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Abstract. The idea of using nuclear fusion as a source of commercial electrical
power has been pursued worldwide since the 1950s. Two approaches, using
magnetic and inertial confinement of the reactants, are under study. This paper
describes the difference between the two approaches, and discusses in more
detail the heavy-ion-driven inertial fusion concept. A multibeam induction
linear accelerator would be used to bring ∼100 heavy ion beams to a few GeV.
The beams would then heat and compress a target of solid D-T. This approach
is unique among fusion concepts in its ability to protect the reaction chamber
wall from neutrons and debris.
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1. Introduction

The idea of using nuclear fusion to produce commercial electrical power has been
an international pursuit since the 1950s. The easiest reaction to use, because it has
the highest cross section, is shown in equation (1):

D + T → 4He(3.5MeV ) + n(14MeV ) (1)

The tritium portion of the fuel would be generated in the reactor itself, by bom-
barding a lithium-containing compound with neutrons from the fusion reaction. The
deuterium would be extracted from water. The attraction of fusion as an energy
source is apparent from examination of the equation. Both deuterium and lithium
are abundant. Deuterium constitutes 0.015% of water, and the small amount of
deuterium in just 1 teaspoon of water produces as much energy as a gallon of gaso-
line. The reaction products are not radioactive, and though the reactor vessel would
become activated by the neutrons, it would constitute low-level radioactive waste
that could be disposed of at the end of its 30-year life by shallow land burial. There
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is no possibility of a runaway chain reaction. No carbon dioxide is produced (so
there is no resultant global warming), and none of the reaction products are air
pollutants. The process is thus environmentally friendly and safe, and the fuel is
plentiful.

The challenge is to give the deuterium and tritium enough energy to overcome
the coulomb repulsion of the nuclei. To do this requires the D-T to be heated to
a temperature, T, of approximately 100,000,000 ◦C. Further, the material must
be maintained at this temperature for long enough that the energy produced by
fusion exceed the energy used to heat the material and that lost through radiation
and particle flow. Since the D-T cross section scales as approximately T2 in this
regime, the reaction rate scales as n2T2, where n is the density. The power lost
is proportional to nT/τ , where τ is the timescale for energy confinement in the
material. Thus the product nτ must exceed a certain value (about 1020 s/m3– this
is known as the Lawson Criterion, or ”breakeven”) for the fusion reaction to be
used as a power source.

There are two approaches to producing this challenging set of conditions. In the
magnetic confinement approach, a deuterium and tritium gas mixture is ionized,
heated, and confined by magnetic fields so that as it heats its energy is not lost
to the vacuum wall. Resistive heating is accomplished by inducing a current in
the plasma, and this is supplemented with resonant deposition of RF waves, and
possibly injected beams of energetic neutral particles. The scalelength of the plasma
is several meters, and the energy must be confined for several seconds in order to
reach breakeven. The main challenge in this approach is creating the right magnetic
topology such that plasma waves, instabilities, impurities, and turbulence do not
produce an energy confinement time that is too low. One magnetic confinement
geometry has both met the Lawson criterion and reached the temperatures required
for fusion (though not simultaneously), and produced fusion neutrons– the tokamak,
which is a toroidal device. In a further step, an international experiment called
ITER [1] is being planned to study the energy confinement of a tokamak burning
plasma– i.e., one producing fusion reactions, so that alpha particles produced by
fusion contribute significantly to the energy content. ITER would be a significant
step toward a tokamak reactor, and would simultaneously test the plasma physics
and some of the technology needed for energy production.

The second approach is called inertial confinement. In this case, the D-T mixture
begins in the solid state– the density is very high, so the energy confinement time can
be much less than in the magnetic confinement case. The few-millimeter-diameter
cryogenic D-T capsule is symmetrically heated, using laser or ion beam,s so that
the outer layer ablates and by conservation of momentum causes the capsule to
compress by a radial factor of 25-30. The compression heats the D-T and raises the
density, so that only their own inertia is needed for the particles to stay together long
enough to reach and exceed breakeven. For commercial use, target designs plan for
a gain of a factor of 50 or more over the input energy– this would give a reasonable
efficiency for the entire power plant system. The challenge for this approach is not
energy confinement, but rather maintaining a symmetrical implosion so that the
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density increase is large enough, and being able to focus beams onto such a small
target.

The U.S. DOE Office of Fusion Energy Sciences provides ∼$250 M/yr for mag-
netic confinement concepts, dominated by the tokamak. About $10 M/yr funds
heavy-ion-beam-driven inertial fusion (HIF), with which the rest of this paper will
be concerned. $25 M/yr from NNSA/DOE supports other inertial fusion concepts
which use lasers and z-pinches to provide the beams. Both a 1985 National Academy
of Sciences review and a 1996 review by the DOE Fusion Energy Sciences Advisory
Committee concluded that heavy ions were the most promising inertial fusion driver
for energy applications.

2. Heavy-Ion-Driven Inertial Fusion

There are many reasons that ion accelerators were initially (mid-1970s) suggested as
good drivers for inertial fusion. Worldwide investment over decades in the develop-
ment and refinement of accelerators for HEP/NP had produced machines with long
life; high pulse repetition rates (so that the average power plant output would be
high– ∼ 2 GW); high electrical efficiency; and complexity, cost, and final ion energy
similar to what is needed for the fusion application. But both in beam physics and
in technology the fusion driver is significantly different from a classical accelerator
for HEP, NP, or photon production. The physics differences will be discussed first.

A target for HIF is shown in Fig. 1. In order to produce a symmetric implo-
sion, the beams are not used to directly heat the D-T capsule. Instead, the beams
strike an absorber ring, which heats, then radiates x-rays. The x-rays reflect around
the cavity in which the capsule sits (called the hohlraum), and symmetrize. This
symmetrized x-ray flux ablates the capsule coating, driving the implosion. Heavy
ions are used because for a given total energy delivered by the beams, fewer ions
are needed, thus reducing the total space charge and the attendant difficulties of
focusing the beams. The implosion requires 3-8 MJ of beam energy, the exact figure
depending on the target design. The energy must be deposited before the compo-
nents of the target can move appreciably due to heating, destroying the symmetry.
This implies deposition time ∼10 ns. The ion range must be 0.02 - 0.2 g/cm2 in
order for the beams to stop in the absorber. Using heavy ions of about 200 amu,
these specifications require accelerating about 1016 ions to a few GeV. This number
of ions is a factor of about 103 higher than is found in a conventional accelerator
pulse. It is impossible to economically focus this many ions in a single accelerator
transport channel, so HIF designs show a multiple-beam (∼100 beams) accelera-
tor, where each beam is focused by its own focusing magnets, but the beams are
accelerated simultaneously in parallel. Even so, the current density per beam is
extremely high, and unlike HEP/NP accelerators, where single-particle dynamics
largely determine beam behavior, in HIF drivers the space-charge forces of the par-
ticles dominate dynamics. Beam focusing in this case balances the space charge
force, while in HEP/NP accelerators the focusing balances beam thermal pressure.
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In this space-charge-dominated scenario, the beams are nonneutral plasmas, ex-
hibiting the waves, instabilities, and other phenomena found in plasmas. This area
of plasma/beam physics has been pioneered by the HIF community. Ultimately
the practical concern of this research is to keep the beams from heating, because
the ultimate limit on focusability at the target is set by their thermal pressure (see
below).

Fig. 1. A target designed for heavy-ion-driven fusion. Beams (not all shown)
approach in a cone-shaped array from each end. The D-T capsule is in the center,
held by low-density foam (not shown).

The acceleration technology of HIF drivers is also different from that of HEP
or NP accelerators or light sources. Because of its high electrical efficiency for high-
current beams and capability for long pulses, induction acceleration will be used.
In this approach, a toroid, or induction core, of ferromagnetic glass encircles the
array of accelerated beams. Cables encircling the cores provide a rising current,
which produces an increasing magnetic field in the core. This induces an electric
accelerating field parallel to the beam direction of motion. Unlike RF acceleration,
the coupling impedance is low, and the losses in the system (which are dominated
by resistive losses in the core material essentially unrelated to beam current) can
be much less than the energy given to the beam, which scales as the beam current.
While it has been used in research accelerators, induction is not as highly developed
as RF cavity technology, and also requires an increased commercial market to bring
costs down to what would make future experiments, and the fusion power plant,
affordable.

From the discussion above, a picture of an HIF driver emerges. Multiple (∼100)
heavy-ion sources produce beams, each focused in its own transport channel (by
quadrupole magnets, as in conventional accelerators), are accelerated together in
an induction linac of length a few kilometers to about 3 GeV. At the end of the
accelerator each beam has attained its full energy, but the beam pulses are too long–
the pulse length is about 200 ns, the minimum length for good efficiency from the
induction cores. Acceleration cores are then used to longitudinally compress each
beam in a drift compression section. They then pass through a final focus system
consisting of 4 or more quadrupoles per beam, enter the reactor chamber, and focus
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onto the target. Targets are injected at 5 Hz, with the target chamber cleared of
debris between shots. The space charge of the beams presents a significant difficulty
in focusing them onto the target. A long focal length (∼ 6 m) is required, so that
final focus magnets can be protected from the fusion blast. If left unneutralized, the
beam focus will blow up due to space charge before the beams reach the target. So
neutralization is provided by a plasma introduced into the transport channels just
after the final focus magnets, and also by ionization of gas in the target chamber,
both by the beam and later by x-rays from the heated target.

Survival of the fusion chamber is a significant problem for both inertial and
magnetic confinement. At this time, there is no solution for magnetic confinement
which guarantees survivability of the first wall (i.e, the wall first impacted by the
neutrons) for longer than a few (∼2) years. Likewise, laser-driver inertial confine-
ment approaches suffer from the fact that the final focusing lenses and chamber wall
will be exposed to the fusion neutron flux. In the heavy-ion driver case, however,
it is possible to interpose a neutron-absorbing fluid (e.g., the molten salt FLiBe,
consisting of fluorine, lithium, and beryllium) between the target and the walls.
The lithium in the FLiBe would also be used to breed the tritium fuel for targets.
Protecting the wall with this fluid is possible because the heavy ions spend only
∼100 nanoseconds in the chamber– acceleration and bunching are done in the good
vacuum of the accelerator. Moreover, it appears from self-consistent, many-species
3-D simulations of the propagation of the beams through the chamber that the
FLiBe vapor pressure in the chamber improves focusing of the beams through neu-
tralization, which favorably competes with beam stripping. A description of the
complicated geometry of the FLiBe jets and showers which protect the chamber
walls, and results from experiments in making such flows, can be found in [2]. The
life of the chamber and final focus magnets is projected by simulations of neutron
and radiation transport to be ∼30 years. This solution of the first wall problem is
extremely important since it is required for a practical fusion power reactor. HIF
is the only fusion concept at this point with a first-wall solution.

3. Status of Heavy-Ion Fusion Physics

In the 1980s and ’90s, much of the fundamental physics of space-charge-dominated
beams, as well as many of the needed beam manipulations, were explored in analyt-
ical theory, experiments, and computer simulations. But because of expense, most
experiments were scaled, keeping dimensionless physics parameters equal to those
of a power plant driver, but with absolute current and kinetic energy low.

Aluminosilicate-based ion sources were made which produced the current, cur-
rent density, and low emittance (phase space area) required for a driver, and recently
experiments have shown that plasma ion sources might also have the required pa-
rameters in certain cases. A 2-MV injector, the low energy acceleration system
after the ion source, was made which successfully accelerated a beam of driver-scale
current (0.6 A at 1.8 MeV).



6 C.M. Celata

Transport experiments were particularly noteworthy for their groundbreaking
physics. While analytical theory [3,4] indicated that space-charge-dominated beams
were unstable to collective modes, particle-in-cell computer simulations showed all
but one of these modes stabilizing nonlinearly and quickly, with negligible heating of
the beam. The Single Beam Transport experiment [5] showed that the simulations
were correct, and delineated the stable regime for propagation. The Multiple Beam
Experiment [6] accelerated four beams simultaneously from 200 keV to 0.9 MeV, and
compressed them by a factor of 7. Experiments were also done to combine beams
transversely[7], and focus them to a spot (in a 1/10 scale model in linear dimension
of a driver focusing system) [8]. Finally, a target tracking experiment showed that
targets could be injected and tracked into the target chamber accurately enough for
the beams to properly hit the target [9].

Except for the 2-MV injector, the beams in these experiments had currents of
microamps to tens of milliamps, and final energies of less than 1 MeV. But the
ratio of space charge potential energy to kinetic energy, the ratios of important
frequencies, and other dimensionless physics parameters placed the experiments in
the driver parameter regime. However there are some phenomena which must be
studied at scale. Many of these involve the effect of stray electrons on the beam,
where the absolute magnitude of the beam potential is obviously important to the
dynamics. Two experiments running now at LBNL, the High Current Experiment
(HCX) and the Neutralized Transport Experiment (NTX) are exploring these (and
other) effects.

The HCX uses the 2-MV injector to produce a single K+ beam (up to 0.6 A
at 1.8 MeV), matches the beam shape into a quadrupole transport system, then
transports it through 10 electrostatic, followed by 4 magnetic, quadrupoles. The
short electrostatic-focused section has been used to study the extent to which the
beam pipe can be filled with beam (i.e., the size of the clearance needed) before
nonlinear focusing error fields, quadrupole fringe fields, steering errors, or the effects
of electrons (produced by halo scraping and ionization of background gas) or gas
degrade beam quality. The physics of these processes is nonlinear and complicated–
especially the accumulation of electrons in the beam potential– but the answers
have a strong impact on the cost of a HIF driver, because extra clearance in each
of the ∼100 beam transport channels will greatly increase the radius of the whole
beam array, requiring much larger induction cores, and increasing the size of all
hardware. A change from 60% radial fill to 80% is projected to raise the cost of
the driver by perhaps $1B. Simulations predict, for electrostatic quadrupoles, that
80% radial fill is the boundary of the dynamic aperture (i.e., the limit of the usable
aperture set by dynamics), and, at least in the short focusing system available in
the HCX, experiments agree.

Though the low-energy end of the driver may use electrostatic quadrupoles,
magnetic quadrupoles will be used to focus through most of the system. Unlike
electrostatic focusing, the magnetic quadrupoles do not sweep from the system
electrons created if the beam halo scrapes the quadrupole. These electrons, and
electrons created by ionization of background gas, will execute complicated orbits,



Heavy Ion Fusion 7

gyrating around field lines while subject to ExB drifts caused by the electrostatic
beam potential and the quadrupole field. Experiments have begun on the HCX to
measure the production of electrons, and their accumulation and orbit dynamics in
a magnetic quadrupole system. This work has overlap with electron cloud studies in
HEP colliders, where the electrons are produced by synchrotron radiation from the
beam. New computational algorithms developed by HIF researchers are expected
to be useful in both areas.

The NTX is studying the final focus and neutralization of the beams, using
a 25 mA K+ beam. Four magnetic quadrupoles focus the beam just before it
transports through an Ar+ plasma of density 3 x 1011 cm−3 and temperature of 3
eV. Figure 2 shows the beam with and without neutralization. Simulations are able
to accurately predict the density profile of the beam exiting the focusing system,
except for a slight halo which is under study. Simulation of the neutralization is
presently underway. As can be seen from the figure, experiments show that this
important process for the HIF driver clearly can be used to improve focusing if, as
predicted by simulation, the neutralization is robust to small changes in conditions.

Fig. 2. NTX beam (25 mA at 255 keV) at the focus with (left) and without
(right) plasma neutralization.

Along with the HCX and NTX, a major experiment on a novel injector approach
is being fabricated and is expected to see first beam in a few months. If present
experiments reach favorable conclusions, the results of these past and present ex-
periments will have shown the feasibility of most of the beam manipulations of a
HIF driver. What has not been tested is drift compression by the large factor (20)
needed, multiple beam interactions, transport and acceleration over long distances,
bending of beams during compression (as is done to direct half the beams to each
end of the target after the linac), and target implosion. Some target experiments
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have been done in classified underground tests, D-T capsule experiments are being
done using the Z facility at SNL to provide the x-rays for heating, while other target
physics will be done on the National Ignition Facility. But the non-target physics
must await future larger accelerator experiments, and thus higher program funding.

4. Heavy-Ion-Driven Fusion: The Future

The next step for the HIF program would be an Integrated Beam Experiment
(IBX). It would accelerate a single driver-scale beam from the source, through an
∼10 MeV induction linac, then drift compress it by a factor of approximately 10,
bend its orbit, focus it, neutralize, and measure the spot size at the focus. This
would integrate the effects on the beam of all of the beam manipulations needed for
a driver, with the exception of multiple-beam physics. The cost of the ∼60-meter
long facility is about $60 M, though because it is a linac, the experiment lends itself
to being built in many much-less-expensive stages, with interesting experiments at
each stage. This experiment would take the program forward to a facility of length
sufficient to extend the dynamic aperture results of the HCX, look at the effects of
electrons and many other phenomena on the beam during longer transport, and for
the first time look at the complicated dynamics of the drift compression.

After the IBX, an Integrated Research Experiment (IRE) could be the last
step before an engineering demonstration of a driver. The IRE would be a multiple
beam (perhaps 30-100 beams) accelerator, with parameters which are an appreciable
fraction of those of a driver: 400-800 MeV final kinetic energy, producing 30-200 kJ
on target. The experiment could study multiple beam physics, long transport and
higher energy intense beam physics, and some target physics particular to heavy
ions. This few-hundred $M facility would be a proof-of-principle experiment that
might be extendible to an engineering test reactor.

The promise of fusion as a power source gives these experiments importance for
the future of the planet. And survivability of the ”first wall” of the target chamber
in the heavy-ion fusion concept makes it particularly interesting to explore this
concept. But the needed experiments are awaiting funding that will probably only
come when energy again becomes a focus of U.S. attention.
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