Symmetrized complex amplitudes for He double photoionization from the
time-dependent close coupling and exterior complex scaling methods
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Symmetrized complex amplitudes for the double photoionization of helium are computed by the
time-dependent close-coupling and exterior complex scaling methods, and it is demonstrated that
both methods are capable of the direct calculation of these amplitudes. The results are found to be
in excellent agreement with each other and in very good agreement with results of other ab initio

methods and experiment.

PACS numbers: 32.80.Fb,34.10.4+x

In 1997 Malegat et al. [1, 2] derived a useful and com-
pact representation of the triple differential cross section
(TDCS) for double photoionization. That representa-
tion expresses the symmetry and kinematic aspects of
the TDCS exactly, and explicitly displays the dynamical
information in terms of a pair of complex amplitudes,
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where E; and E» are the energies of the exiting electrons,
6, and 6, are the angles they make with the polarization
vector, and 615 is the angle between their directions of
ejection. The two amplitudes, A, and A,, are called
“symmetrized” because they are coefficients of the parts
of the overall amplitude that are gerade and ungerade
with respect to interchange of the electrons respectively.
They depend on the energy sharing between the ejected
electrons and the angle between them. For a given en-
ergy sharing, the dependence of these coefficients on the
angle is generally simple and can be parameterized to
a good approximation as a Gaussian function of 2 [3].
The magnitudes of the two amplitudes and their relative
phase can be extracted from fits to experiment, and make
a convenient parameterization of the complete TDCS at
a given energy sharing [4].

Because of the intrinsic spherical symmetry of the
atomic problem, theoretical treatments of the double
photoionization process for an atom are expressed
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both formally and in computations in terms of the
coupled spherical harmonics, Hﬁ’%(kl, k2), (as functions

of the directions of the final momenta, (ki,k»)), which
are defined in terms of the ordinary spherical harmonics,

Yi,m(k), by
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where (Iym1lyma|l1lo LM) is a vector coupling coefficient
[5]. The key identity upon which Eq.(1) is based was de-
rived originally by Kono and Hattori [6] and generalized
by Malegat et al. [1, 2]. For the case at hand of double
photoionization of the helium ground state, for which the
final state has L =1 and M = 0, it is

PN Y
ll,’lo+1 (kl, ]{'2) = ( 4;_) A /% (Pll+1 (COS 912) COS 92
—P/(cosbh2)cosb) . (3)

where P/ denotes the derivative of the Legendre Polyno-
mial.

In recent calculations of helium double photoioniza-
tion using the method of exterior complex scaling (ECS)
with B-spline basis functions [7], we defined the triply
differential cross section for double photoionization in
terms of direct and exchange amplitudes. To relate those
amplitudes to the symmetrized amplitudes in Eq.(1) is
straightforward. Using the notation of reference [7], we
can write the cross section in terms of coupled spherical
harmonics as
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with the direct and exchange amplitudes written in turn
in terms of the amplitudes defined in Egs.(30) and (31)



of reference [7].
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where §;(k) is the Coulomb phase shift. By using Eq. (3)
we can rearrange Eq.(4) to be of the form of Eq. (1). In
this form, the symmetrized amplitudes are
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where the amplitudes QF are defined as simple combina-
tions of the direct and exchange ampludes,
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Thus, with Eq.(6) we have expressed the symmetrized
amplitudes, Ay, (E1, Ez,0:12) in terms of the original di-

rect and exchange amplitudes 5"717,2/,;22}7 of the ECS study
in reference [7].

We now turn to the time-dependent close-coupling
(TDCC) theory describing double photoionization pro-
cesses, which has been described in detail in previous
work [8 10]. Following the method to calculate the
TDCS described in reference [9], we can easily show how
the TDCC approach is modified to calculate the gerade
and ungerade amplitudes of Eq.(1).

We begin from Eq.(19) of reference [9] which expresses
the TDCS in terms of the transforrPed two-dimensional
momentum-space wavefunctions P, Pl2(k],k2,t) for 'P
symmetry:
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In this expression, a = tan~!(y/Ey/E;) is the hyper-
spherical angle specifying the energy sharing, §;(k) is
again the Coulomb phase shift, and integration over all
solid angles and ejected energy gives, as required, the
total integral cross section. We note that we integrate
over all ejected energies (0 < Ey < E) to give the total
integrated cross section.

Since the constraint on the sum over [y, [, is that they
must couple to give I, = 1 (for final ' P symmetry) we
can replace the sum in eq. (8) with a single sum over !
where we now write ly,ls as [,1 + 1. We also see that
symmetry arguments allow us to write
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so that the expression inside the square of Eq. (8) may

be expressed as
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After some manipulation, and by writing
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we can finally reduce the expression inside the square in
Eq.(8) to the form
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FIG. 1: Amplitudes for photon energy 40 eV above threshold
with E1 = 5 eV. Solid curve: present result, ECS. Dashed
curve: Present result, TDCC. Dotted curve: CCC [4]. Dash-
dotted curve: HRM-SOW [4]. Circles: experiment of refer-
ence [4]
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Finally, we can relate the amplitudes A/, of Eq.(1) to
the amplitudes a /), in Eq.(13)
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These are the symmetrized amplitudes from the TDCC
approach that we can compare with those calculated by
the ECS and other methods.

In the calculations using the TDCC and ECS methods
we report here, we have used the velocity gauge through-
out, although the results in length and velocity gauges
are in excellent agreement for both theories. In Fig. 1 we
show symmetrized amplitudes for double photoionization
of helium at 40 eV above threshold for the energy shar-
ing arrangement, £y = 5 eV and F; = 35 eV. Along
with the current TDCC and ECS results, we show the
results of previously reported calculations using the con-
vergent close coupling (CCC) method and hyperspheri-
cal R-matrix method with semi-classical outgoing waves
(HRM-SOW) [4]. The agreement is very good overall,
although one notes some differences in both ratio of am-
plitudes and their relative phases when either A, or A4,,
or both, are very small. Note that the CCC and HRM-
SOW results were only reported for angles larger than
f12 = 45°. Experimental results from reference [4] are
also shown in Fig. 1, and it is clear that the experiment
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FIG. 2: TDCS for photon energy 40 eV above threshold with
E; =5 eV for various ejection angles, ;. Solid curve: present
result, ECS. Dashed curve:Present result, TDCC.
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FIG. 3: Amplitude for photon energy 20 eV above threshold
with E; = E» = 10 eV, equal energy sharing. Solid curve:
present result, ECS. Dashed curve:Present result, TDCC.

is not able to distinguish between the theories. Note
that not all the experimental points fit on the expanded
scales used to show the differences in the theoretical cal-
culations in Fig. 1.

With these computed amplitudes, Eq. (1) gives us an
expression for the TDCS, so it is natural to ask what the
consequences might be of the small differences seen in the
symmetrized amplitudes in Fig. 1 when they are used to
compute the TDCS. The TDCS is shown in Fig. 2 for the
energy sharing of Fig. 1 as a function of 6, for various
values of #;. In spite of the differences that can be seen
in the amplitudes, the cross sections computed using the
TDCC and ECS methods are in essentially perfect agree-
ment. We also note that TDCS values calculated using
TDCC [10] and ECS [7] have been previously published,
and that here the TDCC results have been multiplied by
2 in order to compare with the ECS calculations, due to
the different conventions in the definition of the single
differential cross section.

The case of equal energy sharing between the two
ejected electrons is unique, in that the ungerade ampli-
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FIG. 4: Amplitudes for photon energy 20 eV above threshold,

Wlth E1

curve:Present result, TDCC.

19 eV. Solid curve: present result, ECS. Dashed
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FIG. 5: TDCS for photon energy 20 eV above threshold,
with E; = 19 eV for various ejection angles 6;. Solid curve:
present result, ECS. Dashed curve (essentially identical to
solid curve):Present result, TDCC.

tude, A,, is identically zero for all relative angles 615. In
Fig. 3 we show the gerade amplitude, A, for equal en-

ergy sharing with photon energy 20 eV above threshold.
Again there is essentially perfect agreement between the
ECS and TDCC results.

It is particularly interesting to ask what the sym-
metrized amplitudes look like for extremely unequal en-
ergy sharing. We show the amplitudes for the case of
E; =19V and E» = 1eV in Fig. 4 at a photon energy
20 eV above the double ionization threshold. The rel-
ative phase shows a sharp feature as a function of 6
as does the ratio of the magnitudes of the amplitudes,
and there are some small, but visible differences between
the TDCC and ECS results. However, when one exam-
ines the corresponding set of TDCS curves in Fig. 5 one
sees that, once again, the ECS and TDCC methods agree
with one another essentially exactly.

This study has shown that both the TDCC method
and the ECS method can be used to compute the complex
symmetrized amplitudes for the double photoionization
process that provide a convenient and compact way to
parameterize the TDCS. The results of calculations us-
ing these two methods are generally in better agreement
with each other than they are with the results of CCC
or HRM-SOW calculations, although all four methods
describe the physics of this problem well.
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