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Abstract 

Although bulk silicon is not known to exhibit susceptibility to cyclic fatigue, micron-scale 
structures made from silicon films are known to be vulnerable to degradation by fatigue in 
ambient air environments, a phenomenon that has been recently modeled in terms of a 
mechanism of sequential oxidation and stress-corrosion cracking of the native oxide layer. To 
date, most stress-life (S/N) fatigue tests on such silicon films have been conducted using 
resonant-loaded specimens, where there has been a need to establish the interaction between 
the resonance and the driving force for fatigue-crack growth. In this paper, numerical analyses 
are used to establish the relationship between natural frequency, specimen compliance, and 
linear-elastic stress-intensity factor for a commonly used micron-scale, micromechanical 
fatigue characterization structure. Results are incorporated into a general, lumped, dynamic 
fatigue-crack stability model to evaluate the stability of fatigue cracks in resonant-loaded 
structures. As the applied stress amplitude and corresponding driving force for crack advance 
depend on the system damping as well as sample geometry in such resonant structures, 
changes in damping caused by cycling in different environments can have a significant 
mechanical effect on the stability of fatigue cracks. It is shown that testing in vacuo, which 
lowers the system damping, can lead to crack arrest, an effect which is independent of the 
absence of any environmental contribution to crack growth. Finally, the finite element models 
are applied to polycrystalline silicon structural films to determine the critical crack sizes (~5.5 
to 66 nm) and an average fracture toughness (~0.85 MPa√m) from specimens subjected to 
fatigue cycling at stress amplitudes ranging from ~2.2 to 3.5 GPa. 

Keywords:  Fatigue, MEMS, Resonance, Polycrystalline Silicon, Crack Stability 

1. Introduction 

For the characterization of fatigue behavior with either total-life or fracture-mechanics 
methodologies, there is a need to simulate the cyclic stresses, fatigue lifetimes (i.e. cycles to 
failure), and crack-growth rates in the laboratory. This requires the application of cyclic forces 
to test specimens at reasonably high frequencies.  In actuality, the loading frequency sets 
practical limits on the maximum fatigue lives and minimum crack-growth rates that can be 
measured.  Where large numbers of cycles are required, electromechanical and resonant sys-
tems are often employed; indeed, with the developing emphasis on “gigacycle” fatigue 
(Stanzl-Tschegg and Mayer, 2001) and microelectromechanical systems (MEMS), there has 
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been a renewed interest in such testing. Macroscale resonant fatigue testing systems often 
involve axial fatigue testing and fracture mechanics-style specimens, and have been used for 
both stress-life and crack-growth studies (e.g., ref. (Mayer, 1999)).  In contrast, the 
micromechanical fatigue systems used for micron-scale fatigue testing generally behave like 
simple harmonic oscillators consisting of an elastic specimen (i.e., a spring) attached to a 
mass. Indeed, the micromechanical resonant fatigue characterization structure shown in 
Figure 1 has been widely used to evaluate the fatigue behavior of thin structural films of 
mono and polycrystalline silicon for MEMS applications (Allameh, et al., 2000; Brown, et al., 
1997; Muhlstein, et al., 2000; Muhlstein, et al., 2001a; Muhlstein, et al., 2001b; Muhlstein, et 
al., 2001c; Muhlstein, et al., 2001d; Van Arsdell, 1997; Van Arsdell and Brown, 1999). 

Despite its poor damage tolerance and low fracture toughness (~1 MPa√m (Ballarini, et 
al., 1997; Chen and Leipold, 1980; Kahn, et al., 1999b; St. John, 1975; Wong and Holbrook, 
1987)), silicon has emerged as the dominant structural material for MEMS. Given the absence 
of plasticity and crack-tip shielding phenomena at room temperature, one would not anticipate 
thin-film silicon to be vulnerable to failure via traditional ductile or brittle material fatigue 
mechanisms (Ritchie, 1999; Suresh, 1998). However, using micromechanical resonant fatigue 
characterization structures similar to that shown in Figure 1, a number of investigations have 
demonstrated that micron-scale silicon exhibits “metal-like” stress-life (S/N) fatigue behavior 
in ambient air (Figure 10) (Brown, et al., 1997; Kahn, et al., 1999a; Kapels, et al., 1999; 
Muhlstein, et al., 2000; Muhlstein, et al., 2001a; Muhlstein, et al., 2001b). Our recent studies 
have indicated that the fatigue degradation process occurs via mechanisms confined to the 
SiO2 native oxide layer that forms upon exposure to the atmosphere (Muhlstein, et al., 2001c; 
Muhlstein, et al., 2001d); specifically, this reaction-layer fatigue process involves the 
sequential, stress-assisted oxidation and stress-corrosion cracking of the native oxide, as 
described in ref. (Muhlstein, et al., 2001c).  However, to fully understand how such fatigue 
damage accumulates in these S/N fatigue tests, it is necessary to fully characterize the 
micromechanical fatigue testing structure, and in particular to calculate the driving force for 
crack advance under resonant loading conditions. 

During micromechanical fatigue characterization of silicon films, the compliance of the 
specimen increases as fatigue damage accumulates in the form of incipient crack growth. This 
degradation induces a corresponding decrease in the natural frequency of the structure. Much 
like macroscopic, fracture mechanics-based investigations (e.g. refs. (Chati, et al., 1997; 
Chondros, et al., 1998; Mahmoud, et al., 1999; McGuire, et al., 1995; Yokoyama and Chen, 
1998), this change in specimen compliance can be correlated with crack growth through 
analytical or numerically-based models. What is less obvious is that this change in natural 
frequency can lead to a rapid reduction in the stress amplitude, as depicted schematically in 
Figure 2.  Thus, the driving force for fatigue failure depends not only on the specimen 
geometry, but also on the damping in the system. Accordingly, the development of 
appropriate models of the fatigue characterization structure is a crucial step in understanding 
the fatigue damage accumulation in polycrystalline silicon. 

The primary objectives of this work were to evaluate the fatigue-crack growth behavior 
and fracture toughness of polycrystalline silicon thin films and to determine the stability of 
the cracks under resonant loading conditions used in the fatigue characterization structure 
shown in Figure 1.  First, finite element methods were used to evaluate the dynamic behavior 
and stress distribution of an uncracked structure. Similar models of a cracked structure were 
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then developed to determine the natural frequency and linear elastic crack-tip parameter, K. 
These models were then employed in a lumped, dynamic model of the micromechanical 
fatigue characterization structure to evaluate the stability of fatigue cracks. Finally, the finite 
element and lumped parameter numerical models of the structure were applied to 
experimental data from previous stress-life fatigue tests to evaluate the crack-growth rate and 
fracture toughness behavior of the n-type, thin film, polycrystalline silicon. 

2.  Experimental and Numerical Methods 

To determine the natural frequency, compliance, and stress distribution for the fatigue 
characterization structure shown in Figure 1, dynamic and quasi-static finite element models 
were applied to both uncracked and cracked structures. In the case of the cracked structure the 
relationships between the crack length and the natural frequency and the stress intensity-
factor, K, were also determined. 

2.1. Micromechanical fatigue testing 

The fatigue characterization structure (Fig. 1) used for thin-film silicon S/N fatigue testing 
was originally developed by Van Arsdell (Van Arsdell, 1997). This structure is ~300 µm 
square, and is analogous to a specimen, electromechanical load frame, and capacitive 
displacement transducer found in a conventional mechanical testing system. The specimen is 
a notched cantilever beam that is in turn attached to a large, perforated plate that serves as a 
resonant mass. The mass and beam are electrostatically forced to resonate and the resulting 
motion is measured capacitively. On opposite sides of the resonant mass are interdigitated 
“fingers” commonly referred to as “comb drives.” One side of these drives is for electrostatic 
actuation; the other side provides capacitive sensing of motion. The resonance generates fully 
reversed, constant amplitude, sinusoidal stresses at the notch, i.e., a load ratio, R (ratio of 
minimum to maximum load), of -1. The structure is designed for testing at ~40 kHz and is 
excited at a fixed frequency that is updated periodically during the test. The notched beam 
specimens are ~40 µm long, 19.5 µm wide, and 2 µm thick. A 13 µm deep notch is located 
9.8 µm from the base and has a root radius of about 1 µm based on scanning electron 
micrographs (SEM) of the structures.  The toroidal plate spanning 60° (inner radius, rinner = 30 
µm, outer radius, router = 300 µm, thickness, t = 1.97 µm) rotates about the midpoint of the 
remaining ligament of the notched beam and serves as a mass to lower the natural frequency 
of the structure. The specimens are tested at a constant applied electrostatic force amplitude 
until failure occurs by complete separation of the beam at the notch. During the test, the 
natural frequency of the structure decreases as fatigue damage accumulates at the notch. The 
natural frequency of the structure is periodically characterized (about every 60 seconds) 
throughout the fatigue test by measuring the amplitude of the resonance as the excitation 
frequency is varied by ±50 Hz around the resonant frequency of the structure, f. The dynamic 
response of the structure is fit with a second-order polynomial and the maximum is taken as 
an estimate of the resonant frequency. The fatigue characterization structure is then excited at 
this frequency with a constant force amplitude until the frequency sweep and curve fit are 
repeated (Muhlstein, et al., 2001a). The motion is measured via the rate of change of 
capacitance, calibrated using the method detailed in ref. (Muhlstein, et al., 2001a), and is 
monitored during every test. Thus, the natural frequency as a function of time data are a 
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record of damage accumulation; in addition, loss of resonance indicates specimen failure. The 
applied stress amplitude and crack-growth behavior are determined from the finite element 
methods described herein.   

In total, 28 specimens of n-type polycrystalline silicon, ~2-µm thick films were tested to 
failure and the natural frequency as a function of time monitored.  In previous studies, the 
fracture surfaces, crack paths, and microstructure were examined in detail (Muhlstein, et al., 
2001a).  In this study, the focus of the work is on the interpretation of the change in natural 
frequency and the stability of cracks in the specimen. 

The design of the micromechanical fatigue characterization structure is amenable to a 
wide range of processing techniques and material systems, and has been used for studies of 
both silicon and silicon-germanium structural films.  During a recent fabrication run of a 
polycrystalline SiGe surface micromachining process (Franke, et al., 2000), in addition to the 
“standard” notched cantilever beam geometry, a new specimen variant was introduced for 
characterization of the fatigue properties of brittle structural films. A ~3 µm square hole was 
added to the center of the remaining ligament of a notched cantilever beam in order to blunt 
the crack and, under resonant loading, to halt motion of the structure. Figure 3 shows 
scanning electron micrographs of single- and double-notched specimens with centrally 
located holes. The polycrystalline germanium sacrificial layer was removed using 50% H2O2 
for 1.5 hours followed by drying at 110°C in air for 2 minutes. The structures were excited 
near the natural frequency of the uncracked structure and the amplitude of the electrostatic 
excitation was rapidly increased until the structure ceased to resonate. After testing, the 
structures were examined in the SEM, without the use of conductive coatings typically 
employed to improve image contrast of low conductivity materials.  

2.2. Numerical modeling 

A series of planar, finite element models were evaluated using a commercial software 
package (ANSYS v. 5.7). Modal and quasi-static structural analyses of the uncracked 
structure were used to determine the dynamic response of the structure and the applied stress 
amplitude for a given displacement of the structure. The fatigue characterization structure was 
modeled as an elastically isotropic, notched, cantilever beam and mass, with the geometry 
determined by SEM of released devices, as summarized in Figure 1.  Six-node, triangular, 
plane-stress, solid elements with constant thickness were used in the model and small elastic 
deformations were assumed.  The displacements of nodes located at the base of the notched 
cantilever beam were set to zero to achieve the “built-in” boundary conditions of the structure.  
The mesh in the vicinity of the notch was refined until solutions converged.  An average of 
the Voigt and Reuss bounds for a random, polycrystalline silicon aggregate (Young's 
modulus, E = 163 GPa, Poisson's ratio, ν = 0.23 (Simmons and Wang, 1971)) was used for 
the elastic properties of the elements. The density of the polycrystalline silicon in the modal 
analysis was assumed to be the same as the bulk, single crystal form (ρ = 2329 kg/m3 (Tatsumi 
and Ohsake, 1988)). A subspace extraction method was used to determine the eigenvalues and 
eigenvectors for the system, establishing the first in-plane natural frequency of the structure. 
An identical, plane-stress model with unit thickness was used to establish the degree of non-
ideality (i.e., the deviation from a mass-spring system) of the structure. The maximum 
principal stress at the notch root, σ1, and angular rotation of the structure, θ, about the 
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midpoint of the remaining ligament, (W - D), due to a unit force applied at the center of mass 
of the plate, were used to determine the relationship between angular rotation and maximum 
principal stress. 

Modal and quasi-static structural analyses of cracked, notched, cantilever-beam structures 
were performed using the same material properties and finite element package. Akin to the 
uncracked structures, small deformations and elastic isotropy were assumed, displacements of 
nodes at the base of the cantilever structure were set to zero, and the material properties of an 
ideal polycrystalline silicon aggregate were used. The model of the fatigue structure, with a 
single crack located on the centerline of the notch perpendicular to the root of the notch, was 
constructed with six-node, triangular, plane-strain elements. The singularity at the crack tip 
was modeled with twelve circumferential, unskewed elements, 1/20 of the crack length in 
size. The remaining element size was refined until model convergence was achieved. As with 
the uncracked structure, a subspace extraction method was used to determine the eigenvalues 
and eigenvectors for the system, establishing the first in-plane natural frequency of the 
structure.  Structural analyses of the cracked structure were performed using six-node 
triangular plane-stress elements with thickness equal to that of the structure in a configuration 
that was otherwise identical to the models used for the modal analyses.  A unit force was 
applied at the center of mass of the plate and the resulting angular rotation used to establish 
the specimen rotational compliance (sθ = 1/kθ). The stress intensity was then calculated from 
the displacement field immediately behind the crack tip (Anderson, 1995; Broek, 1986). The 
size of the crack was gradually increased to establish the nondimensional compliance, sEt, 
and stress-intensity geometry function, f(a/(W - D)), for the cracked characterization structure 
using standard fracture-mechanics procedures (Anderson, 1995; Broek, 1986).  

To evaluate the stability of cracks in this structure under the resonant loading conditions, a 
lumped model approach was used. The dynamic behavior of the system was modeled as a 
damped, forced, mass-spring oscillator that was driven at or near its natural frequency, f0.  The 
stiffness of the spring, k, and crack-driving force, K, were determined from fracture-
mechanics solutions shown in Table 1 (after ref. (Tada, et al., 2000)) and the mass of the 
model system established by the geometry of the structure. The amplitude of motion and the 
associated driving force for crack advance were determined from the relationship between the 
amplitude and frequency of the excitation waveform and the damping characteristics and 
natural frequency of the system (e.g., ref. (French, 1971)), as detailed in the Appendix. The 
damping of the system was assumed to be proportional to the velocity of the mass in the 
system, as is typical of many simple systems.  

Crack stability under resonant loading was evaluated by calculating the maximum stress 
intensity, Kmax = ∆K/(1 - R), where ∆K is the stress-intensity range and R is the load ratio, for 
an applied force or moment amplitude. From the system compliance, the natural frequency of 
the resonator could then be determined. The crack was extended, lowering the natural 
frequency of the structure, but with the excitation frequency remaining unchanged. The new 
stress amplitude was determined using the revised structure compliance, thus permitting the 
associated crack-driving force to be calculated. The process of extending the crack and 
calculating the new stress amplitude was repeated to generate a plot of the driving force as a 
function of crack length. The effect of damping on the system was investigated by modifying 
the quality factor of the initial configuration, Q0, as defined in the Appendix.  
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This general procedure was applied first using compliance and stress-intensity solutions in 
the literature for three common geometries summarized in Table 1: micron-scale, edge-
cracked beam in bending (t = 2 µm, W = 19.5 µm), single-edge-cracked plate in tension (t = 2 
µm, W = 10 µm, L = 20 µm), and center-cracked plate in tension (t = 2 µm, W = 5 µm, L = 20 
µm), where t is the thickness, W is the width, and L is the length of the specimen. The edge-
cracked beam in bending was attached to a mass with a mass-polar moment of inertia the 
same as the mass in the structure shown in Figure 1 (Jθ = 1.024×10-17 kg·m2), giving an initial 
natural frequency of 96.2 kHz. Similarly, the edge-cracked and center-cracked plates in 
tension were modeled with a 4.1288 × 10-5 kg mass that gave an initial natural frequency of 
14.1 kHz and 10 kHz respectively. In a gravitational field, this corresponded to a tensile 
preload of  ~20 MPa, a small fraction of the strength of silicon structural films (3-5 GPa 
(Greek, et al., 1999; Greek, et al., 1997; Kapels, et al., 1999; Sharpe, et al., 1998; Sharpe, et 
al., 1999; Tsuchiya, et al., 1997; Tsuchiya, et al., 1998)). The lumped model was then applied 
to the notched cantilever-beam fatigue structure (Figure 1). The finite element results were 
used for evaluating the compliance and stress-intensity factors. The mass polar moment of 
inertia, Jθ, of the micromechanical fatigue characterization structure was calculated from the 
geometry of the plate and found to be 1.024×10-17 kg·m2. This mass-spring system model 
corresponds to an initial natural frequency of ~43.5 kHz. 

The finite element and lumped-parameter dynamic models were applied to experimental 
results from previously reported stress-life fatigue data (Muhlstein, et al., 2001a). The linear 
relationship between the maximum principal stress, σ1, and the angular rotation of the 
structure provided the basis for determining the nominal stress from the experimentally 
measured angular rotation. The dynamic model of the structure was then utilized to evaluate 
the crack-growth rates in the structure using the following procedure. The measured natural 
frequency of the structure, fcrack, was normalized with respect to the initial natural frequency 
of the structure, f0.  A linear interpolation of the normalized natural frequency as a function or 
normalized crack length, a/(W - D), developed from the dynamic model was used to 
determine the crack length as a function of time. The maximum stress intensity immediately 
prior to failure was taken as an estimate of the fracture toughness of the material. 

3. Results 

3.1. Resonant-loaded beams with holes 

Polycrystalline silicon-germanium fatigue characterization structures similar in geometry 
to Figure 1 were excited with continuously increasing stress amplitude at a fixed frequency in 
laboratory air until motion ceased. Observation of the single and double-notched beams with 
centrally located holes using the scanning electron microscope revealed cracks emanating 
from the root of the notch that terminated at the hole, as shown in Figure 3. 

3.2. Dynamic and quasi-static finite element analyses 

The dynamic and quasi-static behavior of the uncracked fatigue characterization structure 
was evaluated using the finite element methods described above. The first in-plane natural 
frequency of the structure, f0, was extracted from the finite element models and the mode-
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shape evaluated by inspection of the exaggerated displacements. The natural frequency of the 
uncracked structure was found to be 43,217 kHz for both the full  (t=1.97 µm) and unit  
thickness plane-stress modes. The torsional stiffness, kθ, of the uncracked structure due to a 
unit force applied at the center of mass of the toroidal plate was found to be 7.6605×10-7 
N·m/rad.  When kθ is combined with the calculated mass polar moment of inertia, the natural 
frequency of the mass-spring system is calculated to be 43,531 kHz. The maximum principal 
stress at the root of the notch due to a unit force applied at the center of mass was linearly 
related to the angular rotation of the mass (1.0107×1011 Pa/rad).  The spatial distribution of 
the stresses along the centerline of the notch was extracted from the finite element solution.  
The spatial distribution of the stresses in the notched cantilever beam are shown in Figure 4(a) 
where the principal stress, σ1, is normalized by the outer fiber principal stress in the beam 
remote from the notch, σ1,∞, and the distance from the notch root, r, is normalized by the 
remaining ligament size, (W - D). The calculated stress concentration factor, Kt, was found to 
be 2.03. The maximum principal stress along the centerline of the notch decreases as 1/r2 for 
r/(W - D) < 0.1, as shown by the curve fit in Figure 4(b). The solutions from Noda (Noda, et 
al., 1995) have been used previously to define the stress amplitude applied during stress-life 
testing (Muhlstein, et al., 2001b).   

Similar to the previous case, the dynamic behavior of the cracked fatigue characterization 
structure was also evaluated using finite element methods. The first in-plane natural frequency 
of the cracked structure, fcrack, was extracted from the model and the mode-shape evaluated by 
inspection of the exaggerated displacements. The relationship between normalized crack 
length (a/(W - D)) and normalized natural frequency (fcrack/f0) for the plane-stress model is 
shown in Figure 5 and fit to the ninth-order polynomial shown in Table 2. Although the 
relationship is nonlinear, in the early stages of crack growth a ~1 Hz change in natural 
frequency corresponds to ~1 nm of crack extension. Interpolation methods should be used 
when calculating small, normalized crack lengths, i.e., a/(W - D) < 0.01, since the quality of 
the curve fit in this range is poor. 

Standard fracture-mechanics analyses were used to determine the compliance, s, and 
stress-intensity factor, K, for the cracked fatigue characterization structure from the plane-
strain finite element model detailed in the previous section.  The compliance of the cracked 
structure for a given crack length was determined from the displacement of the center of mass 
of the toroidal plate due to a unit force applied at the center of mass. The equivalent angular 
rotation of the plate about the midpoint of the remaining ligament of the beam was determined 
from the geometry of the structure. From general analytical solutions, it is known that the 
crack-tip stresses and strains are proportional to the linear-elastic crack parameter, K, and 
have a general functional form dependent on the mode of loading (Anderson, 1995; Broek, 
1986). Thus, the location of, and stresses (or displacements) at, nodes near the crack tip can 
be used to calculate K for a given applied force. This strategy was used to calculate K as a 
function of crack length for a unit applied force at the center of mass of the toroidal plate. The 
results of the compliance and stress-intensity factor analyses were then recast in the standard 
functional forms used in fracture mechanics. The compliance results are shown in the 
standard, nondimensional compliance form (sEt = S(a/W)) (Anderson, 1995; Broek, 1986) in 
Figure 6 and fit with the ninth-order polynomial shown in Table 2.  Similarly, the geometric 
function, f(a/(W - D)) (Anderson, 1995; Broek, 1986), for the stress-intensity factor 
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determined (Figure 7) and fit to a ninth-order polynomial shown in Table 2.  

3.3. Lumped dynamic model 

The lumped dynamic model described in section 2.2 was applied to the three, micron-
scale, resonant fatigue characterization structures, namely the edge-cracked plate in bending, 
single edge-cracked plate in tension, and center-cracked plate in tension; the calculated 
normalized crack-tip parameters, as a function of normalized crack length and quality factor, 
are shown in Figure 8. The model was also applied to the cracked, notched cantilever-beam 
fatigue characterization structure (Fig. 1) using the fracture-mechanics solutions derived 
above. Results are shown in Figure 9, where the driving force for crack advance is presented 
as a function of crack length and quality factor. 

3.4. Stress-Life (S-N) Fatigue Data Analysis 

Previously, 28 polycrystalline silicon specimens were tested to failure in laboratory air 
(Muhlstein, et al., 2001a). The fatigue lives ranged from 28 fatigue specimens tested in room 
air; lives, Nf, varied from ~10 sec to 34 days (3×105 to 1.2×1011 cycles) over an angular 
rotation amplitude, θ, of ~0.02 to 0.04 radians at R = -1.  The silicon films displayed “metal-
like” S-N behavior, with an endurance strength at 109 - 1010 cycles of roughly half the (single-
cycle) fracture strength.  The relationship between angular rotation and maximum principal 
stress determined using the finite element model was used to calculate the applied stress 
amplitude which ranged from ~2.2 to 4.4 GPa (Figure 10). For each specimen, the crack 
length as a function of accumulated cycles was determined from a linear interpolation of the 
finite element model-derived relationships between natural frequency and crack length shown 
in Figure 5. A representative result of the calculated crack length as a function of time is 
shown in Figure 11. The final crack length measured immediately prior to failure, af, from the 
normalized natural frequency for the specimens in Figure 10 is shown as a function of 
specimen life, Nf, in Figure 12. The applied stress amplitude for a given test and the crack size 
just prior to failure were used to estimate the fracture toughness of the material, Kc (Figure 
13). For the thin-film polysilicon fatigue tests, critical crack sizes were observed to range 
from ~5.5 to 66 nm depending on the applied stress amplitude. The average fracture 
toughness measured by this technique for failure of the polycrystalline silicon films was 0.85 
MPa√m. 

4. Discussion 

The finite element and numerical models provide important insight into the dynamic 
behavior of crack-free structures and the stresses in the vicinity of the notched beam fatigue 
characterization specimens.  Similarly, the models of the cracked structure can be used to 
determine the size and stability of cracks, as well as the fracture toughness of the material.   
The purpose of this section is to discuss the implications of the models for the behavior of the 
structure and the fatigue resistance of polycrystalline silicon.  
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Comparison of the various models of the dynamic behavior of the crack-free 
characterization structure provides useful insight into the behavior of the structure. The 
agreement between the first in-plane natural frequency predicted by the unit and full-thickness  
finite element models of the fatigue characterization structure and the 0.7% difference 
between the plane-stress finite element and the mass-spring description establish that the use 
of a mass-spring idealization is reasonable. However, there is a marked difference between 
the predicted natural frequency of the plane-stress model (43,217 Hz) and what is typically 
observed experimentally (41,693 Hz) (Muhlstein, et al., 2001a).  Since the stiffness of the 
structure is proportional to the elastic modulus, the experimentally observed Young’s 
modulus appears to be about 152 GPa, i.e., some 7% below the ideal polycrystalline value.  It 
is believed that this is not an anomalously low elastic modulus, but rather arises from the 
compliance of the “anchor” at the base of the cantilever structure (Van Arsdell, 1997). 
Specifically, the use of idealized, polycrystalline aggregate elastic properties and perfectly 
clamped boundary conditions provide a conservative estimate of the applied stress amplitudes 
during S/N fatigue testing.  While the built-in assumption for the base of the fatigue 
characterization structure may introduce up to a 7% error in the calculated stress amplitude, 
the general trends observed in S/N and dynamic behavior should be faithfully represented.  
Maximum principal stresses at the root of the notch, determined from the plane-stress finite 
element model of the crack-free fatigue characterization structure, gave values proportional to 
the angular rotation of the resonant mass (1.0107×1011 Pa/rad).  The stress field falls off at a 
rate proportional to 1/r2, and the notch the effects are most important for r/(W - D) < 0.1 
(within 0.65 µm of the root) as shown in Figure 4(b).  General solutions for V-shaped notches 
in flat plates loaded in bending, developed by Noda (Noda, et al., 1995), give a Kt value of 
2.03 for the present notched cantilever beam, which compares favorably with the finite 
element solutions in the present study and the simplified (beam-only) models used previously 
(Muhlstein, et al., 2001a).  While the understanding of the notch stress distribution and 
dynamic behavior of the structure are important, the behavior of cracked fatigue 
characterization structures is particularly useful. 

The interaction between natural frequency of a cracked structure and the excitation 
frequency, depicted schematically in Figure 2, was observed experimentally as a loss of 
resonance in the hole specimens. If a fatigue crack is allowed to propagate into a hole under 
the correct loading conditions (De Rijk, 1970; Van Leeuwen, 1970; Van Oosten Slingeland 
and Broek, 1973), the crack-tip tip radius is effectively “blunted”, in the present case from 
Ångstroms to micrometers, which can lead to arrest.  Because the natural frequency of the 
structure has been radically reduced, during the next electrostatic cycle the structure is not 
excited at resonance since the frequency of the impulse has remained unchanged. This 
provides a “graceful” failure mode that prevents shorting of the electrostatic actuator when the 
specimen separates. More importantly, this is not the only way to decrease the driving force 
for crack advance under resonant loading conditions. 

In general, under nominally linear-elastic conditions, when a constant force is applied 
normal to the crack plane (i.e., mode I loading), an increasing K-gradient results and stable 
crack growth is not observed in materials that do not exhibit resistance-curve behavior 
(Anderson, 1995; Broek, 1986; Lawn, 1993). In contrast, a mode I crack subjected to a 
constant displacement will usually be subjected to a decreasing K-gradient and stable crack 
propagation can occur once the applied driving force reaches the critical stress intensity, Kc. 
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Creative mechanical design can lead to exceptions to these general trends (e.g., (Fitzgerald, et 
al., 1999; Gonzalez and Pantano, 1990)) just as rapidly varying the applied force or 
displacement can, in principle, be used to generate the desired crack-tip driving force and K-
gradient. The applied stress-intensity range, ∆K, gives the analogous driving force for fatigue-
crack growth in linear elastic solids. Fatigue cracks subjected to increasing ∆K gradients 
(d∆K/da) accelerate while decreasing gradients eventually lead to crack arrest. The resonant 
loading conditions encountered in micromechanical fatigue testing play an important role in 
the stability of cracks in these structures. 

If a micromechanical fatigue system is modeled as a damped, forced, mass-spring 
oscillator that is driven at or near its natural frequency, the stiffness and crack-driving force of 
the “spring” can be determined from fracture-mechanics solutions that describe the geometry 
of the specimen. A wide variety of solutions are summarized in handbooks, e.g. (Tada, et al., 
2000). The amplitude of motion can be determined from the relationship between the 
amplitude and frequency of the excitation waveform and the damping characteristics and 
natural frequency of the system. This general approach allows the evaluation of fatigue crack 
stability for a wide variety of configurations and reflects the behavior of a variety of 
mechanical testing structures used to characterize structural films used in MEMS. If the 
system is driven at or near the natural frequency of the crack-free structure, the unique load-
ing conditions depicted schematically in Figure 2 may develop. A structure excited at f0 will 
begin at an amplitude of motion as defined by Eq. A2 in the Appendix. As the crack 
advances, the natural frequency of the structure decreases. Since the excitation frequency has 
remained unchanged, the amplitude of motion decreases as the coupling between the structure 
and excitation force is reduced. If the rate of load shedding is sufficiently rapid (i.e., high 
enough Q), a decreasing ∆K gradient may develop. What would seem at first glance to be a 
force-controlled configuration is actually limited by the change in stiffness of the structure. In 
the case of the micromechanical resonators for fatigue characterization, these force-
controlled, displacement-limited conditions may develop when the damping in the system is 
altered by lowering the ambient pressure of the surrounding environment.  

As noted above, the mode I compliance and stress-intensity factor solutions for edge and 
center-cracked plates in tension and edge-cracked beams in bending from (Tada, et al., 2000) 
were used as test cases for the general model of crack stability under fatigue loading. In 
heavily damped (i.e., low Q) systems, the stress amplitude does not significantly change as 
the crack advances into the material and the loading conditions are not unlike constant force 
or moment conditions. The crack grows into an increasing ∆K gradient and will accelerate and 
eventually fail when Kmax reaches the fracture toughness, Kc, of the material (i.e., is unstable). 
However, as the level of damping is reduced the driving force, ∆K, and its gradient change 
significantly; the lower damping in the system leads to a rapid decrease in the applied stress 
amplitude as the crack advances. Once the quality factor reaches relatively high values (in 
excess of 1000), the gradient is such that the fatigue crack is decelerating and will eventually 
arrest (i.e., is stable). This phenomenon is quite general, and is observed with both edge and 
centrally located cracks loaded in tension or bending.  

The stability of cracks in the actual fatigue characterization structure is shown as a 
function of system damping in Figure 9.  The behavior of the structure is similar to the model 
systems based on edge and center-cracked plates in tension and edge-cracked beams in 
bending fracture-mechanics solutions from (Tada, et al., 2000).  Reducing the system 
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damping can create decreasing driving forces and driving force gradients for crack advance.  
This is pertinent where fatigue testing is required for different environments.  For the case of 
the fatigue characterization structure used in thin-film silicon research, Q changes from about 
100 to more than 1000 when the environment is changed from room air at atmospheric 
pressure to a vacuum of 10-6 Torr. Consequently, one would expect the mechanical loading 
(as well as the environmental) conditions to be significantly different for tests in these two 
environments.   

Controlled environment testing is used to probe the role of environment in fracture and 
fatigue processes. Normally, testing in vacuum is a convenient and effective means of limiting 
environmental effects. However, these model results show that altering the damping 
conditions of a micromechanical resonator can have a dramatic effect on the driving force on 
and stability of fatigue cracks.  Specifically, cracks that would be unstable at atmospheric 
pressure may arrest in vacuo.  Furthermore, incremental, unstable crack advance could be 
mistaken for subcritical fatigue-crack growth when the excitation frequency is periodically 
updated during a micromechanical fatigue test conducted in vacuum. 

One should note that analyses of resonant fatigue systems are limited by the ability to 
model adequately the loading conditions and by the behavior of the system as the crack 
becomes an appreciable fraction of the specimen. For example, the inhomogeneous 
distribution of stress in macroscopic resonant fatigue specimens complicates the evaluation of 
the stress-intensity factor (Schoeck, 1982). Fortunately, this is not a problem in the mass-
spring systems used in micromechanical fatigue structures.  However, in both continuous and 
mass-spring systems the load ratio of -1 is problematic, as the opposing faces of the crack 
come into contact during the compression portion of the loading cycle (and even earlier if 
crack-closure phenomena are active).  In this study, as with most fracture-mechanics analyses, 
this problem is alleviated by computing the stress intensity in terms of the tensile portion of 
the cycle only; for this reason, the driving force results are presented in terms of Kmax.  
Additionally, at long crack lengths the difference in compliance during the opening and 
closing portions of the loading cycle introduces significant nonlinearity in the cracked mass-
spring oscillator.  Furthermore, out-of-plane bending and torsional modes tend to couple with 
the in-plane bending mode at large normalized crack lengths (Van Arsdell, 1997). These 
factors can limit the range of applicability of the lumped model and finite element results.  
Fortunately, cracks observed in the micromechanical fatigue characterization structure 
modeled here are usually very short (e.g., with a/(W - D)<<0.1), such that these limitations are 
insignificant.   

 When the finite element and lumped models are used to interpret the stress-life fatigue 
behavior of polysilicon, a variety of important observations can be made.  If the damage 
accumulation (i.e., the decrease in resonant frequency) during the fatigue test is assumed to be 
due to the formation of a crack, the crack length can be readily determined as a function of 
time (Figure 11).  While this is a simplification of the fatigue degradation process, 
experimental observations of cracks in structures are consistent with the observed changes in 
natural frequency (Muhlstein, et al., 2001c; Muhlstein, et al., 2001d).  The crack-growth 
behavior determined from the change in natural frequency of the specimen (Figure 11)  
suggests that the crack-growth rates are decreasing as the crack advances. This behavior has 
been observed for microstructurally-small cracks, cracks growing under displacement control, 
cracks growing into residual stress fields, and cracks approaching interfaces. In the present 
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case, the effect is likely related to several of these factors acting in concert, as detailed in 
(Muhlstein, et al., 2001c). If the crack-driving force at failure is taken as an estimate of the 
fracture toughness, the toughness of the material can be determined. The crack length 
estimates at failure were used with plane-strain models of the stress intensity for the notched 
cantilever beam structure.  Results from the polysilicon fatigue tests (Figure 13) give an 
average fracture toughness of ~0.85 MPa√m, with critical crack sizes in the range ~5.5 to 66 
nm depending on the applied stress amplitude.  As prior studies (Muhlstein, et al., 2001c; 
Muhlstein, et al., 2001d) have indicated that the oxide thickness at the notch is on the order of 
100 nm, it is clear that the crack initiation, growth and final (overload) processes during thin-
film silicon fatigue all occur within the native oxide.  The measured toughness value of ~0.85 
MPa√m is thus indicative of the fracture toughness of the amorphous silica reaction layer. 

5. Conclusions 

Based on experimental and numerical analyses of resonating micromechanical fatigue 
structures used in micron-scale testing of structural silicon films, which incorporate 
experimental observation and finite element (quasi-static and dynamic) and lumped dynamic 
models, the following conclusions may be made: 

1. The notched cantilever-beam fatigue characterization structure behaves as a 
lumped mass-spring oscillator (within 0.7%).  The idealized clamped boundary 
conditions for the structure introduce error of ~7% to the maximum principal 
stress at the root of the notch through the estimate of the specimen compliance.  

2. The notch of the fatigue characterization structure influences the compliance 
and stress-intensity factor solutions for the notched cantilever beam. The 
influence of the notch stress field falls off at a rate proportional to 1/r2, and the 
effects of the notch are most important within 0.65 µm of the root  (i.e., a/(W - 
D) < 0.1). This corresponds to the range of crack lengths generally of interest 
for stress-life fatigue characterization in micron-scale structures made from 
brittle materials. 

3. The dynamic response of the fatigue characterization structure is extremely 
sensitive to crack length.  Although the relationship is nonlinear, a 1 nm 
extension in crack length corresponds to ~1 Hz change in natural frequency. 

4. The presence of a centrally located hole in notched micromechanical fatigue 
characterization structures prevents complete separation of the test specimen 
by blunting the crack when the resonator is driven at a fixed excitation 
frequency. 

5. Fatigue crack stability in micromechanical resonators driven at a constant 
frequency at or near the natural frequency of the system is a function of the 
damping characteristics of the system. Specimens in micromechanical fatigue 
characterization structures are subjected to force-controlled, displacement-
limited loading conditions. Lowering the damping in the system, e.g., by 
testing in vacuo, can lead to crack arrest from purely mechanical factors.  This 
effect must be considered in the evaluation of results from controlled 
environment testing using this test geometry. 
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6. Fatigue lives measured using micromechanical fatigue resonators in vacuo 
cannot be directly compared to atmospheric pressure data due to differences in 
the gradient of the applied stress-intensity range. Indeed, fatigue testing in low-
pressure environments may give the anomalous appearance of subcritical crack 
growth in the absence of fatigue degradation. 

7. During the fatigue of thin-film polysilicon, critical crack sizes were observed 
to range from ~5.5 to 66 nm depending on the applied stress amplitude; 
average toughness values were found to be 0.85 MPa√m. These results, 
together with previous studies, suggest that the processes of crack initiation, 
growth and final overload failure all occur within the native oxide layer.  
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Appendix:  Forced, Damped, Mass-Spring System Equations of Motion 

In contrast to the systems used for macroscopic ultrasonic fatigue testing, most 
micromechanical fatigue characterization structures can be modeled as forced, damped, mass-
spring oscillators (e.g., (Van Arsdell, 1997; Van Arsdell and Brown, 1999)). The deformation 
of the structure is localized to the test specimen and the attached mass, m, reduces the natural 
frequency, f0, of the system. If we assume that the damping in the system is proportional to the 
velocity of the mass, dx/dt, and the stiffness of the specimen is given by k, the motion of the 
system may be described by the following second-order differential equation: 
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where x is the position of the center of mass at time, t, and f is the frequency of the applied 
force, F0. The damping parameter, γ, is the ratio of the velocity-dependent resistive force, b, to 
the mass. Solutions to this equation are routinely derived in introductory texts on dynamics 
(e.g., (French, 1971)). It is convenient to introduce the quality factor, Q = f0/γ, as a measure of 
the damping characteristics of the system. With this added notation, the solution of the 
amplitude of motion as a function of excitation frequency, A(f), is given by: 
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For rotational systems, e.g., where the angular rotation is a function of an applied moment, the 
rotational stiffness, kθ, and the mass polar moment of inertia, Jθ, are used to describe the 
stiffness and mass of the system, respectively. 
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FIGURES 

 

 

 
Figure 1. Scanning electron micrograph of the micron-scale fatigue characterization 

structure containing the notched cantilever-beam specimen used in this 
investigation. The (a) mass, (b) comb drive actuator, (c) capacitive 
displacement sensor, and (d) notched cantilever-beam specimen are shown.  
The nominal dimensions of the specimen are as indicated in the schematic. 
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Figure 2. Schematic of the effect of increasing specimen compliance on the 

applied stress amplitude in a mass-spring system under loading at a 
fixed natural frequency. The dashed lines are the amplitude of stress 
(displacement) experienced by the simple harmonic oscillator as defined 
by Eq. A2 in the Appendix. The system is excited at the initial natural 
frequency of the undamaged system, f0, but as damage accumulates the 
compliance increases. Depending on the damping in the system, the 
resonant-loaded structure can experience a significant reduction in the 
driving force for damage accumulation and crack advance. 
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Figure 3. Scanning electron micrographs of (a) single and (b) double-notched 

cantilever-beam specimens in fatigue characterization structures with 
centrally located holes fabricated using a SiGe surface micromachining 
process (Franke, et al., 2000). The specimens were excited at a fixed 
natural frequency and the amplitude rapidly increased until motion of the 
structure ceased.  Cracks initiated at the notch root and were arrested by 
the hole, preventing complete separation of the beam (insets), illustrating 
the interaction between the resonant loading conditions and crack advance 
in the structure. 

 

20 



submitted to Mechanics of Materials, 2001 

 

 
Figure 4. Stress-concentration effects of the notch in the cantilever beam in the 

fatigue characterization structure. (a) The normalized stress (σ1/σ1,∞) at 
location, r, along the centerline of the notch is shown as a function of 
the remaining ligament (W - D) of the cantilever-beam structure. (b) The 
1/r2 decay of the maximum principal stress near the root of the notch. 
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Figure 5. (a) The relationship between normalized crack length (a/(W - D)) and 

normalized natural frequency (fcrack/f0) for the plane-stress (full 
thickness) finite element model of the notched cantilever beam in the 
fatigue characterization structure. (b) The behavior for small (a/(W - D)) 
and the associated ninth-order polynomial fit from Table 2 are shown. 
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Figure 6. (a) The non-dimensional rotational compliance, S(a/(W - D))=sEt, of the 

cracked fatigue characterization structure due to a unit point load 
applied at the center of mass as a function of normalized crack length, 
a/(W - D), determined from finite element methods. (b) The behavior for 
small (a/(W - D)) and the associated ninth-order polynomial fit from 
Table 2 are shown. 
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Figure 7. The geometric function, f(a/(W - D)), for the stress-intensity factor, 








−⋅⋅= )( DW
afaK πσ , of the cracked, notched, cantilever beam 

specimen within the fatigue characterization structure, determined from 
the displacement of nodes immediately behind the crack tip. 
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Figure 8. Stability of a fatigue crack in resonant-loaded fatigue characterization 

structures predicted by the lumped dynamic model. The normalized 
driving force for crack advance, Kmax/Kmax,0, as a function of normalized 
crack length, a/W, is shown for the (a) edge-cracked plate in bending, 
(b) edge-cracked plate in tension and (c) center-cracked plate in tension. 
In heavily damped systems (i.e. low Q0), the fatigue crack will 
accelerate (dK/d(a/W) > 0). As the damping in the system is decreased 
(i.e. increasing Q0), the crack will decelerate and possibly arrest 
((dK/d(a/W) < 0). 
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Figure 9. Stability of a fatigue crack in the resonant-loaded fatigue 

characterization structure (Figure 1) predicted by the lumped dynamic 
model. The normalized driving force for crack advance, Kmax/Kmax,0, is 
shown as a function of normalized crack length, a/(W - D), for the 
notched cantilever-beam specimen within this structure. The behavior of 
this characterization structure is similar to that of systems modeled 
using existing fracture-mechanics solutions. In heavily damped systems 
(i.e., low Q0), the fatigue crack will accelerate (dK/d(a/W) > 0). As the 
damping in the system is decreased (i.e., increasing Q0), the crack will 
decelerate and possibly arrest ((dK/d(a/W) < 0). 
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Figure 10. Typical stress-life (S/N) fatigue behavior of ~2 µm-thick, polycrystalline 

silicon obtained using the micron-scale fatigue characterization structure under 
fully reversed, tension-compression loading at 40 kHz in moist room air 
(Muhlstein, et al., 2000; Muhlstein, et al., 2001a).   
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Figure 11. Damage accumulation in polycrystalline silicon, shown by experimentally 

measured decrease in resonant frequency, fcrack, with time during the fatigue 
test (Nf  = 2.19 × 1010 cycles at σa = 2.71 GPa), with the corresponding 
computed increase in crack length a.    
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Figure 12. Decrease in normalized natural frequency, 1- (fcrack/f0), and the associated final 

crack size, af, as a function of specimen life.    
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Figure 13. Computed fracture toughness, Kc, values determined from the estimated 
crack length immediately prior to failure, i.e., the critical crack size, ac, for 
the given applied stress amplitude.  The average fracture toughness 
(dashed line) was calculated to be 0.85 MPa√m.   

600
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Table 1. Fracture-mechanics solutions for the mode I stress-intensity factor, KI, and 
compliance, s, of the edge-cracked beam in bending, edge-cracked plate in 
tension, and the center-cracked plate in tension geometries (Tada, et al., 2000). 

 
 

Table 2. Curve fits of the modal and fracture-mechanics solutions for the notched, 
cantilever beam in the fatigue characterization structure shown in Figure 1. 

 

31 



submitted to Mechanics of Materials, 2001 

 

 

 

32 


	Abstract
	
	Keywords:  Fatigue, MEMS, Resonance, Polycrystalline Silicon, Crack Stability


	Introduction
	Experimental and Numerical Methods
	Micromechanical fatigue testing
	Numerical modeling

	Results
	Resonant-loaded beams with holes
	Dynamic and quasi-static finite element analyses
	Lumped dynamic model
	Stress-Life (S-N) Fatigue Data Analysis

	Discussion
	Conclusions
	
	
	Acknowledgements



	Appendix:  Forced, Damped, Mass-Spring System Equations of Motion
	References
	FIGURES

