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ABSTRACT

To incorporate the georegistration and restoration processes into airborne data processing in support of U.S. Department
of Energy's nuclear emergency response task, we developed an adaptive restoration filter for airborne Daedalus
AADS1268 ATM thermal data based on the Wiener filtering theory. Preliminary assessment shows that thisfilter
enhances the detectability of small weak thermal anomaliesin AADS1268 thermal images.
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1. INTRODUCTION

A remote sensing system is generally assumed to satisfy the image equation:

g(x,y) = f(x Y)A h(xy) +n(x, y) (1)
where A isthe convolution operator, h(X, Y) isthe system point spread function, f (X, Y) isthe ground truth (scene),
g(X, y) istheimage of the ground thruth, and N(X, y) isthe system noise. For the most part, the task of remote
sensingisto ‘invert’ the remote sensing process and restore the original object f (X, y) based onthe

measurement g (X, Y) , the system point spread function and the noise term. However, f (X, y) isnot known and could
never be completely restored without 100% ground observations. Therefore the practical task has been shifted to finding

an estimate f(x, y) for f(X,Y), suchthat f(x, y)=9g(X y)Ar(xy) and f(x, y) satisfy certain restrictions
and optimal criteria. Inthiscase, r (X, Y) iscaled aspatial convolution or restoration kernel.

The traditional Wiener technique resolves the kernel function W(X, Y) from the following equation:
llf ) - Foonf[=mnEl(f ey~ s Arxoy)]=e @

where {rs (X, y)} isthe set of all possible linear stationary restoration filters. In this expression, the expectation E should

be understood as an average over all instances of the random noisefield N(X, y) and over the whole (X, Y) space where
f(X,y) hasdefinition.

Let W(X, Y) bethe solution of the above equation and W (U, V) be the Fourier Transform of W(X, Y) . Under the
assumption that the scene (object), image, and noise are independent, and the filters are stationary", it can be shown that:
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whereS, (u,v) = S, (U, V) isthe noise power spectrum, and S; (U,V) = S (U, V) isthe scene (object) power
spectrum. Theratio S, (U,V) / S; (U, V) can be viewed as a system signal-noise ratio.

Although the Wiener filter has aclear and precise expression, the actual construction of a Wiener filter remainsa
challenging task since the estimate of the Optical Transfer Function (OTF) H (U, V), the power spectrum of the noise

S, (u,V) , and in particular, the power spectrum of the ground truth S; (U, V) are unknown termsin the Wiener filter

expression. Wewill present a schemeto contruct the Wiener filter for Remote Sensing Laboratory’s (RSL's) airborne
Daedalus 1268 Multispectral Scanner data.

2. WIENER FILTER CONSTRUCTION — SYSTEM ASSUMPTIONS

The main assumptions for our approach are that (1) the noise component is stationary and (2) the scene and noise
components in the image equation are independent. Using these assumptions, it can be proved that:

1 N(u,v)N" (u, v)o
H(u v)g Gu,v)G' (u, V)g
where G(U,V) and N(u, V) arethe Fourier transforms of g(X, y) and n(X,y).

W(u,v) = (4)

Further, we assumethat h(X,y), f(X,y),and g(X,Y)arethefunctionsand N(X, y) isthe random function defined
inthefirst quadrangle (X2 Oand Yy 3 0) of aCartesian coordinate system and extended to other quadrangles through
real complete symmetric extensions. For instance, (X, Y) isassumed to satisfy:

ooy =fxy)=fxy)=f(x-y) (5)

Using thereal complete symmetry assumptions, we can further simplify the Wiener filter expression:
1 & N (u,v) 0
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This equation has fundamental importance for resolving the Wiener filter.

W(u,v) =

(6)

Next, we assume the derivative continuity of the OTF. Recall that MTF (u,Vv) = |H (u, v)| . Therea complete

symmetry assumptions discussed above assert that H (U, V) isrea and completely symmetric. However, H (u,V) may

gtill differ from MTF (u, V) by asign. In laboratory tests and field measurements, we measure the system

MTF (u,V) . The question is how to reconstruct aredlistic H (U, V) from the measured MTF (U, V) . The assumption

of derivative continuity of the OTF H (U, V) and all its subsystem factors allows us to reconstruct H (u, V) froma

continuous MTF (u,V) measurement. The derivative continuity of H (U, V) meansthat H (u, V) and both derivatives

TH (u,v) ad TH (u,v)
flu v

continuous.

are continuous functions of u and v. A direct assertion isthat MTF (u,V) isalso

Finally, we assume that H (U,V) isseparableand H (U,V) = H o, (U)H 4 (V) . Thefield-measured MTF isalso
separableand MTF (u,V) = MTF_, (U)MTF . (V) . Both H ., (U) and H g, (V) can easily be derived from
MTF g, (U) and MTF g, (V) using derivative continuity.



Figure 1 shows a sample MTF curve with two zero points at frequencies u, =362 and u,=477 cycles/radian respectively.
Itisevident that this MTF has discontinuities at these two points. At least two ways are available to reconstruct the

relevant OTF. One of themissimply toletH ., (u) = MTF, (u) , which would inevitably inherit the derivative

discontinuities from the MTF. The other is obtained by applying the derivative continuity described above. We call the
second one the derivative Continuity Adjusted MTF (CAM) approach. Both reconstructed OTFs are plotted in Figure 2.
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Figure 1. Sample MTF curve shows discontinuities in its first derivative.
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Figure 2. Two of the ways to reconstruct the OTF from the MTF.



3. WIENER KERNEL CONSTRUCTION —IMPLEMENTATION

Now we need to think about the implementation problem. Consider the Wiener Filter in the form:
1 g N@uwo
Huve G?*u,v)g
Clearly, we need to estimate three components: H (u,V) , G(u,Vv) and N(u, V) . If the size of the intended restoration
kernel isn” N, then the above equati on becomes
N (TRY) o
o n(u v)g G NORYP g

W(u,v) = (7)

Wn’ n(U,V) = (8)

or, written simply:
1 NZ(u, v)o
H,(u v)g G?(u, V)QI

We shall discuss the implementation approaches for estimating sample Wiener kernel components.

W, (u,v) = (9)

3.1 Angular spacingin DS 1260 M SS data

Detailed descriptions of Daedalus Multispectral Scanners can be found in the Daedalus manual®. In our early internal
work, the angular spacing of the Daedalus Multispectral Scanners was found to be in the scan direction:

X, = % =2.0944 mrad/sample =0.0020944 rad/sample (10)

a

and in the flight direction:

IFOV
dy, =——— (12)
overscan

where

IFOV = 2.5mrad (12)
and the overscan ratios for the DS 1260 scanner is:

OVEr SCaNy g 56 = 1.127 (13)
Therefore

dY.. psizeo = % = 2.2183 mrad/sample = 0.0022183 rad/sample (14)

All Wiener filter components need to be resampled to match the frequency increments defined above in order to
establish the required equality. At the present time, we only have the laboratory-tested OTF for the Daedal us DS1260
Multispectral Scanner. The angular spacing parameters for DS1260 are used for OTF resampling in the project.



3.2Estimateof H(u,v)
H (u,V) used inthisimplementation is assumed to be separable:
H (U’V) =H optics- scan (U) H optics- flight (V) H electronics- scan (U) H electronics- flight (V)

=H resul tant- scan (U) H resul tant- flight (V)
where H o iant. san(U) @d H oy tane. siigne (V) @€ shown in Figure 3. The data come from our early measurement of
Daedalus DS1260 data.

(15)

Suppose the size of the Wiener filteris N° N. The OFT shown in Figure 4 needs to be resampled to match the
increments:
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Figure 3. OTF of Daedalus AADS1260 Multispectral Scanner (RSL Internal report)



3.3Estimateof G(u,V)

G(u, V) consists of the information for both object and noise. For the application, we have two optionsto obtain
G,, (U, V) needed for constructing the Wiener filter. Option 1 isto compute G(U,V) for the whole scene, then resample

G(u,V) toobtain G, (U, V) using the same method for the OTF. Option 2 isto compute G, (U, V) directly using the

sampling approach. We adopt a sampling approach as follows. Letting the retoration kernel beof sizen™ n, we
generate a number (default 100 for the implemention) of non-overlapping random sample windowsin the scene. A

sampled G,,, (U, V) iscomputed for each of the sample windows. The averaged G, (U, V) = é G, (u,v) forall the
K

sampled windows can be taken to estimate the true G, (U, V) .

3.4Estimateof N(u,V)

Ideally, N (U, V) can be computed from anoise scene, such as atest flight over ahomogeneous spectral target or areas

that are spatially homogeneous. It can also be estimated using awhite noise model, or simply let it be 1, as did Wood. In
our approach, welet :

N, (u,v) = minft min|G, (u,v)|) (18)

3.5ENVI user packagefor kernel construction

The Wiener restoration kernel has been implemented in ENVI , aremote sensing and image processing system
developed by Research Systems, Inc. Asan add-on at RSL, this module can be started as shown in Figure 4.
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Figure 4. Successive windows in ENVI to invoke the Wiener filter construction module.
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4. APPLICATION OF THE WIENER FILTER

A test run of the Wiener filter has been applied to athermal (channel 11) image acquired by the RSL Daedalus 1268
Multispectral Scanner over aregion near Las Vegas, Nevada. The image was acquired pre-dawn in March 2001. The
adaptive Wiener filter was calculated and is presented in Table 1. For comparison purposes, a subscene covering acreek
isdisplayedin Figure5 (left).

Table 1. Calculated Wiener filter for a pre-dawn test flight of Daedalus thermal sensor.

0. 01644 -0.00440 0. 00107 0.00364 -0.04162 0. 02935 -0.02907
0. 01958 -0.03274 0. 03707 0. 03064 0.03245 -0.00532 0. 00796
-0. 07997 0.17647 -0.28555 0.07667 -0.23516 0.10140 -0.03126
0. 02468 -0.03044 -0.01704 1.47030 -0.01704 -0.03044 0. 02468
-0. 03126 0.10140 -0.23516 0.07667 -0.28555 0.17647 -0.07997
0.00796 -0.00532 0. 03245 0. 03064 0.03707 -0.03274 0. 01958
- 0. 02907 0.02935 -0.04162 0.00364 0. 00107 -0.00440 0. 01644

Itisevident that the creek water had a substantially higher temperature than that of the surrounding desert area. In order
to run the Wiener construction module, the heading and trailing bytes were extracted from the raw data. The output of
the Wiener filter isshownin Table 1. For the sake of simplicity, wewill simply refer to the digital countsin the dataas
temperature measuresin the following discussion, since the digital counts of the thermal data are linearly related to the
surface temperature. In order to assess the result of restoration, we examined closely four representative cases. These
four cases are a (1) homogeneous high-temperature area, (2) homogeneous low-temperature area, (3) small scale high-
temperature spot in alow-temperature background, and (4) small scale low-temperature spot in a high-temperature
background. We examined the behavior of the Wiener filter in the neighborhood of these four typical areas. Our
assessment of the Wiener filter will center on the possibility of enhancing the performance of thermal datafor high-
temperature anomaly detection.



4.1 Homogeneous High-Temperature Area

Figure 5 displays side-by-side the raw thermal image and the Wiener-restored image. The raw image is shown on the
left; the restored image is on the right. The center portion of asmall pond, outlined by a (red) sguare, is ahomogeneous
areawith atemperature relatively higher than that of the surrounding desert. Through pixel-by-pixel examination, itis
found that the differencesin pixel values between the raw image and the restored image are insignificant. For instance,
the center pixe of the (red) square has arelative temperature of 194 in both the raw and restored images. Thisresult is
shown in the Cursor Location/Value window in seen Figure 6, where display #1 refersto the raw dataand display #2
refersto the restored data.
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Figure 5. Behavior of the Wiener filter in a homogeneous high-temperature area.



4.2 Homogeneous L ow-Temperature Area

Similarly, we examined the behavior of the Wiener filter in a homogeneous low-temperature areain the same scene.
Thislow-temperature areais outlined by a (red) box in Figure 6. The magnified views of the two (red) squares are
shown in zoom windows. As expected, the digital count values from both the raw and restored images are quite close.
Thedigital count value for the central pixel of both boxes equals 38, as shown in the Cursor Location/Value window.
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Figure 6. Behavior of the Wiener filter in a homogeneous |ow-temperature region.



4.3 High-Temperature Anomaly in a L ow-Temperature Background

The next area has atiny high-temperature anomaly (one or two pixels) surrounded by alarge number of low-temperature
pixels, asshownin Figure 7. Thelayout of Figure 7 is similar to that of Figure 5. The small test areais bounded by a
(red) box that is magnified in azoom window. The center pixel under the cursor in the #2 zoom window has a digital
count of 120 in the raw image but adigital count of 141 in the restored image. Aswe seein the #1 zoom window, this
pixel has atemperature relatively higher than that of the surrounding pixels. Thisfact has been verified in a number of

areasin the scene. Generally, high-temperature anomalies in alow-temperature background will be enhanced (assigned
larger values) by the restoration process.
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Figure 7. Behavior of the Wiener filter in the neighborhood of a small weak high-temperature anomaly.
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4.4 Temperature anomaly in a high-temperature background

In the last situation, a pixel of low temperature is surrounded by anumber of pixels of relatively higher temperature, i.e.,
alow-temperature anomaly in a high-temperature background. The (red) box in Figure 8 is one such area. This box has
been magnified in the zoom windows to show the textural detail. The pixel under the cursor in the #2 zoom window isa
typical low-temperature pixel surrounded by a number of high-temperature pixels. Our Cursor Location/Value window
suggests adigital pixel value of 79 in the raw image and 63 in the restored image. The Wiener filter generally reduces
the digital values of low-temperature anomaliesin high-temperature backgrounds.

File Owverlay Enhance Tools Window File Owerlay Enhance Tools Window

| File Options

Disp #2 (374,283b5) Scrr
Projection: Arbitrary
Map: 373.00E,-2834._008
Disp #1 Data: 79

Disp #2 Data: 63

Figure 8. Behavior of the Wiener filter in the neighborhood of a small low-temperature anomaly.
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5. CONCLUSIONS

The observed behavior of the Wiener restoration kernel can be summarized in Table 2. Thistable exhibitsavery
impressive property of the Wiener filter: it enhances the probability of detecting small anomalies, either high-
temperature anomalies or low-temperature anomalies. If asmall anomaly has a higher temperature than that of
surrounding pixels, the restored temperature will be even higher. If the small anomaly has alower temperature than that
of surrounding pixels, the restored temperature will be even lower. In both situations, the Wiener filter attemptsto negate
the spatial averaging effect of the point spread function and reconstruct the actual response of the surface.

Table 2. Summarized behavior of Wiener filter in sometypical regions.

Typical Region Relations Between Raw and Restored Values
Homogeneous High-Temperature Region Restored » Raw
Homogeneous Low-Temperature Region Restored » Raw
Small High-Temperature Anomaly in Low-Temperature Region Restored > Raw
Small Low-Temperature Anomaly in High-Temperature Region Restored < Raw

Several schemes are available for conducting geometric registration and image restoration. In our project, we evaluated
the usefulness of the Wiener filtering restoration in the raw aircraft-based (angular) image domain. Thisrestored image
can be geometrically resampled to a ground-based coordinate system. However, a preferred approach is using the
combined restoration — georegistration scheme. Thiswill be the focus of future study.

The use of adaptive spatial convolution theory based on the Wiener filter concept has never been tested before for
restoration of airborne remote sensing data. The research conducted in this project suggests that this adaptive
convolution approach is promising for enhancing the possibility of detecting small weak thermal anomalies, whichis
often the direct or indirect purpose of DOE’s emergency flight mission.
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