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INTRODUCTION 
Estimates of precipitation at regional scales constitute one of the most important input parameters 
for hydrologic impact assessment studies. At these scales, Limited Area Models (LAMS) provide 
an emerging means for enhancing the accuracy of precipitation predictions (Giorgi and Mearns, 
1991; Kim and Soong, 1996; Miller and Kim, 1996; Kim et al., 1998). Dynamical downscaling 
using LAMS yield precipitation predictions which are physically and dynamically consistent with 
other atmospheric variables produced in the downscaling procedure. Dynamical downscaling, 
however, is computationally expensive and not error-free due to limited spatial resolution and 
model parameterizations. Stochastic characterization of rainfall fields based on rain gauge data and 
ancillary information, e.g., terrain elevation, still provides one of the basic tools for constructing 
rainfall maps at regional scales (Bras and Rodriguez-Iturbe, 1985; Seo et al., 2000; Kyriakidis 
et al., 2001b), even though the physical and dynamic consistency of such maps is not guaranteed. 

Time domain approaches for modeling daily precipitation typically involve vectors of time 
series, e.g., multivariate autoregressive (AR) models. Such models exploit the typically better 
informed time domain, but are limited to predictions only at rain gauge locations (mTilks, 1998; von 
Storch and Zwiers, 1999). This limitation hinders the all important task of spatiotemporal mapping. 
More recently, time series approaches have been generalized to a continuous spatial domain and 
maps of precipitation levels are constructed at any arbitrary location via interpolation of time series 
model parameters (Johnson et al., 2000). 

In this paper, a framework for stochastic spatiotemporal modeling of daily precipitation in a 
hindcast mode is presented. Observed precipitation levels in space and time are modeled as a 
joint realization of a collection of space-indexed time series, one for each spatial location. Time 
series model parameters are spatially varying, thus capturing space-time interactions. Stochastic 
simulation, i.e., the procedure of generating alternative precipitation realizations (synthetic fields) 
over the space-time domain of interest (Deutsch and Journel, 1998), is employed for ensemble pre- 
diction. The simulated daily precipitation fields reproduce a data-based histogram and spatiotem- 
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poral covariance model, and identify the measured precipitation values at the rain gauges (condi- 
tional simulation). Such synthetic precipitation fields can be used in a Monte Carlo framework for 
risk analysis studies in hydrologic impact assessment investigations (Bras and Rodriguez-Iturbe, 
1985; Kyriakidis et al., 2001a). 

2 SPATIAL TIME SERIES 
In the proposed methodology, daily precipitation is modeled as a collection of spatially correlated 
time series, {Z(u, t ) ,  u E D, t E T } ,  one per location u E D; here u = (u1, u2) denotes the 2D spatial 
coordinate vector, D denotes the study area, and T the time span of interest. That spatiotemporal 
process is decomposed into: 

Z(u,t) =M(u, t )+R(u, t ) ,  VUE D, b’t E T (1) 

where M(u, t )  is a stochastic space-time component modeling some “average” smooth variability 
of the spatiotemporal process Z(u, t ) ,  and R(u,t) is stationary residual component, independent of 
M(u, t ) ,  modeling higher frequency fluctuations around that trend in both space and time. 

The trend component typically characterizes long-term temporal patterns, for example precip- 
itation variability attributed to climatic factors. Other patterns of variability, e.g., those linked 
to local weather conditions, are typically accounted for by the stochastic residual component. It 
should be stressed that the dichotomy of equation { 1) is a (subjective) modeling decision: there is 
no “true” temporal trend component, since there are no trend data. The resulting residual compo- 
nent is thus a collective term for all components of variability that are not included in the trend 
model (Thikbaux, 1997). 

The temporal characteristics of precipitation profiles are not stationary in space. For exam- 
ple, spatially varying weather conditions can lead to different patterns of precipitation temporal 
variability in regions near the ocean than in orographically isolated areas. It is critical to consider 
spatially non-stationary patterns of temporal variability in the modeling procedure, as well as to 
account for the irfluence of ancillary information on the spatial distribution of these parameters. 

In this paper, local parametric models for the temporal trend of daily precipitation are first 
established at the rain gauges. The joint spatial distribution of the temporal trend model parameters 
is then characterized in a stochastic mode via a vector random function (RF) or random field model 
(Wackernagel, 1995). Estimates of these parameters are constrained by additional information, 
such as terrain elevation and its interaction with large-scale specific humidity derived from an 
assimilated data product from the National Centers for Environmental Prediction and the National 
Center for Atmospheric Research (NCEP/NCAR reanalysis). 

The residuals from these local trend models are regarded as a realization of a stationary spa- 
tiotemporal process. Realizations of this process are generated via conditional stochastic simula- 
tion and added to the estimated trend component to produce alternative conditional realizations of 
the spatiotemporal distribution of daily precipitation. 

2.1 Station-specific temporal trend models 

The sample precipitation profile {z(u,, ti), i f T,} at each rain gauge location with coordinate 
vector u, is regarded as a realization of a random process {Z(u,,ti), i E Ta}, where T, is the time 
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span of measurements at u,. This random process {Z(u,, ti), i E T,} is decomposed as: 

where {rn(u,, ti),ti E T,} is a deterministic temporal trend, and {R(ua, ti),ti E T,} is a stationary, 
zero mean, stochastic residua1 process. 

The deterministic trend at each rain gauge location u, E D is modeled as the sum of (K+ 1) 
basis functions of time fk(t): 

where bk(Ua) is the coefficient (intensity) associated with the k-th function f k ( t j ) ,  with fo(ti) = 1 
by convention. 

Each basis function fk(t) is independent of the spatial location u, and should ideally have a 
physical interpretation pertinent to the entire study region. Periodicities, especially when physi- 
cally interpretable, should be incorporated in the deterministic trend {rn(u,, t i) ,  t E T,} as a Fourier 
series. Alternatively, such basis functions could be identified to a set of orthogonal factors derived 
via Empirical Orthogonal Function @OF) analysis of the rain gauge precipitation profiles (von 
Storch and Zwiers, 1999), or to the spatial average of the latter. 

The (K  + 1) temporal trendacoefficients b, = [ b k ( k ) ,  k = 0,. . . , K]’ are modeled at each rain 
gauge location u,, independently from one location to another, using multiple regression; here 
superscript ‘ denotes a vector (or matrix) transpose. More precisely, the precipitation data at rain 
gauge ua are expressed as: 

where Z, = [z(u,, ti), i = 1,. . . ,Tal’ is a (T, x 1) vector of observations available at location uClr 
F is a ( T ,  x ( K +  1)) design matrix whose k-th column is the k-th basis function fk = [fk(ti), i = 
1,. . . , T,]’, and r, = [~(u,, t i ) ,  i = 1,. . . ,Tal’ is a (T, x 1) vector of residuals at location u,; n is the 
number of rain gauges. 

The vector of coefficients ba is expressed as a weighted linear combination of the data vector 
z,: b, = H,za, where H, is a ( ( K +  1) x T,) matrix of weights assigned to each of the T, data. 
If the matrix F is of full rank, the above system has a unique solution and the resulting matrix of 
weights Ha is given by the ordinary least squares (OW) solution: Ha = (F’F)-*F’ (Searle, 1971). 

Once the (K+ 1) coefficients ba specific to each rain gauge location ua are determined, the 
temporal trend model {m(u,, t i ) ,  ti E T,} at that location is given by expression (3), and the corre- 
sponding residual series are obtained as: 

z,=Fb,+r,, a~ (n) (4) 

In this work, the ( K  + 1) station-specific temporal trend coefficients are defined via the algorithm 
adopted for their construction (e.g., Om); these coefficients are treated as precise data. 
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2.2 Regionalizing temporal trend coefficients 
Recall that temporal trend models {m(uCL,t),t E T }  are established independently at each rain 
gauge location uCL. The resulting temporal trend model parameters {bk(u,), a = 1,. . . , n}, k = 
0,. . . , K, are spatially (cross)correlated since they are derived from the same process z-data, them- 
selves correlated in space and time. Spatiotemporal interactions between the ( K  + 1) temporal 
trend components are characterized via the spatial (cross)correlation of the local trend model pa- 
rameters. 

In this work, a stochastic spatiotemporal trend model M(u , t )  is defined by viewing the set 
of ( K  + 1) trend bk-coefficients as a joint realization of a set of ( K  + 1) cross-correlated RFs 
{Bk(u),u E D}, k = 0,. . . , K ,  i.e.: 

Estimation of the spatiotemporal trend reduces to the joint spatial prediction of the set of 
( K +  1) temporal trend coefficients {bl* (u), u E D}, k = 0,. . . , K ,  at any location u E D (the use of 
superscript **, which denotes an estimate as the superscript *, is justified below). Joint modeling 
is required to account for any cross-correlation between the bk-coefficients. For example, a neg- 
ative correlation between intercept and slope fields, Bo(u) and BI (u), inherent to any line-fitting 
procedure, should be accounted for in spatial prediction. 

Indeed, a set of ( K f  1) estimated coefficient values { b y  (u), u E D}, k = 0,. . . , K,  would yield 
an estimate of the spatiotemporal trend field {m*(u, t ) ,  u E D, t E T }  over the space time domain, 
as: 

(7) 

Spatial prediction of these coefficients is enhanced by considering relevant ancillary informa- 
tion, such as terrain elevation or lower-atmosphere variables derived from NCEPNCAR reanaly- 
sis. For example, an initial estimate bl(u) of the unknown k-th coefficient bk(u) at location u is 
given by a a regression of the bk-values derived at the rain-gauges on the collocated samples of L 
auxiliary variables; samples of the latter variables are assumed representative of an area equal to 
the cell size of thc predictiodsimulation grid. 

More precisely, the n values of the k-th coefficient obtained at the n rain gauge locations are 
expressed as: 

(8) 
where bk = [bk(u,), a = 1 , .  . . , n]' is a (n  x 1) column vector of samples of the k-th coefficient, G 
is a (n  x (L+ 1)) design matrix whose I-th column contains n values of the I-th auxiliary variable 
g l =  [gl(ua), a = 1, - . . , n]', qk = [qk(u,),k = 0,. . . , K]' is a ( (L+ 1) x 1) vector ofcoefficients, and 
r k  = [rk(u,), a = 1,. . . , n]' is a (n x 1) column vector of residuals. 

Once an estimate ql  of the vector q k  of regression coefficients is obtained by OLS, the re- 
gression prediction b;(u,) for the k-th temporaI trend coefficient bk(uCL) at any rain gauge u, 
is given as: b;(u,) = Gq;. The associated regression residual is then computed as: ~ ( u , )  = 
b k ( ~ c r )  -b;(ua) = b k ( ~ )  -Gq;. 

in space. Consequently, their spatial prediction calls for inferring the cross-covariance matrix of the 

K 
m * ( ~ , t )  = c b ; * ( ~ ) f k ( t ) ,  VU E D, Vi' E T 

k=O 

bk = Gqk + rk 

Residual rk-values from the above regression procedure are most likely auto- and cross-correlated 
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vector RF {&(U), u f D},  k = 0,. . . , K, modeling the joint spatial correlation of these regression 
residuals. The geostatistical prediction algorithm of cokriging is adopted for this joint prediction 
task (Wackemagel, 1995). The simple cokriging (SCK) estimater:(u) for the unknown intercept 
regression residual ro (u) = bo (u) - b; (u), for example, at any location u E D is expressed as: 

where r k  = [rk(ua), a = 1,. . . , n]’ denotes the (n x 1) vector of regression residual values for the 
k-coefficient, and wok = [WOk(Ua), a = 1,. . . , n]‘ the n x 1 vector of cokriging weights assigned to 
these data for prediction of the regression residual ro(u) at location u, and obtained per solution of 
the SCK system of equations: 

where CEI denotes the n x n matrix of auto or cross-covariance values between any pair of regres- 
sion residuals Tk(ua) and rp(us) ,  and C O ~  denotes the (n x 1) vector of auto or cross-covariance 
values between any regression residual rk(ucr) and the unknown residual ro(u). Similar equations 
can be written for the spatial prediction of residuals related to other &-coefficients, i.e., for k # 0. 

An estimate bg*(u) of the unknown k-th coefficient bk(u) at any location u E D is finally ob- 
tained as: 

b;*(u) = bpi) + r;(u) 
and is then used in equation (7) to yield an estimated spatiotemporal trend component m* (u, t )  at 
any location u E D and for any day t E T .  

2.3 Simulation of space-time precipitation 
Once the spatiotemporal trend component {m* (u, t ) ,  u E D, t E T }  is established, stochastic sim- 
ulation of daily precipitation amounts to generating realizations of the spatiotemporal residual 
component {R(u, t ) ,  u E D, t E T }  and adding them to that trend component. 

The spatiotemporal residual r-values resulting from equation (5) are modeled as a realization 
of a stationary space-time process (R(u,t),u E D,t E T } .  In other words, any temporal and spa- 
tial non-stationarity is accounted for by the trend component (M(u, t), u E D, t E T} .  Stochastic 
characterization of the residual process calls for modeling the spatiotemporal covariance of these 
r-residuals. In this work, this spatiotemporal covariance is modeled as a function of spatial and 
temporal lags, h and ‘c, using a generalized distance metric: d = d w ,  see Section 3, and 
Kyriakidis and Journel(l999) for details. 

Simulation of the residuals in space and time proceeds by generating alternative realizations 
of the residual field R(u, t) conditional on the residual data and their spatiotemporal covariance 
model. To this respect, sequential Gaussian simulation is used (Deutsch and Joumel, 1998) for 
generating a S-member ensemble of residual realizations (~(‘1 (u, t )  , u E D,  t E T } ,  s = 1,. . . , S. 
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A set of S simulated precipitation realizations {z(")(u, t ) ,  u E D, t E T } ,  s = 1,. . . , S, is finally 
built by adding the single estimated trend {m*(n, t ) ,u E D,t E T }  and the S simulated residual 
{T-(') (u, t )  , u E D, t E T }  fields. For a more elaborate procedure, which also accounts for the uncer- 
tainty in the estimated trend component m*(u, t ) ,  the reader is referred to Kyriakidis and Journel 
(2001). Note that any missing values in the rain gauge precipitation profiles are in-filled by sim- 
ulation. The set of S alternative, equally probable, realizations {d') (u, t ) ,  u E D ,  t E T }  provide a 
model of uncertainty for the unknown precipitation levels in both space and time, which can be 
used for hydrologic impact assessment studies (Kyriakidis et al., 2001a). 

3 CASESTUDY 
The study domain is a 300 x 360km2 area of the northern California coastal region, which is char- 
acterized by complex terrain and extreme seasonal variation in precipitation. Annual precipitation 
varies from 2 0 0 d y e a r  in the Central Valley (east of the Coastal Range) to over 1 3 0 0 d y e a r  
in the Santa Cruz Mountains (north of the Monterey bay). Precipitation in the region generally 
originates from stratiform clouds due to orographic lifting of the westerly flow over the western 
slope of the Coastal Range. Occasionally, strong convection embedded within the stratiform clouds 
generates intense local precipitation. 

The rainfall data set used in this study consists of 77 rain gauge precipitation measurements of 
daily rainfall during the 92 days from November 1 1981 to January 31 1982, see Figure 1. The 
original daily precipitation values constitute a subset of the Cooperative Observer (COOP) and 
first-order precipitation stations, obtained from the National Oceanic and Atmospheric Adminis- 
tration (NOAA); for details see Pandey et al. (1999). The proportion of rain gauge data above the 
threshold of 0 . O l m  (indicating a wet day) over all 92 days is 0.39. Wet-day precipitation amounts 
range from 0.25mm to 291.38mm, with a mean of 14.98mm and a median of 6.35mm indicating 
a positively skewed precipitation distribution. The standard deviation and coefficient of variation 
of the wet-day precipitation amounts is 2 3 . 8 8 ~  and 1.59, respectively, indicating a significant 
spatiotemporal variability. The objective of this study is to generate ensemble predictions of pre- 
cipitation on a 300 x 360 grid of cell size lkm2 for the period 11/01/1981 to 01/31/1982, using all 
relevant information available for this region. 

3.1 Parametric local temporal trend models 
The first step in the madeling exercise is to establish a set of local temporal trend models of 
precipitation at each rain gauge, see Section 2.1. To this respect, two basis functions are used 
as temporal precipitation predictors at each rain gauge: fo = [fo(t;) = 1, i = 1,. . -, 92]', and fi = 
[f z(ua, t i) ,  i = 1 , .  . . ,92]', see equation (4). In other words, the spatial average f1 of the 
precipitation profiles from the 77 rain gauges, Figure IB, is used as the temporal precipitation 
predictor at each rain gauge. Two temporal trend coefficients are thus available at each rain gauge 
ua: an intercept coefficient bo(ua) and a slope coefficient bl (ua), see Figure 2. Rain gauges with 
near zero intercept and near unit slope values (see the eastern part of the study domain and the 
south Bay Area) indicate precipitation profiles very similar to the spatially averaged profile f1. 

A measure of the predictive ability of the spatially averaged precipitation profile fi is the re- 
gression coefficient of determination (R2)  computed at each rain gauge. The spatial variability of 

. 
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these R2-values is shown in Figure 3A. The average R2 value is 0.58, with a minimum of 0.09 and 
a maximum of 0.87 (Figure 3B), indicating that the proportion of temporal precipitation variance 
accounted for by ;he spatially-averaged precipitation profile fl changes significantly from one rain 
gauge to another. Precipitation profiles at rain gauges with high R2-values (located in the northern 
part of the study area and in the Santa Cruz mountains) can be adequately characterized by a linear 
regression on the spatially-averaged profile fi. 

3.2 Spatiotemporal trend component of precipitation 
Once a set of local trend models is established at each of the n = 77 rain gauge locations, the task 
is to estimate the spatiotemporal trend component of precipitation M(u, t ) ,  see equation (1) at any 
grid cell u and for any day t .  This task calls for the joint spatial prediction of intercept bo and slope 
bl coefficients at any location u the study domain D. 

Joint spatial prediction of intercept bo and slope bl coefficients is enhanced by accounting 
for their relation with terrain elevation and its interaction with specific humidity derived from 
NCEPNCAR reanalysis data, see Section 2.2. A smoothed version of a United States Geo- 
logical Survey (USGS) digital elevation model was used in this study. The smoothing window 
of 13 x 13km2 was determined by maximizing the correlation between time averaged precipita- 
tion (Figure 1A) and smoothed elevation, see Kyriakidis et al. (2001b) for details. Time aver- 
aged specific humidity integrated over 850 - lOOOhPu was derived by interpolation from the 9 
NCEPNCAR reanalysis nodes closest to the study domain, and represents the large-scale avail- 
ability of moisture in the lower atmosphere over the time span of interest. 

The rank transform of the window averaged elevation (Figure 4A) was used as an auxiliary 
variable in the spatial prediction of intercept bo-coefficients. Similarly, the rank transform of the 
product (interaction) of specific humidity with the smoothed terrain elevation (Figure 4B) was used 
as an auxiliary variable in the spatial prediction of slope bl-coefficients. The R2-values for the 
regression of intercept bo-coefficients (Figure 2A) on collocated rank-transformed smoothed ele- 
vation values (Figure 4A), and of slope bl-coefficients (Figure 2B) on rank-transformed humidity- 
elevation interaction values (Figure 4B) were 0.1 and 0.34 respectively, see equation (8). Both 
regression models were statistically significant at the 95 % level. 

Simple cokriging was used for the joint spatial prediction of the resulting regression residuals 
ro and 11, see Section 2.2 and equations (9) through (10). All auto- and cross-covariance func- 
tions of these residuals were jointly modeled using the linear model of coregionalization (LMC), 
see Wackernagel(1995) for details. The auto and cross-semivariogram models adopted for these 
residuals are shown in Figure 5; the isotropic LMC is written a 

yR,,(lhl) = 0.01 +0.56Gauss (E).+ 0.8OExp (E) 
y~~ (lhl) = 0.01 + 0.07Gauss ( g )  +O.l2Exp (:) 

YR,,R~ (lhl) = 0.00 + 0.19Gauss (!) +O.O9Exp (!) 
where Ihl denotes the modulus of vector h, y~~ (lhl) denotes the semivariogrammodel for the resid- 
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uals of intercept bo-coefficients from the regression on the rank transform of the window averaged 
elevation, y ~ ,  (Ihl) denotes the semivariogram model for the residuals of slope bl -coefficients from 
the regression on the rank transform of the product (interaction) of specific humidity with smoothed 
terrain elevation. and ~ R ~ R ~  (lhl) denotes the cross-semivariogram between these two sets of resid- 
ual values. Gauss (!) denotes an isotropic Gaussian semivariogram model with range 2 0 h ,  and 

Exp (E) - denotes an isotropic exponential semivariogram model with range 8Okm. 
Note that the sill of the correlation coefficient P R ~ R ~  (0) between the two residual data sets can 

be deduced from the sill Y R ~ R ~  (-) of the cross-semivariogram model as: PR~R~(O) = ~ R ~ R ,  (-)/ 
& R ~  (=)y~~(=) where y~~ (-) denotes the semivariogram sill (variance) of the rl-residuals and 
Y R ~ ( - )  denotes the semivariogram siII (variance) of the rz-residuals. In this case, p ~ ~ ~ ~ ( 0 )  = 
-(0.19+0.09)/ ~(0.01+0.56+0.8)(0.01+0.07+0.12)= -0.53, whichisequalto the sample 
correlation coefficient between the two sets of residual values. 

The maps of txtimated temporal trend coefficients, intercept bo-values and slope bl-values, are 
shown in Figures (JA and B, respectively. Note that (co)kriging is an exact interpolator, which 
implies that regression residual rk-values, hence temporal trend coefficient &-values, are repro- 
duced at their respective rain gauge locations. Note also the negative correlation between the 
estimated coefficients: high-valued bo intercept areas (dark-colored pixels in Figure 6A) generally 
correspond to low-valued bl slope areas (light-colored pixels in Figure 6A). 

Using the estimated intercept b;S(u) and slope bF(u) coefficients at any grid cell u (Figures 6A- 
B), one can estimate the spatiotemporal trend component m*(u, t )  at any grid cell u and any day 
t using equation (7). Maps of this estimated temporal trend component for November 12 and 13 
1981 are shown in Figures 7A and B. Note the higher trend values for November 13 as compared 
to those of November 12, especially over the Santa Cruz mountains and over the south tip of the 
Coastal Range. 

3.3 Stochastic simulation of space-time precipitation 
Stochastic simulation of daily precipitation in space and time amounts to adding to the estimated 
spatiolemporal trend component m* (u, t )  a realization of the spatiotemporal residual component 
R(u, t )  of equation (1). Simulation of the spatiotemporal residual component is performed using 
sequential Gaussian simulation, see Deutsch and Journel(l998) for details. Stochastic simulation 
in space and time calls for a spatiotemporal semivariogram model for the normal score transformed 
r-residuals, i.e., for a set of transformed residuals with standard normal (zero mean, unit variance) 
distribution. In this work, a single transformation common to all spatial locations and all time 
instants is adopted. 

The sample and model-derived semivariogram values for the normal score residuals along 
space and time are shown in Figure 8. The theoretical space-time semivariogram model y( Jhl , T) 
adopted for the (normal score transformed) spatiotemporal residuals is: 

where T denotes the temporal lag, and Exp g)2 + (z)2 denotes an exponential variogram v - 7  



model with isotropic spatial range alkm and temporal range azdays. 
For this particular set of normal score transformed r-residuals, temporal correlation is very 

small, since only 35% of the residual temporal variability is non-random with a correlation period 
of two days (third nested semivariogram component). Spatial variability exhibits a correlation 
length of 95km with a significant proportion 65% of purely random variability (sum of first and 
second nested semivariogram structures). 

Using the spacetime semivariogram model of equation (12) and the normal score transformed 
r-residual values (see equation (5)),  a set of 30 synthetic realizations of the spatiotemporal resid- 
ual component R(u,t) were generated. These realizations were subsequently added to the (nor- 
mal score transformed) estimated space-time trend component m*(~, t ) ,  and the resulting (normal 
score) precipitation realizations were back-transformed to the original precipitation histogram (see 
Deutsch and Journel(l998) for details regarding this back-transformation procedure). 

The result is a set of 30 alternative realizations of daily precipitation over the 300 x 360 grid of 
cell size lkm2 for the 92 days from November 1 198 1 to January 3 1 1982. Two of these realizations 
for November 12 1981 and two for November 13 1981 are shown in Figure 9A-B and Figure IOA- 
B. Conditioning entails that areas around high (low) rain gauge precipitation values (see Figure 9C 
and Figure lOC) appear also as areas of high (low) precipitation in all simulated realizations. 

The reproduction of the rain gauge precipitation histogram for November 12 and 13 1981 by 
the histograms of five precipitation reaIizations is shown via the quantile-quantile plots of Fig- 
ure 11A-B. A plot aligned along the first bisector implies two nearly identical distributions. The 
semivariogramreproduction for November 12 and 13 1981 is shown in Figures 11C-D; the sample 
precipitation semivariograms are well approximated by the semivariograms of the five precipita- 
tion realizations. Simulated daily precipitation realizations thus provide realistic synthetic rep- 
resentations of the true (unknown) precipitation field, insofar they reproduce the histogram and 
semivariogram of observed rain gauge data. 

A summary of simulated precipitation at each grid cell is provided by the (ensemble) average 
and standard deviation of the simulated values at that cell. Maps of ensemble averages of sim- 
ulated precipitation for November 12 and November 13 1981 are given in Figures 12A-B. Note 
the high precipitation amounts in the Santa Cruz mountains for November 13, a pattern consistent 
with that deduced from the contemporaneous rain gauge data (Figure lOC). Maps of ensemble 
standard deviations of simulated precipitation for November 12 and November 13 1981 are given 
in Figures 12C-D. Note the increased standard deviation values for November 13 with respect to 
those observed for November 12, as well as the small standard deviation values near rain gauges 
which indicate less spatial uncertainty around these locations. Other summary maps, such as maps 
of probability that precipitation exceeds a critical threshold used, say, in flood warnings, can be 
also generated from the ensemble of synthetic precipitation fields. 

It should be noted that ensemble average fields, Figures 12A-By do not reproduce the statisti- 
cal properties (histogram, semivariogram) of the rain gauge data. They do reproduce rain gauge 
precipitation data at their locations, but provide a smooth picture of the spatial distribution of daily 
precipitation. Ensemble average fields should be used with caution in hydrologic impact assess- 
ment studies since they do not accurately depict the spatiotemporal variability of daily precipi- 
tation, an input of paramount importance in hydrologic modeling. Similarly, ensemble standard 
deviation fields, Figures 12C-D, do not provide a measure of joint spatial uncertainty regarding the 
unknown precipitation value at two or more locations simultaneously. Consequently, such fields 
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cannot be used for deriving a measure of uncertainty regarding predictions of hydrological models, 
e.g., rainfall-runoff models, due to uncertain input forcing; this latter goal is achieved via Monte 
Carlo simulation. For a detailed discussion regarding the problems associated with ensemble aver- 
age and standard deviation fields, the reader is referred to Deutsch and Journel(l998). 

Last, we compare the simulated precipitation profiles at the test location shown in Figure 1, 
with precipitation profiles at two nearby rain gauges #5 and #60, all located in the same moun- 
tainous region. The set of thirty simulated profiles, and their ensemble average, at the test location 
is shown in Figure 13B. The precipitation profiles at the two nearby rain gauges are shown in 
Figures 13A and C, respectively. One can appreciate the similarity of the simulated precipitation 
profiles to the two rain gauge profiles. Note the common rainfall intermittence pattern exhib- 
ited by all profiles, and the similarity of the ensemble precipitation average profile (solid line of 
Figure 13B) to those of the nearby rain gauges. The average correlation coefficient between the 
simulated precipitation profiles and the precipitation profile of rain gauge #5 is 0.73 with a standard 
deviation of 0.16. Similarly, that average correlation coefficient with rain gauge #60 is 0.72 with a 
standard deviation of 0.16. The ensemble average precipitation profile has correlation coefficient 
0.91 with the precipitation profile at rain gauge #5, and 0.89 with that at rain gauge #60. 

This latter comparison of temporal profiles of simulated and observed precipitation corrobo- 
rates the fact that daily precipitation realizations generated via the proposed methodology consti- 
tute a realistic synthetic representation of the true (unhown) precipitation field. 

4 DISCUSSION 
A framework for stochastic spatiotemporal modeling of daily precipitation in a hindcast mode has 
been presented in this paper. Observed daily precipitation levels are viewed as a joint realization 
of a collection of spatially correlated time series, thus capitalizing on the typically better informed 
time domain. The spatiotemporal daily precipitation field is decomposed into a stochastic trend 
and a stochastic residual component. Parametric temporal trend models are established at all rain 
gauges, independently from one location to another, and their parameters are (co)regionalized in 
space to yield an estimate of the space-time trend component at any location for any day. The joint 
spatial prediction of such temporal trend coefficients accounts for their relation with ancillary in- 
formation, i.e., a smoothed version of terrain elevation and its interaction with large-scale specific 
humidity obtained from NCEP/NCAR reanalysis nodes. Simulated realizations of daily precipi- 
tation in space and time are obtained by generating alternative realizations of the spatiotemporal 
residual component and adding them to the estimated trend component. 

The case study illustrated the generation of multiple synthetic realizations of daily precipitation 
on a 300 x 360 grid of cell size lkm2 over a region in northern California for 92 days during the 
period 11/01/198 1 to 01/3 111982. Simulated precipitation realizations were shown to reproduce 
the histogram and semivariogram model of the rain gauge data. In addition, simulated precipitation 
profiles compared well with observed profiles at nearby rain gauges. 

The proposed approach could be readily expanded to account for longer periods of dry days, 
by first simulating a space-time realization of rainfall occurrence and then simulating a space-time 
realization of rainfall amounts. Realizations of the rainfall amounts process would be generated 
only in those grid cells at which rainfall was simulated as occurring (wet cells). Results from this 
latter extension, which allows for modeling both patterns of precipitation occurrence and amounts 
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in space and time, will be reported in the near future. 
In any case, the set of alternative precipitation realizations constitutes a model of uncertainty 

regarding the unknown daily precipitation levels in both space and time. Such an uncertainty 
model can be used in a risk analysis context to study the effect of uncertain precipitation forcing 
on hydrologic impact assessment investigations. 
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Figure 1: Time average of observed daily precipitation at 77 rain gauges during the period from Novsniber 
01 1981 to January 31 1982 (A), and space average of precipitation profiles for the same 92 days (B); the 
cross indicates a test location at which siniulated precipitation profiles are conzpared to those observed at 
nearby stations #5 and #60. 
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Figure 2: Coeficients, intercept (A) and slope (B), of local temporal trend models established at the 77 
rain gauges. 
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Figure 3: Proportion of variance, as quantified by the regression coeficient of determination (R2), of 
precipitation temporal variability accounted for by local temporal trend models at the 77 rain gauges (A), 
and histogram of R2-values (B). 

16 



A B 

B 
W n 
L ._ 
4 

othed elevation 

360 
123 5 Longttude -121 0 

Ranked (specific humidity x elevation) 
39 0 

360 
-1235 Longttude -121 0 

Figure 4: Maps of rank-transformed window averaged elevation (A), and rank-transformed interaction of 
smoothed elevation with large-scale specific humidity derived from NCEPNCAR reanalysis nodes (B). 
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Figure 5: Sample auto- (A-B) and cross-semivariograms (C) of regression residuals for intercept and slope, 
along with the respective fitted semivariogratn models (dotted lines: senzivariograms of observed residuals; 
solid lines: Jitted sprnivariogram models). 
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Figure 6: Maps of estimated temporal trend coe$icients, intercept (A) and slope (B), derived respectively by 
regression on elevation and its interaction with NCEPNCAR specific humidio, followed by simple cokriging 
(SCK) of the resulting residuals. 

19 



A B 

I 
-123.5 Longitude -121 0 

Trend component for November 13 198 
39 0 

(u 

9 - 
3 
- 

1235 Longitude -121 0 

11 

Figure 7:  Maps of precipitation spatiotemporal trend conzpoizent for November 12 (A) and November 13 
(B) 1981, derivedpom the estimated temporal trend coeficieizts of Figure 6. 
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Figure 8: Sample mnporal (A) and spatial (B) sentivariograms of normal score r-residuals (dotted lines), 
along with the theoretical semivariogram model jit (solid lines) in space and time. C: space-time map of 
semivariogram model; spatial unit maps correspond to degree offsets from any arbitrary origin along any 
spatial direction; temporal map units correspond to day offsets along time. 
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Figure 9: Two (out of 30) synthetic precipitationjelds for November 12 1981 (A-B) generated by condi- 
tional stochastic simulation, along with the contemporaneous rain gauge data (C). 
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Figure 10: Two (out of 30) synthetic precipitationjields for November 13 1981 (A-B) generated by condi- 
tional stochastic simulation, along with the contemporaneous rain gauge data (C). 
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Figure 11: Reproduction of observed precipitation histogram {A) arid senzivariogram (B) frompve pre- 
cipitation realizatims for November 12 and 13 1981 {solid line: semivariogram of observed precipitation; 
dashed lines: seniivariograms of simulated precipitation realizations). 
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Figure 12: Precipitation ensemble average (A-€3) and ensemble staildard deviation (C-D) for November 12 
and 13 1981 computedfrom 30 synthetic precipitatioizFelds generated via conditional stochastic simulation. 
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Figure 13: Reproduction of observed precipitation variability at the test location shown in Figure 1. B: 
Thirty-member ensemble of simulated daily precipitation projles at test location (dotted lines) and their 
ensemble average (thick solid line), A, C: precipitation profiles at nearby rain gauges #5 and #60. 
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