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Abstract
Wavelet analysis is natural tool to detect the presence of numerical noise,

shocks and other features which might drive a calculation to become unsta-
ble. Here we suggest ways where wavelets can be used effectively to define a
dissipation flag to replace dissipation flags traditionally used in ALE numer-
ical schemes.
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1 Introduction "

Numerical dissipation should be used sparingly and only in regions of a com-
putational domain where it is numerically necessary. The definition of
numerical necessity will be in terms of wavelet analysis. Wavelet analysis
can give the practitioner a clear view of regions of the computational domain
where numerical errors will be generated by small-scale oscillations or per-
haps small scales in the regions of high gradients, see ([3]), ([4]), and ([5]).
Sometimes dissipation flags are fundamentally built around criteria which
are not numerical. These flags might work in some situations, but one can
almost always construct an example where failure can be induced. Wavelet
based dissipation flags, on the other hand, are constructed around the right
fundamentals and are quite robust.

We first explore the reasons why wavelets work well for dissipation flags
and then we show computational examples.



2 Wavelets and Dissipation Flags

Possibly the most instructive way to think of wavelets is in contrast to tradi-
tional analysis techniques such as Fourier analysis. With Fourier analysis we
analyze discrete or continuous data using basis functions which are global,
smooth and periodic. This analysis yields a set of coefficients, say, ak, which
gives the amount of energy in the data at frequency k. Wavelet analysis, by
contrast, analyzes data with basis functions which are local, slightly smooth,
not periodic, and which vary with respect to scale and location. Wavelet
analysis thereby produces a set of coefficients bj,k which give the amount of
energy in the data at scale j and location k. Wavelet analysis can serve
as a good complement to Fourier analysis. In fact, data which is efficiently
analyzed with Fourier analysis often is not efficiently analyzed with wavelet
analysis and the opposite situation also holds.

For our purposes here we will confine our discussion to the so-called or-
thogonal wavelets and specifically the Daubechies family of wavelets. The
orthogonality property leads to a clear indication when data deviates from
a low-order polynomial, the importance of which will become clear when we
discuss numerical methods.

2.1 Defining the Daubechies Wavelet

To define Daubechies-based wavelets, see Daubechies 1988 and Erlebacher
1996, consider the two functions ¢(x), the scaling function, and ~b(z), 
wavelet. The scaling function is the solution of the dilation equation,

which carries the name "dilation equation" since the the independent variable
x appears alone on the left hand side but is multiplied by 2, or dilated,
on the right hand side. One also requires the the scaling function ¢(x) 
normalized: f~oo ¢(x)dz = 1. The wavelet ¢(x) is defined in terms of the
scaling function,

L-1

¢(~) = v~ Z g~¢(2~ - k). (2)
k=O



One builds an orthonormal basis from ¢(x) and ¢(x) by dilating 
translating to get the following functions:

(3)

and
(4)

where j, k E Z. j is the dilation parameter and k is tile translation parameter.

2.2 Dissipation Flags in Wavelet Subspaces

Geamrally speaking, proper numerical dissipation flags will come from the
wavelet subspaces at the smallest scales. It is this energy at the small-
est scales which can become unwanted oscillations or essentially information
which is unresolved.

It is usual to let the spaces spanned by ¢~(x) and ¢~(x) over the parameter
/c, with j fixed, be denoted by Vj and Wj respectively,

span J x
Ck(), (5)5" ~ kE Z

span ct(~)VV-j ~ kCZ

The spaces Vj and IVy are related by,

... c Vt C Vo C V_, c ...,

(6)

(7)

and
v~ = vj+l @ w5+1, (8)

where the notation V0 = V1 ̄  W, indicates that the vectors in V1 are orthog-
onal to the vectors in W1 and the space V0 is simply decomposed into these
two component subspaces.

So, certainly the information in W1 can lead directly to information which
should be damped. But, one might also consider the information in 14/’2 and
W3 and the rate at which this information is headed toward W,.



2.3 Filters, Orthogonality and Dissipation Flags

The coefficients H L-1 L-1
(_l)khL_k= {hk}k=0 and G related by gk= {gk}k=0 are =

for k = 0, ..., L - 1. All wavelet properties are specified through the param-
eters H and G. If one’s data is defined on a continuous domain such as

J Jf(x) where x E R is a real number then one uses Ck(x) and¢k(x) to 
form the wavelet analysis. If, on the other hand, one’s data is defined on a
discrete domain such as f(i) where i E Z is an integer then the data is an-
alyzed, or filtered, with the coefficients H and G. In either case, the scaling
function ¢(z) and its defining coefficients H detect localized low frequency
information, i.e., they are low-pass filters (LPF), and the wavelet ¢(z) 
its defining coefficients G detect localized high frequency information, i.e.,
th@ are high-pass filters (HPF). Specifically, H and G are chosen so that
dilations and translations of the wavelet,¢~(x), form an orthonormal basis
of L2(R) and so that ¢(z) has M vanishing moments which determines the
accuracy. In other words,¢~(x) will satisfy

= (9)
OO

where 6kz is the Kronecker delta function, and the accuracy is specified by
requiring that ~b(x) = ¢0°(x) satisfy

Do = 0, (i0)

for m ---- O, ..., M - I. Under the conditions of the previous two equations, for
any function f(x) L2(-~) th ere exists a se{djk} suchthat

= ,, (ll)
jEZkCZ

where

Sd{ = f(x)¢{(x)dx. (12)
OO

2.4 Implementation on a Computer

The wavelet decomposition matrix is the matrix embodiment of the dilation
equation, Eq.(1), defining the scaling function and the accompanying equa-
tion defining the wavelet, Eq.(2). The following two recurrence relations for
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the coefficients, s~ and d~ are given as

and
L

d~ E j-1 (14)gnSn+2k_2
n=l

as obtained from Eqs.(1)-(2), and we recall that h~ refers to the chosen filter
while we have g~ = --(--1)~hc-~-

<
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3 Dissipation Flags for Density andPressure

Here we show two examples of the wavelet-based dissipation flag applied to
the pressure and density fields. Note that wavelet analysis is fundamentally
built around defining regions of the domain where a numerical calculation is
on the verge of failing due to insufficient grid point density. No other regions
will be flagged, only those that need dissipation. In Figure (1) we can clearly
see that the wavelet flag identifies the regions where either grid points are
needed or dissipation should be applied. Further, the magnitude of the flag
is proportional to the amount of dissipation that is needed. In other words,
very sharp corners need more dissipation than smooth corners. In a sense
this is obvious, but wavelet analysis gives us a very precise and automatic
way to apply the dissipation for any calculation and, in particular, ALE
schemes. In the figures, one will also find the divergence of the field plotted.
Sometimes, as in the Lagrangian code of Figures (1) and (2), the divergence
is used as a flag for dissipation but the divergence, or negative divergence,
is fundamentally the wrong quantity to flag. One might be attempt to fiz
a flag built around the divergence, but it makes more sense to flag on the
correct quantity from the beginning.



Wavelet coefficient for density vs divergence
from Sod shock tube case
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Figure 1: Density (divided by 10), wavelet flag and divergence flag of-V. 
from the results of simulating the Sod, see ([6]), shock using the Lagrangian
code sKULL



0.05

0.04-

0.03-

0.02-

0.01

0-

-0.01

-0.02-

-0.03
150

Wavelet coefficient for pressure vs divergence
from Sod shock tube case

\, lii

iI

\ 

i i I I i

250

-div(u)

abs(HPF*lO)

pressure/lO

grid index
450

Figure 2: Pressure (divided by 10), wavelet flag and divergence flag.
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4 Wavelet Information at DifferentScales

One of the key strengths of wavelet analysis is the ability to easily break up a
signal into energy contributions at different scales at different locations in a
domain. This ability gives the user an easy method to really understand what
is happening in the computational domain. In a word, various structures
have unique signatures in a wavelet basis. Such structures would be shocks,
noise, smooth laminar flow, and essentially anything that can appear. Noise,
for example, would have most of its wavelet energy in the finest scale with
relatively little energy in the more coarse scales. A shock, by contrast, would
have a great deal of energy at all scales but at only one location. In a sense,
wayelets give the user all the information that one could hope for. In Figure
(3) we can see these ideas illustrated for a given pressure profile. This profile
has a shock, a region dominated by noise, and a non-shock but steep gradient
region. The energy in the wavelet coefficients is plotted and one can see that
these features are easily distinguished. This gives the user the knowledge
needed to know where to damp and tells exactly where the shock it so that
proper measures can be taken.
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Figure 3: Wavelet energy at different scales for a given pressure profile.
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5 Software Implementation

This section gives a simple version of one possible implementation of the
software that would be needed for the wavelet-based dissipation mechanism.

5.1 Generating the Wavelet Coefficients: lines 9-13

To illustrate, assume that tile user has determined that 8 is the maximum
desired ratio between the maximum Ax and the minimum Ax. As noted
above, this corresponds to 3 wavelet decompositions. As above, let V0 denote
tile subspace spanned by scaling functions on the finest scale. One wavelet
decomposition produces the division of V0 into V1 and WI: V0 = W1 ® V1.
Similarly, three wavelet decompositions produces, V0 = W1 ® W2 ® Wa ® Va.
Each of these wavelet decompositions is performed by the subroutine filter.f.
The input to filter.f is the variable Eztdata which contains the scaling function
coefficients for subspace Vi and the output variables of filter.fare the variables
data and HPF which contain the coefficients for the subspaces Vi+l and Wi+l,
respectively. The variable is named Eztdata because the coefficients of 1/i have
been ’extended’ to reflect the boundary conditions. In this version of the
program, the data is extended by adding constant scaling function coefficient
values to the ends of the vector data by the routine constext.f. Note, if one
desires periodic boundary conditions then one ’wraps’ the scaling function
coefficients around such that one extends the vector data by returning to the
beginning of the same vector. Likewise, if one wants a smoother extension
of data then one can write a routine which extends linearly or by some other
higher order polynomial.

5.2 The Input and Output variables

Input Variables

¯ xi = The evenly-spaced grid point values.

¯ fi = The evenly-spaced samples of the function which is to be analyzed.
fi(1) = value at left-hand boundary, fi(N+l) = value at right-hand
boundary. If boundary conditions are periodic, fi(1) = fi(N+l).

¯ L = Defines which wavelet is used. For Daubechies 4, L=4.
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¯ N = The number of points in fi minus 1. N is a power of 2.

¯ Nd = Number of wavelet decompositions, e.g., if Nd = 3, then the ratio
of the maximum Ax to the minimum Ax is 8 = 2a.

¯ iw = Width of wavelet refinement stencil. If iw = 1, then the magni-
tude of wavelet coefficients are checked at three locations from -iw to
iw or at the locations -1, 0, 1 in order to determine if the grid point
at location 0 should be used. So that if one has a hyperbolic system,
or traveling waves, then if ivo > 2 one can add grid points by looking
’backwards’ and ’forwards’ for a perturbation which might move into
the region currently being examined. This is a kind of preparation for
the future evolution of the system at hand.

Output Variables

¯ HPF = High Pass Filter and contains the results of the wavelet analysis.
The first column will contain N/2 numbers indicating the result of
wavelet analysis on the finest scale. The second column will contain
the results from the analysis on the next coarsest scale and so on.

subroutine getflag (f i, L, N, Nd, iw, HPF)

parameter(Nmax = 260, Lmax = 8, Ndmax = 8)

real fi (Nmax) ,h(Lmax) , g(Lmax)
real data (Nmax), th, HPF (Nmax/2+Lmax, Ndmax), Extdata (Nmax+Lmax)

call getcoef (L,h,g)
do i = l,Nmax

data(i) = fi(i)

enddo
do idecomp = i, Nd

Ndim = N/(2** (idecomp-l))

call constext (data, Ndim, L, Extdata)

call filter (Extdata, h, g, Ndim, L, dat a, HPF (i, idecomp) 
enddo

return
end
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subroutine filter (Extdata, h, g, N, L, low, high)

parameter (Nmax = 260,Lmax = 8)

real low(Nmax/2+Lmax) , high(Nmax/2+Lmax)

real Extdata(Nmax+Lmax), h(Lmax), g(Lmax)

do i = I, Nmax/2+Lmax

low(i) = 0.0

high(i)= 0.0

enddo

do i = 1, N/2 + (L-2)/2

do j = 1,L

ij = 2.(i-i) j - (n -2)

low(i) = low(i) + h(j) * Extdata(ij+2)

high(i) = high(i) + g(j) * Extdata(ij+2)

enddo

enddo

return

end

subroutine const ext (data, N, L, Extdata)

parameter (Nmax = 260,Lmax = 8)

real data(Nmax), Extdata(Nmax+Lmax)

do i= i, N

Extdata(L/2+i-l) = data(i)

enddo

do i = I, L-3

Extdata(L/2-i) = data(i)

enddo

do i= i, L-i

Ext data (N+L/2+ i- i ) =data (N)

enddo

return

end

subroutine getcoef(L,h,g)

15



parameter (Lmax = 8)
real h(Lmax), g(Lmax)
h(1) = .482962913145
h(2) = .836516303738
h(3) = .224143868042
h(4) = -.129409522551
do i = I,L

h(i) = h(i)/(sqrt(2.0))
enddo
do i = I,L

g(i) = (-l)**(i-l) * h(L - i 
enddo
return
end
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6 Conclusion

Numerical calculations sometimes require that numerical dissipation be added
artificially in order to keep the calculation stable. It is critical, however, that
this dissipation be applied sparingly and only where needed. The wavelet
based method proposed here fulfills these requirements in a natural manner
without requiring any ad hoc fixes for special cases. Wavelets detect exactly
where a calculation will fail and tells the amount of dissipation that is needed
to keep the calculation stable. The method is not only robust but compu-
tationally efficient. We have provided an basic introduction to the use of
wavelet methods to enhance numerical calculations. Many of these ideas will
be~expanded on in later manuscripts.
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