. Sinclair and Jackson45 attempted to explain this
segregation of particles on the basis of fluctuations at
the level of the individual particles. Dasgupta et al.49

brought into the analysis the effect of velocity fluctua-
tions occurring on a larger length scale through a K-ε
model. Hrenya and Sinclair51 proposed a model that
combines the effects of the larger-scale and particle-scale
fluctuations. Computational fluid dynamics simulations
attempt to simulate the large-scale fluctuations occur-
ring over a slow time scale and average over the fast
fluctuations at short length and fast time scales (e.g.,
see Agrawal et al.52). Strictly speaking, if electrostatic
effects are important, one should couple the hydrody-
namic and electrostatic segregation mechanisms and
analyze their combined influence. Here, however, we
concentrate exclusively on segregation due to electro-
static effects and suppress all of the hydrodynamic
segregation mechanisms. With this in mind, we choose
a closure for the particle-phase pressure that curtails
segregation in the absence of electrostatics. Accordingly,
we employ the following expressions for the effective
viscosity and pressure in the particle phase

and

where U is the riser gas velocity, φ is the particle volume
fraction (function of radial position), and 〈φ〉 is the cross-
sectional average particle volume fraction (i.e., holdup).
Appendix A describes an analysis of fluctuations at
different scales to support the choice of these relations.

Introducing these expressions into eqs 2 and 4, we
have

where

and

- dp
dz
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These equations are supplemented with conditions at
the axis of the tube, where center symmetry is enforced,
and at the wall, where the electric potential assumes a
specified value. As only a spatial derivative of the
potential appears in the model, one can take

without loss of generality.
The particle-phase boundary condition at the wall is

not fully understood. Some authors have suggested that
the pressure gradient is almost completely associated
with holdup in risers of large cross-sectional area;16,62

thus, a free-slip condition for the particle phase is not
unrealistic. Other possibilities, where one demands that
the particle phase and/or the gas phase satisfies the no-
slip condition (e.g., Gidaspow50), have also been dis-
cussed in the literature. A partial-slip boundary condi-
tion for the particle phase has also been applied (e.g.,
see Sinclair and Jackson45). We investigated both free-
slip and no-slip boundary conditions for the particle
phase to examine the sensitivity of the results to this
boundary condition. The core-annulus flow pattern
with downflow in the annular region at low gas veloci-
ties and annular upflow at high gas velocities is
obtained with either boundary condition (Al-Adel56). To
illustrate the role of electrostatics, we present results
obtained with the free-slip boundary conditions here.
With a free-slip boundary, one can readily show that

The cross-sectional average gas and solids fluxes can
be written as

and

where Ug and Gs denote the riser gas velocity and solids
mass flux, respectively. The corresponding dimension-
less quantities are Ug

/ and Us
/.

One can readily combine eqs 3 and 8, eliminate Ψ,
and obtain an equation describing the radial variation
of φ

For specified values of Q and 〈φ〉, this equation can be
solved separately to determine the radial variation of
φ. Thus, the radial distribution of particles is simply
dictated by the charge density and the average holdup
and is determined by the radial momentum balance and
the Poisson equation. The average holdup for a specified
combination of fluxes can be found only by solving the
axial momentum balance equations.

We solved the complete system of equations 1, 3, 7,
8, 12, and 13 as a boundary-value problem by discretiz-
ing the spatial derivatives using a central difference
scheme. For specified values of Ug

/ and Us
/, the solu-

tions could be found for a range of values of Q by a

simple continuation method. Specifically, starting from
the analytical solution for Q ) 0, the solutions for
various Q values were found by changing Q by small
increments (using the solution for the previous Q value
as the initial guess). The average holdup, 〈φ〉, is an
output in such calculations. As discussed in the next
section, turning points were encountered, with multiple
solutions for some values of Q. A slightly different
approach, where we specified 〈φ〉, determined Q as an
output, and performed continuation in 〈φ〉, was compu-
tationally more expedient for tracing the family of
solutions for a range of Q values.

Results and Discussion

Figure 1 shows the cross-sectional average holdup of
particles in the riser, 〈φ〉, as a function of Q for two
combinations of Ug

/ and Us
/. The line labeled with four

points (A-D) corresponds to conditions for which Bader
et al.46 reported experimental data. These authors
studied the transport of FCC particles by ambient air
in a 15-cm-i.d. vertical riser. Table 4 summarizes the
parameter values corresponding to their experiments.
They measured the radial variation of particle volume
fraction (using γ-ray densitometry) at a gas velocity of
3.7 m/s and a solids mass flux of 98 kg/(m2 s), which, in
dimensionless form, corresponds to Ug

/ ) 14.00 and Us
/

) 0.216. (These authors also reported the radial varia-
tion of solids mass flux at another operating condition,
which will be discussed later.) As noted in the Introduc-
tion, in the present study, we do not attempt to predict
the value of σ for any operating conditions. Therefore,
we cannot identify a specific value of Q for a specific
experiment. It follows from eq 10 that Q ≈ O(103) when
σ ≈ 10-7 C/m2. Surface charge densities of this magni-
tude are easily achieved on FCC particles,18 so the Q
values explored in Figure 1 are quite reasonable.

Because we ignore hydrodynamic mechanisms for
segregation in our model, the particle concentration is
uniform when Q ) 0. Hence, the velocity profile is
uniform when a free-slip boundary condition is em-
ployed (and parabolic with a no-slip boundary condi-
tion). As Q increases, the average holdup increases (see
Figure 1). This increase translates into an increase in

Figure 1. Average solids holdup vs Q for two different gas
velocities at a fixed solid flux. See Table 4 for parameter values.

Table 4. Parameter Values Used in the Simulations

particle diameter 76 µm
particle density 1714 kg/m3

terminal velocity 26.42 cm/s
riser radius 15 cm
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the pressure gradient, often called the electrostatic
pressure gradient in pneumatic conveying.20 Figure 1
shows that a turning point is encountered at a critical
value of Q, so one can loosely talk of a lower branch
and an upper branch.

The radial variations of the solids volume fraction for
the four different points labeled A-D in one of the
curves in Figure 1 are presented in Figure 2, along with
the experimental data of Bader et al.46 It is clear from
Figure 2 that the extent of particle segregation increases
steadily as the holdup increases (from A to D). Moreover,
the core-annular flow structure is readily apparent at
high segregation levels. The model predictions are
qualitatively similar to the experimental data, although
a quantitative match is not obtained for any particular
value of Q. It should be noted, however, that, although
the experimental data on radial variation of particle
volume fraction obtained by γ-ray densitometry are
qualitatively correct, they are by no means quantita-
tively accurate.

Figure 3 shows that radial variation of solids flux
(φVs) for the conditions shown in Figure 2; Figure 4
describes the gas- and particle-phase velocities for point
C. It is clear from Figures 2 and 3 that, as the extent of
radial segregation of particles increases, the solids flux
becomes increasingly nonuniform. At sufficiently large
segregation levels, one obtains downflow in the annular
region with this example. Both particle and gas down-
flows are present as illustrated in Figure 4.

The radial profiles of the dimensionless potential for
the cases shown in Figure 2 are displayed in Figure 5,

which indicates that the largest magnitude of dΨ/dê
occurs at the wall. In terms of dimensional quantities,
the largest potential gradient was ∼1 kV/cm (for case
D in Figure 5), which is well below the field strength
where dielectric breakdown occurs. Thus, the results
shown in this figure are not unrealistic.

Figure 1 shows the holdup as a function of Q for two
different gas velocities at a fixed solid flux. The general
trend is clearly robust. As the gas velocity increases,
the turning point shifts to larger Q values. Note that
the upper branches of the curves in this figure have not
been continued beyond some level. The only restriction
placed in the mathematical model as presented is that
φ < 1. In reality, sustained contact between neighboring
particles will occur when the particle volume fraction
exceeds a threshold value, and the particle-phase pres-
sure will rise rapidly with volume fraction beyond that
point. Furthermore, it will be impossible to compress
the assembly beyond some limit without crushing the
particles, which is often taken in flow problems to be
the volume fraction at random close packing, φmax.
Strictly speaking, the closures described in eqs 5 and 6
should be modified to capture this restriction; this point
will be addressed briefly at the end of this paper. At
this stage, we simply note that the curves in Figure 1
were terminated when the particle volume fraction at
the wall is equal to φmax.

Figure 6 shows the holdup as a function of Q for other
operating conditions with the gas velocity held constant
for changing solids flux. The shapes of the curves are
qualitatively similar to those of Figure 1. The particle
flux profile corresponding to four different points in one

Figure 2. Particle volume fraction as a function of dimensionless
radial position corresponding to the points A-D marked in Figure
1. (b) Experimental data of Bader et al.46

Figure 3. Dimensionless volumetric flux of solids as a function
of dimensionless radial position corresponding to the points A-D
marked in Figure 1.

Figure 4. Dimensionless gas and solid velocities as a function of
dimensionless radial position for point C in Figure 1.

Figure 5. Dimensionless potential as a function of dimensionless
radial position corresponding to the points A-D marked in Figure
1.
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of these curves is shown in Figure 7, with the experi-
mental data of Bader et al.46 The downflow in the
annular region recorded by Bader et al. can be captured
reasonably well by postulating the presence of an
appropriate level of charge (e.g., that corresponding to
point R). The solids volume fraction profile for point R
in Figure 7 is displayed in Figure 8, where the core-
annular flow structure is clearly apparent. The corre-
sponding gas and solid velocity profiles are presented
in Figure 9, which shows clearly the downflow of both
the gas and the particles near the wall. The radial
variation of the dimensionless potential for point R is
illustrated in Figure 10; once again, the dimensional
potential gradient is well below the dielectric breakdown
field strength. Returning to Figure 6, one can see that,
as the solids flux is increased at a fixed gas velocity,

the effect of electrostatics is felt at smaller and smaller
values of Q (or, equivalently, at smaller surface charge
densities).

Figure 11 shows the effect of the riser diameter for
the same combinations of fluxes described in Figures
7-10. Note that the riser diameter has a systematic
effect on the flow and that the effect of electrostatics
becomes increasingly important as the tube diameter
is increased.

Figure 12 shows the effect of increasing the through-
put through the riser while maintaining the ratio of gas
and solid fluxes constant. The curve labeled 1.0 corre-
sponds to the combination of fluxes shown as the legend
in this figure and has already been discussed in Figures

Figure 6. Average solids holdup vs Q for two different solid fluxes
at a fixed gas velocity. See Table 4 for parameter values.

Figure 7. Dimensionless volumetric flux of solids as a function
of dimensionless radial position corresponding to the points P-S
marked in Figure 6. (b) Experimental data of Bader et al.46

Figure 8. Particle volume fraction as a function of dimensionless
radial position corresponding to point R in Figure 6.

Figure 9. Dimensionless gas and solid velocities as a function of
dimensionless radial position for point R in Figure 6.

Figure 10. Dimensionless potential as a function of dimensionless
radial position corresponding to point R in Figure 6.

Figure 11. Average solids holdup vs Q for fixed gas and solid
fluxes. Results are shown for three different tube radii. See Table
4 for parameter values.
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7-10. The labels on the other curves simply refer to the
multiple by which the fluxes (of both phases) have been
increased from this base case. The turning point re-
sponds systematically to the throughput. The solids flux
profiles corresponding to several different points on
curves labeled 1.2 and 1.3 (in Figure 12) are shown in
Figures 13 and 14, respectively. These figures reveal a
flow feature that has received much attention in the
literature recently, namely, annular upflow.53-55 At
modest levels of segregation (corresponding to interme-
diate holdup values in these figures), the peak flux
occurs at the wall, and the peak location shifts inward
as the holdup increases. These results should be con-
trasted with the flow patterns shown in Figures 3 and
7 for lower gas velocities, where the maximum upward
flux occurs at the center.

We investigated briefly the effect of changing the
closure for the particle-phase pressure given by eq 6.
Specifically, we set

which represents an ad hoc modification to ensure that
the volume fraction of particles remains everywhere
below φmax. When this constraint is introduced into the

radial momentum balance, one obtains

Figure 15 shows the variation of the holdup with Q
obtained with this closure for the combination of fluxes
discussed previously in Figures 1-5. Note that we now
have an S-shaped curve in Figure 15, which should be
contrasted with the corresponding curve in Figure 1.
The points A-D marked in Figure 15 correspond to the
same holdup values as in Figure 1 obtained with a
simpler closure. The radial variations of the solids
volume fraction and solids flux corresponding to these
four points marked in Figure 15 are shown in Figures
16 and 17, respectively. These results should be com-
pared with the curves shown in Figures 2 and 3. The
addition of the go term has flattens the φ profile
modestly, and its influence is felt in the solids flux
profile. It is clear that, even though Figures 1 and 15
look significantly different, the general characteristics
of the radial profiles remain robust. We simply note that
the annular upflow obtained at high fluxes persists with
the modified closure as well.

The present study clearly demonstrates that the
lateral nonuniformities seen in riser flows can be
captured in a qualitatively correct manner with a model
that encompasses electrostatic effects. The amount of
electrostatic charge required to fit the data is very
modest and certainly lies in the lower range of values

Figure 12. Average solids holdup vs Q for various gas and solid
fluxes. The ratio of fluxes is held constant. The curve labelled 1.0
corresponds to the dimensionless gas and solid fluxes of 17.41 and
0.325, respectively. The dimensionless gas and solid fluxes for the
other curves are simply obtained by multiplying 17.41 and 0.325
by the factors shown next to the curves. See Table 4 for other
parameter values.

Figure 13. Dimensionless volumetric flux of solids as a function
of dimensionless radial position for various points on the curve
labeled 1.2 in Figure 12. The legends show the average solids
holdups corresponding to the various curves.

ps )
FsφU2

400
go(φ) where go(φ) ) (1 - φ

φmax
)-1/3

(14)

Figure 14. Dimensionless volumetric flux of solids as a function
of dimensionless radial position for various points on the curve
labeled 1.3 in Figure 12. The legends show the average solids
holdups corresponding to the various curves.

Figure 15. Average solids holdup vs Q for a specific combination
of gas and solid fluxes. See Table 4 for parameter values. The
particle-phase pressure is given by eq 14.

Qφ(dΨ
dê ) +

d(φgo)
dê

) 0 (15)

G



reported in the literature. Thus, electrostatics should
be considered carefully in future studies of gas-solid
flows. In particular, careful experiments that probe the
influence of static electrification on flow are needed.

In the present analysis, we suppressed hydrodynami-
cally driven segregation. Thus, a natural extension will
be to examine the combined influence of electrostatic
and hydrodynamic segregation mechanisms. From the
definition of Q, it follows that the effect of electrostatics
decreases as particle size increases. Thus, we can
anticipate that hydrodynamic segregation will be more
relevant for larger particles, whereas electrostatic seg-
regation will assume a greater importance with smaller
particles.

A significant weakness of the present analysis derives
from our ignorance about the size of the particle charges.
At the same time, our study supports the need for more
experimental and modeling work on the role of electro-
statics in gas-solid flow. An obvious extension of the
present model involves methods of describing the rates
of generation and neutralization of particle charge, but
closures for these processes remain a formidable chal-
lenge. In our opinion, experimental work to establish
the relevance of electrostatics (or lack thereof) in gas-
solid flows such as the riser flow analyzed here assumes
a higher priority.

5. Summary

It is shown that electrostatics can be an important
driving force for radial particle segregation in risers.

Unfortunately, particle charge under a given set of
conditions is unknown, and so, fully predictive models
are not possible at this time. Consequently, a model of
fully developed gas-particle flow was implemented with
the charge level left as a model parameter. It was found
that known trends, including core-annular flow, an-
nular downflow at low gas velocities, and annular
upflow at higher gas velocities, are captured with this
model. In particular, experimental data for FCC par-
ticles by Bader et al.46 can be captured by the model.
The required charge level is at the lower end of the
spectrum of charge levels reported in the literature.

Decades ago, Soo35,40,41 and Owen32 concluded that
particle charge plays important roles in gas-particle
flows with small particles. The results of the present
study suggest that the lack of attention to this issue
has been a grave oversight.

Appendix A

Simple Model for Particle-Phase Pressure and
Viscosity. Consequences of Structures at Different
Length Scales. It is well-known that hydrodynamic
structures in the form of spatial and temporal nonuni-
formities in velocities and particle volume fractions are
present in riser flows. These fluctuations span a wide
range of length and time scales, and the origin of these
structures is fairly well understood (e.g., Agrawal et
al.52). It is also known that the segregation of particles
toward the walls of the riser can occur simply because
of hydrodynamic effects.45-52 In this paper, we specifi-
cally suppress hydrodynamically driven segregation and
focus on assessing segregation from electrostatic effects.
The role of hydrodynamic fluctuations should not be
completely ignored, as they impart the particle phase
with an effective viscosity and a pressure. The analysis
described below outlines the rationale behind the ex-
pressions for particle-phase viscosity and pressure used
in the present study.

At the smallest scale, the particles execute a fluctuat-
ing motion over and above the mean velocity; this is
quantified through the granular temperature.46,47,50-52,57

The fluctuating motion comes about because of (a)
velocity gradients in the riser and (b) relative motion
between the particles and the suspending gas (e.g., see
Koch and Sangani58). An estimate of the fluctuating
velocity due to the shear is 2Ud/R, where U is the
average velocity of the gas through the pipe, R is the
tube radius, and d is the particle diameter. For typical
riser flows with FCC particles (say, U ) 7 m/s, d ) 75
µm, and R ) 15 cm), 2Ud/R ) 0.7 cm/s. Velocity
fluctuations arising from the relative motion between
the gas and the particles scale with the mean slip
velocity,59 and for dilute systems, this is typically one-
tenth of the terminal velocity, vt.52 The terminal velocity
for the FCC particles considered here is about 25 cm/s.
Thus, we anticipate that the “slip motion” is the primary
source of fluctuations at the particle scale. The Stokes
number for the FCC particles suspended by air is ∼O-
(102), and so, we expect that the damping of the
fluctuating motion is primarily due to inelastic colli-
sions.52 The length scale relevant for the estimation of
the viscosity is thus the mean free path between
collisions. For low particle concentrations, one then finds
that

Figure 16. Particle volume fraction as a function of dimensionless
radial position corresponding to the points A-D marked in Figure
15. (b) Experimental data of Bader et al.46

Figure 17. Dimensionless volumetric flux of solids as a function
of dimensionless radial position corresponding to the points A-D
marked in Figure 15.

µs ≈ (Fsφ)(0.1vt)(dφ) ) 0.1Fsvtd
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It is well-known that a uniform suspension of par-
ticles fluidized by a gas is unstable and that nonuniform
mesoscale structures form readily.52 The effective pres-
sure and viscosity due to the mesoscale structures were
estimated by Agrawal et al.52 through computational
experiments. Their simulations suggest the following
typical values of the effective viscosity and pressure

which are significantly larger than the microscale
viscosity and pressure.

Finally, there are fluctuations at the scale of the riser
radius itself. Here, we expect that the scale of the
fluctuations will manifest some dependence on the mean
flow rate and the riser diameter. Unfortunately, there
is no simple way of estimating the consequence of
fluctuations at this scale. Detailed models based on
particle-phase turbulence have been described in the
literature where the hydrodynamic mechanism for
segregation is also considered. As mentioned before, we
want to consider only a very simple model for the effect
of riser scale fluctuations here. Specifically, we wish to
set aside the segregation that arises because of hydro-
dynamics and focus only on the possible segregation due
to electrostatics alone. With this in mind, we ignore the
lateral variation of the kinetic energy per unit mass
associated with these fluctuations.49,51 Instead, we
simply take the fluctuating velocity and the mixing
length to be a fraction of the mean gas velocity and the
tube radius, respectively.

It is known from tracer gas dispersion measure-
ments60 that UR/Dr ≈ 300, where Dr is the average
value of the radial dispersion coefficient in the core
region (where the particle concentration is roughly
uniform). One can rationalize this physically as

where ≈ indicates physically reasonable, typical values.
As dispersion is associated with hydrodynamic fluctua-
tions and fluctuations in the gas and particle phases
are closely coupled,52 the particle-phase dispersion
coefficient can be expected to be comparable to that for
the gas. Furthermore, we expect the effective kinematic
viscosity, νs, to be roughly equal to the particle-phase
dispersion coefficient as well. Thus, νs ≈ v′l. This
suggests an expression for the particle-phase viscosity
of the form µs ≈ (Fsφ)v′l.

From the lessons of single-phase turbulent flow, one
can anticipate that the mixing length will decrease as
one approaches the wall. In the present two-phase flow
problem, the particle concentration increases as one
approaches the wall. For the sake of simplicity, we
hypothesize that the radial variations of φ and l
compensate each other and postulate that the particle-
phase viscosity is roughly constant, independent of the
radial position, and write

where 〈φ〉 denotes the cross-sectional average volume
fraction (holdup) of particles.

For the transport of FCC particles in a 30-cm-
diameter riser at a gas velocity of 5 m/s, the ratio of the
intermediate-scale viscosity to the macroscale viscosity
is

so that the macroscale viscosity is indeed the most
relevant one. At higher gas velocities and tube diam-
eters, the macroscale viscosity becomes even more
dominant.

With this in mind, we use the following expression
for viscosity in our model

To be consistent, for the particle-phase pressure, we
should use

It should be emphasized that these functional forms
were chosen to ensure that the particle volume fraction
will be uniform over the cross section of the riser in the
absence of electrostatic effects, i.e., hydrodynamic seg-
regation is not permitted.

It is interesting to compare the pressure obtained
from the riser-scale fluctuations with that at the me-
soscale. Typically, for riser flows, U ≈ 3-10 m/s, so that
(U/20) ≈ 15-50 cm/s. At the lower end, this is not much
different from the terminal velocity. Thus, the magni-
tude of the effective pressure due to the macroscale
fluctuations is 1-10 times that due to fluctuations at
the mesoscale.

The expressions for particle-phase viscosity and pres-
sure described above, eqs A1 and A2, do not include the
finite-size effect and thus allow the particle volume
fraction at some regions of the riser to exceed the close-
packing limit. This can be prevented by forcing the
pressure and/or viscosity to become very large (diverge)
at some critical volume fraction, φmax. The qualitative
arguments considered here do not shed any light on how
this should be done. In some of the later examples
described in this study, we demonstrated how the
results will change if we replace eq A2 with
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Nomenclature

d ) particle diameter
Dr ) radial dispersion coefficient of gas in the core region
g ) acceleration due to gravity
go ) function defined by eq A3
Gs ) solids mass flux through the riser

ps ≈ (Fsφ)(0.1vt)
2 ) 0.01Fsvt

2

µs ≈ 0.5Fsvt
3 φ

g
, ps ≈ 0.5Fsφvt

2

Dr ) v′l, v′ ≈ U
20

, l ≈ R
15

µs ) Fs〈φ〉 UR
300

150vt
3

URg
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L ) characteristic length associated with fluidization
instability

Ms
o ) dimensionless solid-phase viscosity

n ) Richardson-Zaki exponent (4.65)
p ) dimensionless gas pressure
ps ) particle-phase pressure
Q ) electrodiffusion parameter
R ) riser radius
U ) riser gas velocity
Ug

/, Us
/) dimensionless riser gas and solids velocities,

respectively
Vg, Vs ) dimensionless gas and solid-phase axial velocities,

, respectively, where the terminal velocity of the particle
is used to make the velocities dimensionless

vt ) terminal velocity of the particle
v′ ) magnitude of the fluctuating velocity
l ) mixing length
â ) drag coefficient
Fs ) particle density
µs ) particle-phase viscosity
νs ) particle-phase kinematic viscosity
ε ) dielectric constant of the gas-solid mixture, a function

of φ

εo ) permittivity of free space [8.8542 × 10-12 C2/(N m2)]
φ ) particle volume fraction (function of radial position)
〈φ〉 ) cross-sectional average particle volume fraction (i.e.,

holdup)
Ψ ) dimensionless electric potential (function of position)
ê ) dimensionless radial coordinate
σ ) surface charge density (C/m2)
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Abstract

Fluidization–defluidization experiments have been carried out in beds of three different diameters, using XL glass beads and air as the

fluidizing medium. The variation of pressure drop and bed height manifested a hysteretic behavior, which was more pronounced in smaller

tubes. Analysis of the results using a one-dimensional model proposed by Jackson revealed that the observed effect of tube diameter may be

attributed to wall friction. From this analysis, we extracted a quantitative estimate of the variation of the compressive yield stress of an

assembly of particles as a function of particle volume fraction. The standpipe performance data reported by Srivastava et al. [Powder Technol.

100 (1998) 173.] for these glass beads were analyzed on the basis of the estimated compressive yield strength. It was found that the support

provided by the standpipe wall could be estimated quantitatively from the standpipe holdup data and the compressive yield strength

determined separately from our fluidization–defluidization experiments. D 2002 Elsevier Science B.V. All rights reserved.

Keywords: Fluidization; Defluidization; Circulating fluidized bed; Standpipe; Wall friction

1. Introduction

Circulating fluidized beds (CFB) have been widely used

over many decades for fluid catalytic cracking (FCC), and

for roasting and combustion applications. The commercial

success of FCC has led to the use of CFB in other indus-

trial applications such as Fischer–Tropsch synthesis in the

SASOL synthetic gasoline process, oxidation of n-butane

to maleic anhydride and calcination of aluminum hydroxide

to high-grade alumina [1]. A CFB loop typically consists of

a riser, cyclones, fluidized bed and a solids return system,

usually comprising a standpipe and a valve. Risers and

standpipes are known to exhibit a rich variety of flow

behavior. Experimental measurements reveal that particle

concentration is non-uniform over the cross-section of a

vertical riser with particles being concentrated near the walls

[2]. Standpipes are known to exhibit instabilities under cer-

tain operating conditions, which lead to inadequate pressure

buildup in the pipe [3,4].

Although there have been several studies on gas–particle

flow instabilities in the individual components of the CFB

circuit, much less is understood about the particle circula-

tion instabilities propagating throughout the CFB loop.

Zhang et al. [5] studied the dynamic flow behavior of

FCC particles in a CFB circuit through an analysis of

pressure fluctuations at various locations of the loop. These

authors observed low-frequency oscillatory solids circula-

tion rates under certain operating conditions. Srivastava et

al. [6] studied the effect of aeration in the standpipe on flow

of gas–particle mixtures in a pilot-scale CFB unit, using

electrical capacitance tomography (ECT) to image the cross-

sectional particle distribution in the standpipe. Fig. 1 shows

the schematic of the pilot-scale CFB unit on which these

experiments were conducted. At low aeration rates, a stable

dense phase flow was obtained in the standpipe, while at

higher aeration rates, the flow became unstable, manifesting

low frequency oscillations in the particle circulation rate.

For stable flow conditions, a significant portion of the

weight of the bed in the standpipe was supported by wall

friction. Furthermore, the onset of the oscillatory flow

pattern seemed to occur when the contribution of wall

friction became negligible.

It is also worthwhile at this juncture to discuss the sta-

bility of gas-fluidized beds, which has been the focus of

research for a number of decades. Mutsers and Rietema [7]

and Rietema and Piepers [8] argued that the stability of a

fluidized bed is governed by forces exerted at direct contacts

between particles, such as cohesive forces and frictional

interactions between particles. As a result of such interac-
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tions fluidized beds can display a mechanical structure,

whose strength decreases with increasing bed expansion.

Furthermore, these authors attributed the existence of sur-

pressure at minimum fluidization (i.e. the additional pres-

sure drop in excess of the weight of the bed which is

required to initiate the expansion of a packed bed) to

particle–particle and particle–wall interactions. Tsinontides

and Jackson [9], in experiments involving fluidization

and defluidization of cracking catalyst particles in air,

observed a marked hysteresis in the fluidization character-

istics, and attributed it to a yield stress in the granular

assembly resulting from inter-particle and particle–wall

interactions.

There is no doubt that stresses resulting from cohesive

and/or frictional interactions play an important role in

determining the mechanical behavior of granular assemblies

such as those found in fluidized beds and standpipes. Yet,

quantitative information on the magnitude of such stresses is

scanty, thus limiting quantitative understanding of the com-

plex flow behavior observed in circulating fluidized bed

experiments.

Jackson [10] has argued that information about the nature

and magnitude of contact stresses arising due to frictional

interactions can be obtained through simple measurements

of bed height and pressure drop during the process of

fluidization and defluidization. In the present study, we

have performed such fluidization–defluidization experi-

ments in beds of different diameters in order to estimate

the magnitude of contact stresses. The particles used in this

study are XL glass beads, the same as those used in our

earlier CFB experiments [6]. These data provide strong

evidence for the effect of wall stresses on fluidization and

defluidization characteristics. In this paper, we demonstrate

that the simple 1-D model proposed by Jackson is able to

capture several aspects of our data. We have also extracted

from these data a quantitative estimate for the yield stresses

in assemblies of these particles.

Armed with the yield stress information, we have ana-

lyzed the standpipe data reported by Srivastava et al. [6]. We

find that a simple one-dimensional model of granular flow

can capture the general trends observed in our circulating

fluidized bed experiments.

This paper is organized as follows. Section 2 outlines the

1-D model for the effect of wall friction described by

Jackson [10,11]. The experimental system and procedure

employed in our fluidization–defluidization experiments are

presented in Section 3. Section 4 describes the fluidized bed

data and analysis. In Section 5, we examine the standpipe

data of Srivastava et al. [6]. Section 6 summarizes the major

results of this study.

2. Theory

An analysis of the role of contact stresses on the

mechanical behavior of fluidized beds of non-cohesive

particles has been described recently by Jackson [10,11].

The present treatment is a minor modification of his

model. Let us consider a bed of particles in a vertical tube

of diameter D subject to a uniform upward flow of a gas at

a superficial velocity ū. Following Jackson, we consider

the classical Janssen’s one-dimensional analysis of stress

distribution in a packed bed and write the balance of forces

in the vertical direction acting on the assembly of particles

as

drs

dy
¼ qp�g � bð�Þ ū

1� �
F

4

D
ljrs ð1Þ

where y is the vertical coordinate measured from the upper

surface of the bed (with the y-axis pointing downwards).

Here, rs is the cross-sectional average of the yy-component

of the compressive stress in the particle phase, transmitted

through sustained contacts between particles. The term on

the left-hand side of the equation represents the gradient in

this stress. The first term on the right represents the gravita-

tional force acting on the particles where qp is the density of

the particles, � is the volume fraction of particles and g is

the specific gravity force. The second term on the right

represents the drag exerted by the fluid on the particles,

where b is the drag coefficient. The third term on the right

represents the frictional force exerted on the particle assem-

Fig. 1. Schematic of CFB unit used by Srivastava et al. [6].
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bly by the walls of the container. Here, j is the Janssen’s

coefficient (usually assumed to be a constant) which is the

ratio between the normal stress exerted by the particle as-

sembly on the walls and rs, while l is the coefficient of

wall friction. The sign of this term depends on the direction

in which friction is acting. Therefore, the negative sign

applies when the bed is compacting during the process of

defluidization while the positive sign applies when the bed

is in the process of expansion as is the case during fluid-

ization.

The corresponding force balance on the fluid phase is

dp

dy
¼ bð�Þ ū

1� �
ð2Þ

where p is the is the fluid phase pressure. The form for b is

assumed to be

bð�Þ ¼
qp�g

vt

1

ð1� �Þn�1
ð3Þ

where vt is the terminal velocity of a single particle and n is

the Richardson–Zaki [12] index.

Non-cohesive granular material can support only com-

pressive stresses, and the compressive yield stress rs
y can be

expected to be a monotonically increasing function of �.
Various expressions have been proposed for the functional

dependence of rs
y on �, see for example Atkinson and

Bransby [13], Schaeffer [14], Prakash and Rao [15] and

Johnson et al. [16]. As discussed in a greater detail later, the

following simple functional form for rs
y, considered by

Jackson [10], was found to be adequate for capturing our

experimental results

ry
s ð�Þ

¼ F
ð� � �minÞ
ð�max � �Þ

�min < � < �max

¼ 0 � < �min

8><
>: ð4Þ

where F is a constant. This functional form assumes that

sustained frictional contact between multiple neighbors does

not occur at values of �V �min. Furthermore, the compres-

sive yield stress is postulated to diverge as �! �max. (In

practice, one can pack the particles at volume fractions

exceeding �max without crushing the particles by mechanical

means such as tapping. The above form assumes that such

higher packing levels are not attainable in simple fluid-

ization–defluidization processes.)

2.1. Defluidization

Consider a defluidization experiment in which the gas

flow rate is reduced in small increments, allowing the bed to

equilibrate at each gas flow rate. In such an experiment, the

bed height generally decreases monotonically with gas flow

rate, so that the bed is progressively compressed by its own

weight. An important assumption in the model is that the

local volume fraction of the particles is such that the bed is

at incipient (compressive) yield everywhere. In other words,

rs = rs
y. In this case, Eqs. (1) and (3) can be combined to

obtain

d�

dy
¼ qp�g �

qp�g

vt

1

ð1� �Þn ū�
4

D
ljry

s

� �,
dry

s

d
: ð5Þ

This equation can be integrated numerically, starting at y = 0

where � = �min (corresponding to the condition that rs =

rs
y = 0 at the top of the bed) and terminating at the bottom of

the bed at y =H such that

qp

Z H

0

�ðyÞdy ¼ m ð6Þ

where m is the specified mass loading of particles per unit

cross-sectional area. Once the particle volume fraction

profile in the bed is determined, it is straightforward to

integrate Eq. (2) to find the overall pressure drop across the

bed. In this manner, one can determine the pressure drop and

bed height as functions of ū to generate the theoretical

defluidization curve.

The solids volume fraction and stress profiles at the end

of the defluidization cycle can be found from Eqs. (5) and

(6) by letting ū = 0. Let us now consider the process of

refluidization from this point onwards.

2.2. Fluidization cycle

When the gas velocity is increased gradually from zero,

the pressure drop across the bed increases steadily while the

height of the bed remains unaltered until a critical gas

velocity, ūc, is reached. In this regime, as we increase ū

(ū < ūc), a larger and larger fraction of the weight of the bed

is supported by the upward drag exerted by the gas on the

particles. This will necessarily change the stress profile,

rs( y), in the particle phase while the solids volume fraction

profile, �( y) remains unaltered. Jackson [10] argued that as

ū is progressively increased rs at the bottom of the bed must

correspondingly take on lower and lower values. He further

argued that when ū = ūc, rs at the bottom of the bed becomes

zero. At this point, the bottom of the bed loses contact with

the distributor (provided no cohesive interaction between

the particle assembly and the distributor exists), and the

entire bed is lifted by the fluid. As the bed rises, the particles

at the bottom rain down and eventually recompact to form a

new bed.

The value of ūc can be determined as follows. We

combine Eqs. (1) and (3) and write

drs

dy
� 4

D
ljrs ¼ qp�g �

qp�g

vt

1

ð1� �Þn ū ð7Þ
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with friction acting to oppose the bed expansion. Here, �( y)
is the particle volume fraction profile determined from

defluidization calculations with ū = 0. Thus

rsðy ¼ H Þe�JH � rsðy ¼ 0Þ

¼ qpg

Z H

0

me�J ydy�
qpgū

vt

Z H

0

�

ð1� �Þn e
�J ydy ð8Þ

where J=(4/D)lj. At the point at which the bed rises, rs is
zero both at the top and at the bottom of the bed, so the left

hand side of Eq. (8) vanishes when ū = ūc. Therefore, we

have

ūc

vt
¼

Z H

0

�e�J ydyZ H

0

�

ð1� �Þn e
�J ydy

: ð9Þ

For any ūV ūc, one can readily integrate Eqs. (2) and (7) to

determine the stress and pressure profiles, respectively. In

this manner, we determine how the overall pressure drop

across the bed varies with ū (i.e. the fluidization curve).

Jackson [10] assigned the same value for the Janssen’s

coefficient j for both fluidization and defluidization, so the

role of wall friction was captured by a single parameter J in

the entire fluidization–defluidization cycle. If cylindrical

symmetry holds, then along the centerline of the cylindrical

bed the shear stress will be zero and the vertical and

horizontal normal stresses, rs and rh, respectively, will be
the principal stresses. It seems reasonable to expect that

during defluidization the vertical normal stress (rs) will be

larger than the horizontal normal stress (rh) (as the bed is

gradually being compacted when we progressively lower

the gas flow rate). Therefore, during defluidization, at least

along the centerline, the vertical stress rs will be the major

principal stress and

rh

rs

¼ jdf ¼
1� sinu
1þ sinu

where u is the angle of internal friction for the particles. We

have assumed in our analysis that the value of j = jdf
estimated in this manner from the angle of internal friction

applies for the defluidization branch.

In the fluidization branch, the stress profile determines

the gas velocity at which the bed will detach from the

distributor. As already pointed out by Jackson [10], just

before the detachment of the bed from the distributor (i.e. ū

slightly smaller than ūc), the drag exerted by the gas on the

bed exceeds the weight of the bed when wall friction is

present. This suggests that rs (along the centerline of the

bed) should be the minor principal stress at least in the lower

part of the bed, where rs decreases as y increases. This led

us to postulate that jf = jdf
� 1 where jf is the Janssen’s

coefficient for the fluidization branch. The model employed

in our study differs from that of Jackson [10] in this one

regard. This change was also motivated by the fact that we

could fit our experimental data (described below) to the 1-D

model better when we assumed that jf = jdf
� 1.

In order to understand the role of wall friction on the

fluidization and defluidization behavior, and also evaluate

the adequacy of the model described here, we performed

fluidization and defluidization experiments in tubes of

different diameters. These are described below.

3. Experimental

The physical properties of particles used in the experi-

ments, namely XL glass beads, are summarized in Table 1.

These are exactly the same particles used by Srivastava et al.

[6] in their circulating fluidized bed experiments. The angle

of internal friction for the particles was determined via

measurements in a Jenike shear cell apparatus.

Fluidization experiments were performed in three differ-

ent Plexiglas tubes (0.5W, 1.0W and 2.0W ID). Following

Tsinontides [17], the gas distributors were constructed by

sandwiching two layers of fibrous material between two

micronic mesh screens. Distributors were rejected as unsat-

isfactory if any obvious maldistribution of the feed gas was

detected. Dry air was further dried by passing it over a

packed bed of drying agent and used in all the experiments

described below. At each experimental condition, the volu-

metric flow rate of air exiting at the top of the fluidized bed

was measured and was used to compute the superficial

velocity of the air through the bed.

The bed height was determined by means of a tape

measure attached to the outside of each tube. The pressure

drop across the distributor and bed was measured by means

of a U-tube manometer filled with red liquid of specific

gravity 0.827. The pressure drop across the distributor

alone, as a function of the gas flow rate, was determined

through separate tests in the empty tubes. The pressure drop

across the bed was obtained by subtracting the latter from

the former.

The fluidization and defluidization experiments were

performed as follows. A fairly deep bed, roughly 30 cm

in height, was formed by depositing a known mass of glass

beads into the tube. The bed was allowed to bubble gently

for a period of time by operating the column at an air flow

rate which is slightly larger than that corresponding to the

point of minimum bubbling. The air flow rate was then

reduced progressively in small steps (all the way down to

zero flow rate), allowing the bed to equilibrate at each

condition and recording the pressure drop, the bed height,

Table 1

Physical properties of XL glass beads

dp,50 Mean particle diameter (Am) 50

qp Solids density (g/cm3) 2.35

/ Angle of internal friction 13j

A. Srivastava, S. Sundaresan / Powder Technology 124 (2002) 45–5448



the air flow rate and visual observations of the state of the

bed. In this manner, the defluidization branch was mapped

out. The fluidization branch was mapped out in a similar

manner by progressively increasing the air flow rate in small

steps from zero to the minimum bubbling point.

4. Fluidization–defluidization results

Figs. 2a, 3a and 4a show the measured pressure drop

across the bed in the 0.5W, 1.0W and 2.0W tubes, respec-

tively, as a function of the superficial velocity of the fluid-

izing air for a complete defluidization–fluidization cycle.

Figs. 2b, 3b and 4b show the corresponding bed height data.

The smooth curves in these figures represent the model

predictions (discussed later), while the points refer to exper-

imental data. The mass of particles loaded per unit cross-

sectional area, m, is 36.3 g/cm2 for all three tubes. The

pressure drop has been normalized with respect to mg, the

weight of the bed per unit cross-sectional area. A normalized

pressure drop of 1.0 thus corresponds to the case where the

pressure drop across the bed exactly balances the weight of

Fig. 3. Dimensionless pressure drop (a) and bed height (b) as functions of

the superficial gas velocity, for XL glass beads in a vertical tube of 1W
diameter; *, increasing gas flow during fluidization, +, decreasing gas flow

during defluidization. The solids curves represent model predictions. Bed

height H0 at zero glass flow rate = 28.9 cm.

Fig. 2. Dimensionless pressure drop (a) and bed height (b) as functions of

the superficial gas velocity, for XL glass beads in a vertical tube of 0.5W
diameter; *, increasing gas flow during fluidization, +, decreasing gas flow

during defluidization. The solids curves represent model predictions. Bed

height H0 at zero glass flow rate = 29.6 cm.
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particles. The height of the bed is normalized with respect to

heightH0, which is the height of the bed at zero gas flow rate.

It is instructive to first discuss the qualitatively similar

features among the three figures in so far as the experimen-

tal results go. As the superficial velocity (ū) is increased

from zero in the fluidization branch, the pressure drop

increases linearly with it. In ideal systems, the bed will

become fluidized at a gas superficial velocity Umf, com-

monly known as the minimum fluidization velocity, where

the pressure drop first equals the weight of the bed per unit

cross-sectional area (mg), and for all ū >Umf, the pressure

drop is exactly equal to mg. However, in our system, the

pressure drop overshoots mg (see Figs. 2a, 3a and 4a) and

continues to increase linearly with ū until ū = ūc. This

phenomenon, where ūc>Umf, occurs when there exist cohe-

sive forces between particles and between the particles and

the distributor plate, or when frictional forces at the walls of

the bounding tube, or a combination of both [9,10]. The

percent overshoot in the pressure drop (DP/mg � 1) is plotted

in Fig. 5 against the inverse of the tube diameter (D). The

trend suggests that the overshoot goes to zero as D!l.

Thus, it appears reasonable to anticipate that the pressure

drop overshoot seen in our experiments may be rationalized

using a model that considers only wall friction effect.

Beyond ūc, the pressure drop in the fluidization branch

decreases abruptly and this is accompanied by a jump in the

bed height. As the gas velocity is further increased, the bed

expands without any visible signs of bubbling until the point

of minimum bubbling, ūmb, is reached.

In the defluidization branch, as one decreases ū from ūmb,

the pressure drop data remain close to the values recorded in

the fluidization experiments initially. With further decreases

in ū, the defluidization and fluidization branches separate

with the former always lying below the latter. As ū is

progressively brought down to zero, pressure drop readings

as well as the height of the bed decrease smoothly down to

values corresponding to zero flow of gas.

There is thus a marked hysteresis between the fluid-

ization and defluidization curves in the beds in all the three

tubes. The features seen here are very similar to those

observed by Tsinontides and Jackson [9] in their experi-

ments with cracking catalyst. We found the hysteresis and

the pressure drop overshoot to be more pronounced as tube

diameter was decreased (compare Figs. 2a, 3a and 4a).

Fig. 5. Percentage overshoot in the pressure drop during fluidization as a

function of the inverse of tube diameter; x, experimental data points. The

solids curve represents model predictions.

Fig. 4. Dimensionless pressure drop (a) and bed height (b) as functions of

the superficial gas velocity, for XL glass beads in a vertical tube of 2W
diameter; *, increasing gas flow during fluidization, +, decreasing gas flow

during defluidization. The solids curves represent model predictions. Bed

height H0 at zero glass flow rate = 28.9 cm.
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These observations are consistent with those of Tsinontides

and Jackson [9] and readily suggest that wall friction is

important. Another noteworthy feature is the increase in ūc
with a decrease in the tube diameter; ūc is 0.167 cm/s in the

2W tube, 0.183 cm/s in the 1W tube and 0.207 cm/s in the

0.5W tube. Tsinontides and Jackson [9], on the other hand,

did not note any such dependence of ūc on the confining

tube diameter.

Another point of interest is the persistent offset between

the pressure drop and mg; the asymptotic value of pressure

drop is less than mg in all the tubes. Such an offset had also

been reported elsewhere with different particles; see for

example Tsinontides and Jackson [9]. This offset suggests

that the beds were not completely fluidized and that a

portion of the weight of the bed was still being supported

by the distributor plate and/or the frictional stresses acting

on the cylindrical walls. The 2W tube has the largest offset of

5% while the 1W and 0.5W tubes have offsets of 4% and

2.5%, respectively. This trend, namely that the offset

decreases as tube diameter is decreased, suggests that the

offset is not due to wall friction. We conjecture that lateral

non-uniformities in bed density become more pronounced

as tube diameter increases and is responsible for the

observed effect of tube diameter on the offset. The 1-D

model described in Section 2 is then a gross simplification

and may be used to interpret only some of the features of the

experimental data. This model simply cannot capture the

observed asymptotic offset or its dependence on tube

diameter. Consequently, we did not attempt to analyze the

pressure data obtained on the fluidization branch for ū> ūc
using this model.

The rest of the fluidization–defluidization data were

analyzed in terms of the 1-D model as follows. The

Richardson–Zaki coefficient, n, was estimated from the

defluidization data by assuming that the particle volume

fraction was uniform everywhere in the bed. (In reality, the

particle volume fraction is not uniform; nevertheless ignor-

ing this spatial variation allows us to simplify the parameter

estimation process.) It then follows that

DP

H
c

qp�̄g

vt

1

ð1� �̄Þn ū

where DP and H are, respectively, the pressure drop across

the bed and the bed height for a particular value of ū and

�̄ =m/qpH. This can be rewritten as

log
DPū

Hqp�̄g

 !
¼ nlogð1� �̄Þ � logvt:

The slope of the best-fit line gives the value of n. We found

that the data obtained on all three tubes yields a value of
f 5.0 for n. We attempted to estimate the effective terminal

velocity, vt, from the intercept. This led to estimates of 7.25,

7.8 and 5.8 cm/s for vt from the data obtained in the 0.5W,
1.0W and 2.0W tubes, respectively. We suspect that this

discrepancy in the estimated value stems from the fact that

only a limited region in the �̄ space is probed by the

defluidization branch, with �̄ typically being between 0.47

and 0.52, and the estimation of vt requires extrapolation to

�̄= 0. Thus, best-fit lines with even slightly differing slopes

yield very different values for vt. For this reason, vt was left

as an adjustable parameter such that it lies in the range given

above.

The other quantity which can be estimated a priori is the

limiting value of the solids volume fraction �max. It is

assumed here that this is the solids volume fraction at the

bottom of a deep bed upon the end of defluidization. An

estimate of this quantity was made by a simple experiment.

A known is mass of particles was added to an initially

empty bed, the bed was gently fluidized and defluidized,

and the bed height was measured. This process was repeated

by adding incremental amounts of solid until a fairly deep

bed about 40 cm in height was obtained. The incremental

changes in bed heights following incremental additions of

particles to the bed represent a direct quantitative measure of

the solids volume fraction at the bottom of the bed. In this

manner, �max was estimated to be 0.55. Although the bed

could have been packed more densely by subjecting it to

mechanical vibrations, the packing state achieved sponta-

neously in defluidization is the most relevant one for our

problem. Having made a priori estimates of n and �max, the

adjustable parameters remaining in the 1-D model described

in Section 2 are F, vt, �min and l. The values of these

parameters (see Table 2) were estimated by fitting the model

to the data. The model predictions obtained with these

parameter values are shown in Figs. 2–4 as solid curves.

It is clear that the model is able to capture the hysteresis, the

overshoots in the pressure and the bed heights upon defluid-

ization reasonably well. All the parameter values used in the

model are reasonable, with the exception of the wall friction

coefficient, l, which is smaller than what we would have

expected (f 0.2).

It is instructive to compare the actual height of the

fluidized bed in the fluidization cycle in the region ū>ūc
with the height, Hideal, of an ideal fluidized bed where the

particle volume fraction is independent of height and the

Table 2

Values of model parameters

vt Terminal velocity (cm/s) 6.8

n Richardson–Zaki coefficient 5.0

l Coefficient of wall friction 0.07

jdf Jannsen’s coefficient for

defluidization=(1� sin/)/(1 + sin/)
0.63

jf Jannsen’s coefficient for

fluidization= (1� sin/)/(1 + sin/)
1.58

F Coefficient for rs (dynes/cm
2) 1570

mmin Solids volume fraction below which

there is no frictional stress

0.45

mmax Upper limiting value of solids volume

fraction for rs (see Eq. (5))

0.55
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pressure drop balances the weight of bed per unit area of

cross-section. The upward supporting force due to the gas

drag, per unit cross-sectional area of such an ideal fluidized

bed, is

Hideal

qs�g

vtð1� �Þn ū:

Equating this to the weight of the bed per unit cross-

sectional area, mg,

Hideal

qs�g

vtð1� �Þn ū ¼ mg:

However, qs�Hideal =m, so that � =m/qsHideal. Inserting this

into the force balance above

ū

ð1� m=qsHidealÞn
¼ �t

or

Hideal ¼
m=qs

1� ðū=�tÞ1=n
:

This is also shown in Figs. 2b, 3b and 4b.

The percentage overshoot in the pressure drop during

fluidization, predicted by the model for the combination of

parameters in Table 2, is plotted in Fig. 5 as a function of

D � 1 (solid curve in this figure). According to the model,

the wall friction effect becomes weaker and weaker as

D!l, and the overshoot goes to zero. The model is able

to capture the experimental data quite nicely. Interestingly,

the theoretical curve seems to flatten out as the tube

diameter is decreased. As the diameter is decreased, friction

at the wall supports a larger and larger fraction of the weight

of the bed as a result of which the bed is more loosely

packed. This leads to a decrease in rs and a corresponding

decrease in the normal stress exerted at the wall. The effect

of decrease in the tube diameter is thus countered by the

decrease in the normal stress at the wall. (The model

predicts that at even smaller values of D, the overshoot will

decrease with decreasing tube diameter. At such small tube

diameters, however, issues such as static arch formation

enters the picture and the model becomes inadequate.)

5. Analysis of standpipe data

Experiments on flow behavior of XL glass beads (same

as the ones used in the present study) in circulating fluid

beds (CFBs) performed by Srivastava et al. [6] revealed that

the shear stress experienced by the particles at the walls of

the standpipe played an important role in ensuring stable

particle circulation in the CFB loop. We refer the reader to

Srivastava et al. [6] for details of the CFB experiments. In

these experiments, the aeration gas was injected at equal

rates through eight ports in the standpipe. Thus, for practical

purposes, one can treat the aeration as being spatially

uniform for most of the length of the standpipe (with the

exception of a small segment of the standpipe near the slide

valve). Fig. 6a–c [6,18] show the cross-sectional average

solids volume fraction between ports 4 and 5 (which flanked

the Electrical Capacitance Tomography unit) of the stand-

pipe as a function of the external aeration rate for three

different slide valve openings. The triangles denote results

obtained from ECT measurements, with the filled triangles

and open triangles representing steady and unsteady flow

conditions, respectively. The pressure drop across ports 4

and 5 can be converted into an equivalent solids volume

fraction by dividing by qpgh with h being the distance

between the two ports. This quantity, measured only during

stable operating conditions, is shown as filled diamonds and

is a quantitative measure of the support provided by the gas

to suspend the weight of the bed. The difference between

the solids volume fraction estimated from ECT and pressure

drop data, henceforth referred to as D�, is a quantitative

measure of support provided by shear stress at the wall and

axial gradient in the vertical normal stress in the granular

phase. It is clear from our fluidized bed experiments and

modeling described in the previous sections that the axial

gradient in the vertical normal stress in the granular phase is

not likely to be the main source of the support, as this would

have resulted in a rapid increase in particle volume fraction

(within a depth of a few tens of cm) to a value very close to

�max and this was not the case in most of the operating

conditions reported in Fig. 6a–c. Thus wall friction is the

most likely explanation for the observed D�. All the data

reported in Fig. 6a–c in the stable operating region are

summarized in Fig. 7, which shows a plot of D� against

�̄ estimated from the ECT measurements. In spite of the

scatter, a trend can be observed, suggesting that a simple

relation does indeed exist between these two quantities. A

simple analysis of the wall friction in the standpipe, where

one uses the frictional yield stress in XL glass beads (i.e. Eq.

(5) and the parameter values) estimated through fluidiza-

tion–defluidization measurements, is described below.

Consider a simple one-dimensional model of granular

flow in a tall cylindrical standpipe of radius R under steady

flow conditions. In particular, let us focus on a region away

from the entrance or the exit, such as the region where the

ECT measurements were made by Srivastava et al. [6]. Even

though under such conditions ECT measurements revealed

random low-amplitude high-frequency fluctuations in the

solids volume fraction arising due to non-uniformities, one

may assume to a good approximation that the bed at this

location was essentially at a uniform solids volume fraction

of �̄, which was determined by time-averaging the ECT

data. Assuming that the granular material is in compressive

yield, the vertical stress rs can thus be determined from Eq.

(4) and the model parameters estimated from defluidiza-

tion–fluidization experiments. The normal stress rh exerted
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on the wall would then be jrs where j is the Janssen’s

coefficient. The shear stress at the wall would then be ljrs.

A simple force balance under conditions where �̄ is inde-

pendent of axial position yields

D� ¼ 2ljrsð�̄Þ
qpgR

:

From the slope of a plot of D� against rs(�̄), the value of lj
was estimated to be 0.225. The right hand side of the above

equation is shown in Fig. 7 as a solid curve. It is clear that

the 1-D model is able to capture the general trend in the

standpipe data quite nicely, in spite of the presence of

fluctuations recorded by the ECT unit.

In the presence of such fluctuations, it seems reasonable

to expect that on an average j would have a value close to 1,

so that the value of l is indeed close to 0.225. It is

remarkable to note that this is equal to sinu. Wall friction

coefficient will be equal to sin B when a layer of particles

remains stuck to the wall, which was indeed the case in the

standpipe experiments. Electrostatic effects are known to be

important in transport of glass beads in Plexiglas pipes

[19,20]. Adhesion of a layer of particles to the wall as a

result of electrostatic effects in the standpipe is quite con-

ceivable. This may also explain why a much smaller value

of l was required to fit our fluidization–defluidization data,

where tribo-electric charging would have occurred to a

much smaller extent. Indeed, upon emptying the fluidized

bed at the end of our fluidization–defluidization experi-

ments, we observed only a few spots where the particles

remained adhered to the wall. In any case, the above

argument is at best a speculation and we must conclude

Fig. 6. Variation of time-averaged solids volume fraction of XL glass beads with external aeration rate for constant slide valve openings: (a) 10% slide valve

opening, (b) 17.5% slide valve opening, (c) 35% slide valve opening; E: from ECT data (steady flow regime), D: from ECT data (unstable flow regime), x:
pressure drop readings expressed as equivalent solids volume fractions. Source: Srivastava et al. [6], Srivastava [18].
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by noting that this difference in the value of l between the

standpipe and fluidization experiments remains unresolved.

6. Summary

Fluidization and defluidization experiments were con-

ducted in tubes of different diameters in order to understand

the role of friction in modifying fluidization–defluidization

characteristics. Careful measurements of the gas flow rate,

bed height and pressure drop across the bed were made

during the process of both fluidization as well as defluidiza-

tion. A marked hysteresis between the fluidization and

defluidization curves in all the beds is observed. The process

of fluidization is characterized by the presence of an over-

shoot in the pressure drop beyond that required to suspend

the weight of particles in the bed. The hysteresis and

pressure overshoot are more pronounced in the beds of

smaller diameter. These features are very similar to those

observed by Tsinontides and Jackson [9] with their experi-

ments on cracking catalyst particles. In our study, these

features appear to be a consequence of wall friction. Ano-

ther noteworthy feature is the persistent offset in the pres-

sure drop at high gas flow rates from the theoretical value,

which was more pronounced in larger diameter tubes. We

believe that this is due to the presence of lateral non-

uniformities in the bed density.

An estimate of the magnitude of contact stresses was

made by fitting the model of Jackson [10] to the fluid-

ization–defluidization data. The model is able to capture the

hysteresis, the pressure drop overshoot and the bed height

upon defluidization quite well. The frictional yield stress

obtained in this manner was used to analyze the standpipe

data reported by Srivastava et al. [6]. A 1-D model based on

a simple analysis of wall friction in the standpipe is able to

capture the general trends in the standpipe data reasonable

well. However, the values of the wall friction coefficient, l,
obtained from the standpipe and fluidization experiments

are quite different. It is hypothesized that this could be due

to electrostatic effects.
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Abstract

Fluidization and de"uidization experiments, where we increased the gas super3cial velocity in small increments and then decreased it,
were performed in tubes of di4erent diameters to probe the role of wall friction on pressure drop and bed height. Such experiments, covering
the regimes of packed bed, stable bed expansion and bubbling bed, were carried out for several di4erent particles. The compressive yield
strength of the particle assemblies at various volume fractions was determined by measuring the height of fully de"uidized beds at various
mass loading levels. The systematic e4ect of the tube diameter on pressure drop and bed height hysteresis could be rationalized in terms of
a one-dimensional model that accounted for the e4ect of wall friction and path-dependent contact stresses in the particle phase. Bubbling
seemed to set in when the yield stress in the particle assembly could be overcome by the inherent "uctuations. Our experiments, which
focused primarily on gas velocities below the minimum bubbling conditions, did not reveal any dramatic change across the Geldart A–B
boundary. This is consistent with the original observation by Geldart (Powder Technol. 7 (1973) 285). The distinct di4erence between
beds of group A and B particles in the gently bubbling regime reported by Cody et al. (Powder Technol. 87 (1996) 211) is thus likely
to be due to changes in the dynamics of the bubbles, as we observed no striking di4erence between these beds at gas velocities below
minimum bubbling conditions.
? 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Fluidization; Powders; Granular materials; Hydrodynamics; Wall friction; Contact stress

1. Introduction

The behavior of solids "uidized by gases is a subject of
great practical relevance. Geldart (1973) classi3ed the gas–
solid systems into four categories on the basis of the nature
of "uidization. Very 3ne particles, belonging to group C,
are cohesive and are di@cult to "uidize. Beds of somewhat
larger particles, belonging to group A, manifest smooth ex-
pansion over a range of "uidizing gas velocities before bub-
bling begins. Even larger particles, belonging to group B,
bubble almost immediately after "uidization. The rise ve-
locity of bubbles in beds made up of particles belonging
to group A or B is generally larger than the gas velocity
through the dense phase. In contrast, in beds of very large
particles belonging to Group D, the bubble rise velocity is
smaller than the interstitial velocity of the gas in the dense
phase, so that the mixing pattern in this case di4ers signi3-
cantly from that observed in beds of group A or B particles.

∗ Corresponding author. Tel.: +1-609-258-4583;
fax: +1-609-258-0211.

E-mail address: sundar@princeton.edu (S. Sundaresans).
1 Present address: DICHEP-University of Genoa, Via Opera Pia 15,

16415 Genoa, Italy.

Geldart (1973) noted that the super3cial gas veloc-
ity at minimum bubbling conditions (umb) increased in a
nearly linear manner with particle diameter (in the range
25–220 �m, covering group A and B particles), while the
minimum "uidization velocity, umf, for particles of given
density in a gas with speci3ed density and viscosity in-
creases quadratically with particle size. (Here, umf denotes
gas super3cial velocity where the pressure gradient exactly
balances the weight of a unit volume of bed.) This led
Geldart (1973) to observe that the range of gas velocities
for which stable bed expansion could be achieved would
decrease as the particle size increased. He estimated the
particle diameter where this window would become unob-
servably small by equating umf and umb, and labeled it as
representing a point on the A–B boundary.

The mechanism responsible for the window of stable bed
expansion manifested by group A particles has been ex-
plored extensively. Jackson (1963) noted that in the ab-
sence of particle phase stress the uniformly "uidized state
is always unstable, while Anderson and Jackson (1968)
concluded that viscous stresses in the particle phase are
not su@cient to impart stability. Garg and Pritchett (1975)
pointed out that the uniform state could be stabilized by

0009-2509/02/$ - see front matter ? 2002 Elsevier Science Ltd. All rights reserved.
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adding to the particle phase momentum balance equation a
force term of the form−G∇�where� is the particle volume
fraction and G is a su@ciently large positive number. The
origin of such a term has been debated extensively in the lit-
erature. Rietema (1973), Mutsers and Rietema (1977a) and
Rietema and Piepers (1990) attributed it to cohesive forces
at particle–particle contact. Mutsers and Rietema (1977b)
argued that their data on "uidization of particles with di4er-
ent gases are consistent with a stabilizing force whose origin
is enduring contact between particles.

Foscolo and Gibilaro (1984) rejected the idea that
inter-particle forces stabilize the uniformly "uidized state
and suggested that the gas–particle drag should include a
term of the form −G∇�. Batchelor (1988) discounted the
arguments by Foscolo and Gibilaro, and attributed this force
to random "uctuations in particle velocity, which leads to
hydrodynamic di4usion of the particles in the "uidized bed.

Tsinontides and Jackson (1993) performed "uidization–
de"uidization experiments using FCC particles "uidized by
dry and humid air, and concluded that the particle assem-
blies exhibited yield stresses throughout the range of stable
"uidization.

More recently, Cody, Goldfarb, Storch, and Norris (1996)
concluded that their data on acoustic shot noise in "uidized
beds containing glass beads of various mean diameters (63–
595 �m) and narrow size distributions (henceforth referred
to as Cataphote particles) supported “the concept that the
distinction between Geldart A and B "uidization regimes lies
in a fundamental di4erence in gas particle dynamics rather
than an ad-hoc inhibition of bubbling”. These authors used
the acoustic shot noise to determine the granular tempera-
ture, T = 〈C2〉, of the particles in the bed, where 〈 〉 denotes
an ensemble-average and C is "uctuation velocity of the par-
ticles. They found that T was essentially zero until the gas
super3cial velocity was increased past some threshold value
(u∗), and this is consistent with the observations by Menon
and Durian (1997). The manner in which T changed as the
super3cial gas velocity, u, was increased further was found
to be noticeably di4erent for Geldart type A and B particles.
In the case of type A particles,

√
T=u2 increased nearly lin-

early with u− u∗ at 3rst, and then decreased exponentially
towards a non-zero plateau, with the intermediate maximum
being rather pronounced. In contrast,

√
T=u2 vs. u data for

the type B particles manifested either a weak maximum or
simply rose monotonically to the plateau.

Cody et al. (1996) found u∗ to be close to umf for the Cat-
aphote particles, although their plots suggest that u∗ could
easily have been 10–20% larger than umf. These authors
performed similar experiments with FCC particles as well
and found the behavior to be similar to that of the Cataphote
particles falling in the Type A category, with the exception
that u∗ was roughly three times umf. They speculated that
this large di4erence could have been a consequence of the
wide size distribution of the FCC particles.

The observation by Menon and Durian (1997) that T was
essentially zero until the bed began to bubble suggests that

u∗ recorded by Cody et al. (1996) is likely to be umb. If so,
the di4erences in the manner in which

√
T=u2 varied with gas

velocity for type A and type B particles observed by Cody
et al. (1996) may be more indicative of the e4ect of particle
diameter and particle size distribution on the dynamics of a
gently bubbling bed than the observability of a window of
uniform bed expansion (which was the basis of Geldart’s
original classi3cation).

Koch (1990) and Koch and Sangani (1999) concluded
from a linear stability analysis of a uniformly "uidized bed
of in3nite extent that the "uctuating motion of particles re-
sulting from the relative motion between the "uid and the
particles in a uniformly "uidized suspension is not vigor-
ous enough to impart stability to the uniform state. This
result then suggests that the origin of stabilization in the
gas-"uidized systems is likely to be non-hydrodynamic. The
observations by Rietema and Piepers (1990), Tsinontides
and Jackson (1993) and Menon and Durian (1997) suggest
that yield stresses resulting from sustained contact between
particles is the most probable mechanism for stable expan-
sion of gas-"uidized beds. Questions that immediately fol-
low are:

(Q1) How do the yield stress characteristics of a given ma-
terial change as one increases the particle size from
group A to group B? Is there any evidence of a sig-
ni3cant qualitative change across the A–B boundary?

(Q2) What is the origin of the intermediate maximum in the√
T=u2 vs. u locus observed by Cody et al. (1996) in

the bubbling regime with group A material?

We have probed the 3rst of these two questions in the present
study, and the second one will be addressed in a future pub-
lication. We will demonstrate that the yield stress charac-
teristics change gradually as one increases the particle size
and that no abrupt changes occur across the Geldart group
A–B boundary.

We have also examined in the present study the role of
wall friction on "uidization characteristics. Tsinontides and
Jackson (1993) measured bed height and pressure drop at
various gas "ow rates through beds of FCC particles in 1′′

and 2′′ ID columns, probing carefully the path dependence
of the results. They observed a hysteretic behavior for gas
velocities below umb, which is indicative of path-dependent
stresses. These authors found that as they increased the
air "ow rate through a bed of FCC particles (which was
initially fully de"uidized), the bed height remained in-
variant while the pressure drop increased. Such a state
persisted even when the pressure drop exceeded signi3-
cantly the weight of the bed per unit cross-sectional area.
At some critical gas velocity, the bed expanded abruptly
and the pressure drop decreased to a value below that re-
quired to fully support the weight of the bed. Such pressure
drop overshoots have been observed by many researchers
(e.g., see Valverde, Ramos, Castellanos, & Watson, 1998).
Tsinontides and Jackson (1993) found the overshoot to
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depend on the tube diameter, which suggested the possi-
ble in"uence of wall friction. In contrast, Valverde et al.
(1998), who worked with much 3ner powders (belonging to
Geldart group C) and tubes of much larger cross-sectional
area, did not observe an appreciable e4ect of tube diame-
ter on the overshoot. Tsinontides and Jackson (1993) and
Valverde et al. (1998) used the pressure drop overshoot to
estimate cohesive strength of the materials.

Through simple one-dimensional (1-D) models for
"uidization and de"uidization (described in Section 2),
Jackson (1998, 2000) showed that wall friction can lead to
pressure drop overshoot even for a non-cohesive material.
We have studied the "uidization and de"uidization char-
acteristics of a number of particles (including those used
by Cody et al., 1996) in tubes of di4erent diameters, in
order to expose the role of wall friction. We will show that
the "uidization–de"uidization characteristics (including the
pressure drop overshoot) of all the particles reported here,
can be rationalized on the basis of wall friction and com-
pressive yield stress characteristics of the particle assem-
blies, without requiring an additional in"uence of cohesion
between particles or particles and the distributor.

It will also become clear that, in every single system for
which measurements have been made in the present study,
bubbling commenced only after the yield stress in the par-
ticle assembly became very small. Furthermore, no interval
of stable bed expansion was observed after the bed has ex-
panded su@ciently to drive the yield stress to zero. This im-
plies that hydrodynamic stabilization of the state of uniform
"uidization is not observed in these beds (involving particles
larger than ∼ 60 �m). (Recent experiments by Valverde,
Castellanos, and Quintanilla (2001) suggest that hydrody-
namic stabilization may be possible for 3ner particles (∼
9 �m), but we have not probed the behavior of such small
particles.)

We will also see that, for gas velocities below umb,
changes in the system characteristics with particle size are
only gradual and that Geldart group A–B boundary sepa-
rates approximately the systems where an interval of stable
bed expansion is readily observed from those where it is
too small to be observed (as originally intended by Geldart,
1973).

This paper is organized as follows. Section 2 summarizes
the 1-D model for "uidization and de"uidization branches.
The experimental system and procedure are described in
Section 3. Section 4 contains a detailed description of the
experimental results along with a discussion on the basis of
the 1-D model. We also discuss here the conditions at which
bubbling commences in our systems. The main 3ndings of
the study are summarized in Section 5.

2. Theory

An analysis of the role of contact stresses on the
mechanical behavior of "uidized beds of non-cohesive

particles has been discussed recently by Jackson (1998),
where a 1-D model has been proposed to describe the
"uidization/de"uidization behavior of these systems. The
present treatment is a minor modi3cation of his analysis,
as suggested by Srivastava and Sundaresan (2002). In the
regime of stable bed expansion, inter-particle forces are
transmitted largely through sustained contact between parti-
cles, and the force balance for the particle assembly is written
as

d
s
dx

± 4
D

�j
s = �p�g− �(�)
Su

(1 − �)
: (1)

The corresponding force balance on the gas is given by

dp
dx

= �(�)
Su

(1 − �)
: (2)

In Eq. (1), x is the vertical coordinate measured from the up-
per surface of the bed (with the x axis pointing downward),
and 
s is the cross-sectional average of the xx-component
of the compressive stress transmitted through enduring con-
tact between particles. The second term on the left-hand side
of Eq. (1) represents the force associated with friction be-
tween the particle assembly and the tube wall, where � is
the coe@cient of friction, D is the diameter of the tube, and
j is Janssen’s coe@cient (usually assumed to be a constant)
which is the ratio between the normal stress exerted by the
particles on the wall and 
s (Janssen, 1895). The positive
sign applies upon de"uidization branch where the gas "ow
rate is being progressively decreased and bed is compacting
(and the wall friction is pointing vertically upwards), while
the negative sign applies in the "uidization branch where
the gas "ow rate is steadily increased. The 3rst term on
the right-hand side of Eq. (1) represents gravitational force,
where �p is the particle density, � is the volume fraction
of the particles, and g is the speci3c gravity force. The last
term is the drag force exerted by the gas on the particles
where � is the drag coe@cient and Su is the super3cial gas
velocity. Eq. (2) simply balances the pressure gradient in
the gas phase with the drag force exerted on the "uid by the
particles.

The drag coe@cient � is taken to be of Richardson and
Zaki (1954) form:

�(�) =
�p�g
vt

1
(1 − �)n−1 ; (3)

where vt is the terminal velocity of a single particle and n
is the Richardson–Zaki exponent.

Non-cohesive granular materials can support only com-
pressive stresses, and the compressive yield stress 
x

s can
be expected to be a monotonically increasing function of
�. Various expressions for 
x

s have been proposed in the
literature (Prakash & Rao, 1988; Johnson, Nott, & Jackson,
1990). As discussed below in a greater detail, we have
employed the functional form for 
x

s suggested by
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Johnson et al. (1990):


x
s (�) =




c
(�− �min)a

(�max − �)b
; �min ¡�¡�max;

0; �¡�min ;
(4)

where�min ; �max; a; b and c are positive constants. This func-
tional form postulates that sustained contact between parti-
cles occur only when the particle volume fraction exceeds
�min. Furthermore, the compressive yield stress is assumed
to diverge as � → �max. Although volume fractions in ex-
cess of �max may be achieved by mechanical means such as
tapping, the model considers �max as the upper bound for
� which is achieved in simple "uidization/de"uidization
experiments (involving deep beds). Srivastava and
Sundaresan (2002) found that their "uidization/de"uidization
data for glass beads (dp;50 = 50 �m) could be captured
by such a model with a further restriction that a = b = 1,
which was the form used by Jackson (1998) in his illustra-
tive examples. In the present study, where we report results
for a number of di4erent particles, the form given by Eq.
(4), where the parameters for each particle sample were
determined empirically, was found to be adequate.

2.1. De3uidization branch

Consider the case where the bed is in an expanded state,
and the gas "ow rate is reduced in small increments, allowing
the bed to compact and equilibrate at each gas "ow rate. A
key assumption in the model is that the local volume fraction
of the particles is such that the bed is in compressive yield
everywhere, and 
s=
x

s . For a given value of Su, Eqs. (1) and
(3) can be combined and integrated numerically to yield �
as a function of bed height, starting with �=�min at x = 0,
and terminating at x = H , the total height of the bed, such
that

�p

∫ H

0
�(x) dx = m: (5)

Here,m denotes the speci3ed mass loading of particles in the
bed per unit cross-sectional area. Once the particle volume
fraction pro3le is determined, the "uid pressure as a function
of height is readily calculated from Eq. (2). In this manner,
the theoretical de"uidization curves describing variation of
pressure drop and bed height with Su can be determined.

2.2. Fluidization branch

Now let us consider the process of "uidizing a de"uidized
bed. When the gas velocity is increased gradually from zero,
the height of the bed and the solids volume fraction pro3le
�(x) remain unaltered until a critical velocity Suc is reached.
In the regime, where Su¡ Suc, the upward drag force exerted
by the gas on the particles supports an increasing fraction
of the weight of the particles and this is accompanied by

a steady increase in the pressure drop across the bed and
a change in the stress pro3le, 
s(x). As argued by Jackson
(1998), value of 
s at the bottom of a bed will decrease
monotonically with increasing Su and vanish at some critical
velocity Su = Suc, while the stress 
s at all other elevations
in the bed (x¿ 0) will be greater than zero. At this critical
gas velocity, the bed will lose contact with the distributor,
provided the particle assembly does not interact with the
bottom distributor cohesively, and the entire bed will be
lifted as a block. As the bed rises, the particles will rain
down from the lower surface and re-compact to form a new
bed. The velocity Suc where this event occurs can be found
as follows. Combining Eqs. (1) and (3):

d
s
dx

− 4
D

�j
s = �p�g− �p�g
vt

Su
(1 − �)n

; (6)

where it has been recognized that the frictional force will act
downward to oppose bed expansion and that the �(x) pro3le
is the same as that obtained from de"uidization calculations
with Su = 0. Integrating,


s(x = H)e−JH − 
s(x = 0)

= �pg
∫ H

0
�e−Jx dx − �pg Su

vt

∫ H

0

�
(1 − �)n

e−Jx dx;

(7)

where J =(4=D)�j. At the point where the bed rises, Su= Suc

and 
s(x = H) = 
s(x = 0) = 0. Therefore,

Suc

vt
=

∫ H
0 �e−Jx dx∫ H

0 (�=(1 − �)n)e−Jx dx
: (8)

The corresponding pressure drop can readily be found by
integrating Eq. (2), once Suc is known.

Jackson (1998) assumed in his illustrative examples that
the same value for the Janssen’s coe@cient j applied for
both "uidization and de"uidization branches. Srivastava and
Sundaresan (2002) found that di4erent values of �j were
needed for the "uidization and de"uidization branches to
capture their "uidization/de"uidization data for the 50 �m
glass beads. (As discussed later, we found this to be the case
in our analysis as well.) This is equivalent to using di4erent
values of j in the two branches, as there is no physical
basis for using di4erent values of � in the two branches.
The rationale for di4erent j values in the two branches,
suggested by Srivastava and Sundaresan (2002), is brie"y
outlined below.

Along the centerline of the cylindrical bed, the vertical and
horizontal normal stresses (
s and �h, respectively) will be
the principal stresses, provided cylindrical symmetry holds.
During de"uidization, where the bed is gradually being com-
pacted as we progressively lower the gas "ow rate, the verti-
cal stress 
s will be the major principal stress, at least along
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the centerline, and


h

s

= jdf =
1 − sin’
1 + sin’

; (9)

where ’ is the angle of internal friction for the particles.
Thus, it is reasonable to expect j to be less than unity in the
de"uidization branch, with a value close to jdf.

Srivastava and Sundaresan (2002) found that their data
in the "uidization branch could be captured reasonably well
only if the value of j in this branch was chosen to be greater
than unity. They speculated that j in the "uidization branch
will be close to j−1

df (=jf, say). This is equivalent to saying
that the bed is close to a state of incipient yield where 
s and

h are the minor and major principal stresses, respectively.

In the present study, we simply report the two values of
�j used to 3t the experimental data in the "uidization and
de"uidization branches (henceforth referred to as (�j)f and
(�j)df, respectively). If the speculation by Srivastava and
Sundaresan (2002) that j ≈ jf in the "uidization branch
and j ≈ jdf in the de"uidization branch holds,

(�j)df
(�j)f

≈
(

1 − sin’
1 + sin’

)2

: (10)

3. Experimental

Two di4erent types of glass beads, henceforth referred to
as Jaygo and Cataphote particles, having wide and narrow
size distributions, respectively, were used in this study. Ex-
periments were performed with two di4erent Jaygo particles,
referred to as 3ne Jaygo (sieved between 58 and 75 �m)
and coarse Jaygo (sieved between 93 and 210 �m), and 3ve
di4erent Cataphote particles having nominal particle diam-
eters of 63, 88, 105, 150 and 210 �m.

Fluidization and de"uidization experiments were per-
formed in three di4erent Plexiglas tubes (nominal ID
0:5′′; 1:0′′ and 2:0′′). Following Tsinontides (1992), gas dis-
tributors were made by sandwiching two layers of 3brous
material between two micronic mesh screens. De-humidi3ed
air, from compressed air cylinders, was used as the "uidiza-
tion medium. The super3cial velocity at each operating
condition was determined using a bubble meter, which was
attached to the exit of the "uidized beds. The total pressure
drop across the distributor and the bed was measured at
each air super3cial velocity via a U-tube manometer. The
distributor pressure drops at various air super3cial velocities
were separately measured in empty tubes. By subtracting
the distributor pressure drop from the total pressure drop,
one can readily determine the pressure drop across the bed.

Fluidization and de"uidization experiments were per-
formed as follows: A bed, approximately 30 cm in height,
was formed by depositing a known mass of particles in the
tubes. Air "ow was initiated, and the bed was allowed to
gently bubble for a period of time. The air "ow rate was then
decreased all the way down to zero in small increments,

the system was allowed to equilibrate at each condition,
and the bed height, the air super3cial velocity and pres-
sure drop were recorded. After completion of such a de"u-
idization branch, the air "ow was incrementally increased,
and pressure drop, bed height and super3cial velocity were
once again recorded. Such measurements in the "uidization
branch were made all the way into the bubbling regime.

4. Results and discussion

Figs. 1a–c show normalized pressure drop (=UP=mg) as
a function of scaled super3cial velocity, (= Su=um where um
is a reference velocity given in Table 1 for each particle),
for the 3ne Jaygo particles in the 0:5′′; 1:0′′ and 2:0′′ tubes.
The mass loading in every case was 39:8 g=cm2. A normal-
ized pressure drop of unity implies that the pressure drop
across the bed exactly balances the weight of the bed. The
corresponding scaled bed height (=H=Ho where Ho refers
to height of a fully de"uidized bed) data are given in Figs.
2a–c. In these 3gures, the points refer to the experimen-
tal data, while solid lines represent model predictions (dis-
cussed later).

The "uidization–de"uidization data for the 63 and
105 �m Cataphote particles are similar to those shown in
Figs. 1 and 2, and are presented in Figs. 3 and 4, and 5 and
6, respectively. The results for the 88 �m Cataphote parti-
cles are similar to those shown in Figs. 3 and 4, and can
be found elsewhere (Loezos, 2002). The trends observed
in Figs. 1–6 are same as those obtained by Srivastava and
Sundaresan (2002) for 50 �m glass beads, using the same
experimental apparatus.

For every type of particles used in the present study, an
essentially linear relation between pressure drop and Su was
obtained in the region 0¡ Su¡ Suc of the "uidization branch,
where the bed height remained invariant. The critical gas su-
per3cial velocity, Suc, was found to be dependent on the tube
diameter (see Table 1). The scaled pressure drop at Suc ex-
ceeded unity in every case reported here. Such an overshoot
has been noted by several authors (Tsinontides & Jackson,
1993; Valverde et al., 1998). We found that the extent of
overshoot, de3ned as (Up=mg − 1), decreased as the tube
diameter was increased (see Figs. 7 and 8 for the 3ne Jaygo
particles and the Cataphote particles, respectively). It seems
reasonable to extrapolate that the overshoot will decrease
steadily towards zero as D → ∞ for all the particles. This
suggests that the pressure drop overshoots observed in all
our experiments were primarily due to wall friction. With
this in mind, we have assumed in our analysis of the data
that none of the particle samples used in our experiments in-
teracted with the distributor material cohesively. Srivastava
and Sundaresan (2002) found a similar dependence of Suc

and overshoot on the tube diameter for 50 �m glass beads.
When Su was increased past Suc, the bed expanded sud-

denly and the pressure drop registered a marked decrease.
For both the 63 and 88 �m Cataphote particles, the bed
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Fig. 1. Normalized pressure drop (Up=mg) vs. scaled gas velocity ( Su=um). Fine Jaygo particles. Tube diameter: (a) 0:5′′; (b) 1:0′′; (c) 2:0′′. (+)
De"uidization branch; (∗) Fluidization branch. Solid lines: model predictions.

Table 1
Summary of material properties and experimental data

Particle Density um Suc (cm/s) umb (cm/s) 〈�〉 at minimum bubbling
(kg=m3) (cm/s)

0:5′′ 1:0′′ 2:0′′ 0:5′′ 1:0′′ 2:0′′ 0:5′′ 1:0′′ 2:0′′ �mb
tube tube tube tube tube tube tube tube tube

Fine
Jaygo 2550 0.52 0.64 0.60 0.57 0.61/0.64 0.62 0.63 0.528 0.528 0.531 0.529
63 �m
Cataphote 2460 0.44 0.51 0.49 0.47 0.56 0.56 0.57 0.553 0.551 0.557 0.554
88 �m
Cataphote 2460 0.92 0.95 0.94 0.94 1.00 0.96 0.97 0.562 0.565 0.563 0.563
105 �m
Cataphote 2460 1.59 2.01 1.94 1.83 1.94/2.01 1.95 1.92 0.575 0.576 0.579 0.577

Note: um = vt;exp(1 − �max)n, where �max is given in Table 3; vt;exp and n are given in Table 4.

assumed a smooth appearance after this expansion. With
further increase in air super3cial velocity ( Suc ¡ Su¡ Sumb),
the bed maintained a smooth appearance while its height
increased steadily. It was di@cult to identify a single value
for umb for these particles. An occasional bubble could be
observed in the bed even when the gas super3cial velocity

was only slightly larger than Suc, where the bubbles were
3rst visible at a depth slightly below the top surface of
the bed. (For example in the case of the 63 �m Cat-
aphote particles, an occasional bubble could be seen at
Su = 0:51 cm=s in all three tubes. Thus, the bed was truly
smooth for 0:47 cm=s¡ Su¡ 0:51 cm=s in the 2′′ tube and
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Fig. 2. Normalized bed height (h=ho) vs. scaled gas velocity ( Su=um). Fine Jaygo particles. Tube diameter: (a) 0:5′′; (b) 1:0′′; (c) 2:0′′. (+) De"uidization
branch; (∗) Fluidization branch. Solid lines: model predictions. ho: height of a fully de"uidized bed.

for 0:49 cm=s¡ Su¡ 0:51 cm=s in the 1′′ tube, while in
the case of the 0:5′′ tube, an occasional bubble could be
seen immediately after bed expansion at 0:51 cm=s.) As
we increased the gas velocity, the frequency of bubbling
increased and the bubbles could be observed at a greater
depth. We have labeled as umb the gas velocity at which
bubbles were observed at a rate of about one bubble per
minute. At this gas velocity, bubbling could be seen almost
at the distributor level. When the gas super3cial velocity
was increased beyond umb, the frequency of bubbling in-
creased rapidly. The existence of an observable window of
stable "uidization ( Suc ¡ Su¡umb) for these particles is con-
sistent with their classi3cation as Geldart A type particles
(Geldart, 1973).

The "uidization characteristics observed for the 3ne Jaygo
particles di4ered from those of the 63 �m Cataphote parti-
cles in two ways:

(1) The transition from the state of an occasional bubble
to sustained bubbling at a frequency of one bubble per
minute occurred over a much narrower window of gas
velocities in the case of the Jaygo particles.

(2) In the case of the Jaygo particles, Suc increased more
rapidly as the tube diameter was decreased. This in-
crease was so pronounced that Suc in the 0:5′′ tube was
larger than the value of umb observed in the wider tubes
(see Table 1). Indeed, the bed of Jaygo particles in the
0:5′′ tube bubbled quite vigorously immediately after
bed expansion at Su. Thus, in the "uidization branch of
our experiments using the 3ne Jaygo particles, there
was an observable window of stable bed expansion in
the 1′′ and 2′′ tubes, but not in the 0:5′′ tube. Interest-
ingly, in the 0:5′′ tube in the de"uidization branch of
our experiments using the Jaygo particles, the state of
bubbling could be maintained at gas velocities below
Suc! This is noted in Table 1 by presenting two values
for the minimum bubbling velocity (in the 0:5′′ tube),
one of which is Suc to denote our observation in the "u-
idization branch while the other is the value recorded
in the de"uidization experiment.

In any case, there is no doubt that the peculiar behavior
noted here for the 3ne Jaygo particles in the 0:5′′ tube is
limited to narrow tubes and that a well de3ned window of
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Fig. 3. Normalized pressure drop (Up=mg) vs. scaled gas velocity ( Su=um): 63 �m Cataphote particles. Tube diameter: (a) 0:5′′; (b) 1:0′′; (c) 2:0′′. (+)
De"uidization branch; (∗) Fluidization branch. Solid lines: model predictions.

stable bed expansion exists for this particle in wide tubes,
which is consistent with its label as a group A particle.

The 105 �m Cataphote particles lies slightly to the right
of the A–B transition (in the group B side) as per Geldart’s
original classi3cation (Geldart, 1973). We could indeed ob-
serve a window of stable expansion for this particle in the
2′′ tube (see Table 1). There was a very small (almost negli-
gible) window of stable expansion in the 1′′ tube. However,
the behavior observed in the 0:5′′ tube was similar to that
seen in the case of the 3ne Jaygo particles.

In the bubbling regime ( Su¿ Suc or umb, whichever
is larger), nearly same average pressure drop and bed
height were obtained in both "uidization and de"uidization
branches, suggesting that the results obtained in this regime
were path-independent. The normalized pressure drop in
this regime was found to be slightly less than one in every
tube. This has been noted previously by Tsinontides and
Jackson (1993) who performed similar experiments with
FCC catalyst and sand. The presence of such an o4set
clearly implies that the bed of particles was not completely
"uidized by the gas and that a portion of its weight was

being supported by the distributor and the tube wall. (The
height of a bubbling bed "uctuates in time, as the inventory
of bubbles in the bed changes with time. The bubbles lift
up the particles near the distributor, and after the bubbles
pass the particles fall down and bounce on the distributor.
In this manner, the distributor may bear a part of the bed
weight.) Srivastava and Sundaresan (2002) found in their
study of "uidization characteristics of 50 �m glass beads
that this o4set from unity increased with tube diameter. We
found in our study with several di4erent particles that in all
but one case (63 �m Cataphote particles) the o4set indeed
increased with tube diameter (see Table 2).

The value of umb determined in the de"uidization branch
was, within the con3dence limits of our measurements, the
same as that observed in the "uidization cycle in all our
experiments with the exception of the 3ne Jaygo and the
105 �m Cataphote particles in the 0:5′′ tube (as noted al-
ready).

The average solids volume fraction in the bed, 〈�〉mb, at
umb (determined in de"uidization branch) for each of the
particles in each of the tubes is also shown in Table 1. It
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Fig. 4. Normalized bed height (h=ho) vs. scaled gas velocity ( Su=um): 63 �m Cataphote particles. Tube diameter: (a) 0:5′′; (b) 1:0′′; (c) 2:0′′. (+)
De"uidization branch; (∗) Fluidization branch. Solid lines: model predictions. ho: height of a fully de"uidized bed.

appears that 〈�〉mb is only weakly dependent on the tube
diameter. The average of the three values of 〈�〉mb shown
in this table for each particle was treated in our analysis as
an estimate of �mb for that particle.

In the de"uidization branch, as Su was decreased below
umb, the system entered a regime of stable bed expansion
(but for occasional bubbles, as mentioned earlier), where the
bed appeared to be mostly uniform. At still smaller values
of Su, the bubbling ceased completely. It is clear from Figs.
1 and 2 that both the bed height and pressure drop across
the bed decreased steadily as Su was decreased. It is also
clear that, as Su was decreased, more and more of the weight
of the bed was being supported by the tube wall and the
distributor.

In the cases of the coarse Jaygo particles and the two large
Cataphote particles (150 and 210 �m), a window of stable
expansion could still be detected; however, this window was
very small, which is indeed consistent with the classi3cation
of these particles as Geldart type B particles. We found �mb

to be 0.571, 0.580 and 0.590 for the coarse Jaygo, 150 �m
Cataphote and 210 �m Cataphote particles, respectively.

A close inspection of the experimental data on various
particles revealed that the results obtained with the 1′′ and
2′′ tubes were quite close to each other over most of the
de"uidization branch. This suggested that the wall friction
played only a minor role in the manner in which the parti-
cles packed in the de"uidization branch in these tubes. As-
suming that the wall friction played a negligible role in the
de"uidization experiments performed in the 2′′ tubes, we
were led to employ the following methodology to determine
the compressive yield stress, 
x

s (�), of the particles used in
our study. A known mass of particles was placed in the 2′′

ID tube, the bed was allowed to bubble gently for a period
of time and then slowly de"uidized to the rest state (i.e.
zero gas velocity) and the bed height was recorded. A mea-
sured amount of particles was then added to the bed, the bed
was again allowed to bubble gently, then de"uidized, and
the rest height was recorded. By repeating this procedure,
the rest height of bed (h) was determined as a function of
the particle mass loading (M). The average solids volume
fraction, 〈�〉, is simply equal to M=A�pgh, where A is the
cross-sectional area of the tube. Fig. 9 shows the variation
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Fig. 5. Normalized pressure drop (Up=mg) vs. scaled gas velocity ( Su=um): 105 �m Cataphote particles. Tube diameter: (a) 0:5′′; (b) 1:0′′; (c) 2:0′′. (+)
De"uidization branch; (∗) Fluidization branch. Solid lines: model predictions.

of 〈�〉 with h for the two Jaygo particles. Also shown in this
3gure are smooth curves representing empirical curve-3ts
of the data. It can be shown that the volume fraction of the
solids at the bottom of the bed, �b, is given by

�b = 〈�〉 + h
d〈�〉
dh

(11)

and the vertical normal stress there (in the absence of wall
friction), 
x

s (�b), is equal to �pgh〈�〉. Thus, one can readily
determine 
x

s (�b) from the curve-3t function 〈�〉(h). Such
an approach has already been used by Valverde et al. (1998)
to estimate compressive yield strength of particles. Fig. 10
shows the variation of compressive yield strength with par-
ticle volume fraction for the two Jaygo particles, determined
in such a manner. The general elbow shape of the two curves
is readily apparent, and the primary di4erence appears to
be that the curve for the coarser particles is displaced to-
wards higher packing densities. Also shown in this 3gure as
vertical dashed lines are the �mb values for these two par-
ticles. Bubbling seems to begin when the average particle
volume fraction in the bed has decreased enough so that the

compressive yield strength of the particles in the bed is to
the left of the elbow.

Fig. 11 summarizes the experimental data on 〈�〉 as a
function of bed height (in the 2′′ tube) for various Cataphote
particles. (The experimental data for the 150 �m particles
are not shown in order to preserve the clarity of this 3gure,
but can be found elsewhere (Loezos, 2002).) The compres-
sive yield strengths of these particles are presented in Fig.
12, where the experimentally determined value �mb are also
shown. The elbow shape of these curves is similar to what
was obtained for the Jaygo particles. As in the case of the
Jaygo particles, bubbling occurs with each of the Cataphote
particles when the average particle volume fraction in the
bed has decreased past the elbow in the compressive yield
strength curve. It is thus reasonable to conclude that a mod-
est compressive yield strength is su@cient to stabilize a "u-
idized bed.

It is also interesting to note that the compressive yield
strength curves for the Cataphote particles shift to the right
in an orderly manner as the particle size increases, just as
in the case of the Jaygo particles. This could be due to a



P. N. Loezos et al. / Chemical Engineering Science 57 (2002) 5123–5141 5133

0 0.2 0.4 0.6 0.8 1 1.2
1

1.005

1.01

1.015

1.02

Scaled Gas Velocity

N
or

m
al

iz
ed

 B
ed

 H
ei

gh
t

0 0.2 0.4 0.6 0.8 1 1.2
1

1.002

1.004

1.006

1.008

1.01

1.012

1.014

1.016

1.018

1.02

Scaled Gas Velocity

N
or

m
al

iz
ed

 B
ed

 H
ei

gh
t

(a) (b)

0 0.2 0.4 0.6 0.8 1 1.2
1

1.002

1.004

1.006

1.008

1.01

1.012

1.014

1.016

1.018

1.02

Scaled Gas Velocity

N
or

m
al

iz
ed

 B
ed

 H
ei

gh
t

(c)

Fig. 6. Normalized bed height (h=ho) vs. scaled gas velocity ( Su=um): 105 �m Cataphote particles. Tube diameter: (a) 0:5′′; (b) 1:0′′; (c) 2:0′′. (+)
De"uidization branch; (∗) Fluidization branch. Solid lines: model predictions. ho: height of a fully de"uidized bed.

combination of frictional and cohesive interactions between
the particles. Intuitively, one can anticipate that as the ap-
parent coe@cient of friction at particle–particle contact in-
creases, the particles will pack less tightly under a given
stress. Thus, the orderly shift seen in Figs. 10 and 12 may
be due to a gradual shift in the apparent coe@cient of fric-
tion. Although it is possible that the actual coe@cient of
friction in these samples decreased with increasing particle
size, this seems unlikely. It is more likely that as the particle
size increases the importance of cohesion relative to grav-
ity decreases, which translates to a decrease in the apparent
coe@cient of friction.

Some general comments about Figs. 9–12 are in order.
Note that 〈�〉 values below 0.5 are reported in Figs. 9 and
11, while the lowest value of �b to which the curves in
Figs. 10 and 12 are shown is much larger. This because of
the fact that at low values of 〈�〉, the second term on the
right-hand side of (11) is quite large. Although one can, in
principle, extend the curves in Figs. 10 and 12 to lower �b

values, there is little con3dence in such an extrapolation.
In the limit h → 0, we expect �b → 〈�〉 from above (see

Eq. (11)), and so one can demand that the curves in
Fig. 10 should be extended to particle volume fractions as
small as 0.45 (and similarly for Fig. 12). While we recog-
nized this, we did not insist on this requirement when we
attempted to examine if the curves shown in Figs. 10 and
12 could be 3tted to simple functional forms of the type
shown in Eq. (4) (so that these expressions could be used
in the analysis described below). For the purpose of the
analysis described in the present study, accurate 3ts of the
yield strength data were needed primarily for � larger than
�mb and hence we were content to accept �min values which
are larger than the lowest 〈�〉 values recorded in Figs. 9
and 11, but are well below the corresponding �mb values.

The curves shown in Figs. 10 and 12 could be captured
nicely with Eq. (4) (except at very low particle volume
fractions, as discussed in the previous paragraph), and the
values of parameters appearing in this equation for all the
Jaygo and Cataphote particles are summarized in Table 3.
The fact that we could 3t the yield strength results nicely
using the same value of c for all the particles merely im-
plies that 3ve independent parameters are not required to
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Fig. 7. Pressure drop overshoot (%) vs. (1=D), where D is the tube
diameter in cm. Fine Jaygo particles. (∗) Experimental data. Solid line:
model prediction.
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Fig. 8. Pressure drop overshoot (%) vs. (1=D), where D is the tube
diameter in cm. Cataphote particles. (♦) 63 �m data; (◦) 88 �m data;
( ) 105 �m data. Model predictions: (—) 63 �m; (—) 88 �m; (- - -)
105 �m.

Table 2
Percent o4set, 100(1 − Up=mg), for various particles

Particle 0:5′′ ID tube 1:0′′ ID tube 2:0′′ ID tube

Fine Jaygo 2.5 3.5 4.5
63 �m Cataphote 4.5 3.0 5.0
88 �m Cataphote 2.0 3.5 4.5
105 �m Cataphote 2.0 3.5 4.0

3t the data. It should also be noted that several other func-
tional forms could also be used equally satisfactorily to 3t
the data. Thus, there is no basis for assigning any signi3-
cance to the numerical values shown in Table 3, with the
possible exception of �max which could be estimated fairly
accurately. The sole purpose of this curve-3t was to obtain
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Fig. 9. Average particle volume fraction, 〈�〉, vs. bed height, h. Jaygo
particles. (�) 3ne; (◦) coarse. Solid lines: Curve 3ts. Data were obtained
in the 2′′ tube.
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Fig. 10. Compressive yield strength, 
xs (in N=m2) vs. particle volume
fraction, �. Jaygo particles. Vertical dashed lines: �mb.

convenient expression for 
x
s (�b) which could be used in

the "uidization–de"uidization calculations described below.
We simply note that our conclusions remain una4ected by
the choice of expression used to 3t 
x

s (�b).
An initial estimate of the Richardson–Zaki exponent for

each particle sample was obtained as follows. Rearranging
Eq. (2)

ln
(

1
Su�

dp
dx

)
= n ln(1 − �) + ln

(
�pg
vt

)
: (12)

Using the pressure drop and bed height data gath-
ered in the de"uidization branches for each material,
ln((1= Su〈�〉)Up=h) and ln(1 − 〈�〉) were determined and
were plotted against each other for each particle sample,
see Figs. 13a and b for two illustrations. The results ob-
tained for the same sample in di4erent tubes did not always
fall on the same line, and this could be attributed to the
fact that we replaced, in Eq. (12), � by 〈�〉, and dp=dx
by Up=h. Nevertheless, we observed that roughly the same
slope was obtained for a given particle sample on all three
tubes (for example, see Fig. 13b). Therefore, we adopted
this procedure to estimate the Richardson–Zaki exponent
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Fig. 11. Average particle volume fraction, 〈�〉, vs. bed height, h (in cm).
Cataphote particles. (�) 63 �m; (◦) 88 �m; (×) 105 �m; (•) 210 �m.
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(see Table 4). As expected, the value of n decreases with
increasing particle size (see the entries for the Cataphote
particles in Table 4).

We determined the angle of internal friction of the Jaygo
particles to be 19:5◦ through Jenike shear cell measurements.
The Cataphote particles employed in our study were loaned
to us by Dr. George Cody and are very expensive. We did
not wish to contaminate these particle samples by placing
them in the direct shear cell box, and therefore the angles of
internal friction for these particles were not measured. We
note, however, that these particles heaped in a manner

Table 3
Summary of compressive yield strength model parameters (see Eq. (4))

Particle a b c (N=m2) �min �max

Fine Jaygo 1.25 0.70 2500 0.520 0.550
Coarse Jaygo 1.74 0.93 2500 0.555 0.582
63 �m Cataphote 1.53 0.80 2500 0.540 0.580
88 �m Cataphote 1.59 0.81 2500 0.540 0.584
105 �m Cataphote 1.77 0.83 2500 0.540 0.596
150 �m Cataphote 1.80 0.85 2500 0.540 0.598
210 �m Cataphote 1.95 0.91 2500 0.540 0.602
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Fig. 13. Estimation of Richardson–Zaki exponent, n, as the slope of from
a plot of ln((1= Su〈�〉)Up=h) vs. ln(1 − 〈�〉). (a) Fine Jaygo particles.
(∗) 2′′ tube data; (×) 1′′ tube data. Solid lines: 3ts of data. (b) 63 �m
Cataphote particles. (∗) 2′′ tube data; (×) 1′′ tube data; (+) 0:5′′ tube
data. Solid lines: 3ts of data.

similar to the Jaygo particles, so the angle of internal friction
of the Cataphote particles is probably close to that of the
Jaygo particles.
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Table 4
Summary of model parameters

Particle vt;exp vt; th n (�j)f (�j)df
(cm/s) (cm/s)

Fine Jaygo 26 30 4.94 0.220 0.055
63 �m Cataphote 24 25 4.61 0.050 0.013
88 �m Cataphote 40 44 4.30 0.033 0.0083
105 �m Cataphote 60 58 4.05 0.023 0.0058

For all the particles, (�j)f, (�j)df, and vt were treated as
adjustable parameters, and were estimated by matching the
experimental "uidization/de"uidization data with the 1-D
model outlined earlier. The solid lines in Figs. 1–6 show
the 1-D model predictions with the vt;exp, (�j)f and (�j)df
values presented in Table 4. This table also shows the the-
oretical terminal velocity (vt; th) estimated on the basis of
the nominal sizes of the Cataphote particles. The vt;exp val-
ues are quite close to the theoretical values. We could have
3xed the terminal velocity at the theoretical value or some
other value close to the numbers shown in Table 4 and ad-
justed the Richardson–Zaki exponent slightly to get equally
good 3ts (Loezos, 2002). This simply implies that Eq. (3),
along with several combinations of n and vt;exp values which
are close to the nominal values shown in Table 4, captured
the drag coe@cient adequately in the narrow range of solids
volume fractions encountered in our experiments.

The sequence of dynamic events that follow bed expan-
sion when the gas super3cial velocity is increased past Suc

is rather complex and hence it is not simple to construct
a model for the bed expansion characteristics in the re-
gion Su¿ Suc. Nevertheless, one can easily compare the ac-
tual height of the "uidized bed in this region with the height,
Hideal, of an ideal "uidized bed where the particle volume
fraction is independent of height and the drag force balances
the weight of bed. Equating the upward supporting force per
unit volume of the bed due to the gas drag with the weight
of the bed per unit volume,

�p�g
vt(1 − �)n

Su = �p�g:

Therefore,

� = 1 −
(

Su
vt

)1=n

:

As �p�Hideal = m, we can rewrite this to obtain

Hideal =
m=�p

1 − ( Su=vt)1=n :

Hideal is also shown in Figs. 2, 4 and 6. It is not shown in Figs.
2a and 6a, as the bed bubbled immediately upon expansion
in these cases. The quality of 3t is reasonable, suggesting
that the expansion characteristic of the bed in this region is
not too di4erent from that of an ideal bed.

The lines in Figs. 7 and 8 indicate the predicted pressure
drop overshoots, and they compare well with the data. The
model predicts that the overshoot is roughly proportional
to 1=D for small 1=D, and it can be attributed to the fact
that the perimeter per unit cross-sectional area of the tube
is proportional to 1=D. As seen in Fig. 7, this dependence
becomes weaker as 1=D becomes su@ciently large, and at
even larger 1=D values, the overshoot is predicted to decrease
with increasing 1=D. This can be traced to the fact that as
the tube diameter decreases, the particles packed less and
less tightly in the fully de"uidized state. We observed in our
experiments in the 0:5′′ tube using the 3ne Jaygo particle
that the particles tended to bridge across the gap, particularly
during the lift-o4 in the "uidization branch (which occurs
when Su was increased past Suc). As the 1-D model does not
consider the occurrence of such bridges, its predictions for
large 1=D values should not be over-interpreted.

As we measured the angle of internal friction for the Jaygo
particles, we speci3cally tried to check if the data for the
3ne Jaygo particles could be 3tted by restricting the val-
ues of (�j)f and (�j)df to satisfy Eq. (10). It turned out
that we could indeed achieve a reasonable 3t of the data
with the 1-D model and the parameter values shown in Ta-
ble 4 for the 3ne Jaygo do satisfy Eq. (10) with ’ = 19:5◦.
(In contrast, the best 3t we could obtain if we insisted that
(�j)f=(�j)df=1, as assumed by Jackson (1998), was rather
poor and was deemed unsatisfactory.) If one further sup-
poses that Eq. (9) holds, then the value of the wall friction
coe@cient for the 3ne Jaygo particles (on Plexiglas walls)
needed to 3t the data turns out to be 0.11. Relaxing the re-
striction that Eq. (10) holds and allowing (�j)f and (�j)df
to be completely independent parameters did not lead to any
noticeable improvement of the 3t of the results obtained with
the 3ne Jaygo particles.

It can be seen from Table 4 that the values of (�j)f and
(�j)df required to 3t the experimental data on Cataphote
particles decreases monotonically as the particle size in-
creases. An explanation for this trend is elusive (and may
be related to the relative importance of cohesion and grav-
ity). For all the particles shown in Table 4, we have kept the
same (�j)f=(�j)df ratio, i.e. Eq. (10) holds with ’=19:5◦.
This, by no means, validates Eq. (10), as we could have ob-
tained a similar quality of 3t with a slightly di4erent value
for this ratio. It simply means that a de3nitive statement
about the values assumed by the Janssen’s coe@cient in the
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Fig. 14. �mb (�) and �max (4) for various Cataphote particles. Particle
diameter is in �m.

"uidization and de"uidization branches cannot be made on
the basis of our measurements.

4.1. Stability of a uniformly 3uidized bed

When Su was appreciably larger than umb, the beds bubbled
vigorously, and as Su was decreased slowly towards umb, the
frequency of bubbling decreased gradually. As mentioned
earlier, we labeled Su at which bubbles were observed at a
rate less than one bubble per minute as umb. As seen in
Table 1, �mb was found to be nearly independent of tube
diameter for all the particles. Furthermore, it was observed
that the compressive yield strength of the granular assembly
was rather small at � = �mb (see Figs. 10 and 12). Quite
remarkably, the shapes of the compressive yield strength
loci for the various particles are very similar and there is no
abrupt change in the behavior as ones crosses the Geldart
A–B boundary. In the case of the Cataphote particles, both
�mb and �max increase monotonically with particle size (see
Fig. 14), with no apparent discontinuities.

The solid lines in Fig. 15 show the particle volume frac-
tion pro3les in the de3uidization branch in the 2′′ ID tube
at various gas velocities for the case of the 3ne Jaygo parti-
cles. These pro3les were obtained from the 1-D model us-
ing the experimentally determined parameter values. Also
shown as broken lines are the model predictions for the
case of zero wall friction coe@cient (or equivalently, in3-
nite tube diameter with 3nite wall friction coe@cient). As
one would expect, the di4erence between the solid and bro-
ken lines becomes smaller and smaller as the average solids
volume fraction in the bed decreases, and at the experimen-
tally observed umb, this di4erence is rather small. (When
Su = vt(1 − �min)n, which is larger than the experimentally
observed umb, the solid and broken lines will overlap exactly
and � = �min at all elevations.) This was indeed the case
with all the other particles as well.

Strictly speaking, one should include the e4ect of tube
diameter on the bed dynamics, while seeking a quantitative
explanation for the observed onset of bubbling, as the tube
diameter had an in"uence on value of umb (see Table 1).
However, it seems reasonable to expect that friction at the
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Fig. 15. Particle volume fraction as a function of depth below bed surface
(in cm). Fine Jaygo particles. Model predictions for various gas super3cial
velocities in the de"uidization branch. Solid lines: 2′′ tube with wall
friction. Broken lines: no wall friction.

wall, per se, would only suppress "uctuations and thus exert
a stabilizing in"uence. In other words, we should be able to
identify the physical processes driving the onset of bubbling
by simply considering frictionless walls.

As described in Section 1, a large body of literature exists
on the analysis of linear stability of "uidized beds. These
studies either neglect particle phase stresses or consider only
reversible stresses in the particle phase. If the stresses were
truly reversible, "uidization and de"uidization branches in
our experiments would overlap exactly. Clearly, this is not
the case. Thus, there is no basis for expecting that a stability
analysis based on reversible stresses can be used to explain
the onset of bubbling in our experiments. Nevertheless, it is
instructive to examine the outcome of such a stability analy-
sis where one treats the particle phase stresses as reversible
and neglects wall friction. This analysis becomes simpler if
one considers a bed of in3nite extent and neglects the com-
pressibility of the gas so that the voidage in the base state
is uniform everywhere. The details of such a linear stability
analysis for an in3nite bed can be found in many places in
the literature (e.g., see Jackson, 2000). When the "uid den-
sity is much smaller than that of the particles, a uniformly
"uidized state is linearly stable if (Jackson, 2000)

dps

d�

∣∣∣∣
�o

¿�pv2
t n

2�2
o(1 − �o)2(n−1);

where �o is the particle volume fraction in the uniform state
and ps is the reversible pressure (associated with the elastic
deformation) of the particle phase. For elasto-plastic mate-
rials, we expect that

dps

d�
¿

d
x
s

d�
:

Therefore, one can 3nd an upper bound (�∗) for the critical
particle volume fraction (�crit) above which the uniform
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state is linearly stable, by setting

d
x
s

d�

∣∣∣∣
�∗

= �pv2
t n

2(�∗)2(1 − �∗)2(n−1):

We found that for every particle examined in our study, �∗

is only slightly larger than �min (typically by 0.0001). The
values of �mb observed in our experiments are considerably
larger than �min in Table 3, which further con3rms that the
onset of bubbling in our system cannot be captured by such
a linear stability analysis.

As noted earlier in the context of Figs. 11 and 12, our
con3dence in the compressive yield strength measurements
is low in the vicinity of �min. In particular, there is a mod-
est level of uncertainty in the value of �min estimated from
these measurements. However, near � = �mb we do have a
fairly large number of data points in our compressive yield
strength measurements and it is highly unlikely that the ex-
perimentally observed �mb is the true �min. Thus, one needs
to explain how bubbling can come about at �=�mb ¿�min,
where the bed still retains some yield stress. We propose that
the onset of bubbling is associated with conditions where
the yield stress in the particle assembly can be overcome by
3uctuations.

In order to understand the minimum bubbling condi-
tions, let us examine partial de"uidization branches, which
have been discussed previously by Tsinontides and Jackson
(1993). Starting from a bubbling bed, let us gradually de-
crease the gas velocity to uL and then begin increasing the
gas velocity. In such an experiment, the bed would compact
progressively as we decreased the gas velocity, and when
the gas velocity is increased the bed height would remain
invariant until a critical velocity, uu, which is a function
of uL, was reached. At this critical velocity, the bed height
would jump abruptly and the bed would continue to expand
beyond that point till umb. Fluidization branches shown in
Figs. 1–6 correspond to the speci3c case where uL = 0.
Fig. 16a shows the plots of U Su ≡ (uu − uL) against uL in
a 2′′ ID bed for the 3ne Jaygo and the 63 �m Cataphote
particles. These were computed using the model parame-
ters estimated from our experiments. As expected, for both
particles, U Su decreases monotonically as uL increases. Ac-
cording to the model, U Su = 0 when uL = vt(1 − �min)n

which is independent of tube diameter.
Let us now consider the e4ect of temporal "uctuations

in the gas super3cial velocity, which are inevitable in any
experimental system. Let us suppose that the time-average
gas super3cial velocity is 〈 Su〉 and that the amplitude of the
"uctuation is a. Let us 3rst consider the case where the
characteristic time for these "uctuations, tf, is much larger
than that for bed response, so that we can assume that the
bed is in a quasi-steady state at each instant of time. As the
gas super3cial velocity decreases during the course of the
normal "uctuations (to uL ≈ 〈 Su〉− a), the bed will compact
(as in the de"uidization branch) and when the super3cial
velocity increases the bed height will remain constant until
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Fig. 16. Increase in gas velocity, U Su (in cm/s), needed for bed expansion
following partial de"uidization down to various gas velocities, uL (in
cm/s). Solid line: Fine Jaygo particles. Broken line: 63 �m Cataphote
particles. 2′′ tube. (b) Amplitude of velocity "uctuation (cm/s) at various
average gas velocities (cm/s) which can give rise to one bubble per
"uctuation branch. Solid line: Fine Jaygo particles. Broken line: 63 �m
Cataphote particles. 2′′ tube. Arrows indicate gas velocity at minimum
bubbling conditions.

the stress at the bottom of the bed becomes zero and the bed
can lift o4 at the bottom. When lift-o4 occurs, the particles
will detach themselves from the bottom of the plug of solids
being lifted and then will descend to form a new bed. Thus
this event takes the form of a voidage wave which may
evolve in a bubble or a slug. Such a lift-o4 will occur if
U Su (uL) is smaller than ∼ 2a. Persistent "uctuations in the
gas super3cial velocity can give rise to a sustained sequence
of such lift-o4s, and hence bubbles or slugs. In this physical
picture, the value of umb depends on the magnitude of the
inherent velocity "uctuations.

As we did not measure the velocity "uctuations in our
systems, we can only speculate about their magnitude. The
curves in Fig. 16a can readily be replotted in the form of
an amplitude a = U Su=2 which will be needed to produce
one bed lift-o4 event per "uctuation cycle at various aver-
age gas velocities, 〈u〉 = uL + a, see Fig. 16b. Also shown
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in this 3gure (by arrows) are the umb values for these two
particles. This 3gure suggests that slow "uctuations in gas
velocities, with a ≈ 0:05〈u〉, can explain our umb data for
the 3ne Jaygo particles (while the 63 �m Cataphote parti-
cles required a ≈ 0:02〈u〉). Such a large (±5%) and slow
"uctuation is unlikely in our experimental system. However,
it seems reasonable to expect that the required amplitude
will be smaller at smaller tf values where the bed does not
have enough time to de"uidize to the fullest possible extent
(during the phase of the "uctuation where the gas velocity
is decreasing). A dynamic analysis of the behavior of the
bed will be needed to probe this point further.

Lateral non-uniformity in either gas "ow rate through
the distributor or particle volume fraction in the bed, can
also lead to onset of bubbling at a gas super3cial velocity
well below vt(1 − �min)n. In reality, both temporal "uctu-
ations and spatial non-uniformity are likely to be present
in every experimental system and we suspect that their
combined in"uence is the reason why umb is smaller than
vt(1 − �min)n.

4.2. Geldart A–B transition

One of the motivations for the present study was to in-
vestigate whether there is any evidence of a dramatic shift
in the "uidization characteristics between Geldart group A
and group B particles, as Cody et al. (1996) had suggested.
It is clear from Fig. 12 that the compressive yield strength
characteristics of particles vary gradually with particle size,
with no evidence of a dramatic change at the A–B transition.
The window of stable bed expansion does become smaller
and smaller as particle size increases, as originally suggested
by Geldart (1973), who also said that the A–B transition
represents only a gradual change. Our results are consistent
with those of Geldart (1973). We can assert that, for gas
velocities below umb, there is no evidence of any qualitative
change in the bed behavior as we move from Geldart group
A to group B.

We do add, however, that Cody et al. (1996) based their
suggestion of qualitative changes in bed dynamics (as one
goes from group A to group B) on observations made for
gas velocities above umb. Additional work is needed to fully
explain their results.

4.3. Role of wall friction

The e4ect of tube diameter on pressure drop overshoot ob-
served in this study (and in the earlier studies by Tsinontides
and Jackson (1993) and Srivastava and Sundaresan (2002))
is very remarkable. As we are able to capture this e4ect on
the basis of a model based on wall friction for several di4er-
ent particles, it is reasonable to conclude that wall friction
is the primary reason for the overshoot in beds of particles
in the size range studied here. Therefore, one should not
simply attribute the overshoot to cohesive forces. It will be

interesting to perform analysis and experiments of the type
described in the present study with smaller and smaller par-
ticles to see if one can decouple the contributions resulting
from cohesive forces and wall friction.

5. Summary

We have performed "uidization–de"uidization exper-
iments using several di4erent particles in beds of three
di4erent diameters. These have been supplemented by
static bed height vs. mass loading experiments, which were
used to estimate the compressive yield strength of the
particle assemblies. The major results of this study are as
follows:

• A simple 1-D steady state model allowing for wall friction
and path-dependent contact stresses was able to capture
all the key trends and most of the results almost quanti-
tatively.

• In all the cases examined, the pressure drop overshoot
observed in the "uidization branch could be attributed
to wall friction, without a need to invoke the pres-
ence any cohesive interactions between the assembly
and the distributor. It then follows that for su@ciently
wide tubes, the pressure drop overshoot will be neg-
ligibly small for all the particles used in the present
study.

• The compressive yield strength characteristics of the
Cataphote particles did not show any dramatic change
as one crossed the Geldart A–B boundary. Neither did
wall friction or drag force characteristics. Collectively,
these imply that changes in the "uidization–de"uidization
characteristics across the Geldart A–B boundary are
only gradual, which was indeed the case in our
experiments.

• It was di@cult to de3ne precisely the minimum bubbling
velocity, umb. We labeled as umb the gas velocity at which
bubbles appeared at a rate of approximately one bubble
per minute. The average solids volume fraction in the bed
at this condition, �mb, was found to be larger than �min

where the compressive yield strength was estimated to
become vanishingly small. Conventional linear stability
analysis based on reversible particle phase pressure cannot
explain why the bed would bubble at the observed �mb.
We propose that bubbling occurs when the yield stress
can be overcome by spatial and/or temporal "uctuations
in velocities.

• For all the particles studied, no interval of stable bed
expansion was observed when the average particle volume
fraction in the bed was below �min.

The observation by Cody et al. (1996) that there is a distinct
di4erence between beds of group A and B particles in the
gently bubbling regime is intriguing. This di4erence is most
likely to be due to changes in the dynamics of the bubbles,
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as we observed no striking di4erence between these beds at
gas velocities below minimum bubbling.

Notation

a amplitude of "uctuation or model parameter
appearing in Eq. (4)

b; c model parameters (see Eq. (4))
C "uctuating velocity
D diameter of the tube
g speci3c gravity force
h; H bed height
Hideal height of an ideal "uidized bed
Ho height of a fully de"uidized bed
j; jf; jdf Janssen’s coe@cient
J see de3nition immediately after Eq. (7)
m mass loading of particles in the bed per unit

cross-sectional area
n Richardson–Zaki exponent
p gas pressure
Up pressure drop across the bed
ps reversible pressure in the particle phase
T granular temperature
u; Su gas super3cial velocity
〈u〉 average gas super3cial velocity in the pres-

ence of "uctuations
U Su (uu − uL)
uc gas super3cial velocity at which a fully de-

"uidized bed expands
uL lowest gas super3cial velocity reached in a

de"uidization experiment
uu gas super3cial velocity at bed expansion
umf gas super3cial velocity at minimum "uidiza-

tion
umb gas super3cial velocity at minimum bubbling
vt terminal velocity of particles
x vertical coordinate measured from the upper

surface of the bed

Greek letters

� drag coe@cient
� coe@cient of friction
�p particle density

h horizontal normal stress

s vertical normal stress

x
s compressive yield stress

� volume fraction of the particles
�b volume fraction of the particles at the bottom

of the bed
�mb average volume fraction of the particles in

the bed at minimum bubbling conditions
�min ; �max parameters in Eq. (4)
�o particle volume fraction in the uniform state
’ angle of internal friction
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Abstract

A frictional–kinetic rheological model for dense assemblies of solids in a gas–particle mixture is described. This model treats the kinetic

and frictional stresses additively. The former is modeled using the kinetic theory of granular materials. For the latter, we begin with the model

described by Schaeffer [J. Differ. Equ. 66 (1987) 19] and modify it to account for strain rate fluctuations and slow relaxation of the assembly

to the yield surface. Results of simulations of two model problems, namely, the gravity discharge of particles from a bin and the rise of a

bubble in a fluidized bed, are presented. The simulations capture the height-independent rate of discharge of particles from the bin, the

dilation of particle assembly near the exit orifice, the significant effect of the interstitial air on the discharge behavior of fine particles and the

occurrence of pressure deficit above the orifice. However, the stagnant shoulder at the bottom corners of the bin is not captured; instead, one

obtains a region of slow flow at the corners. The bubble rise example shows the significant effect of frictional stresses on the bubble shape. In

both examples, a simplified version of the rheological model obtained by invoking a critical state hypothesis is found to be adequate.

D 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Flows of dense assemblies of granular materials are

encountered in a variety of industrial devices, such as bins,

hoppers, rotary blenders, fluidized beds, circulating fluidized

beds (CFBs), spouted beds, etc. [1]. In many of these

applications, the interstitial fluid (say, gas) is essential for

the operation of the device, while in others dealing with fine

powders, the interstitial gas interferes with the flow suffi-

ciently that, even when there is no forced gas flow, the

system must be analyzed as a two-phase flow problem. Thus,

there is a significant scientific and technological interest in

understanding and modeling gas–particle flows involving

dense assemblies of particles. In these systems, the particles

interact with each other largely through enduring frictional

contact between multiple neighbors and, to a lesser extent,

through collisions. In many instances, the gravitational

compaction of granular materials under their own weight is

sufficient to ensure that frictional interaction is a significant,

if not dominant, contributor to the particulate stress. As the

particle volume fraction decreases, the collisional stress

becomes more dominant. The development of a rheological

model of the granular assembly in such flows (to be used

with continuum models for such flows), its implementation

in numerical codes for solving the continuum flow models,

analysis of model flow problems to understand the conse-

quences of the proposed closures and experimental valida-

tion are all practically important [2–7].

The volume fraction of solids in dense fluidized beds,

hoppers and bin is high enough that particles make enduring

contact with multiple neighbors. Particulate stresses in such

dense phase flows are generated by frictional interactions

between particles at points of sustained contact. Indeed, it is

well known that frictional interactions play a very important

role in many dense phase gas–solid flows. For example, it

has been shown that frictional stresses play a critical role in

maintaining stable operation of CFBs [8,9]. Constitutive

models for frictional stresses under slow, quasi-static flow

conditions are largely based on ideas which were originally

developed in soil mechanics [10–13].

In fast-fluidized beds and risers, particle concentration is

typically in the range of 1–30% by volume and particle–

particle interactions occur largely through binary collisions.

Constitutive models for the stresses in this system have been

deduced in the literature by adapting the kinetic theory of

dense gases [14,15]. This approach is often referred to in the

literature as the kinetic theory of granular materials.

0032-5910/03/$ - see front matter D 2003 Elsevier Science B.V. All rights reserved.

PII: S0032 -5910 (02 )00132 -8

* Corresponding author. Tel.: +1-609-258-4583; fax: +1-609-258-0211.

E-mail address: sundar@princeton.edu (S. Sundaresan).

www.elsevier.com/locate/powtec

Powder Technology 129 (2003) 72–85



In many gas–particle flows of industrial significance, one

can find regions in the flow domain where kinetic stresses

dominate, other regions where frictional stresses dominate

and finally, regions where contributions of both are compa-

rable. Thus, it is of practical interest to synthesize rheological

models that combine the frictional and kinetic contributions.

However, given the disparate nature of theories of both

contributions, it is still unclear as to how they should be

combined.

In this article, we describe a frictional–kinetic closure for

the particle phase stress, which treats the frictional and

kinetic stresses in an additive manner [16,17]. The kinetic

stresses are based on the kinetic theory of granular materials,

which also takes into account the effect of the interstitial gas

[18]. For frictional stress, we begin with a model for quasi-

static flow proposed by Schaeffer [12] and modify it to

account for strain rate fluctuations [19] and slow relaxation

of the assembly to the yield surface. We then use the closure

to analyze two model flow problems. The first example

considers gravity discharge of particles from a 2-D bin,

where we have simulated the dilation of particles in the

vicinity of the exit orifice and also examined the effect of

interstitial gas on the discharge characteristics. It will be seen

that these simulations do capture the height-independent rate

of discharge of the particles from the bin, the dilation of the

granular assembly in the vicinity of the exit orifice and the

pressure deficit above the orifice. These simulations, how-

ever, fail to capture the formation of stationary shoulders in

the bottom corners of the bin. The second example is a

detailed simulation of a rising gas bubble in a fluidized bed

of Geldart B particles, where we see a significant effect of the

frictional stress on the shape and size of the bubble. A

simplified closure, which invokes a critical state hypothesis

to evaluate the frictional stresses, is shown to be adequate in

both examples.

2. Model equations

We treat the gas and solid phases as interpenetrating

continua and model them through the volume-averaged

equations of Anderson and Jackson [20].

Bm
Bt

þj � ðmvÞ ¼ 0 ð1Þ

Bð1� mÞ
Bt

þj � ½ð1� mÞu� ¼ 0 ð2Þ

qsm
Bv

Bt
þ v �jv

� �
¼ �j � ss � mj � sg þ�f þ mqsg ð3Þ

qgð1� mÞ Bu

Bt
þ u �ju

� �
¼ �ð1� mÞj � sg ��f

þð1� mÞqgg ð4Þ

Here, m is the volume fraction of particles; v and u are the

local average velocities of the particle and gas phases,

respectively; qs and qg are the densities of the solids and

the gas, respectively. ss and sg are the stress tensors

associated with the two phases and are defined in a com-

pressive sense; f is the interaction force between the two

phases per unit volume; g is the specific gravity force.

A simple Newtonian closure is used for the effective gas

phase stress sg [21].

sg ¼ pgI � lg;eff juþ ðjuÞT � 2

3
ðj � uÞI

� �
ð5Þ

Here, pg is the gas pressure, lg,eff is the effective gas phase

viscosity and I is the unit tensor. More elaborate models,

which account for the effect of gas turbulence, have been

developed [22]. However, in the case of dense gas–particle

flows under investigation where qsmz qg(1� m), the devia-

toric part of the gas phase stress plays a negligible role and

hence, sg = pgI is adequate [18].

In dense gas–solid systems, the dominant contributor to

the interaction term f is the drag force. In the simulations

presented here, the drag correlation of Wen and Yu [23] is

used.

f ¼ bðu� vÞ; b ¼ 3

4
CD

qgð1� mÞmAu� vA
d

ð1� mÞ�2:65

ð6Þ

CD

24
Reg

ð1þ 0:15Re0:687g Þ Reg < 1000; Reg ¼
qgð1�mÞdAu�vA

lg

0:44 Regz1000

8<
:

ð7Þ

Here, b is the interphase drag coefficient, Reg is the

Reynolds number and d is the particle diameter.

Following Savage [16,19], it is assumed that the partic-

ulate stress tensor ss is simply the sum of the kinetic stress

tensor ss
k and the frictional stress tensor ss

f, each contribu-

tion evaluated as if it acted alone:

ss ¼ sk
s þ sf

s ð8Þ

The physical basis for such an assumption remains

unproven, but it captures the two extreme limits of granular

flow; the rapid shear flow regime where kinetic contribu-

tions dominate and the quasi-static flow regime where

friction dominates. Frictional–kinetic theories based on this

simple additive treatment have been used to examine a wide

variety of flows such as flow down inclined chutes and

vertical channels [19,24], plane shear between parallel

plates [17,25] and flow through hoppers [26,27]. The

additive theory has been shown to capture the qualitative

features of such flows.

The kinetic stress tensor is now commonly modeled by

the kinetic theory of granular materials [14,28]. Accord-
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ingly, the averaged equations of motion are supplemented

by an equation representing the balance of pseudo-thermal

energy (PTE) of particle velocity fluctuations,

3

2
qsm

BT

Bt
þ v �jT

� �
¼ �j � q� sk

s : jv� Jcoll � Jvis

ð9Þ

where T denotes the granular temperature. The first term on

the right-hand side of this equation represents the diffusive

transport of PTE, where q is the diffusive flux of PTE. The

second term represents the rate of production of PTE by

shear, with the implicit assumption that work done by the

frictional component of stress is translated directly into

thermal internal energy and does not contribute to the

PTE of the particles [17]. The third term in the equation

represents dissipation of PTE through inelastic collisions,

whereas the fourth term denotes the net dissipation of PTE

through fluid–particle interactions.

Closure relations for ss
k and q used in our study are

presented in Table 1 (see Eqs. (1.1) and (1.3)). These

expressions represent slight modifications of those proposed

by Lun et al. [14] to account for the effects of interstitial gas

on particle phase viscosity and thermal diffusivity [18,22,29]

(see Eq. (1.5)). Setting l* and k* to l and k, respectively,
will recover the model proposed by Lun et al. [14]. The rate

of dissipation of PTE due to inelastic collisions Jcoll is

modeled following Lun et al. [14] (see Eq. (1.4)).

The net rate of dissipation of PTE by gas–particle

interactions, Jvis, consists of two terms as shown in Eq.

(1.8). The first term, 3bT, denotes the dissipation of PTE due

to gas–particle slip and is modeled following Gidaspow

[28]. The second term is the production of PTE by gas–

particle slip. The expression shown in Eq. (1.8) for this term,

without the go term appearing there, was derived by Koch

[30] for dilute systems. Koch and Sangani [31] have devel-

oped a more elaborate closure for this term; the go term in Eq.

(1.8) accounts for bulk of the refinement in concentrated

suspensions.

2.1. Frictional stress model

At high particle volume fractions, individual particles

interact with multiple neighbors through sustained contact.

Under such conditions, the normal reaction forces and the

associated tangential frictional forces at these sliding con-

tacts are dominant. The frictional model used here is largely

based on the critical state theory of soil mechanics [10,11].

It is assumed that the granular material is noncohesive and

follows a rigid–plastic rheological model of the type

proposed by Schaeffer [12] and Tardos [13] which is given

by

sf
s ¼ pf I þ Aðpf ; mÞ

Sffiffiffiffiffiffiffiffiffiffi
S : S

p ð10Þ

where

pf ¼
rf
s;xx þ rf

s;yy þ rf
s;zz

3

S ¼ 1

2

n
jvþ ðjvÞT

o
� 1

3
ðj � vÞI

and A is a function to be specified. According to Eq. (10),

the frictional stresses manifest an order-zero dependence on

the rate of strain. Such a behavior is well known in the

quasi-static regime of flow [10,11]. The following properties

of Eq. (10) can be proven readily:

(i) the principal axes of stress and rate of deformation are

coaxial, and

Table 1

Kinetic theory closures

Stress

sk
s ¼ ½qsmð1þ 4gmgoÞT � glbj � v�I � 2þ a

3

	 



 2l*
gogð2� gÞ 1þ 8

5
mggo

	 

1þ 8

5
gð3g � 2Þgo

� �
þ 6

5
glb

� �
S

ð1:1Þ

S ¼ 1

2

n
jvþ ðjvÞT

o
� 1

3
ðj � vÞI; a ¼ 1:6 ð1:2Þ

Pseudo-thermal energy flux

q ¼ � k*
go

1þ 12

5
mgg

	 

1þ 12

5
g2ð4g � 3Þmgo

� ��

þ 64

25p
ð41g � 33ÞðgmgoÞ2

�
jT ð1:3Þ

Rate of dissipation of pseudo-thermal energy

Jcoll ¼
48ffiffiffi
p

p gð1� gÞ qsm
2

d
goT

3=2 ð1:4Þ

l* ¼ l

1þ 2bl
ðmqsÞ2goT

; k* ¼ k

1þ 6bk
5ðmqsÞ2goT

ð1:5Þ

l ¼ 5qsdðpTÞ1=2

96
; lb ¼

256lm2go
5p

;

k ¼ 75qsdðpTÞ1=2

48gð41� 33gÞ ; g ¼ ð1þ epÞ
2

ð1:6Þ

goðmÞ ¼
1

1� ðm=mmaxÞ1=3
ð1:7Þ

Jvis ¼ 3bT �
81ml2

gðv� uÞ2

god3qsðpTÞ1=2
ð1:8Þ
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(ii) the granular material is isotropic and its deformation

satisfies an extended von Mises yield condition

Fðr1; r2; r3; mÞ ¼ ðr1 � r2Þ2 þ ðr2 � r3Þ2

þ ðr3 � r1Þ2 � 3A2 ¼ 0 ð11Þ

Here ri, i = 1, 3 denote the principal stresses. The yield

function F can equivalently be expressed in terms of the

stress components rij referred to an (x, y, z) coordinate

system by

F ¼ r2
xx þ r2

yy þ r2
zz þ 2r2

xy þ 2r2
yz þ 2r2

xz � 3p2f � A2 ¼ 0

ð12Þ

Additionally, if the postulate is made that the material

obeys an associated flow rule, the following compatibility

condition can be deduced [13,32]

j � v ¼ �
ffiffiffiffiffiffiffiffiffiffi
S : S

p BA

Bpf
ð13Þ

A variety of models for A( pf, m) have been described in

the soil and granular mechanics literature [13,26]. In our

illustrative examples, we have considered a form discussed

by Prakash and Rao [26]

A ¼ �
ffiffiffi
2

p
pf sin/ n� ðn� 1Þ pf

pc

	 
 1
n�1

( )
ð14Þ

where / is the angle of internal friction, pc = pc(m) is the

critical state pressure and n is an exponent that determines

the shape of the yield surface. Combining Eqs. (10), (13)

and (14), we get

sf
s

pcðmÞ
¼ pf

pc
I �

ffiffiffi
2

p pf

pc
sin/ n� ðn� 1Þ pf

pc

	 
 1
n�1

( )


 Sffiffiffiffiffiffiffiffiffiffi
S : S

p ð15Þ

and

pf

pcðmÞ
¼ 1� j � v

n
ffiffiffi
2

p
sin/

ffiffiffiffiffiffiffiffiffiffi
S : S

p
� � 1

n�1

ð16Þ

If the assembly dilates as it deforms, j�v>0 and

pf < pc(m). Similarly, if the assembly compacts as it deforms,

j�v< 0 and pf>pc(m). At the critical state, where the granular
assembly deforms without any volume change, j�v = 0, Eq.
(16) reduces to pf = pc(m), and Eq. (15) becomes

sf
s

pcðmÞ
¼ I �

ffiffiffi
2

p
sin/

Sffiffiffiffiffiffiffiffiffiffi
S : S

p ð17Þ

This expression, which is valid only at the critical state, is

sometimes used as a simpler representation of the stresses in

the granular assembly even when j�v p 0.

Returning to Eqs. (15) and (16), the dilation and com-

paction branches of the yield surface are usually modeled

separately (see, for example, Prakash and Rao [26]). In our

work, we retain the same functional form for A( pf, m) in both
branches, but choose different values of n for dilation and

compaction as discussed below (Fig. 1).

Setting n ¼
ffiffiffi
3

p
=2sin/ in the dilation branch ensures that

the granular assembly is not required to sustain tensile stress

anywhere on the yield surface. On the compaction side, n can

assume any value greater than unity; however, it appears

from literature data that n is only marginally larger than unity

[27,33]. The value of n is thus set to 1.03, which is the value

determined by Jyotsna [33] for Leighton–Buzzard sand. Fig.

2 shows the master curve for the family of yield loci

represented by Eqs. (15) and (16) in 2-D principal stress

space for / = 28.5j and n = 1.03.

It only remains to discuss the critical state pressure pc(m),
which is used to collapse the nest of yield surfaces to a single

surface. pc (m) is the mean stress at the critical state corre-

sponding to that value of m. In general, pc increases monot-

onically with m and is expected to become very large

(f diverge) as m approaches random close packing mmax.

Various expressions have been proposed for the functional

dependence of pc on m in the literature [9,10,12,13,17,19,26].
In our test simulations, we have used the form considered by

Johnson and Jackson [17],

pcðmÞ ¼
F

ðm�mminÞr
ðmmax�mÞs m > mmin

0 mVmmin

8<
: ð18Þ

where F, r and s are constants. This model asserts that

frictional interactions do not occur at values of m < vmin.

Fig. 1. Yield loci in 2-D principal stress (r1, r2) space for different values of
the solids volume fraction m. C1 and C2 denote critical states at volume

fractions m1 and m2, respectively. The segments OC1 and OC1 represent

dilation branches; C1V1 and C2V2 represent compaction branches. The

dotted lines represent the critical state loci.
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2.2. Modification of frictional–kinetic model

Savage [19] argued that even in purely quasi-static flow

there exist fluctuations in the strain rate associated with the

formation of shear layers and that these fluctuations will

lower the shear stress in the assembly. These shear layers are

typically tens of particle diameters in thickness. The length

scales, therefore, associated with the microscale, i.e. particle

diameter d, and the macroscale, i.e. thickness of a shear

layer, are not very different. Using this reasoning, Savage

suggested a simple estimate for the root mean square strain

rate fluctuation, e, as

e ¼ wT1=2

d
ð19Þ

where w is a constant of order unity. In the present manu-

script, we consider an ad hoc modification of Eqs. (15) and

(16), which recognizes the effect of strain rate fluctuations

in an approximate manner, and write

sf
s

pcðmÞ
¼ pf

pc
I �

ffiffiffi
2

p pf

pc
sin/ n� ðn� 1Þ pf

pc

	 
 1
n�1

( )


 Sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S : S þ T=d2

p ð20Þ

with

pf

pcðmÞ
¼ 1� j � v

n
ffiffiffi
2

p
sin/

ffiffiffiffiffiffiffiffiffiffi
S : S

p �������þ T=d2

( ) 1
n�1

ð21Þ

With such a formulation, numerical singularity is avoided

in regions where S:S is zero as long as the granular

temperature T is nonzero. If, however, the physical system

does contain regions where both S:S and T are zero, the

present model will fail. Thus, in a bin discharge problem,

the stagnant shoulders at the bottom corners of the bin,

which are indeed physically real features, cannot be cap-

tured by this rheological model unless we bring in addi-

tional considerations. This, however, is beyond the scope of

this paper and we will simply investigate the consequence

of the above closure—one can anticipate that in the bin

discharge problem the stagnant shoulder will be replaced

by a region of slow flow when we simplify the above

rheological model everywhere. Eq. (17), which invokes the

critical state hypothesis, is also modified in an analogous

manner.

sf
s

pcðmÞ
¼ I �

ffiffiffi
2

p
sin/

Sffiffiffiffiffiffiffiffiffiffi
S : S

p �������þ T=d2
ð22Þ

2.3. Test simulations—grid-scale flutter

The frictional–kinetic model described in the preceding

sections was implemented within the framework of the

finite-volume based MFIX code [34]. This code uses a

staggered grid arrangement and the SIMPLER algorithm of

Patankar [35] to solve the volume-averaged equations of

motion.

A number of test simulations involving discharge of

granular material from a two-dimensional rectangular bin

were run to examine the robustness of the code. In all the test

cases, persistent grid-scale flutter in the solids volume

fraction profile and velocity field was observed after some

time steps [32]. This flutter did not arise if the critical state

hypothesis was invoked (i.e. pf = pc). The origin of this flutter

was traced to Eq. (21), which requires the frictional pressure

to respond to the rate of deformation instantaneously. As

discussed in a greater detail elsewhere [32], a simple and

physically reasonable approach to remedy this problem,

without compromising on the essential features of the fric-

tional model, is to let the granular material relax to the state

dictated by the compatibility condition. This can be repre-

sented as

Bðpf=pcÞ
Bt

þ v �jðpf=pcÞ ¼
ðpf=pcÞ*� ðpf=pcÞ

s
ð23Þ

where

pf

pc

	 

*
¼ 1� j � v

n
ffiffiffi
2

p
sin/

ffiffiffiffiffiffiffiffiffiffi
S : S

p �������þ T=d2

( ) 1
n�1

ð24Þ

and s being the relaxation time. This relaxation time can be

viewed as a physically meaningful quantity if one argues that

particles do not respond instantaneously to deformation. On

Fig. 2. Scaled yield locus in principal stress (r1, r2) space. C1 and C2

denote critical states. The segments OAC1 and C1BP represent dilation and

compaction branches, respectively.
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the other hand, it can simply be viewed as a small numerical

damping introduced to eliminate grid-scale flutter from

simulations as well. With this relaxation model implemented

in MFIX, all test simulations ran robustly and did not

manifest any grid-scale flutter.

3. Simulations

3.1. Discharge from a two-dimensional bin

Simulations of particle discharge from a 2-D rectangular

bin, 8 cm wide, 100 cm high and open at the top, were

performed. The width of the central orifice at the bottom

varied between 1.4 cm and 2 cm. A schematic of the

simulation domain is shown in Fig. 3a. A 5-cm high region

below the bin was included in the domain so that a boundary

condition was not required right at the exit of the bin.

Symmetry of the solution about the vertical centerline of

the bin was assumed.

The grid resolutions are 1 and 2 mm in the horizontal and

vertical directions, respectively. Such a fine mesh was

required to effectively resolve variations in the velocities

and solids volume fractions near the orifice region. Initially,

the bin was filled with particles at a solids volume fraction of

0.60. The initial granular temperature was taken to be non-

zero everywhere (1 cm2/s2). As noted earlier, our simulations

require that S:S + T/d2 is not zero at any location. Table 2 lists

the values of the model parameters used in the simulations,

most of which were taken from Johnson and Jackson [17].

The flow behavior of particles of two different sizes were

investigated—100 Am (Geldart A) and 1 mm (Geldart B)

particles.

Fig. 3. Schematic diagrams showing the geometries used in the test simulations. (a) Bin discharge; (b) Bubble rise in a fluidized bed.

Table 2

Values of model parameters used in simulations

qg gas density 1.3
 10� 3 g/cm3

lg gas viscosity 1.8
 10� 4 g/cm.s

qs solids density 2.9 g/cm3

d particle diameter 1 mm, 100 Am (bin discharge),

400 Am (rising bubble)

s relaxation time for solids 10� 3, 10� 2, 10� 1 s

/ angle of internal friction 28.5j
d angle of wall friction 12.3j
/V specularity coefficient 0.25

ep particle–particle coefficient

of restitution

0.91

ew coefficient of restitution at wall 0.91

n parameter for shape of yield

surface

ffiffiffi
3

p
=2sin/ (dilation branch),

1.03 (compression branch)

F Constant in equation for pc(m) 0.5 dynes/cm2

r exponent in equation for pc(m) 2

s exponent in equation for pc(m) 5

mmin threshold volume fraction

for friction

0.5

mmax maximum solids packing 0.65
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The momentum and PTE boundary conditions for the

particulate phase at the walls of the bin were taken from

Johnson and Jackson [17]. These can be written as

n � ðsk
s þ sf

sÞ �
vsl

AvslA
þ ðn � sf

s � nÞtand

þ p
ffiffiffi
3

p

6mmax

/VqsmgoT
1=2vsl ¼ 0 ð25Þ

n�q ¼ p
ffiffiffi
3

p

6mmax

/VqsmgoT
1=2AvslA

2 � p
ffiffiffi
3

p

4mmax

ð1� e2wÞqsmgoT
3=2

ð26Þ

where n is the unit normal from the boundary into the particle

assembly, d is the angle of wall friction for the material, /Vis
the specularity coefficient, ew is the coefficient of restitution

at the wall and vsl is v� vwall, the slip velocity of the particle

assembly at the wall. The gas was allowed to slip freely at the

wall.

At the open boundaries of the integration domain, the gas

pressure was set to be atmospheric. For all other dependent

variables, the usual continuation condition (i.e. zero gradient

in the direction normal to the boundary) was applied.

3.2. Rising bubble in fluidized bed

Simulations involving the rise of a single bubble in a

fluidized bed were done for two reasons: (a) to contrast the

flow patterns obtained with and without the frictional

stresses, and (b) to examine the consequences of assuming

that the granular material is in a critical state everywhere (for

the purpose of computing the stresses), i.e. j�v = 0 and

pf = pc. This assumption leads to considerable simplification

of the frictional model.

The simulation domain was a two-dimensional fluidized

bed, 14 cm in width and 70 cm in height. The grid resolution

was 3 mm in both the horizontal and vertical directions.

Symmetry of the solution about the vertical centerline was

assumed. Initially, the fluidized bed was filled with particles

at a solids volume fraction of 0.58 up to a height of 40 cm. A

schematic of the simulation domain is shown in Fig. 3b. The

values of the parameters used in these simulations are the

same as in the bin discharge problem and are listed in Table

2. However, the particle diameter here was 400 Am.

At the walls, free-slip boundary conditions were imposed

so that one can remove the effect of a partial slip boundary

from the comparisons. A pressure at the top boundary was

set to be atmospheric. The bed was fluidized by a steady

airflow at a vertical velocity 22 cm/s (entering through the

bottom surface of the fluidized bed). In addition, in the first

0.2 s of simulation time, a jet of air at a velocity of 100 cm/s

was introduced into the bed through a centrally located 2 cm

slit at the bottom. After 0.2 s, the velocity of the fluidizing air

through this slit was restored to 22 cm/s. The purpose of the

jet was to create a bubble which then rose through the

fluidized bed.

4. Results

4.1. Bin discharge—1 mm particles

The temporal variation of the discharge rate of 1 mm

particles from the bin with an orifice width of 1.4 cm is

shown in Fig. 4. In these simulations, the gas phase was

turned off and only the particle phase equations were solved.

The three different curves in this figure correspond to three

different values of the relaxation time constant s. At early
times, there was a rapid increase in the discharge rate, which

was then followed by a plateau region where the discharge

rate did not vary appreciably with time. We will loosely refer

to this plateau as the steady discharge region. It is worth

noting that the discharge rate in this plateau did not change

much even when s was varied over two orders of magnitude.

In all the results presented below, s was set to 10� 3 s.

During the period of steady discharge, the depth of

material in the bin varied considerably. For example, at time

t = 1.5 s, the depth was 85 cm while at time t= 4.5 s it was

53.9 cm. The discharge rate was, therefore, roughly inde-

pendent of the height of the material in the bin. Experimen-

tally, it has long been known that the flow rate of Geldart

type B granular material from bins and hoppers is independ-

ent of the surcharge level [36].

Simulations including the gas phase equations yielded

essentially the same discharge rate, showing that the gas had

a negligible effect on the discharge behavior of the 1-mm

particles, which is entirely reasonable [36,37].

The particle phase velocity (at an instant of time in the

plateau region) in the bottom region of the bin is shown in

Fig. 4. The rate of discharge of 1-mm particles as a function of time. See

Fig. 3a for a schematic of the geometry of the bin. The results

corresponding to three different relaxation times are shown. The gas phase

equations were not considered in these simulations. In calculating the

discharge rate, the thickness of the bin was taken to be 1 cm.
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Fig. 5. The corresponding solids volume fraction distribu-

tion is superimposed. The width of the orifice in this case

was 1.4 cm. The region far above the orifice was charac-

terized by a nearly uniform particle concentration where the

material was effectively in (nearly) plug flow. As particles

approached the orifice region, the flow converged towards

the orifice, as one would expect. At the orifice, there was a

substantial decrease in the particle concentration accompa-

nied by a simultaneous increase in the velocities as the

particles were discharged. There was further dilation and

increase in the downward velocity as particles accelerated

down after discharge.

It is clear from Fig. 5 that there was some flow even in the

corners of the bin, regions which should truly be stagnant.

The frictional model was thus unable to predict the formation

of the experimentally observed stagnant zones on either side

of the orifice. This was due to the addition of the term T/d2 in

the denominator; the conduction of PTE from regions of high

shear near the orifice to the corners ensured that granular

temperatures in the latter regions were nonzero.

Fig. 6 shows solids volume fraction profiles at three

elevations below the plane of the orifice for the preceding

simulation. The vertical lines indicate the positions of the

edges of the orifice. Just below the orifice, the profile

displayed a marked convexity. At lower depths the profiles

manifested greater lateral spreading as the material dilated

after being discharged, with the particle concentration being

maximum on the centerline. Very similar experimental

profiles were observed by Fickie et al. [38] for discharge

of 1-mm particles from a wedge-shaped hopper.

The variation in the solids volume fraction along the

vertical centerline (during the steady discharge rate period)

as a function of height above the plane of the orifice is

shown in Fig. 7 (as solid line). From a value of 0.60 high in

the bin, m fell rapidly on approaching the orifice, reaching a

value of 0.52 at the plane of exit. Below the orifice, particle

concentration decreased rapidly as the stream of particles

accelerated under gravity. Experimental investigations such

as those of Bransby et al. [39] and Fickie et al. [38] do

reveal considerable changes in the particle concentration

from point to point within the hopper. Discrete element

simulations of discharge from a hopper also show the same

trend [40].

The bin discharge simulation described in Figs. 4–7 was

repeated invoking the critical state hypothesis for the fric-

tional stresses (i.e. postulate that pf = pc). It was found that

the results were virtually indistinguishable. This is illustrated

in Fig. 7, where the broken line corresponding to the critical

state hypothesis overlaps very nearly the solid line obtained

with the more detailed stress model. The variation of the ratio

pf/pc along the centerline, obtained with the detailed stress

model, is shown in Fig. 8. Only a small region near the

orifice is shown in this figure. It is clear that this ratio was

very close to unity well above the orifice; as the granular

assembly approached the orifice, it dilated and the ratio

decreased. Note that this ratio dropped by only f 10%,

Fig. 5. A vector plot of particle phase velocity. See Fig. 3a for a schematic

of the geometry of the bin. This is a magnified view of the bottom region of

the bin. A grayscale plot of the particle phase volume fraction field is

superimposed. Discharge of 1-mm particles from the bin. The results

represent an instantaneous snapshot in the steady discharge rate plateau.

Fig. 6. The lateral variation of solids volume fraction at various distances

below the exit orifice. Discharge of 1-mm particles from the bin. See Fig. 3a

for a schematic of the geometry of the bin. The results represent a time-

average of data in the steady discharge rate plateau.

A. Srivastava, S. Sundaresan / Powder Technology 129 (2003) 72–85 79



even though there was appreciable dilation. This was be-

cause of the large rate of strain (and hence S:S) near the

orifice. Thus, even in the presence of appreciable dilation

near the orifice, critical state hypothesis is reasonable for the

purpose of estimating the stresses in the present problem.

This is in line with the finding of Tardos [13] who analyti-

cally showed that flow in a wedge plane hopper takes place

under conditions very close to the critical state.

Many of the early attempts to predict the mass flow rate of

Geldart type B particles discharging from a bin under the

action of gravity were based on dimensional analysis or

semi-empirical correlations. All these studies have tended to

rely heavily on the concept of a ‘‘free-fall surface’’ in the

neighborhood of the orifice. Above the free-fall arch, par-

ticles are in contact with one another and the granular

material is usually treated as a noncohesive incompressible

Coulomb powder. Below the arch, particles are no longer in

contact with one another and accelerate freely under gravity.

Since the discharge rate of granular materials from bin is

dependent on conditions near the orifice, it has been argued

that the free-fall surface scales with the orifice diameter or

width (Do). Ignoring the possible effects of particle diam-

eter d, dimensional analysis suggests that particle velocity v

at the orifice then scales as (gDo)
1/2. Scaling for the dis-

charge rate W of material from a hopper or bin should there-

fore be

W ¼
qg1=2D5=2

o 3� D bin or hopper flow

qg1=2D3=2
o H 2� D channel

8<
: ð27Þ

where q is a density characteristic of the flowing material

and H is the thickness of the hopper/bin. Indeed, semi-

empirical correlations found in the literature are of the form

shown above. The well-known Beverloo correlation [41] for

discharge from two-dimensional hoppers and bins can be

written (when the orifice diameter is much larger than that of

the particles) in simplified form as

W ¼ Cqig
1=2D3=2

o H ð28Þ

where qi is the initial density achieved during the filling

process and C is an empirical constant in the range

0.55 <C< 0.65. The variation of the discharge rate with

orifice width for our system is shown Fig. 9 where the

discharge rate is seen to scale as Do
1.4. This compares well

with the expected value of 1.5 for the exponent. However,

the steady discharge rates obtained in our simulations yield

Cc 1.6, which is significantly larger than the typical

experimental value. It is possible that this discrepancy is

due to the fact that simulation failed to capture the stagnant

shoulder; however, it should be noted that theoretical

analyses tend to overestimate the discharge rate of particles

from a small-angled hopper as well.

Tardos [13] studied the discharge of compressible pow-

der from a wedge-shaped hopper, using an equation of the

form pcm
1/n = constant for the critical state pressure. He

found that as n was varied from 0 to 0.25, corresponding

to the granular flow becoming increasingly compressible,

the coefficient C reduced from 2.0 to 0.90.

As mentioned above, most theoretical analyses of bin or

hopper discharge postulate the existence of a free-fall arch at

the exit orifice, where the normal stress is assumed to

vanish. Kaza and Jackson [42] have argued that this sce-

Fig. 8. The variation of pf/pc with height along the centerline. Discharge of

1-mm particles from the bin. See Fig. 3a for a schematic of the geometry of

the bin. The results represent a time-average of data in the steady discharge

rate plateau. Simulations ignored the interstitial air.

Fig. 7. The variation of solids volume fraction with height along the

centerline. The horizontal (dashed) line indicates the location of the exit

orifice. Discharge of 1-mm particles from the bin. See Fig. 3a for a

schematic of the geometry of the bin. The results represent a time-average

of data in the steady discharge rate plateau. The solid curve was obtained

from a simulation which ignored the interstitial air. The broken line, which

overlaps almost exactly with the solid curve, was obtained in a simulation

which included the effect of the interstitial air.
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nario with the density of the material remaining constant up

to the free-fall surface, below which it accelerates, is

inconsistent with the laws of motion. The results of our

simulations support this argument. For example, there is no

evidence of a discontinuous change in the slope of m in Fig.

7, as one would expect at a free-fall surface of the type

described previously. Furthermore, the decrease in the bulk

density of the granular material starts well within the regime

where frictional interactions are dominant and makes the

zero normal stress boundary condition questionable.

The decrease in the particle concentration m also has

implications for semi-empirical correlations. Such correla-

tions require a density q for dimensional consistency as

shown in Eq. (28), but there is significant controversy as to

the appropriate value to use. Beverloo et al. [41] used the

initial density achieved during the filling process, qi, in their

correlation. Kotchanova [43] argued that the bulk density in

the vicinity of the orifice region should be used although

how this value is to be evaluated is unclear according to

Nedderman [44].

4.2. Bin discharge—100 lm particles

The temporal variation in the discharge rates of 100 Am
particles in the presence and absence of air is shown in Fig.

10. In the absence of air, the discharge rate manifests the

plateau region as is expected. It is noteworthy that the steady

state discharge rate is almost the same as that for the 1-mm

particles. Indeed, the frictional model is independent of the

diameter of the particle in the regions where the S:S term

dominates over the T/d2 term, as is the case for the orifice

region in bin discharge.

The discharge rate is significantly lower in the presence of

air than that in the absence of air. It is well known that the

discharge rate decreases as the particle size decreases [45]

primarily because the motion of the particles is significantly

impeded by drag exerted by the air and that the Beverloo

correlation cannot be used to predict discharge rates of

particles less than 400 Am in size [44].

Fig. 10. The rate of discharge of 100 Am particles as a function of time. See Fig. 3a for a schematic of the geometry of the bin. In calculating the discharge rate,

the thickness of the bin was taken to be 1 cm.

Fig. 9. The rate of discharge of particles with orifice diameter. Discharge of

1-mm particles from the bin. See Fig. 3a for a schematic of the geometry of

the bin. The results represent a time-average of data in the steady discharge

rate plateaus. Simulations ignored the interstitial air.
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Nedderman [44] has shown that for a hopper, in the

absence of voidage changes, the gas and solids flow through

with the same velocities and there is no drag on the

particles. Thus, the influence of drag on the discharge of

fine particles must be due to relative velocities between the

two phases induced by changes in the particle concentration.

The variation of the time-averaged solids volume fraction

along the centerline (in the plateau region where the

discharge rate is nearly constant) is shown in Fig. 11. In-

deed, the presence of air changes the m-profile near the

orifice region appreciably. It is noteworthy that the magni-

tude of the change in m in the presence of air is much smaller

than that in the absence of air. There is some experimental

evidence to support this observation. The experiments of

Fickie et al. [38] for 1-mm particles, which are insensitive to

fluid drag, reveal considerable changes in particle concen-

tration along the centerline of the hopper. The experiments

of Spink and Nedderman [45] for the discharge of 110-Am
sand particles from a hopper, show a relatively small but

rapid change in the particle concentration immediately

above the orifice.

During discharge of a fine material through a hopper or a

bin, a subatmospheric pressure is known to develop just

above the orifice [45], when both the top and the bottom of

the bin are exposed to atmospheric pressure. This was

indeed observed in our simulations. The time-averaged

pressure profile along the centerline is shown in Fig. 12.

Just above the orifice region the air pressure was lower than

the ambient pressure just below the orifice. The magnitude

of this pressure deficit is comparable to the values recorded

experimentally [45,46].

Fig. 11. The variation of solids volume fraction with height along the

centerline. See Fig. 3a for a schematic of the geometry of the bin. The

horizontal line indicates the location of the exit orifice. Discharge of 100-Am
particles from the bin. The results represent a time-average of data in the

steady discharge rate plateau. The solid curve was obtained from a simulation

which ignored the interstitial air. The broken linewas obtained in a simulation

which included the effect of the interstitial air.

Fig. 12. The variation of gas pressure (scaled with atmospheric pressure) with height along the centerline. See Fig. 3a for a schematic of the geometry of the

bin. The horizontal line indicates the location of the exit orifice. Discharge of 100-Am particles from the bin. The results represent a time-average of data in the

steady discharge rate plateau.
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4.3. Rising bubble in fluidized bed

Instantaneous snapshots of the solids volume fraction

profile of a bubble (circular cap) in a fluidized bed at time

t = 0.5 s are shown in Fig. 13a–c. Panel (a) was obtained

with the full frictional model. The relaxation time constant s
was 10� 3 s for this case. Panel (b) was obtained from a

simulation where the critical state hypothesis was used to

determine the frictional stresses. Finally, panel (c) represents

the situation where frictional stresses were turned off and

only the kinetic stresses were considered.

It is clear that neglecting the frictional stresses altogether

changed the dynamics of the bed considerably. When only

collisional stresses were present, as depicted in Fig. 13c, the

spherical cap was more elongated along the vertical axis and

rose faster than when frictional stresses were present. As the

cap rose, it produced nonuniformities in its wake. These

nonuniformities then grew as can be seen in the bottom

portion of Fig. 13c.

Comparing Fig. 13a and b, it can be seen that the shapes

of the circular caps in both panels are very similar. Thus, the

assumption that the granular material is at a critical state

everywhere appears to be quite adequate for dense fluidized

beds as well as gravity discharge from bins. This has

important implications in the modeling of frictional stresses.

The critical state assumption leads to considerable simplifi-

cation of the frictional stress model described here. In

addition to the equations becoming much simpler, the critical

state assumption obviates the need of solving Eqs. (23) and

(24) for the relaxation of pf/pc. This speeds up the compu-

tations and also makes it more robust.

5. Summary

A frictional–kinetic constitutive model for particle phase

stresses is described. This model assumes that the frictional

and kinetic stresses are additive [16,17]. For the frictional

stresses, we began with a model based on an extended von

Mises yield criterion and an associated flow rule [12,13],

modified it in a simple, but ad hoc, manner to account for

strain rate fluctuations [19] and also allowed the granular

material to relax slowly to the yield surface. A simplified

version of the model was obtained by invoking the critical

state hypothesis [10]. The kinetic stresses have been modeled

using the kinetic theory of granular materials with some

modifications to account for the presence of the gas phase

[18,28,31]. These models have been implemented within the

framework of the finite-volume based MFIX code [34].

Simulations of discharge of granular material from a 2-D

rectangular bin were performed for two different particle

sizes. The discharge rate for 1-mm particles was found to

plateau out with time and become approximately independ-

ent of the height of the material in the bin [36,41]. As

expected, the gas phase did not affect the rate of discharge of

these large particles. These simulations also revealed a

significant variation in particle concentration near the orifice

region, which is in line with experimental observations [38].

Fig. 13. Instantaneous grayscale plots of solid volume fraction field in a bubble rise simulation. (a) Full frictional–kinetic model; (b) Critical state hypothesis;

(c) Kinetic stresses only. 400 Am particles in air. See Fig. 3b for a schematic of the geometry.
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The discharge behavior of 100 Am particles was affected

by the interstitial gas appreciably. The discharge rate in the

presence of air was substantially lower than that in the

absence of air. This well-known effect [45] is correctly

captured by the simulations.

Although the frictional stress model described here is able

to qualitatively predict many of the features of gravity

discharge from a bin, it suffers from two main defects. First,

it cannot predict the formation of stagnant shoulders at the

corners of the bin. Second, it overestimates the discharge

rate.

Simulations of a rising bubble in a fluidized bed re-

vealed that the shape of the bubble changed appreciably

when the frictional stresses were dropped, demonstrating

the significant effect of the frictional stress on the bubble

shape.

The critical state hypothesis was found to be fairly

accurate for both problems. It simplifies the frictional stress

model, renders the code more robust and increases the

computational speed.

Nomenclature

A function defined by Eq. (14)

CD drag coefficient (see Eq. (7))

d particle diameter

Do orifice diameter or width

ep coefficient of restitution for particle–particle

collisions

ew coefficient of restitution for particle–wall colli-

sions

_f interaction force between the two phases per unit

volume

F yield function (see Eqs. (11) and (12))

g specific gravity force

go see Eq. (1.7)

I unit tensor

Jcoll rate of dissipation pseudo-thermal energy by

inelastic collisions per unit bed volume (see Eq.

(1.4))

Jvis net rate of dissipation pseudo-thermal energy by

gas–particle interactions per unit bed volume (see

Eq. (1.8))

n see Eq. (14)

n unit normal from the boundary into the particle

assembly

pc critical state pressure

pf frictional pressure in the particle phase

pg gas pressure

q diffusive flux of pseudo-thermal energy (see Eq.

(1.3))

Reg Reynolds number (see Eq. (7))

T granular temperature

u local average velocity of the gas phase

v local average velocity of the particle phase

vsl slip velocity of the particle assembly at the wall

Greek symbols

b interphase drag coefficient

m volume fraction of particles

mmin, mmax see Eq. (18)

qs, qg densities of the solids and the gas, respectively

ss, sg stress tensors associated with the solid and gas

phases, respectively

ss
k, ss

f kinetic and frictional stress tensors, respectively

ri, i = 1, 3 principal stresses

lg,eff effective gas phase viscosity

/ angle of internal friction

e magnitude of strain rate fluctuation

s relaxation time

d angle of wall friction for the material

/V specularity coefficient
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Abstract

Acceleration and sound measurements during granular discharge from silos are used to show that silo music is a sound resonance

produced by silo quake. In tall and narrow silos, the latter is produced by stick–slip friction between the wall and the granular material. For

the discharge rates studied, the occurrence of flow pulsations is determined primarily by the surface properties of the granular material and the

silo wall. The measurements show that the pulsating motion of the granular material drives the oscillatory motion of the silo.

D 2004 Elsevier B.V. All rights reserved.

Keywords: Silo quake; Silo music; Stick–slip flow; Resonance; Creep; Granular discharge
1. Introduction

The discharge of granular materials from silos is often

characterized by vibrations or pulsations of the silo, termed

dsilo quakeT, and a loud noise, termed dsilo musicT [1–9].
Both of these are undesirable as silo quake may cause

structural failure, and silo music is a source of noise

pollution. Unfortunately, the numerous conflicting studies

published in the literature [1–9] do not give the silo designer

a simple model to understand the physical processes that

cause the pulsations and to guide the silo design or

modification that would prevent the pulsations or at least

minimize their effect. The purpose of this study is to

investigate the cause of the noise and the pulsations, and the

interaction between the motion of the granular material and

the motion of the structure.

Several studies of the discharge of granular material

from silos have noted fluctuations in discharge rate and the

production of noise and vibration [1–9]. The top of the

granular material has been observed to move in discrete

steps, although the discharge from the bottom of the silo

was continuous [1,6]. For smooth-walled, tall, narrow
0032-5910/$ - see front matter D 2004 Elsevier B.V. All rights reserved.
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silos, pulsations occurred during both mass and mixed

flow. The pulsations were observed to stop at a critical

height of granular material in the silo [2,10]. Methods

suggested for preventing pulsations include roughening the

walls in the transition zone between the bunker and the

orifice [2,4,10] and the placement of inserts along the silo

walls [1].

In an early study, Phillips [6] observed the motion of

sand in a tube which had a glass face and was closed at

the lower end by a flat bottom having a central orifice.

When the orifice was opened, the sand in the upper part of

the tube moved downward intermittently in jerks. Phillips

noted, bwhen the flow begins, a curious rattling sound is

heard which changes to a distinct musical noteQ. He also

did experiments in which the tube was first partly filled

with mercury and then filled with sand. Once again, the

free surface of the sand descended intermittently when the

mercury was allowed to flow through the orifice. He

observed that the length of the column of sand increased

by about 2% during the dstickT phase. Furthermore , the

motion of the granular material caused the wall of the tube

to vibrate. Thus, both silo music and silo quake occurred

in his experiments, and he suggested that the stick–slip

motion of the sand may be responsible for these

phenomena.
5 (2004) 190–202
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Some recent studies have suggested that the pulsations

are intensified by a resonant interaction between the

granular material and the silo structure [3,5,10,11]. How-

ever, in one of these studies, Tejchman [10] also noted that

the magnitude and presence of the flow pulsations were

influenced by environmental factors, such as temperature

and electrostatic effects, which suggests that while resonant

interaction can intensify the pulsations it is not the only

requirement for pulsations to occur. Olvarez and Clément

[12] have also observed that the humidity, an environmental

factor, can have a strong influence on the sliding motion of a

slowly pushed granular column. They found that particle

and wall frictional properties are important in determining

stick–slip motion in granular systems.

Hardow et al. [1] conducted experiments in a silo whose

natural frequencies were significantly greater than the

pulsation frequency. In these experiments, pulsations clearly

occurred even in the absence of resonance. These authors

proposed that the motion of the silo was driven by the rapid

acceleration and deceleration of the granular material in the

bin section, which were caused by the stress fluctuations in

the granular material in the hopper section. As the granular

material in the hopper region deforms, there are periods

where the mass of granular material in the bin is not

supported and the bed collapses in a downward step creating

a large impulse which shakes the silo structure. These

authors observed pulsations during core flow in a silo that

was 6 m high, 0.6 m deep, and 1.2 m wide, and hence the

flow kinematics were considerably different from those in

tall narrow silos.

Wensrich [8,9] proposed that these pulsations are due to

compression and dilation waves in the granular material,

which are created by stick–slip motion between the granular

material and the silo walls. However, pulsations have also

been observed in funnel flow bunkers, where the granular

material at the walls does not slip during discharge [1].

Wensrich [8,9] has suggested that the pulsation creation

mechanism is entirely different in funnel flow, but does not

give evidence to support his conjecture.

Finally, Moriyama and Jimbo’s [4] findings suggest that

the magnitude of the pulsations is determined by how the

granular material changes from a compressed state in the

bunker to a dilated state in the hopper. They also found

that the likelihood of a silo discharging with pulsations

was dependent on the method used to fill the silo. They

did not propose a physical mechanism to explain their

observations.

The aim of this study, which is largely experimental, is to

obtain a mechanistic understanding of silo music and flow

pulsations. Through a combination of sound, bed height,

and acceleration measurements, it is shown that silo music is

driven by the stick–slip pulsating motion of the granular

material during discharge and is associated with a sound

resonance in the air column above the bed. Different wall

and granular materials have been used to probe their role on

flow pulsations and silo music during silo discharge.
2. Related studies on stick–slip friction in granular

materials

To explain the rationale in the choice of experimental

measurements, it is worth reviewing the generally under-

stood kinematics of the discharge of granular material from

a bin or hopper and relating these to stick–slip friction in

granular materials. Experiments show that in a tall, flat-

bottomed cylindrical bin, with walls having a lower friction

coefficient than the internal friction angle of the granular

material, there is a region of plug flow at the top of the full

silo. As the silo empties, the size of the plug flow region

decreases, and eventually all of the flowing material is in

converging flow. The discharge rate from the bin is

independent of the height of material in the bin, provided

the height is greater than a few multiples of the diameter of

the orifice [13] and scales as g1/2D5/2, where D is the orifice

diameter and g is the acceleration due to gravity.

Radiographic studies of slow dense granular flow in

model bunkers show that velocity discontinuities exist at the

transition from the bin to the hopper [14]. Measurements in

a discharging bunker indicate that there is a dynamic arch at

the transition where the nature of the material flow changes

from one without deformation (above the arch) to one where

the material deforms (below the arch) as it approaches the

orifice [15]. Pressure measurements [1,3,4] near the

transition from the bin to the hopper indicate that there is

also a stress discontinuity [15] and that there can be large

pulsating stresses, which correspond to the cyclical for-

mation and breakage of the dynamic arch. This pulsating

behavior only occurs for dense assemblies [15] and is very

similar to silo quake.

The experiments that identified the dynamic arch [15]

were conducted in a bunker where the bin to hopper

transition determined the location of the dynamic arch. In a

flat-bottomed silo (such as the one used in our study), the

stagnant material adjacent to the orifice creates a hopperlike

region. Thus, the discharge from a flat-bottomed silo can be

expected to show many of the features observed in bunkers.

If the density of the material in the plug flow region above

the dynamic arch is high, it must dilate as it crosses the arch

in order to deform in the hopperlike region.

Nasuno et al. [16] have studied stick–slip motion in

granular materials using a simple shear device with 70–110

Am glass beads and 100–600 Am sand. They observed stick–

slip motion at low average slip rates, which became

continuous at very large average slip rates. They also

observed that at very small driving velocities, the period of

stick–slip fluctuations was inversely proportional to the

driving velocity. For glass beads, the system fluctuated with

a nearly constant period, while for sand, the period varied

stochastically. As the sliding velocity was increased, the

period became independent of velocity, and finally at large

sliding velocities, the motion became continuous. In these

simple shear experiments, the spring constant connecting

the driving piston to the sliding mass was varied, and it was



Fig. 1. Experimental setup for vertical acceleration and sound measure-

ments. The numbers indicate (1) spring on positioning slider, (2)

accelerometer, (3) positioning roller, (4) microphone, and (5) positioning

slider.
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found that the spring constant influenced both the pulsation

frequency and the critical driving velocity at which the

pulsation frequency became independent of the driving

velocity.

Nasuno et al. [16] also observed that a lengthy period of

slow vertical dilation preceded rapid slip events in the

horizontal direction. This dilation was measured by Gem-

inard et al. [17], who found that in the shear zone, particles

climb slowly over each other. Once the particle is ~5% of a

particle diameter over the particle below it, slip occurs and

the top layer jumps forward before slowing down again and

settling into another zone of particles [17]. In the experi-

ments of Geminard et al. [17], the particle volume fraction

was indistinguishable from the random close-packed vol-

ume fraction of 63%.

These studies show that granular materials can undergo

stick–slip motion, and that this can couple with the

mechanical system (for example, a mass–spring system) in

a complicated fashion, which depends on the system

parameters. Together, these studies suggest that stick–slip

motion can occur in tall flat-bottomed silos during the
Table 1

Tube properties

Tube material Length (m) ID (cm) Wa

6061-T6 aluminum alloy 1.8 6.37F0.01 0.5

Plain steel 1.8 6.38F0.01 0.5

Cast acrylic 1.5 6.35F0.01 0.6
discharge of granular materials. Excellent reviews on stick–

slip friction can be found in Bowden and Tabor [18], Krim

[19], and Berman et al. [20] who discuss the various

postulated stick–slip friction mechanisms. The mechanism

of most relevance to this study is adhesive stick–slip

friction, which occurs when slowly weakening, time-

dependent forces exist between sliding surfaces. The

hypothesis in this study is that adhesive stick–slip friction

is the determining factor in cyclical dynamic arch formation

and breakage, which creates impulses that drive the silo

structure.
3. Experimental method

Aluminum, plain steel, and acrylic tubes, open at the top

and covered at the bottom with a flat acrylic plate having a

concentric orifice (see below for details of this plate), were

used as silos. A number of experiments were conducted

using silos resting on supporting springs (see Fig. 1), which

in turn were attached to a steel frame that was rigidly

connected to the laboratory walls. The silo was also

equipped with rollers and sliders, which were attached to

the steel frame. These allowed vertical oscillation of the

silos and restricted lateral motion. The supporting springs

had spring constants ranging from 4 to 2265 N/mm.

Experiments were also done using an aluminum block in

place of the spring or simply bolting the silo directly to the

supporting steel frame—these configurations afforded the

two largest natural frequencies for vertical silo oscillation

reported in this study. Properties of the tubes and granular

materials are listed in Tables 1–3. Photographs of the

granular materials, obtained using a microscope, are shown

in Fig. 2a–c. The granular materials did not exhibit

squeaking or booming when sheared. The temperature and

humidity were recorded in each experiment. The temper-

ature varied between 20 and 25 8C (from one day to

another), and the relative humidity between 18% and 40%.

During experiments with each tube and granular material

combination (which lasted a few hours), the humidity

variation was within 5%, and the temperature variation

was within 2 8C.
The angle of internal friction of each granular material

was estimated by measuring the angle of repose of the

granular material between two plane walls 1.9 cm apart.

These values are presented in Table 2. The angle of wall

friction for each granular material and tube combination
ll thickness (cm) Surface finish Calculated lowest

natural frequency (Hz)

1F0.1 Smooth 26

7F0.01 Rough 25

4F0.01 Smooth 12



Table 2

Granular material properties

Material Supplier Particle

size

(Am)

Particle

density

(g/cm3)

Angle o

repose

(8)

Crushed glass Potters

Industries

450F50 2.5F0.1 34F1

Ballotini impact

beads

Potters

Industries

480F60 2.5F0.1 26F1

Washed and

ignited Standard

Ottawa sand

EMD

Science

400F100 2.7F0.1 33F1

Fig. 2. Photographs of the granular materials: (a) crushed glass, (b) glass

beads, and (c) sand.

Table 3

Angle of wall friction for various silo wall and granular materia

combinations

Silo wall materialY
granular material

Acrylica

(8)
Aluminuma

(8)
Plain steel

Crushed glass 28 33 Fully rough

Glass beads 17 17 Fully rough

Sand 25 30 Fully rough

a The angles are accurate to within F28.
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was estimated by measuring the angle of inclination of the

tube above the horizontal at which the granular material

began to slide; these values are listed in Table 3. We could

not estimate the angle of wall friction for the plain steel

tube through such experiments, as the granular material

began to slide over itself before it slid at the wall.

To determine if resonance (i.e., when the pulsation

frequency fp is equal to a natural frequency of the silo)

was important, the dominant natural frequency of vertical

silo oscillations, fv, was changed by using different springs

between the silo and the steel frame. To estimate the lowest

natural frequencies of the empty silo tube, we used the

method of Naeem and Sharma [21] with clamped-free

boundary conditions. The lowest natural frequency esti-

mates for each tube are given in Table 1.
f

Acrylic plates with centrally located orifices (with diameters

between 1.3 and 2.5 cm) were bolted to a 1.21-kg

aluminum flange, which was screwed on the bottom of

the tubes. To fill the silo, the orifice at the bottom of the

tube was first sealed with a piece of duct tape. The granular

material was poured into the silo through a funnel placed at

the top of the tube. Stripping away the duct tape seal over

the orifice initiated discharge. The mean discharge rate was

measured using a stopwatch. For the acrylic tube, the height

of material in the silo could also be measured during

discharge to confirm that the discharge rate was constant

with time. To ensure that the tubes had reached a steady

state of wear, the granular material was discharged several

times through the same tube before final measurements

were taken. Steady state wear was reached when repeatable

granular material acceleration measurements could be

taken.

Accelerations were measured both in the granular

material and on the silo structure. Vertical accelerations

inside the granular material were measured using a

unidirectional Kistler 8774A50 low-impedance ceramic

shear accelerometer with an output sensitivity that

deviated less than 1.5% for frequencies between 10 Hz

and 10 kHz. The accelerometer was embedded approx-

imately 5 cm below the top surface of the granular

material. This depth ensured that during discharge, the

accelerometer was held upright by the granular material

and was still shallow enough that the acceleration could be

measured for the bulk of the discharge. As the granular

material discharged, the accelerometer cable was carefully

fed into the silo to ensure that the cable did not affect the

motion of the accelerometer. This accelerometer had a

range +/�500 m/s2 and was accurate to within +/�5 m/s2.

It had a diameter of 0.8 cm, a length of 2.6 cm, and a
l



B.K. Muite et al. / Powder Technology 145 (2004) 190–202194
mass of 4 g, and hence was considerably larger than a

sand grain. However, the wide frequency response allowed

better time resolution of the bulk granular material

acceleration than would be possible with smaller accel-

erometers of comparable cost.

Silo structural vibrations were measured using a Kistler

8784A5 low-impedance ceramic shear accelerometer, which

had a greater sensitivity but a smaller range than the

accelerometer used to measure granular material acceler-

ations. To measure vertical accelerations, this accelerometer

was wax-mounted on the flange at the bottom of the silo.

This accelerometer had a sensitivity that varied by less than

0.5% for frequencies between 10 Hz and 6 kHz. It had a

range of +/�50 m/s2, an accuracy of +/�0.5 m/s2, and a

mass of 21 g.

The accelerometer output was sent through a Kistler

5118B2 signal conditioner to a Measurement Computing

PCI-DAS1002 data-acquisition card on a 400-MHz Pentium

II computer. The sampling rate on the data acquisition card

was 20 kHz. For both accelerometers, the manufacturer-

supplied calibration was used to convert the accelerometer

voltage output to acceleration. The accelerometers could not

be used simultaneously because only one data acquisition

system was available.

The bulk of the sound measurements was taken in an

apparatus made from an acrylic tube, for which the resonant

frequency for vertical silo oscillations was not well

controlled [22]. However, several measurements were then

repeated in the experimental setup used for the acceleration

measurements to check that the same results were obtained.

In these experiments, an omnidirectional Optimus 33-3026

lapel microphone with a constant amplitude response for a

frequency range between 30 Hz and 15 kHz was used to

collect the sound data through a sound card on a personal

computer. During discharge, the sound was recorded, and a

discrete Fourier transform of 1 s of sound data was used to

determine the dominant frequency as a function of time

during discharge. In the acrylic tube, the time at which the

top of the granular material crossed a marked height in the

tube during discharge was also recorded using a stopwatch.

From these measurements, the height of the granular material

as a function of time since discharge started was found.
Fig. 3. Variation of sound amplitude with time during discharge of sand

from an acrylic tube of 7.6 cm outer diameter, wall thickness 0.3 cm, and

having an orifice of diameter 1.9 cm: region I—no flow, region II—flow

with pulsations, and region III—flow after pulsations have ended.
4. Results

In what follows, sound measurements are shown for sand

discharging from the acrylic tube, and acceleration measure-

ments are shown for crushed glass and glass beads

discharging from the aluminum tube. Additional sound

and acceleration measurements are reported in Quinn [22]

and Muite [23], respectively.

The variation of the pulsation frequency ( fp) with the

dominant natural frequency for vertical oscillations ( fv) was

examined for all tube and granular material combinations,

except for the plain steel tube, as pulsations did not occur in
this tube. Silo pulsations also did not occur when sand was

discharged from the aluminum tube, but did occur when

sand was discharged from the acrylic tube. A few experi-

ments with a smooth-walled galvanized steel tube [23]

showed that silo pulsations occurred when sand was

discharge from this tube. This suggests that in tall and

narrow silos, pulsations occur for specific combinations of

granular material and wall material. This is in agreement

with studies which show that stick–slip friction depends on

the composition of the sliding surface [18–20].

4.1. Sound measurements

Fig. 3 shows the sound amplitude level as a function of

time for the discharge of sand from the acrylic tube (no units

are given, because although the amplitude is a direct voltage

reading from the microphone that is linearly related to the

sound decibel level, by moving the microphone, different

absolute decibel levels can be recorded for the same sound

signal). The discharge lasted for 51 s, and as shown in the

figure, silo music occurred for approximately half of this

time. Fig. 4 shows a typical power spectrum for the sound

measurements during discharge, determined by analyzing

data obtained over a 1-s time interval. There are three types

of prominent peaks. The first peak is at a frequency of

approximately 40 Hz, and it will be shown later that this is

the pulsation frequency for this particular granular material

and silo combination. The second peak corresponds to the

resonant frequency of the air column above the tube. This

resonance is well documented, and a good account can be

found in Rayleigh [24]. At the time the data shown in the

figure was collected, this frequency was 200 Hz. The fact

that this peak represents a resonance frequency is demon-

strated in Fig. 5, which shows the quarter wavelength

corresponding to this frequency as a function of time since



Fig. 4. Typical power spectrum for 1 s of sound measurements during silo

music when sand is discharged from an acrylic tube of 7.6 cm outer

diameter, wall thickness 0.3 cm, and having an orifice of diameter 1.9 cm:

(I) the pulsation frequency, (II) the dominant sound frequency, and (III) the

higher harmonics of the dominant sound frequency.
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the beginning of discharge. The wavelength, ka, is found

from the relationship ka=c/fa, where c is the speed of sound

in air, and fa is the frequency of the air column. Also shown

is the height of the air column above the sand in the tube.

This figure shows that the dominant quarter wavelength and

the height of the air column are the same confirming the

resonant behavior. It is clear from the quarter wavelength

that this resonance corresponds to a standing wave mode

with a node at the granular material surface and an antinode

at the open end of the tube (as the open end of the tube

cannot be a node). Fig. 4 also shows a number of other

peaks at higher frequencies, which are simply the odd

harmonics of the fundamental (lowest) resonance frequency

of the air column.
Fig. 5. Variation of the dominant quarter wavelength (kd/4) and the height of the ai

cm outer diameter, wall thickness 0.3 cm, and with an orifice of diameter 1.9 cm
4.2. Determination of the natural frequency for vertical

oscillations of the silo

To determine the dominant natural frequency for vertical

oscillations, fv, the silo was filled with granular material

and the orifice closed. The base of the filled silo was then

struck with a soft mallet, and the resulting vertical

acceleration during free oscillations recorded. The value

of fv was found either by using the largest peak in the

power spectrum of the acceleration or by counting the

number of free oscillations during a specified time directly

from the acceleration measurements. The two measure-

ments gave essentially the same results; however, when

fvb30 Hz, counting the number of oscillations in a specified

time gave a more accurate measurement of the natural

frequency than locating the center of the broad peak

obtained from the power spectrum. Similarly, when the

fvN30 Hz, the power spectrum was a better indicator of the

natural frequency, because an unambiguous sharp peak

could be located, while the acceleration vs. time trace

showed rapidly decaying oscillations which were not easy

to count. For spring constants, kb1000 N/mm, fvcfn=(1/

2p)(k/m)1/2, where m is the oscillating mass, and fn is the

theoretical natural frequency for a spring mass system. For

kN1000 N/mm, fv was significantly less than fn, possibly

because of flange and tube deformations, which reduced

the effective stiffness of the system. This effect was

important for fvN25 Hz.

4.3. Acceleration measurements during discharge

Fig. 6 shows measurements of the vertical acceleration of

the silo when crushed glass was discharged through a 1.9-

cm orifice. The accelerometer was mounted on the base of

the silo. Once the flow started, there was a period of
r column (Ha) with time during discharge of sand from an acrylic tube of 7.6

.



Fig. 8. Vertical acceleration measurements made when the accelerometer

was embedded in the granular materials [(a) crushed glass, (b) glass beads]

and allowed to translate with it during discharge from the aluminum silo:

region I—no flow, region II—flow with pulsations, and region III—flow

after pulsations have ended. In (a), orifice diameter is 1.3 cm; the dominant

natural frequency of vertical oscillations of the filled silo is 8 Hz. In (b),

orifice diameter is 1.9 cm; the dominant natural frequency of vertical

Fig. 6. Vertical acceleration measurements on the base of the aluminum silo

during discharge of crushed glass through a 1.9-cm orifice. The silo had a

dominant natural frequency of vertical oscillations of 8 Hz: region I—no

flow, region II—flow with pulsations, and region III—flow after pulsations

have ended.
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pulsations during which the silo experienced large negative

accelerations towards the earth. Halfway during the pulsa-

tions, the magnitude of the negative pulsations suddenly

doubled. After the height of the granular material in the silo

fell below a critical level, the pulsations stopped, and the

silo structure experienced only small accelerations until the

flow ended. While the pulsations occurred regularly, this

doubling of the pulsation magnitude was not always

repeatable. It is not clear what changes in the flow resulted

in these changes in the magnitude of the pulsations, because

the basic setup was unchanged from run to run.

The closeup of the acceleration measured during pulsa-

tions (Fig. 7) reveals that the periods of large negative

accelerations were short compared to the gradual rebound

after each pulsation. On this time scale, the pulsations had a

very reproducible and steady frequency, but the absolute

magnitude of the maximum acceleration varied from pulse to
Fig. 7. Closeup showing individual pulsations measured by the accel-

erometer on the silo structure for the flow in Fig. 6.

oscillations of the filled silo is 6 Hz.
pulse. We found that fp~30 Hz for discharge of granular

material through a 1.3-cm orifice and through a 1.9-cm

orifice, i.e., fp was roughly independent of the discharge rate.

Fig. 8a shows measurements obtained with the accel-

erometer buried in the granular material. The flow con-

ditions were the same as in Fig. 6, except that the orifice

diameter was 1.3 cm instead of 1.9 cm. Also as in Fig. 6,

negative accelerations are towards the earth. Fig. 8a shows

that large positive accelerations occurred in the granular

material during pulsations, while Fig. 6 shows that the silo

experienced large negative accelerations. The two figures

show that during each pulsation, the granular material fell a

short distance and impacted the tube wall and flange bottom.

Fig. 9a shows a closeup view of the acceleration reported

in Fig. 8a. A comparison of Figs. 7 and 9a reveals that the

pulsation frequency in the granular material is the same as the



Fig. 9. Closeup showing individual pulsations measured by the accel-

erometer embedded in the granular material for the flow in Fig. 8: (a)

closeup from Fig. 8a, and (b) closeup from Fig. 8b.

Fig. 10. Power spectra for 1 s of the measurements in Fig. 8. The power

spectra have been averaged over 4 points in frequency to make average

trends clearer: (a) 20th second of measurements of Fig. 8a, and (b) 15th

second of measurements of Fig. 8b.
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frequency with which the silo moves, suggesting that the

motion of the granular material drives the motion of the silo.

Fig. 9a also shows that each pulsation was followed by a

negative acceleration within the material and then a second

large positive acceleration, after which the acceleration of the

granular material was close to zero until the next pulsation.

Fig. 10a shows a power spectrum for the acceleration

measured during 1 s of pulsations in the crushed glass. It

has a peak at fp~30Hz followed by a flat-band region between

200 and 1000 Hz, after which the power spectrum decays.

Figs. 8b, 9b, and 10b are similar to Figs. 8a, 9a, and 10a

but are for glass beads discharging through a 1.9-cm orifice

(the acceleration spike seen in Fig. 8b before the discharge

was initiated came about because of an accidental tap of the

tube, and its effect decayed well before discharge was

started). The pulsations again stopped at a critical height,

and the individual pulsations can be seen in Fig. 9b. The

nature of each pulsation for glass beads (Fig. 9b) is a little

different than for the crushed glass (Fig. 9a), and this is
reflected in their power spectra; compare Fig. 10a and b.

Both spectra have the same high-frequency decay for

frequencies above 1000 Hz; however, for frequencies below

1000 Hz, the glass beads have a larger number of distinct

harmonics than the crushed glass. The crushed glass power

spectrum is typical of white noise with a high-frequency

cutoff, while the glass bead power spectrum is typical of a

signal produced by a well-correlated periodic but non-

sinusoidal function [25].

Surprisingly, all the power spectra for acceleration

measurements inside the granular material for all tube and

granular material combinations that pulsated decayed for

frequencies above 1000 Hz. The high-frequency cutoff of

1000 Hz was neither due to any limitation of the

accelerometer (which could measure frequencies up to 10

kHz) or the lowest natural frequency of the tube (which was

varied in these experiments and did not affect the high-



Fig. 11. Variation of the pulsation frequency ( fp) of the filled silo with the

dominant natural frequency for vertical oscillations of the silo ( fv) for

granular materials discharging from the acrylic tube.

Fig. 12. Variation of the pulsation frequency ( fp) of the filled silo with the

dominant natural frequency for vertical silo oscillations ( fv) for granular

materials discharging from the aluminum tube.
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frequency cutoff). It may be related to the tube diameter or

to the particle size and particle density, which were not

varied in the experiments.

In Figs. 7, 9a, and b, the maximum downward accel-

erations of the silo and particles are roughly comparable,

whereas the maximum upward acceleration of the granular

material is significantly greater than that of the silo. This

suggests that during each pulsation, the granular material

slips past the silo walls and is forced to rest over a very short

time period. This impact creates a shock wave that travels

through the granular material and is recorded as the large

upward acceleration. The granular material and silo then

move together so that the resulting accelerations are of similar

magnitude.

4.4. Dependence of the pulsation frequency of the granular

material on the natural frequency of vertical silo

oscillations

Figs. 11 and 12 show the variation of the pulsation

frequency ( fp) for different granular material and silo wall

combinations as a function of fv (recall that fv was changed

by changing the spring on which the silo was mounted). To

determine fp, the number of peaks per unit time above a

certain threshold in the acceleration time data was counted.

The threshold was determined by looking at the acceleration

time trace and picking a value approximately equal to a half
of the maximum acceleration. The threshold was adjusted

depending on the type of acceleration time graph to ensure

the correct periodicity was obtained. In particular, by

comparing Fig. 9a and b, one observes that if the threshold

is too low, a higher periodicity would be measured in some

experiments, because the baftershockQ would also be

included. Similarly, if the threshold is set too high, some

quakes could be missed, because as shown in Fig. 8a and b,

the peak amplitude could vary during quaking. The

pulsation frequency was determined for each second of

flow pulsations and an average pulsation frequency during

pulsating discharge obtained. The standard deviation in the

average frequency measured during a single discharge was

typically less than 10%.

When fvb25 Hz, fp had no dependence on fv as shown

in Figs. 11 and 12. Fig. 12 also shows that doubling the

orifice diameter and hence increasing the discharge rate by

nearly a factor of 6 had a negligible effect on the pulsation

frequency (doubling the orifice diameter gives a nearly

sixfold increase in discharge rate in a silo of constant

cross-sectional area, because the discharge rate is propor-

tional to the orifice diameter to the power 2.5 [13]). When

fvN25 Hz, fp had a positive correlation with fv for all



Fig. 13. Variation of critical height with overload for glass beads and

crushed glass in the aluminum tube when the dominant natural frequency of

vertical oscillations of the filled silo is 8 Hz and the silo has a 1.9-cm

orifice.
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granular material tube wall combinations that pulsated,

except for the acrylic and crushed glass combination. The

figures show that glass beads have similar frequency

behavior in the acrylic and aluminum silos. Crushed glass

has a lower pulsation frequency in the aluminum silo as

compared to the acrylic silo. As sand did not pulsate

during discharge from the aluminum silo, no data points

are shown.

4.5. Critical height

The critical height (Hc) was taken as the height of the

granular material above the base of the silo at which

pulsations stop. The time at which this occurred was

recorded from the acceleration measurements, and as the

discharge rate was independent of time, the critical height

could be calculated. This method gave critical heights that

were in agreement with direct measurements made for the

transparent acrylic silo. For fvb25 Hz, Hc did not vary by

more than 0.1 m when the orifice diameter and spring

constant were changed. For fvN25 Hz, the variation of Hc

with silo and granular material properties was not closely

examined.

For all the granular materials, the values of Hc for the

acrylic silo were smaller than those for the aluminum silo

(Table 4). In the aluminum silo, crushed glass had a sig-

nificantly smaller value of Hc than glass beads. In the

acrylic silo, all three granular materials had similar values of

Hc.

As frictional properties can depend on stress level [16],

an experiment was performed in the aluminum silo, where

the top of the granular material was loaded with a known

weight after the silo had been filled. As explained in Vanel et

al. [26] and Ovarlez et al. [27], such a test may yield

different stress transmission characteristics for different

experimental procedures; nevertheless, it can also increase

the stress level inside a granular material. The weights were

placed on top of the granular material in the filled silo and

away from the walls of the silo. The values of Hc and fp were

calculated using time and acceleration measurements during

discharge. The experiments showed that fp was independent

of the overload. For glass beads, Hc did not vary with

overload; however, for crushed glass, Hc decreased linearly

with as the overload increased (Fig. 13). Experiments in the

acrylic silo gave similar results.
Table 4

Variation of critical height with silo wall and granular material properties

Silo wall material Granular material Critical heighta (m)

Aluminum Crushed glass 0.9

Aluminum Glass beads 1.3

Acrylic Crushed glass 0.8

Acrylic Glass beads 0.6

Acrylic Sand 0.7

a The accuracy of the critical height data is F0.1 m.
5. Discussion

In this section, a mechanism for the production of

pulsations is suggested. The results are then compared with

those obtained in previous work on pulsating granular

materials, and some suggestions for further work are made.

5.1. A mechanism for producing silo quake

Using the background on stick–slip friction in granular

materials discussed earlier, one can compare the experimen-

tal observations in this study with those in previous studies to

qualitatively explain the physical mechanism for stick–slip

motion. The dynamic arch which forms in such flows is part

of a force chain—that is, a particle contact network through

which stresses are transmitted [28]. The arch is fragile, and

consequently when the material below it has discharged

enough so that the arch is unsupported from below, a slow

creep typically observed in adhesive stick–slip flow begins.

During this creep, the adhesive friction forces become

progressively weaker and weaker, and eventually the arch

will break. Once the arch collapses, complete slip occurs, a

quake is observed, and a new arch is created. This quake can

set up structural vibrations of decaying amplitude that then

collapse the newly formed arch; in this manner, a series of

self-sustained pulsations results. This is the pulsation process

observed in this study, where the discharge rate is fast

enough (between 1 and 8 cm/s) that it does not affect the fp
unlike in Wensrich’s study [8,9].
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In Wensrich’s experiments [8,9], the entire bottom of a

cylindrical model silo was slowly lowered. There is no

region of converging flow in such an experiment, but there is

a region near the bottom where the granular material dilates

as the piston descends. Here, the arch may be regarded as the

boundary between the dense and dilated material. For the

slow discharge rates examined by Wensrich, creep and

external perturbations did not determine fp. Instead, the arch

collapsed whenever the particles below the arch had dropped

enough to lose contact with the arch. Consequently, it is

entirely reasonable that fp was inversely proportional to the

discharge velocity. Wensrich estimated the distance that

particles at the base of the silo moved between pulsations to

be ~0.03 dp (where dp is the particle diameter), which is

comparable to the dilation distance of ~0.05 dp required for

slip to occur in stick–slip flow in simple shear experiments

with granular materials [17].

5.2. Comparison with previous work

Wensrich [8,9] observed that the acceleration produced

by each quaking impulse grew with distance traveled by the

wave carrying the information of the impulse from the

dynamic arch to the top of the silo. In contrast, the granular

material accelerations recorded in our experiments with the

accelerometer at a fixed depth below the free surface did not

change appreciably as the bed height decreased during

discharge.

The granular material accelerations measured by Wens-

rich [8,9] were less than 15 m/s2, while those measured in

this study were typically more than 100 m/s2. Tejchman [10]

also observed silo wall acceleration levels greater than 100

m/s2. Nonlinear effects may be responsible for the height

independence of the acceleration at the large accelerations

seen in this study.

It is interesting to contrast the acceleration power spectra

obtained with crushed glass and glass beads to see the effect

of particle shape on granular dynamics. The power spectra

for acceleration measurements in the glass beads (Fig. 10b)

showed many harmonics of fp before the high-frequency

decay region was approached. The power spectra for

crushed glass (Fig. 10a) showed only a few harmonics,

followed by a band-limited white noise region, and then a

high-frequency decay. This suggests that the glass beads

showed a highly correlated distributed response to slip

which originated at the arch. Crushed glass had a

significantly less correlated response, quite possibly because

of the heterogeneity in particle shape and particle contacts

between them. This is consistent with the suggestions by

Mair et al. [29] that smooth round particles have force

chains that are stable over a narrow range of orientations,

whereas rough particles such as the crushed glass have force

chains that are stable over a wider range of orientations.

Consequently, the force chains in the glass beads break in a

highly correlated manner during a pulsation, whereas those

in the crushed glass break in a less-correlated manner.
Acrylic surfaces are prone to stick–slip motion [30]. As

acrylic is softer than all the particles used in this study, the

acrylic surface can be expected to be the dominant factor in

determining the adhesive relaxation time for the stick–slip

motion, and indeed it was found that the pulsation

frequencies for all granular materials are similar in the

acrylic silo.

The hypothesized difference in stress chain behavior

between smooth and rough particles suggested by Mair et al.

[29] can also explain the difference in the value of the

critical height when an overload is imposed on the granular

material. For rough particles, the critical height decreased

linearly with imposed overload, whereas for smooth

particles, the critical height was independent of the imposed

overload. As the force chains in a granular material

composed of smooth spheres will have narrow direction-

ality, the effects of the imposed overload will be transmitted

to the side walls of the silo rapidly and will not affect stress

levels between the silo wall and the granular material a

significant distance away from the overload. These force

chains form a bridge so that the bulk of the overload is

transmitted to the silo walls. For rough particles, the force

chains will have a much broader directionality, as friction

and asperity interlocking allows rough particles to transmit

forces in a variety of directions without failure. Because

bridging in the granular material is less effective, the

imposed overload is not screened, and its effects on the

stress field can be transmitted further in to the granular

material. Consequently, the critical height decreases,

because stresses at the arch are large and allow pulsations

to occur for a longer time during discharge, in agreement

with studies that slip–stick friction is dependent on the local

stress level [16].

The Janssen solution for the effect of an overload on the

stress field in a granular medium in a silo [13] predicts that

the effect of the overload on the stress field inside the

granular material decays faster as the angle of wall friction

is increased. Crushed glass has a larger angle of wall friction

than the glass beads, and so the finding that an overload has

more effect on the crushed glass than the glass beads does

not agree with the predictions from the Janssen solution.

Nedderman [13] has suggested that the Janssen solution is

not a good method for predicting stress levels inside a

granular material when an overload is imposed. Further

work examining the shear and wall normal stresses in silos

for different shapes and distributions of particle sizes with

varying overloads would help in obtaining appropriate

constitutive relations to describe granular material stress

fields macroscopically, an area which is the subject of

current debate [26,27].

Mair et al. [29] found that particle shape influences

granular material sliding characteristics. This study confirms

this finding, because granular materials made of the same

glass with similar sizes but different shapes had different

pulsation frequencies in the aluminum tube. In particular,

surfaces that are rough are less likely to have stick–slip
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friction, because the asperities can lock and prevent slip

occurring at all contact points. This argument is consistent

with our finding that no pulsations occurred in the fully

rough plain steel tube. These results are also in accord with

findings by Tejchman [10], Moriyama and Jimbo [4], and

Jahagirdar [2] that to prevent silo quake, mass flow silos

should have rough walls.

Hardow et al. [1], whose study did not examine a variety

of granular materials, suggested that wall friction was not

the cause of silo quake, a finding that this study has shown

is not always correct. As their study was for a core flow silo,

they did not consider the possibility that stick–slip friction

can occur at sliding surfaces inside the granular material, as

shown in the study by Nasuno et al. [16], and not just

between the granular material and the silo wall.

Finally, Hardow et al. [1] suggested that resonance is not

always required for silo quake, while other studies have

suggested that it is an important factor in amplifying the

amplitude of the pulsations [3,5,10,11]. Our study does not

give a conclusive answer to this question, as we have

measured only the dominant natural frequency of vertical

oscillations of the silo; careful measurements of the natural

frequencies associated with radial vibration of the filled silo

tube are required to make a more definitive statement, but

these were not measured.
6. Conclusion

This study has shown that stick–slip motion generates

silo music and silo quake. Silo music is driven by the stick–

slip pulsating motion of the granular material during

discharge and is associated with a resonance in the air

column above the bed. When the pulsating motion

disappears, so does the silo music. Over the range of

discharge rates studied here (equivalent to average velocities

of descent through the tube of 1–8 cm/s), the pulsation

frequency was independent of discharge velocity. Both silo

music and flow pulsations stopped abruptly when the bed

height fell below a critical value. The critical height could

be changed by placing an overload in the case of crushed

glass, but not in the case of the smooth glass beads. This

may be rationalized, although only speculatively at this

point, by differences in stress chain behavior.
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