Azimuthal anisotropy: the higher harmonics

Arthur M. Poskanzer for the STAR Collaboration §
MS70R319, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, AMPoskanzer@LBL.gov

Abstract

We report the first observations of the fourth harmonic (v_{4}) in the azimuthal distribution of particles at RHIC. The measurement was done taking advantage of the large elliptic flow generated at RHIC. The integrated v_{4} is about a factor of 10 smaller than v_{2}. For the sixth $\left(v_{6}\right)$ and eighth $\left(v_{8}\right)$ harmonics upper limits on the magnitudes are reported.

Anisotropic flow, an anisotropy of the particle azimuthal distribution in momentum space with respect to the reaction plane, is a sensitive tool in the quest for the quark-gluon plasma and the understanding of bulk properties of the system created in ultrarelativistic nuclear collisions. It is commonly studied by measuring the Fourier harmonics $\left(v_{n}\right)$ of this distribution [1]. Elliptic flow, v_{2}, is well studied at RHIC and is thought to reflect conditions from the early time of the collision. Recently, Kolb [2] reported that the magnitude and even the sign of v_{4} are more sensitive than v_{2} to initial conditions in the hydrodynamic calculations. Besides one early measurement at the AGS [3], reports of higher harmonics have not previously been published. Some of the present work has already appeared (4).

Experiment - The data come from the reaction $\mathrm{Au}+\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=200 \mathrm{GeV}$. The STAR detector main time projection chamber (TPC) was used in the analysis of two million events. The main TPC covered pseudorapidity (η) from -1.2 to 1.2 and the low transverse momentum $\left(p_{t}\right)$ cutoff was $0.15 \mathrm{GeV} / c$. In the present work all charged particles were analyzed, regardless of their particle type. The errors presented in the figures are statistical.

Analysis - The difficulty is that the signal is small and the non-flow contribution to the two-particle azimuthal correlations can be larger than the correlations due to flow. To suppress the non-flow effects the current analysis uses the knowledge about the reaction plane derived from the large elliptic flow. One method for eliminating the non-flow contribution in a case when the reaction plane is known was proposed in [1]. Results obtained with this method we designate by $v_{4}\left\{E P_{2}\right\}$. The analysis for v_{4} was also done with three-particle cumulants [5] by measuring $\left\langle\cos \left(2 \phi_{a}+2 \phi_{b}-4 \phi_{c}\right)\right\rangle$.
P_{t}-dependence - The results as a function of p_{t} are shown in Fig. ⿴囗 (left) for minimum bias collisions ($0-80 \%$ centrality). Shown for v_{4} are both the analysis relative to the second harmonic event plane, $v_{4}\left\{E P_{2}\right\}$, and the three-particle cumulant, $v_{4}\{3\}$. § For the full author list and acknowledgments see Appendix "Collaborations" in this volume.

Both methods determine the sign of v_{4} to be positive. As a function of p_{t}, v_{4} rises more slowly from the origin than v_{2}, but does flatten out at high p_{t} like v_{2}. The $v_{6}\left(p_{t}\right)$ values are consistent with zero. Ollitrault has proposed [6] for the higher harmonics that v_{n} might be proportional to $v_{2}^{n / 2}$ if the ϕ distribution is a smooth, slowly varying function of $\cos (2 \phi)$. In order to test the applicability of this v_{2} scaling we have also plotted v_{2}^{2} and v_{2}^{3} in the figure as dashed lines. The proportionality constant has been taken to be 1.2 in order to fit the v_{4} data. The ratio, v_{4} / v_{2}^{2}, is shown in Fig. 1 (right) as a function of p_{t}.

Figure 1. (left) The minimum bias values of v_{2}, v_{4}, and v_{6} with respect to the second harmonic event plane as a function of p_{t} for $|\eta|<1.2$. The v_{2} values have been divided by a factor of two to fit on scale. Also shown are the three particle cumulant values (triangles) for $v_{4}\left(v_{4}\{3\}\right)$. The dashed curves are $1.2 \cdot v_{2}^{2}$ and $1.2 \cdot v_{2}^{3}$. (right) The ratio v_{4} / v_{2}^{2} is plotted against p_{t}. The dashed line is at the value of 1.2 .

Parton coalescence - Assuming a simple parton coalescence model, for mesons one gets [7]

$$
\begin{equation*}
v_{4} / v_{2}^{2} \approx 1 / 4+1 / 2\left(v_{4}^{q} /\left(v_{2}^{q}\right)^{2}\right) \tag{1}
\end{equation*}
$$

Since experimentally this ratio is $1.2, v_{4}^{q}$ must be greater than zero. If one assumes that the hadronic v_{2}^{2} scaling results from partonic v_{2}^{2} scaling [8], then

$$
\begin{equation*}
v_{4}^{q}=\left(v_{2}^{q}\right)^{2} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
v_{4} / v_{2}^{2}=1 / 4+1 / 2=3 / 4 . \tag{3}
\end{equation*}
$$

But this is still less than 1.2. Therefore either v_{4}^{q} is even greater than simple parton v_{2}^{2} scaling would indicate, or the simple parton coalescence model is inadequate.

Waist - Kolb [2] points out that for $v_{2}>10 \%$, which occurs at high p_{t}, and no other harmonics, the azimuthal distribution is not elliptic, but becomes "peanut" shaped. He calculates the amount of v_{4} (which looks like a four-leaf clover) needed to eliminate this waist. Our values of v_{4} as a function of p_{t} are about a factor of two larger than needed to just eliminate the waist.

Centrality-dependence - The values of $v_{4}\left(p_{t}\right)$ for eight centrality bins are shown in Fig. 2 (left). Integrating these values weighted with the yield gives Fig. 2 (right) which shows the centrality dependence of v_{2}, v_{4}, and v_{6} with respect to the second harmonic event plane and also v_{4} from three-particle cumulants $\left(v_{4}\{3\}\right)$. The v_{6} values are close to zero for all centralities. To again test the applicability of $v_{2}^{n / 2}$ scaling we have also plotted v_{2}^{2} and v_{2}^{3} in the figure as dotted histograms. The proportionality constant has been taken to be 1.4 to approximately fit the v_{4} data. The larger constant here compared to that used in Fig. \square is understood as coming from the use of the square of the average instead of the average of the square, and because the integrated values weighted by yield emphasize low p_{t}, where the best factor is slightly larger.

Figure 2. (left) $v\left(p_{t}\right)$ for the centrality bins (bottom to top) 5 to 10% and 10,20 , $30,40,50,60$, and 70 up to 80%. (right) The $p_{t^{-}}$and η - integrated values of v_{2}, v_{4}, and v_{6} as a function of centrality. The v_{2} values have been divided by a factor of four to fit on scale. Also shown are the three particle cumulant values for $v_{4}\left(v_{4}\{3\}\right)$. The dotted histograms are $1.4 \cdot v_{2}^{2}$ and $1.4 \cdot v_{2}^{3}$.

The $v_{n}\left\{E P_{2}\right\}$ values averaged over p_{t} and $\eta(|\eta|<1.2)$, and also centrality (minimum bias, $0-80 \%$), are (in percent) $v_{2}=5.18 \pm 0.01, v_{4}=0.44 \pm 0.01, v_{6}=0.043 \pm 0.037$, and $v_{8}=-0.06 \pm 0.14$. Since v_{6} is essentially zero, we place a two sigma upper limit on v_{6} of 0.1%. Also, v_{8} is zero, but the error is larger because the sensitivity decreases as the harmonic order increases.

Blast Wave fits - We have fitted the data with a modified Blast Wave model 9 :

$$
\begin{align*}
& \rho(\phi)=\rho_{0}\left(1+2 f_{2} \cos (2 \phi)+2 f_{4} \cos (4 \phi)\right) \tag{4}\\
& v_{n}\left(p_{t}\right)=\frac{\int_{-\pi}^{\pi} d \phi \cos (n \phi) I_{n}\left(\alpha_{t}\right) K_{1}\left(\beta_{t}\right)\left(1+2 s_{2} \cos (2 \phi)+2 s_{4} \cos (4 \phi)\right)}{\int_{-\pi}^{\pi} d \phi I_{0}\left(\alpha_{t}\right) K_{1}\left(\beta_{t}\right)\left(1+2 s_{2} \cos (2 \phi)+2 s_{4} \cos (4 \phi)\right)} \tag{5}
\end{align*}
$$

where I_{n} and K_{1} are modified Bessel functions, and $\alpha_{t}(\phi)=\left(p_{t} / T\right) \sinh (\rho(\phi))$ and $\beta_{t}(\phi)=\left(m_{t} / T\right) \cosh (\rho(\phi))$. In these equations, ρ_{0} is the transverse expansion rapidity $\left(v_{0}=\tanh \left(\rho_{0}\right)\right)$ of the cylindrical shell. The parameters f_{2} and f_{4} are the harmonic amplitudes of the azimuthal variation of ρ, and s_{2} and s_{4} describe the spatial anisotropy of the source.

The Blast Wave fits to v_{2} and v_{4} are shown in Fig. 3 (left) and expanded in Fig. 3 (right), showing the approximate agreement with the ratio. A temperature of 0.1 GeV was assumed giving the fit parameters $\rho_{0}=0.49, f_{2}=1.4 \%, s_{2}=9.1 \%, f_{4}=0.0 \%$, and $s_{4}=4.4 \%$. It is interesting that in this large p_{t} range the s values are considerably larger than the f values.

Figure 3. (left) v_{2} and v_{4} as a function of p_{t} with the lines showing the Blast Wave fits. (right) The ratio v_{4} / v_{2}^{2} as a function of p_{t} with the line showing the ratio of the Blast Wave fits.

Conclusions - We have measured v_{4} as a function of p_{t}, and centrality. This is the first measurement of higher harmonics at RHIC. It is expected that these higher harmonics will be a sensitive test of the initial configuration of the system, since they provide a Fourier analysis of the shape in momentum space which can be related back to the initial shape in configuration space.

References

[1] Poskanzer A M and Voloshin S A 1998 Phys. Rev. C 581671
[2] Kolb P F 2003 Phys. Rev. C 68 031902(R)
[3] Barrette J et al E877 Collaboration 1994 Phys. Rev. Lett. 732532
[4] Adams J et al STAR Collaboration 2004 Phys. Rev. Lett. 92062301
[5] Borghini N, Dinh P M, and Ollitrault J-Y 2001 Phys. Rev. C 64054901
[6] Ollitrault J-Y 2003 private communication
[7] Kolb P F, Chen L-W, Greco V, and Ko C M 2004 arXiv nucl-th/0402049
[8] Chen L-W, Ko C M, and Lin Z-W 2003 arXiv nucl-th/0312124
[9] Adler C et al STAR Collaboration 2001 Phys. Rev. Lett. 87182301

