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Improving Gas Storage Development Planning Through Simulation-Optimization

Virginia M. Johnson, Lawrence Livermore National Laboratory
James Ammer, U.S. Department of Energy
Mona D. Trick, Neotechnology Consultants

Abstract
This is the first of two papers describing the application of
simulator-optimization methods to a natural gas storage field
development planning problem. The results presented here
illustrate the large gains in cost-effectiveness that can be made
by employing the reservoir simulator as the foundation for a
wide-ranging search for solutions to management problems.
The current paper illustrates the application of these
techniques given a deterministic view of the reservoir.  A
companion paper will illustrate adaptations needed to
accommodate uncertainties regarding reservoir properties.

Introduction
Although reservoir simulation is a well-established component
of reservoir management throughout much of the petroleum
industry, little use has been made of reservoir simulation
coupled with systematic optimization techniques, i.e.
simulation-optimization.

The main advantage of applying optimization tools, per se,
to decision-making problems is that they are less restricted by
human imagination than conventional case-by-case
comparisons.  As the number of competing engineering,
economic, and environmental planning objectives and
constraints increases, it becomes difficult for human planners
to track complex interactions and select a manageable set of
promising development strategies for examination. Using
optimization techniques, the search can range over all possible
combinations of variables, locating strategies whose
effectiveness is not always obvious to planners.

The advantage of coupling the reservoir simulator to these
optimization tools is that the search for strategies can be based
on the simultaneous evaluation of reservoir performance
measures and other economic/environmental/policy
considerations.  It is no longer necessary to treat technical
decisions driven by simulator forecasts of reservoir response
and these other components of the decision-making process as
separate steps.

The single biggest obstacle to the application of
optimization techniques using a reservoir simulator as the
forecasting tool is the computational time required to complete
a single simulation.  Even the examination of 10 variations on
a well-field design becomes cumbersome when a single run
requires hours to complete.  Extending the use of these
simulators into optimization regimes involving hundreds or
thousands of runs poses a computational problem bigger than
most organizations are willing or able to tackle.

The ANN-GA solution to this problem is to train artificial
neural networks (ANNs) to predict selected information that
the simulator would normally predict.  A heuristic technique
such as the Genetic Algorithm (GA) then searches for
increasingly better strategies (for example, the most
productive in-fill drilling pattern), using the trained networks
to evaluate the effectiveness of each strategy in place of the

original simulator. After analysis of the results of the search,
the best-performing strategies are submitted to the original
simulator to confirm their performance. The components of
the methodology are illustrated in Fig. 1.

The ANN-GA methodology was first developed to address
computational bottlenecks in applying simulation-optimization
techniques to groundwater remediation applications.  Studies
employing 2-D flow-and-transport models of a contaminated
groundwater Superfund site have documented the benefits of
simulation-optimization both with1,2 and without3 the
assistance of ANNs.  These studies are part of the long-
standing interest in the field of water resources in the use of
simulators in formal decision-making contexts4.

The emphasis in the petroleum engineering literature, in
contrast, has been on the evaluation of small sets of carefully
selected scenarios, as exemplified by the work of Kumar and
Ziegler5, Coskuner and Lutes6, and Kikani and Smith7.
However, there are a few studies which have applied
techniques which bear some resemblance to simulation-
optimization methods.

Aanonsen and others8 applied concepts from experimental
design and response surfaces to optimize a reservoir response
variable (e.g. oil production rate) according to reservoir
management parameters (e.g. well location and flow rates).
The goal was to build a response surface of discounted oil
production from sample inputs consisting of the x and y
coordinates of a single producer and the x coordinate of a
single injector. To account for uncertainties in the flow field,
these three inputs were crossed, as in an experimental design,
with eight different realizations of the deposition of channel
sands. The response surface was examined for distinct
maxima, which became the optimal solutions to the problem.
This work is similar to the ANN-GA methodology in that the
results of a sample of simulations are used to build surfaces
which are then searched for solutions. In the ANN-GA
approach, however, the sampling is performed to create a re-
usable knowledge base, providing the examples from which
many different networks figuring in many different searches
are drawn.

Wackowski and associates9 employed decision analysis
techniques to examine over 2500 expansion, investment,
operational, and CO2 purchase/recompression scenarios to
maximize net present value of a project at the Rangely Weber
Sand Unit. This ambitious, long-range project pulled together
information from many sources (including expert opinion,
economic spreadsheet models and reservoir models) into
decision trees, from which the highest probability paths were
selected. The reservoir model combined the vertical response
of a single detailed cross-section with the areal response of a
full-field streamtube model to obtain full-field forecasts of
injected and produced fluids. Since several techniques were
used to reduce the number of paths in the decision tree which
required full examination, it is unclear how many scenarios
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the simulator actually evaluated. This approach to
optimization is similar to the ANN-GA methodology in that
they both examine very large numbers of alternatives. The
techniques, however, are quite dissimilar in their identification
of optimal solutions. Unless it is exhaustive of all possibilities,
which is unlikely in a real-world problem, a decision tree can
only select solutions from paths that have been anticipated by
its designers. Optimization techniques, in contrast, can
uncover combinations of inputs which produce results which
were not anticipated.

A classic application of optimization techniques to facility
design is given by Fujii and Horne10. They compared three
different search techniques (a derivative-based method, the
polytope method, and the GA) applied to the optimization of a
networked production system by varying parameters such as
separator pressure, diameters of tubing, and pipeline vs
surface. Calculations were restricted to relatively simple
production rate equations because the use of a reservoir
simulator was judged to be too time-consuming. Later,
Bittencourt and Horne11 used a GA combined with economics
and simulation to determine the optimal relocation of wells in
a proposed 33-well layout and the best platform location.
Their experiences reinforce the motivation behind the ANN-
GA approach: that the advantages of optimization techniques
will not be fully exploited until some method is found to
reduce the computational burden imposed by the reservoir
simulator.

The first application of the ANN-GA in petroleum
engineering concerned the proposed water flood of the
Pompano field in the Gulf of Mexico12. The management
problem was to locate the combination of 1-4 injection
locations which would maximize the field’s simple net profit
over the next seven years. Using a 3-D black oil simulator, a
knowledge base of 550 simulations sampling different
combinations of 25 potential injection locations was created.
ANNs were trained to predict peak injection volumes and
volumes of produced oil and gas at three and seven years after
the commencement of injection. The rapid estimates of these
quantities provided by the ANNs were fed into net profit
calculations, which in turn were used by a GA to evaluate the
effectiveness of different well-field scenarios. The expanded
space of solutions explored by the GA contained new
scenarios which exceeded the net profits of the best scenarios
found by simply querying the knowledge base.

Despite the success of the Pompano application, there are
still questions regarding the range of simulators and planning
problems to which the ANN-GA methodology can be applied.
This paper describes the application to a natural gas storage
field development planning problem. It varies from the
Pompano case in that 1) the field development planning
options are considerably more complex, 2) the reservoir
simulator is coupled to a surface network facilities simulator,
producing a potentially more complex set of relationships for
the ANNs to map, and 3) the objective functions governing the
search for best solutions deal not only with tangibles such as
production constraints and costs but with intangibles such as
the planners’ aversion to risk. The current paper illustrates

how the methods are applied given a deterministic view of the
reservoir. The adaptations to the methodology which are
required when the uncertainties associated with reservoir
properties must be considered are covered in a separate paper.

Description of the Reservoir
The gas storage field serving as the testbed for the project was
discovered in 1889 and developed through 1930.  Conversion
of the field to storage began in 1947.  The first storage pool
was comprised of six wells completed in the Fifth sandstone.
While studies and tests were being performed in this area, the
possibilities of using a nearby Fifth sandstone pool for storage
were explored.  From 1950 through 1952, an intensive pro-
gram was carried out in reconditioning, drilling, and inserting
new casing and tubing in wells.  By January 1953, the storage
field was comprised of these two pools and had a total of 33
wells.  Obvious communication existed between the two
pools, but the mechanism for communication was poorly
understood.

As part of a 1992 study, the field was divided into three
areas of distinct reservoir performance (designated as West,
Main, and East) based on the high- and low-end inventory
pressures recorded from 1987 through 1992. In general, the
West and East areas operated in a narrower pressure range
than the Main area, which implies that these portions of the
field were not operating at their fullest potential. Both
volumetric and material balance calculations were used in
quantifying the volumetric increase that would result from
operating the West area under the same pressure conditions as
the Main area.  The results indicated that 400 to 700 MMcf of
storage potential was not being utilized in the West area due to
an insufficient number of wells. Thus, four new wells were
drilled in 1992 to efficiently cycle this area and to increase
field deliverability.  These wells increased field deliverability
by approximately 16 MMcfd and field capacity by 250 MMcf
at 600 psig.  Over the last three years, the company has cycled
about 2.1 Bcf per year with a maximum field deliverability of
over 40 MMcfd.

Geologic Setting.  The storage field is located in the Fifth
sandstone within the historic shallow gas belt of the
Appalachian basin.  This region is characterized by numerous
overlapping stratigraphic traps within highly lenticular
sandstones of the Upper Devonian Catskill Delta complex.
Regional correlations by numerous authors have shown that
the primary gas reservoirs of the shallow gas belt generally
occur within a sandstone-rich facies that grades westward into
marine shales and siltstones and eastward into non-marine red
shales and fluvial sandstones. Harper and Laughrey1 3

confirmed the marginal-marine origin of lower Venango
sandstones through analysis of nearby outcrops.  A sandstone
isolith of the lower Venango Formation14, including both the
Fifth sandstone as well as the subjacent Bayard sandstone,
shows a well-developed belt of sandstone with a north-south
strike trend that is interpreted to mark the approximate
paleoshoreline position.  Dip-trending units are common to the
east of the strike trend, and are interpreted as fluvial /
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distributary feeder channels.  The western edge of the strike
trend is regular and abrupt, suggesting efficient redistribution
of sediment along the shoreline by wave action. An
understanding of these general characteristics of Venango
sandstones was an important guide to the interpretation of
sandstone geometry within the subject gas storage field.

Prior Reservoir Modeling
Geologic Analysis.  Geophysical well logs from over 100 gas
wells completed in or around the field between 1902 and 1992
were used to perform the analysis.  Since the majority of the
logs were run in the 1950's, the suite generally consisted of
only gamma ray, caliper, and temperature logs.
Neutron-density and induction logs were available for only
seven to eight of the newer wells.  Initially, 50 percent clean
sandstone was used to indicate potential pay zones for each of
the three sandstone units.  However, it was apparent that the
zones where a neutron-density crossover occurred (indicative
of the presence of gas) correlated only with the good
permeability and porosity measurements from sidewall cores,
and that these zones correlated well with 75 percent clean
sandstone. Zones with gamma ray readings between 50 to
75 percent clean sandstone showed little to no crossover on
the neutron-density logs and very low permeability and
porosity from sidewall core measurements.  Therefore, a
75 percent clean sandstone cutoff was used to represent the
pay interval in all wells.  The amount of 75 percent clean
sandstone in each of the three sandstone units of the Fifth was
then determined and mapped across the field to evaluate
reservoir pay/permeability trends.

History Match.  Data available for the history match began
with the injection cycle in 1987 and ended with the
withdrawal cycle in 1996.  Only total field volumes and
biannual inventory pressure (shut-in wellhead pressure) data
were available between 1987 and 1993.  Starting with the
injection cycle in 1993, flowing rates and wellhead pressures,
averaged over 1 to 3 week periods, were available for 20 of
the 28 injection/withdrawal wells.  In 1995, pressure transient
tests were conducted on 15 of the injection/withdrawal wells.
These well tests showed a very wide range of transmissibility
and a high degree of damage for most wells.  Permeability
calculated from well test data and permeability based on flow
rate data from the metered wells were used as a starting point
in the history match.

The difference between actual inventory pressure and
simulator predicted pressure for the 28 injection/withdrawal
wells and 3 observation wells over the 10 year period
averaged about 10.5 percent.  This match was reasonable since
individual well rates were dependent on permeability and skin
factor (and no well treatment history was available to provide
skin factor over the ten year period), and  porosity and water
saturation data were available for only 7 wells.  The results of
the history match indicated that 1) gas-in-place was lower than
expected or was not effectively being cycled due to low
permeability areas and the shorter withdrawal season with
respect to the injection season, and 2) although connected,

there were several very high permeability areas that appeared
to be acting as localized pools (there are several areas of the
field where active wells are separated by 4,000 to 6,500 feet).

The final permeability distribution used for all subsequent
modeling is shown in Fig. 2.  The white squares in the figure
identify the locations of the 28 wells comprising the critical
injection/production capacity of the field.  A low permeability
region in the mid-section of the field is clearly visible.  There
is some question of communication through this area, which
forms the most prominent source of uncertainty regarding
reservoir properties in this application. Analyses addressing
this uncertainty are reserved for the second paper.

Field Development Forecasts. One of the field  production
scenarios that planners wanted to explore was offering a 10-
day or 30-day peaking service in addition to the baseload
service already provided.  A base case run was set up using the
results from the history match, i.e., existing wells and damage
(skin factor), to cycle 2.0 Bcf annually.  An additional 200
MMcf were injected during the first cycle to account for the
difference between actual and history matched gas-in-place.
Even with the additional gas, the prediction runs were
considered very conservative.

The forecast runs consisted of either a 10-day peaking
service of 10 MMcfd offered March 1st through  March 10th,
or a 30-day peaking service of 10 MMcfd offered February
15th through March 16th.  This represented a worst case
scenario where the peaking service was offered near the end of
the withdrawal season when reservoir pressure was at its
lowest.  Several runs were made to investigate the effect of
well remediation alone vs. well remediation coupled with
either new vertical or horizontal wells.

The well remediation only forecast assumed that skin
damage on 7 wells could be reduced from +20 (or higher) to
+2.  For this prediction run, wellhead pressures fell below
minimum level during the peaking service.  Thus, 4 new
vertical wells were placed in areas of low well density.  The
results of this run were good, with the wellhead pressures
remaining slightly above minimum level.  The 4 new vertical
wells were then replaced by one 1,500-foot horizontal well,
which performed as well as the 4 new vertical wells.  An
additional run was made to determine the effect of when the
peaking service was offered.  For this run, the 30-day peaking
service was offered January 1st through January 30th.
Wellhead pressures remained almost 70 psia higher during the
peaking service compared to earlier runs, indicating that
higher rates could be met if the peaking service was offered
earlier in the withdrawal season.

Simulators Used in the ANN-GA Application
The modeling work described above employed the three
dimensional black oil reservoir simulator, IMEX15, to predict
the performance of the reservoir.  To more realistically model
the surface facilities, the gas deliverability forecasting
program, FORGAS16, was added to model the multiphase flow
in the wellbores, surface pipelines and facilities.  In this
coupling, the reservoir simulator provides the grid block
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pressure, water to gas ratio and the sandface inflow
performance coefficients, using the LIT (Laminar-Inertial-
Turbulent) equation, for each well to the surface model at the
start of the timestep. The surface model uses these items with
the specified plant delivery pressure, and contract, well and
surface network constraints to calculate the flow rate of each
well. The flow rate for each well is passed back to the
reservoir simulator. The reservoir simulator then does the
material balance calculations to determine the conditions (grid
block pressure, water/gas ratio and inflow performance
coefficients) for the start of the next time step. The new
sandface conditions are then passed to the surface model
which then redetermines the flow rate of each well. These
flow rates are passed back to the reservoir simulator, so it can
calculate the conditions for the next time step. This process
continues until the end of the forecast period.

The reservoir simulator passes the maximum allowed time
step length, based on the user-specified maximum allowed
pressure change in each grid block per time step. The surface
model may then shorten that time step to allow calculations on
dates where changes happen in the surface and wellbore
system (e.g. the addition of a new compressor or change from
injection to withdrawal). When the reservoir model passes a
non-zero volume of water, the surface model uses the
appropriate multiphase correlations in the wellbore to predict
the wellbore pressure loss and minimum flow rate to lift the
liquids. The water volumes from each well are tracked through
the gathering system, to determine the resulting multiphase
pressure losses.

ANN-GA Methods
The steps required to apply the ANN-GA methodology are

described below:

Determining the Scope of the Problem.  This step involves a
review of the available geological and production data for the
field, consideration of the overall goals for the field's initial or
further development, and examination of the reservoir
simulator that is being used to model the physical processes.
The key outcomes of this step are 1) specification of the
overall field development planning problem to be solved, 2)
the definition of the problem’s planning variables (i.e. the
elements of the problem which will be allowed to vary, such
as the type of well or the allowable spatial locations) and 3)
the constraints (economic, environmental, engineering, etc.)
under which the decision-makers must operate.

Production Scenarios.  Although prior modeling with
IMEX alone had suggested that additional development was
required to support 10- and 30-day peaking service on top of
the base injection/withdrawal capacity of 2.0 Bcf/year, the
introduction of a newly drilled horizontal production well and
the addition of the FORGAS surface network management
facilities increased the apparent capacity of the the field.  To
make the planning problem more challenging, 6 new
production scenarios were considered: normal withdrawal and
10- and 30-day peaking service at baseloads of 2.5 and 3.0

Bcf.  These new scenarios were modeled by proportionally
increasing the flow rates that had served as the foundation for
the 2.0 Bcf baseload scenarios.

Preliminary modeling indicated that simple field
development plans involving remediation of one or two
existing wells were sufficient to support all scenarios except
the two involving 30-day peaking service. These two scenarios
were selected for further study; and a knowledge base of just
under 500 simulations was created for each scenario. Every
simulation run consisted of three years of injection/withdrawal
cycles, with an additional 200 Mmcf of gas injected in the first
year for the same reasons as described in the history match. A
single three-year simulation evaluating one development plan
with respect to one production scenario required
approximately three minutes on a dedicated personal computer
running Windows NT 4.0.

Planning Variables. The following field development
planning options were systematically varied:

1. Remediating anywhere from 0 to all 7 of a set of  existing
wells with skin factors at or above 20.0.  Remediation was
implemented by simply changing their skin factors in the
IMEX input data set to 2.0. More sophisticated methods to
accommodate the uncertainty associated with the outcomes of
remediation are presented in the second paper describing this
project.  These wells are identified throughout this paper as R1
– R7.

2. Augmenting a newly drilled and producing horizontal
well’s capabilities to include injection.  The label IHOR is
used to refer to the implementation of this option.

3. Drilling from 0 to 4 new vertical wells from a candidate
pool of 15 new locations, identified as NV05, NV06, etc.
NV01-NV04 refer to wells located in the disputed mid-section
of the field, which is not considered in this first paper.  Fig. 3
displays the IMEX grid locations of the existing
injector/producers and the new vertical well locations.  The
locations of the NV’s were selected by randomly distributing
locations over the higher-permeability IMEX blocks (see Fig.
2), making sure that a minimum drainage radius of 1,000 ft
was observed.  Skin factors for all newly drilled wells were set
to 2.0.

Constraints.  In addition to imposing limits on the number
of new wells that could be drilled (4) and the total number of
actions that could be taken (12) in any one plan, other
engineering constraints were implicit in the problem setup: 1)
no changes were to be made to surface facilities beyond the
laying of new pipelines to any newly drilled wells, and 2)
maximum wellhead pressures remained at 650 psia.  Minimum
wellhead pressures, on the other hand, were permitted to drop
as low as 25 psia.  A wellhead pressure below 70 psia was
treated as an undesirable but manageable condition with
economic consequences (see the “Cost of Low Pressure
Conditions” component of the objective function definition
below) rather than as an absolute constraint.

Spatial constraints were imposed by the fixed positions of
the 15 prospective new well locations. Earlier efforts to
express well locations in x-y coordinates to permit an ANN to
make spatial interpolations produced greatly degraded
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predictive accuracy. So, the convention prevalent in water
resources management of employing a set of preselected
locations that constitutes the domain about which questions
can be asked was followed here.

Creating a Knowledge Base of Simulations.  Given the
definition of the problem just described, a knowledge base
was created by running FORGAS/IMEX on a set of nearly
500 development plans obtained by structured, random
sampling over the ranges of the planning variables.  Rationales
for the selection of target sizes are discussed in the section on
ANN training and testing. The set consisted of:

1. The no-action case which assessed the performance of an
existing set of 28 injectors/producers under the challenges of
the 30-day peaking service on top of 2.5 and 3.0 Bcf
baseloads.

2. 23 single-action plans, assessing the effects of doing any
one of the planning options outlined above.

3. 476 combined-action plans generated according to the
following rules:

a. Rehabilitation options: 1) Randomly select the number of
wells (0-7) to rehabilitate (nr) and 2) randomly select wells
from the list of candidates until nr wells have been picked.
b. New vertical well options: 1) Randomly select the
number of wells (0-4) to drill (nd) and 2) randomly select
locations from the list of candidates until nd locations have
been picked.
c. Horizontal well injection option: randomly determine if
the injection option is to be turned on.

For the combined-action set, a minimum of two and a
maximum of 12 actions were permitted. Of the 476 combined-
action plans, 7 encountered numerical convergence problems
and were discarded.

Archived FORGAS/IMEX Output.  The following items
were recorded for each simulation:

1. The type (injection vs. withdrawal) and extent of contract
shortfalls (i.e., when they occurred, how long they lasted, and
the total volume of gas involved),

2. Any well-head pressures dropping below 70 psia (i.e.,
which wells, to what extent, and for how long), and

3. Cumulative injection and withdrawal volumes for each
existing well or new location.

Posing Specific Management Questions. This is the point at
which the actual optimization exercise begins.  Based on the
groundwork laid in the creation of the knowledge base of
simulations, the following cycle is repeated as many times are
there are different management questions to be addressed -

Defining the Objective Functions. There are many ways to
construct the objective functions (i.e. the means by which
plans are compared with each other and against the no-action
case).  For the purpose of these analyses, simple minimization
functions were constructed.

Plan Performance Measures. The archived simulator output
provided data from which the following performance
measures could be translated into economic terms:

1. Cost of Contract Shortfall – Contract shortfall is the total
volume of gas (in Bcf), cumulative over the three years of
simulation, which could not be withdrawn under the given
plan.  For example, if the contract required withdrawal of 2.5
Bcf/year and the plan could only produce 2.45 Bcf/year, then
the cumulative shortfall was 0.15 Bcf. When a shortfall
occurs, the company must purchase natural gas on the open
market to make up the difference.  So contract shortfall is
translated into a cost value by multiplying the shortfall by
some appropriate price.  For the preliminary analyses,
$2.00/mcf was selected.

2. Cost of Low Pressure Conditions – Ideally, FORGAS’s
compressor modeling facilities would be used to evaluate the
impact of low wellhead pressures.  Since the information
needed to apply this feature was unavailable, a cruder method
was implemented.  Any time a wellhead pressure dropped
below 70 psia, the extent and duration of the pressure deficit
were recorded.  The deficits were accumulated across all three
years of simulation and totaled across all wells to yield a
single pressure deficit (in psia) that would have to be
compensated for by the plant’s compressors.  The deficit was
translated into a cost figure by multiplying it by $0.10/lb.  This
figure is intended to cover both the energy cost of running the
compressors and additional wear on equipment.

Plan Implementation Costs. Each plan carries with it certain
incremental installation and maintenance costs. For this
analysis, the following costs were applied:

Rehabilitation Costs –
$    6,000 for R3

 $  10,000 for R1 and R4
$  15,000 for R2, R5, R6, and R7

Drilling New Vertical Wells –
$300,000 in drilling costs for each new well
$    2,000 in yearly maintenance expenses

Equipping the Horizontal Well for Injection – $2,000

Calculation of Total Dollar Cost ($Cost). This was simply
the sum of Contract Shortfall Costs, Low Pressure Conditions
Costs, and Plan Costs.

Definition of Risk. Contract shortfalls involve more than
purchasing gas on the open market to make up the difference.
They also introduce considerable uncertainty into the planning
situation because there is no way to know what the cost of gas
is going to be when the shortfalls occur. Decision-makers’
tolerance for risk is highly individual.  However, an effort has
been made to incorporate this dimension into the cost function
so that the definition of an optimal plan will be one which not
only minimizes dollar costs but also minimizes that risk.  This
involved the following steps.

The shortfalls (SF) for each plan p were converted to
percentages of improvement (PctImp) over the corresponding
shortfalls in the no-action case:

              PctImp = SFp/SFno-action                                                                     (1)
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The greater the percentage of improvement, the less risk is
associated with the plan.  For example, if PctImp is 100%, the
plan completely eliminates the shortfall and, consequently, the
risk.  So, Risk% is simply defined as 100 – PctImp.

Final Objective Functions. For any given production
scenario, plan p was evaluated by the weighted combination of
risk and the dollar cost:

Total  = w1$Cost + w2Risk%                    (2)

Since this is a minimization problem, the lower the value of
Total, the better.  Both Risk% and $Cost were scaled between
0.0 and 1.0 prior to applying the weights, which themselves
sum to 1.0.

For the current analyses, two versions of the objective
function were analyzed. In the first, denoted as “$Cost
Emphasis”, w1 was set to 0.67 and w2 to 0.33.  In the second,
“Risk% Emphasis”, the weightings are reversed.  The purpose
of employing two versions of the objective function was to
demonstrate how using ANNs in place of the full simulator
facilitates experimentation on the part of planners.

Training/testing the ANNs. The performance measures
described above, Contract Shortfall and Low Pressure
Conditions, are the two attributes for which ANN predictors
were required.  The 493 examples in the knowledge base were
divided into two sets: 343 for the training set and 150 for the
generalization test set.   Because of the manner in which the
training/testing cycle was organized (see below), no validation
set was required.  The two sets were random selections from
the overall 493 cases with the exception that the no-action and
single-action cases were present only in the training set.  The
desired size of the training set is whatever size is necessary to
achieve the required level of accuracy on the generalization
test set, which itself must be an adequate representative
sample from the space which will be covered by the search
technique.  Prior experience with similar planning problems
suggested that a total of roughly 500 examples might be
adequate.  If initial generalization test results indicate
otherwise, the knowledge base would have to be augmented
with additional simulations.

The ANN architecture used for this prediction task was a
feedforward network, trained by the familiar backpropagation
learning algorithm17. In this paradigm, a network is initialized
with small random weights. Training consists of presenting
example inputs to the network and calculating the
corresponding outputs, given the current values of the
connection weights. The calculated output values are
compared to the target values from the examples; and the
connection weights are updated according to any of several
learning algorithms to minimize the difference between
calculated and target values on the next iteration. Over time,
the connection weights associated with important relationships
grow large and those associated with trivial relationships
decay to zero. For the current analyses, a conjugate gradient
optimization method18, employing the Polak-Ribiere weight
update rule, was used to speed convergence and reduce the

likelihood of becoming trapped in local minima.  A sigmoid
was used as the transfer function.  To avoid over-fitting of the
network weights to idiosyncratic features of the training
examples, batch updating of weights and a relatively short
number of training epochs (300) were employed.  This last
parameter was determined by trial and error experimentation.

The goal of training is to construct a predictor with maximal
capacity to generalize its predictions to unseen patterns.
Factors that are known to contribute to generalization in
ANNs include the complexity of the network as reflected in
the number of connection weights, the size of the training set,
and the degree of noise in the training set19.  In applications
where the “data” is generated by a deterministic model, noise
in the usual sense of the term is not a problem.  On the other
hand, training/testing set size is definitely pertinent, as has
already been discussed.

A third factor, network complexity, is addressed by the
manner in which variations on a given network are constructed
and tested.  The size of the input layer was fixed by the
problem formulation at 23, one node for each of the 7
remediation candidates, the IHOR option, and the 15
prospective new vertical wells.  The output layer was similarly
kept simple by constructing networks which only predicted
one performance measure (i.e. Contract Shortfall or Low
Pressure Conditions) at a time.   The only variable element
was the number of nodes in the hidden layer.  This decision
was made by training and testing variant networks having
anywhere from one to 10 hidden nodes and selecting the
variant with the best test set accuracy.

There is one final source of complexity that was addressed
by the training/testing procedure.  Backpropagation training is,
itself, a nonlinear optimization problem and suffers from
vulnerability to entrapment in local minima in the error-
surface, depending on the randomly-assigned initial values of
the connection weights. The variance caused by those initial
values is partly a function of the complexity of the input-
output relationships being mapped and can be reduced by
increasing the size of the training set. However, with the
relatively small training/testing set sizes in the gas storage
problem, some other procedure had to be developed to
confront the initial-weights issue.

Each hidden-layer node size was evaluated based on the
mean and maximum of the predictive accuracy of 10 ANNs,
all having the same number of hidden nodes but with a
different random weight initialization. The complete training
of variant networks for each attribute (e.g. contract shortfall)
required a total of 100 training/testing cycles. The task was
performed by a batch process that required about 20 minutes
to complete, per attribute. The purpose of this exercise was to
select a size for the hidden layer having the best and most
stable generalization. Having selected the size of the hidden
layer, the particular network chosen to participate in the
searches was simply the variant with the maximum predictive
accuracy.

Conducting the Optimization. Readers requiring an
introduction to genetic algorithms should consult the excellent
introductions in Goldberg20 and Michalewicz21. Goldberg is
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the source for all information concerning the GA presented
below, unless otherwise noted.

The 23 planning options which form the decision variables
are represented in the GA as a string of 23 bits, each of which
can either be on or off. The spatial location of each well is
fixed and implicit in the representation. The order of the well
locations in the string is indicated by their identification
numbers in Fig. 3. The numbering is arbitrary, as is their
location in the bit-string.

The search is initialized with a set of 100 randomly
generated plans. In fact, this initial population is simply a
random subset of the 150 cases in the ANN testing set. The
population size of 100 chosen for the current study is a fairly
small value. A larger population helps maintain greater
diversity but does so at considerable computational cost when
the full model is being used to generate performance
predictions.  Since time-consuming full-model comparisons
formed an important component of the current analyses, a
small population size was considered most practical.

The basic cycle of the GA is as follows. The initial
population of 100 well plans is evaluated according to an
objective function. A new generation of 100 plans is created
from the old population by means of three mechanisms:
selection, reproduction, and mutation. The new population is
then evaluated according to the objective function; and the
entire process is repeated until some termination criterion is
reached. The manner in which the three mechanisms have
been implemented is as follows:

Selection. This mechanism determines which members of
the current generation will be selected for carry-over, in one
form or another, to the new generation. To make sure that the
highest-ranking plans are not lost to the population through
accidents of selection and crossover, the top three plans are
copied over to the new generation intact. The remaining 97
slots in the new population are filled by a form of sexual
reproduction, a process for which parents must be selected.

The most popular method of selection is the roulette wheel,
in which each member’s likelihood of being selected for
reproduction is the ratio of its own performance score to the
total performance score of the population. The larger a given
member’s score is in relation to the other members’, the larger
portion of the roulette wheel it occupies, increasing the odds
that the member will be selected one or more times for
reproduction. When large discrepancies exist in the scores of
individual members, the members with the higher scores come
to dominate the population too quickly. Conversely, when
differences between members become very small, the
selection process becomes random. To avoid these cases, the
current GA employs selection based on the plans’ rank order22

rather than their proportional scores. Plans are selected by
sampling from a uniform distribution over the ranks, with a
bias factor of 1.5 serving to favor high-ranking plans over
lower-ranked plans.

Selections for reproduction are made, two at a time, to
obtain parent plans from which a child plan will be formed.
This process is repeated until 97 children have been generated.

The same plan may constitute both members of the pair, in
which case the child is simply a clone of the parent.

Reproduction (Crossover). The most common form of
reproduction is single-point crossover. Child plans are
constructed by breaking the parent plans apart at some
randomly selected crossover position in the bit-string and
joining segments from each parent.  For example, given two
parents in a 5-bit problem (0 1 0 0 0 and 1 1 0 1 1) and a
crossover point of 2, two different children could be
constructed (0 1 0 1 1 and 1 1 0 0 0).

Creating new plans from “chunks” of old ones makes the
most sense when proximity in the bit-string is important. That
is, the proximity of wells in the bit-string should reflect one or
more dimensions of relatedness in the physical problem it
represents. This is not necessarily the case in this problem. In
fact, the earlier groundwater studies employing the GA had
discovered a “sticky” well problem. That is, particular wells
kept appearing in the optimal solutions sets whose individual
contributions to the efficiency of remediation were minimal
but which were adjacent in the bit-string to wells making
major contributions. To break up these spurious associations, a
different reproductive mechanism, uniform crossover, is
used23. In this method, the value of each bit in the child string
is set independently of every other bit. A coin-toss at each bit-
position determines from which parent the child will inherit
the value for that particular bit. The exchange probability can
be biased to favor the fitter parent, if any; but in this study the
exchange probability is kept at an impartial 0.5.

Mutation. Mutation is a way to maintain diversity in a
population by arbitrarily changing the values of bits in the
child plans according to some rate, often the inverse of the
population size. A high mutation rate can undermine the
effects of crossover; a low one limits the introduction of
“novelty” into the population. For this study, the inverse rule
yields a mutation rate of 0.01.

Termination Criteria. Termination criteria in optimization
are usually based on some notion of convergence to a single
best solution. In keeping with the philosophy of heuristic
search, however, the current study is more interested in
generating sets of near-optimal solutions rather than a single
best solution. This goal is achieved by tying termination
criteria to the performance score of the population rather than
the performance of the highest-ranking individual plan. Search
terminates when either a) the population’s 90th percentile score
fails to improve over five consecutive generations, or b) some
maximum number of generations have elapsed, whichever
comes first. This maximum was set to 10 so that the full-
model searches which serve as the benchmark for evaluating
the ANN-assisted searches would be more practical to
complete.  At the end of every generation, plans with scores
below a predetermined cutoff were saved to a file. The 100
top-ranked unique plans in this file became the set of near-
optimal solutions.

The outcome of a GA search can be influenced by the
particular random choices that are made along the way. To
improve the stability of the outcome, the results of each search
in the current analysis actually consist of combined results
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from 5 searches, each with a different seed initializing the
pseudo-random number generator.

Confirming Top-performing Plans. Since the scores of the
near-optimal plans generated by the GA are based on ANN
estimates which are subject to some degree of error, it is
important to check their performance with the original
simulator. In an actual engineering application of the ANN-
GA methodology,  planners would choose to only submit a
handful field development plans to the simulator. For this
analysis, however, the top 100 plans from the near-optimal
sets generated by each search were submitted for verification.
The resulting FORGAS/IMEX predictions of Contract
Shortfall and Low Pressure Conditions were used to
recalculate the $Cost and Risk% components of the objective
functions. It is these updated scores which become the
measure for subsequent analysis and decision-making.

Results
Initial ANN Predictive Accuracies. Accuracy is defined here
as the square of the Pearson product-moment correlation, r2,
between the ANN’s and the simulator’s predictions for a given
attribute on some set of examples. Training set accuracy is the
r2 between the ANN and simulator predictions on the 343
examples in the training set. High levels of training set
accuracy are a necessary but not sufficient condition for
testing or generalization accuracy, which is the same measure
on the 150 examples in the test set.

Table 1 presents summary statistics on the test set
accuracies of four clusters of ANNs: predictors of Contract
Shortfall and Low Pressure Conditions for 30-day peak
service at both the 2.5 and 3.0 Bcf baseload production
scenarios. The columns labelled “Hidden Nodes” identify the
size of the hidden layer, from 0 to 10, being evaluated. In
general, predictive accuracy improves, peaks, and then
declines as the number of hidden nodes increases.  This is
because adding hidden nodes initially allows the network to
capture more of the key features of the data.  At some point,
however, the addition of more nodes merely allows the net to
capture idiosyncratic aspects of the training set, a phenomenon
referred to as over-fitting, which actually interferes with
subsequent generalization.

A node-size of 0 represents the special case of a linear
predictor.  Because linear predictors have unique solutions, the
entries in the “Mean r2” columns are simply the R2 obtained
by regressing the 23 decision variables on the attribute in
question.  In all other rows, the entries for “Mean r2” are
averages of the 10 r2 values obtained from ANNs all having
the specified number of hidden nodes but trained from
different random initializations of the network weights.  The
“Maximum r2” columns contain the highest accuracies
achieved for the specified number of hidden nodes.

Boldface entries identify the ANN chosen to supply
predictions for the optimizations. There are no fixed rules for
the selection process.  But there are rules of thumb, as follows:

1. The highest mean coupled with the highest maximum is
ideal.  This condition was met for both the Contract Shortfall

and Low Pressure Conditions attributes at the 2.5 Bcf baseload
scenario.

2. A significantly higher maximum may “trump” a high
mean.  For the Contract Shortfall attribute at the 3.0 Bcf
baseload scenario, the 5-node ANN set was selected over the
4-node set because of the latter’s higher maximum of 0.6720.

3. In contrast, on the Low Pressure Conditions attribute at
the 3.0 Bcf baseload scenario, the 8-node ANN was selected
over the 10-node ANN not only because of its higher mean but
because simpler networks tend to generalize better than more
complex networks.  The 10-node ANN’s maximum was not
sufficiently high to justify over-riding this rule.

Since the selected node-size represents a set of 10 ANNs,
the single net chosen to participate in the searches was the one
responsible for producing that set’s maximum r2.

Another notable feature of Table 1 are the dramatic
differences in the overall levels of accuracy on the four
attributes. For the 2.5 Bcf production scenario, the levels are
highly satisfactory for Contract Shortfall but only marginally
acceptable for Low Pressure conditions. As will be seen,
however, the predictive errors introduced by the ANN for the
latter attribute have no effect on the results because Low
Pressure Conditions make only a small contribution to the
objective functions.

The accuracies observed for both attributes at the 3.0 Bcf
baseload scenario would normally be unacceptably low and
would prompt either more sampling to increase the size of the
knowledge base and/or a re-examination of the model itself.
For example, it is possible to question the reasonableness of
increasing the baseload from 2.0 to 3.0 Bcf/year with no
alterations in model parameters. However, a complete
optimization was conducted for the 3.0 Bcf baseload
production scenario, using the best available ANNs from
Table 1, so that an assessment could be made of the
consequences of employing such weak predictors.

Optimized Plans for the 30-Day Peak/2.5 Bcf Baseload
Production Scenario.  Table 2 displays the three best-scoring
plans generated by various methods as solutions to the
management questions reflected in the two versions of the
objective function: $Cost Emphasis, where the $Cost
component of the objective function is assigned a weight of
0.67, and Risk% Emphasis, where the Risk% component is
given the greater weight.  The significance of the different
weighting is two-fold: 1) it is reasonable to expect that the sets
of near-optimal plans will be somewhat different, depending
on whether it is most important to minimize dollars or
uncertainties, and 2) the results from the search emphasizing
risk minimization may be more vulnerable to predictive errors
generated by the ANNs because the Contract Shortfall
attribute, which accounts for only a portion of the $Cost
component, accounts for all of the Risk% component.

The entries under “Search Method” indicate the method by
which the near-optimal plans were obtained.  An entry is
included for Baseline so that comparisons can be made with
the case where an attempt is made to meet the production
scenario with existing, unremediated wells.  Next, the best
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plans already contained in the knowledge base are presented.
This is also an important frame of reference because the
knowledge base may already contain the best possible answers
to the question, without introducing any errors of estimation.
The next method is the focus of the current analysis: the best
plans generated by means of the GA, using ANNs to generate
the necessary predictions of Contract Shortfall and Low
Pressure Conditions.  Finally, to assess the effects of
prediction errors introduced by the ANNs, plans generated by
another GA search which did call FORGAS/IMEX to supply
predictions of Contract Shortfall and Low Pressure Conditions
are presented.  The computational resources required to
complete these full-model-assisted searches are described in
the Discussion section.

The total score entry for each plan represents the weighted
linear combination of the scaled $Cost and Risk%
components.  This variable ranges from 0.0 to 1.0, with lower
values being desirable.  The reason why the baseline cases,
while possessing fairly high scores, do not have scores of 1.0
is that there are more expensive plans in the knowledge base
involving many development options that perform no better or
even worse than the no-action case. To make the reasons why
a particular plan is better than another more apparent, each
plan’s unscaled Risk% and $Cost components are also
reported.  To make the presentation of results more
manageable, only the top three of the 100 plans in the near-
optimal sets are presented.  It is also important to recall that
the values reported in the table are the updated values from the
simulator verification runs (see Fig. 1 to review the sequence
of events in the methodology).

There are a number of conclusions to be gleaned from the
contents of Table 2. First, a very large improvement over the
performance of the no-action case is gained by examining the
contents of the knowledge base, especially on the risk-oriented
objective function.  Second, it is still worth the effort of
conducting the optimization.  The optimized plans are
considerably less costly than the best plans in the knowledge
base.  Third, the top plans identified by the GA relying on the
ANNs for its predictions and the GA calling FORGAS/IMEX
each time it required predictions were identical.  In other
words, any predictive errors introduced by the ANNs were
trivial.  Finally, the top plans generated using different
versions of the objective function still yield identical results.
This is a fortunate outcome for management since they would
not be required to choose between saving on capital costs and
reducing uncertainty regarding the future price of gas.

Optimized Plans for the 30-Day Peak/3.0 Bcf Baseload
Production Scenario. The results shown in Table 3 tell a
somewhat different story.  The knowledge base still contains
plans which make a large improvement over the no-action
case in the ability of the field to meet this very challenging
production scenario. However, neither of the two optimization
methods produce results that represented the degrees of
improvement over the knowledge base plans noted in Table 2.
On the cost-oriented objective function, both GA searches did
edge out the knowledge base and also agreed with each other

on the best-scoring plan.  However, on the risk-oriented
objective function, the ANN-assisted search was unable to
beat the best plan in the knowledge base and the
FORGAS/IMEX-based search produced a better plan by only
a small margin. The FORGAS/IMEX-based search also bested
the ANN-assisted search by a small amount.  Considering that
the predictive accuracies of the ANNs used in these two
searches were quite low (see Table 1), it is somewhat
surprising that the full-model search results were not more
superior to the ANN-assisted search results.

Discussion
The results in Tables 2 and 3 raise two main issues regarding
the application of the ANN-GA methodology to this field
development planning problem.

Impact of ANN Resolution on Verification Procedures.
Although the tables only show the top three plans, the near-
optimal sets submitted for verification consisted of the top-
scoring 100 plans.  The reason for this large number of plans
involves the declining accuracy of even highly accurate ANNs
as the resolution required of them becomes increasingly fine.
For example, in the cost-oriented search for the 2.5 baseload
production scenario, which employed the most accurate ANNs
(see Table 1), the r2 between the original and updated total
scores on the 100 plans in the near-optimal set was only
0.2046.  The corresponding correlation on the cost-oriented
search for the 3.0 baseload production scenario, with its
substantially weaker ANNs, was effectively zero.

How, then, is it possible for the ANN-assisted GA to
perform so well relative to the full-model-assisted GA?  The
answer lies with the GA itself and the manner in which it is
implemented here.  Even the weak ANNs have sufficient
accuracy to direct the search to the general region(s) where
near-optimal solutions can be found.  They do not, however,
have the resolution necessary to make subtle distinctions
between good plans and even better plans. So, the GA
effectively performs what amounts to a thorough, random
sample of plans in those regions. The goal is not to reach
convergence on a single globally-optimal plan but to conduct
as wide-ranging a search as possible over the promising
regions.
 While additional sampling during knowledge base creation
might increase the accuracy of the ANNs at finer degrees of
resolution, it is probably not worth the effort.  The purpose of
the knowledge base is to support a wide variety of searches
having different objective functions, each with its own
promising regions.  Since it is difficult to anticipate where
those regions will be, it is more cost-beneficial to put the
additional modeling effort into verification runs.

An exception to this rule occurs when an ANN’s initial
generalization test results are as poor as they were on the 3.0
baseload production scenario.  Even though they generated
results that were competitive with the full-model-assisted
searches, the initial performance results are a red flag that
either the knowledge base sample size is inadequate or there is
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some more fundamental modeling problem obscuring the
relationship between decision variables and outcomes.

Computational and Human Effort Required. 700
FORGAS/IMEX runs were required to support the ANN-GA
methodology for one production scenario: 500 runs to create
the knowledge base and 100 verification runs for each of the
two objective functions.  At approximately 3 minutes/run, this
amounted to 35 CPU hours, which is a small investment of
machine time.  In applications such as the Pompano case study
where the model required several hours/run, 700 runs could be
viewed as burdensome.  However, there are several factors
that serve to put that investment into perspective.

First, these runs are not carried out in the typical human-
intensive fashion.  The original history match and testing of
various production scenarios were the stages of the project in
which the results of each run were carefully scrutinized.  After
that, all simulations were under the control of automated
scripts that generated plans according to a sampling plan,
tailored the necessary input files, launched the simulators, and
filtered the results.  In one groundwater application24, even the
location of a machine on which to run the simulator was
handled by an automatic job scheduler.  As was described
earlier, the training/testing cycles for the ANNs and, of course,
the GA searches were also automated tasks.  Creating the
software necessary to support these activities is well within the
capacity of most IT departments.

The 700 runs required by the ANN-assisted GA is a small
effort compared to the runs required for the full-model-
assisted GA. These latter searches employed identical
procedures except that FORGAS/IMEX was called to supply
predictions for Contract Shortfall and Low Pressure
Conditions instead of obtaining those predictions from the
ANNs. For greater efficiency, a cache of results was
maintained so that when the search returned to a plan it had
previously encountered, a redundant call to the simulators was
avoided.  The cache was also shared between the two versions
of the objective function.  Even so, 6274 unique calls to the
simulators, taking 313.7 hours to complete, were required to
generate results that were, at least on the 2.5 baseload
production scenario, identical to the ANN-assisted results.
The difference in effort is almost an order of magnitude, even
without taking in account that the data archived from the
knowledge base runs can be reused to train other ANNs for a
variety of other searches.

Conclusions
Each organization must determine for itself whether the
promise of simulation-optimization, assisted by ANNs or
otherwise, is worth the effort in acquiring and mastering new
technologies.  However, some reflection on the results shown
in Table 2 are in order. It is certainly possible that a team of
planners might have settled on one or more of the 5-well
remediation plans which proved to be the most cost-effective.
On the other hand, the results of both the original modeling
work and even the random sampling step could have biased
planners in favor of  drilling at least one new vertical well.  It

is not until the optimizations are carried out, with their clear
specification of costs and risks and thorough coverage of the
range of possibilities, that it becomes clear that the problem
might be solved by simply remediating 5 wells. To discover
this, and to also know that this discovery is the outcome of a
far more thorough examination of the posibilities than is
normally feasible under current common practices, would
seem to be worth the investment in new technologies.
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Nomenclature
R1 .. R7 = Ids of wells to be remediated

IHOR = Id of injection facilities for the horizontal well
NV = Prefix of ids of new vertical wells

nr = number of wells to remediate
nd = number of new wells to drill

PctImp = Percentage of improvement
SF = Contract shortfall

$Cost = first major component of the objective function
Risk% = second major component of the objective function

w = weights assigned to the components of the
objective function

r2 = squared Pearson product moment correlation
coefficient

R2 = percentage of variance in total score accounted for
by the decision variables

Subscripts
p = plan

no-action = no-action case
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TABLE 1—MEANS AND MAXIMA OF ANNS’ PREDICTIVE ACCURACY ON TWO
PERFORMANCE MEASURES FROM TWO PRODUCTION SCENARIOS

30-Day Peaking Service at 2.5 Bcf Baseload
Contract Shortfall Low Pressure Conditions

Hidden Nodes Mean r2 Maximum r2 Hidden Nodes Mean r2 Maximum r2

0a  0.8665 -- 0  0.7984 --

1 0.9435 0. 9440 1 0.7816 0.7820
2b 0.9479 0. 9550  2 b 0.8129 0.8190
3 0.9312 0.9460 3 0.7615 0.8060
4 0.9056 0.9270 4 0.6758 0.7690
5 0.8898 0.9310 5 0.6934 0.7470
6 0.8744 0.9320 6 0.6209 0.7050
7 0.8531 0.9060 7 0.6396 0.6920
8 0.8575 0.8900 8 0.6098 0.6580
9 0.8370 0.8910 9 0.6181 0.7050

10 0.8417 0.8820 10 0.6296 0.7100

30-Day Peaking Service at 3.0 Bcf Baseload

0a 0.2597 -- 0 0.1857 --

1 0.4227 0.4320 1 0.3280 0.3919
2 0.4742 0.6240 2 0.4586 0.5010
3 0.5048 0.6460 3 0.3767 0.6060
4 0.5220 0.6320 4 0.4160 0.6480
5 b 0.5089 0.6720 5 0.4113 0.6920

6 0.4556 0.5800 6 0.4190 0.4860
7 0.4371 0.5690 7 0.3614 0.5240
8 0.4415 0.5550 8 b 0.5244 0.6980
9 0.4651 0.6410 9 0.4888 0.6580

10 0.4314 0.5450 10 0.5206 0.7020

a. Refers to a linear model having a unique solution.  In all other cases, statistics are summarized over 10
ANNs having the same architecture (i.e. number of hidden nodes) but different random initializations
of the connection weights.

b. Boldface indicates the ANN variant selected for use in the searches.
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TABLE 2—TOP DEVELOPMENT PLANS LOCATED BY THREE SEARCH METHODS FOR
30-DAY PEAKING SERVICE AT 2.5 BCF BASELOAD CAPACITY

Objective
Function

Search
Method

Total
Score Risk% $Cost Development Plan

$Cost
Emphasis

Baseline 0.5447 100.0 536,822 None

Random
Sampling

0.1776 6.4 391,371 R2, R3, R4, R7, NV20

0.1846 4.3 426,124 R1, R2, R3, R4, R5, R6, R7, NV12, IHOR

0.1850 5.5 417,457 R1, R2, R3, R4, R5, R6, NV06, IHOR

Optimization/
ANNs

0.0389 1.4   85,944 R1, R2, R3, R5, R6, R7

0.0421 2.3   85,917 R1, R3, R4, R5, R6, R7

0.0434 2.6   87,339 R1, R2, R3, R4, R6, R7

Optimization/
Models

0.0389 1.4   85,944 R1, R2, R3, R5, R6, R7

0.0421 2.3   85,917 R1, R3, R4, R5, R6, R7

0.0434 2.6   87,339 R1, R2, R3, R4, R6, R7

Risk%
Emphasis

Baseline 0.7758 100.0 536,822 None

Random
Sampling

0.1127 4.3 426,124 R1, R2, R3, R4, R5, R6, R7, NV12, IHOR

0.1169 4.8 429,118 R1, R2, R3, R4, R5, R6, R7, NV08, IHOR

0.1189 5.5 417,457 R1, R2, R3, R4, R5, R6, NV06, IHOR

Optimization/
ANNs

0.0260 1.4   85,944 R1, R2, R3, R5, R6, R7

0.0326 2.3   85,917 R1, R3, R4, R5, R6, R7

0.0344 2.6   87,339 R1, R2, R3, R4, R6, R7

Optimization/
Models

0.0260 1.4   85,944 R1, R2, R3, R5, R6, R7

0.0326 2.3   85,917 R1, R3, R4, R5, R6, R7

0.0344 2.6   87,339 R1, R2, R3, R4, R6, R7
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TABLE 3—TOP DEVELOPMENT PLANS LOCATED BY THREE SEARCH METHODS FOR
30-DAY PEAKING SERVICE AT 3.0 BCF BASELOAD CAPACITY

Objective
Function

Search
Method

Total
Score Risk% $Cost Development Plan

$Cost
Emphasis

Baseline 0.7860 100.0  2,295,903 None

Random
Sampling

0.1388 8.7     554,410 R2, R3, R4, R7, NV20

0.2220 11.5     926,735 R1, R2, R3, R6, NV12, NV13

0.2244 27.7     670,205 R2, R6

Optimization/
ANNs

0.0941 10.7     296,317 R1, R2, R4, R7

0.1000 11.1     318,954 R3, R4, R5, R6, R7, IHOR

0.1120 12.8     351,707 R4, R5, R6, R7, IHOR

Optimization/
Models

0.0941 10.7     296,317 R1, R2, R4, R7

0.1196 14.0     369,056 R2, R3, R3, R7

0.1277 15.1     392,720 R1, R2, R3, R7

Risk%
Emphasis

Baseline 0.8946 100.0  2,295,903 None

Random
Sampling

0.1125 8.7     554,410 R2, R3, R4, R7, NV20

0.1579 7.0  1,137,031 R1, R2, R3, R4, R7, NV06, NV11, NV19

0.1676 11.5     926,735 R1, R2, R3, R6, NV12, NV13

Optimization/
ANNs

0.1185 9.2     581,255 R3, R4, R5, R6, R7, NV14, IHOR

0.1200 12.8     351,707 R4, R5, R6, R7, IHOR

0.1221 9.7     585,896 R4, R5, R6, R7, NV20, IHOR

Optimization/
Models

0.1006 10.7     296,317 R1, R2, R4, R7

0.1122 8.7     554,410 R2, R3, R4, R7, NV20

0.1129 8.6     565,293 R1, R2, R3, R5, R6, NV06



V.M. JOHNSON, J. AMMER, M.D. TRICK 15

Fig. 1--Components of the ANN-GA methodology.

Fig. 2—Natural log scaling of permeabilities (in md) in the gas
storage field.  White squares indicate the locations of existing wells.

Fig. 3—Relative locations of wells and well locations
being manipulated in the optimization study.


