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ABSTRACT 
 
 
Eddy current (EC) estimate of flaw size obtained from inservice inspection is often the primary 
means of assessing the structural integrity of steam generator tubes.  Reliable prediction of 
failure pressure and leak rate in tubes with complex cracking requires more detailed information 
about the geometry and extent of degradation than is generally available from conventional 
bobbin coil examinations.  High-resolution inspections with EC rotating probes are thus carried 
out on selected regions of tubing to provide the more extensive nondestructive evaluation (NDE) 
information that is needed to better assess flaw size and distribution.  Interpretation of signals 
from complex cracking that are often distorted by coherent and incoherent noise can be a 
challenging NDE task.  Studies at Argonne National Laboratory have demonstrated that 
computer-aided data analysis can be used for more accurate and efficient processing of the large 
amounts of data collected by such probes.  The basic structure of a rule-based multiparameter 
data analysis algorithm is described in this paper.  Multiple-frequency inspection data from a 
standard rotating pancake coil were used for the analyses.  The codes were implemented as 
MATLAB scripts and provide, as the final outcome, profiles of flaw depth in a section of tube.  
Graphical user interface tools were devised to read the information needed to carry out various 
stages of data processing.  These interactive tools allow conversion, calibration, analysis, and 
display of data in various formats.  Representative cases of estimated flaw profiles are shown for 
tube specimens with laboratory-grown cracks (with and without simulated artifacts) that were 
used to assess sizing accuracy.  The statistical analyses used to determine NDE performance are 
also discussed briefly.  Results of investigations to date suggest that improved resolution and 
sizing accuracy can be obtained in a fraction of the time required for manual analysis. 
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1. INTRODUCTION 
 
 
The basic structure of a computer-aided data analysis algorithm that was implemented to more 
accurately and efficiently process eddy current (EC) rotating probe data is described.  Some key 
objectives of this work have been to characterize flaws in the Argonne National Laboratory 
(ANL) tube bundle mock-up in order to minimize the expense of tedious destructive 
examinations and to further assist parallel studies under this program on prediction of tube 
structural integrity from nondestructive evaluation (NDE) estimates of flaw profiles.  Initially, 
implementation of data conversion and calibration routines for off-line manipulation of EC data 
is addressed.  A general description of signal processing and data analysis schemes adapted for 
manipulation of C-scan recordings with high-resolution rotating probes is presented.  Test cases 
selected from analyses of laboratory-produced specimens with chemically induced cracks are 
provided to illustrate the NDE results.  Also included are representative cases that compare flaw 
profiles estimated by NDE with the true state as determined by fractography.  Statistical analyses 
carried out to determine the significance of NDE uncertainties in predicting the structural 
integrity of tubing are briefly discussed.  NDE assessments have been limited to analyses of data 
from rotating pancake coils; however, many of the fundamental processes for computer-aided 
data analysis are applicable to other probe geometries and coil configurations. 
 
2. COMPUTER-AIDED ANALYSIS OF EDDY CURRENT INSPECTION DATA 
 
 
Manual analysis of multiple-frequency EC data is a tedious and challenging process.  No 
qualified technique, manual or automated, currently exists that could provide a reliable estimate 
of flaw size over a wide range of steam generator (SG) tubing damage.  Conventional data 
analysis methods become rather subjective when dealing with complex forms of degradation 
such as stress corrosion cracking (SCC).  Signal distortion by interference from internal/external 
artifacts near a flaw further complicates discrimination of flaw signals from noise.  In 
comparison to high-speed bobbin coil inspections, high-resolution multicoil rotating and array 
probes generate enormous amounts of data over comparable scanning lengths.  Rotating probe 
inservice inspection (ISI) of SG tubing is, thus, generally restricted to areas that are historically 
predisposed to known damage mechanisms and sections of particular interest that are flagged by 
initial bobbin coil examinations.  More extensive application of such probes to improve NDE 
reliability rests, in part, on automating various stages of the data screening process.  Computer-
aided data analysis is a viable means to overcome many of the challenges associated with 
reliable processing of data acquired with high-resolution probes. 
 
2.1  Data Processing Structure 
 

  



Figure 1 depicts the basic structure of the algorithm that was implemented to allow for off-line 
analysis of data acquired with a commercial EC testing instrument; in the figure, blocks 
associated with the processes mentioned here are numbered.  Output of the acquisition block 
shown in Fig. 1 consists of the digitized recordings of a multiple-frequency inspection system.  
The EC testing instrumentation and software currently in use at ANL is a Miz-30TM (Zetec, Inc.) 
remote data acquisition unit that is controlled under the HP-UX-based EddynetTM (Zetec, Inc.) 
environment.  To facilitate development of algorithms for evaluation of EC inspection results, 
codes have been implemented to convert the raw inspection data to a standard file format.  All 
data analysis and signal processing algorithms have been implemented by using the PC-based 
software MATLAB, which is a high-level scripting language that provides an efficient 
environment for developing codes, together with convenient graphical user interfaces (GUIs) and 
graphical displays of the results. 
 
The block diagram shown in Fig. 1 can be divided into three basic components: data conversion, 
calibration, and analysis stage.  Each block is described in the following sections.  In the 
conversion stage (Block 1), digitized recordings of inspection data that sequentially represent in-
phase and quadrature signal components are converted to a readable format for off-line 
manipulation.  In the subsequent stage, multiple-frequency raw EC data, shown as Block 2, are 
calibrated for all of the recorded frequency channels.  Finally, in the data analysis stage, 
represented by Blocks 3-6, calibrated data are processed to ultimately produce NDE profiles that 
represent sizing estimates along a selected test section of a tube. 
 
2.2  Conversion and Calibration Routines 
 
A series of algorithms has been implemented under the MATLAB environment to carry out the 
conversion, normalization, and reformatting of EC readings for subsequent analysis. An 
interactive MATLAB script calls the data retrieval and calibration routines through a single GUI 
control window.  The data conversion routine extracts the essential header information, such as 
the number of channels and their associated frequencies, from the original Eddynet-formatted 
files.  The decoded header information contains the frequency and channel configuration that is 
subsequently used to sort out raw EC readings.  The reformatted data matrix, along with the 
header and coil configuration information, is then stored in a user-defined data file.  
Normalization values of all the available channels are calculated by using the inspection results 
from a calibration standard tube.  These values consist of amplitude scaling factors, phase angle 
rotations, and null values, the automatic calculation of which is based on user-defined 
approximate locations of known indications on the tube.  Finally, raw EC recordings are 
calibrated by another code that is also activated from the main menu and applies the previously 
calculated normalization factors to each new raw data file [1,2]. 
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Figure 1.  Schematic diagram showing basic structure of computer-aided data analysis algorithm.  
Blocks associated with operations described in this report are numbered. 
 
Calibration of raw EC data plays an important role in any data analysis procedure.  Conventional 
phase angle calibration procedures for normalizing EC data are carried out manually, and 
routinely involve visual alignment of the impedance-plane signal trajectory (i.e., lissajous plot) 
with respect to some reference indication.  This implies that the extent of background 
fluctuations and signal-to-noise (S/N) ratio, as well as analyst judgment, could affect the 
calibration process and consequently lead to varying estimates of a desired parameter.  Because 
estimates of flaw depth from phase angle information of multifrequency inspection data depend 
heavily on initial calibrations, it is expected that computer-aided data calibration routines will 
play an essential role in uniform and accurate normalization of raw EC data. 
 
2.3  Signal Processing, Data Analysis, and Display Routines 
 
In Fig. 1, the data analysis section (Blocks 3-6) is composed of three basic stages: preprocessing, 
flaw detection and identification, and postprocessing of data.  These blocks consist of various 
scripts that successively perform the calculation of S/N ratio for all channels, apply filters for 
pre- and postprocessing of data, and ultimately combine multiple-frequency information from all 
processed channels to provide an estimate of the depth profile for the entire tubing test section.  
Both frequency- and spatial-domain filters are incorporated for signal conditioning, baseline 
reduction, and resolution enhancement.  Initially, the S/N ratio is calculated from a user-defined 
approximate location along the trace baseline and the minimum detectable amplitude from a 
calibration standard tube.  Subsequently, this information is used to implement a series of filters 

  



that suppress artifacts and baseline fluctuations, and enhance or restore signals.  Filter 
characteristics are determined by taking into account both the coil configuration and the 
sampling frequency of the inspection data.  Flaws and their origin are identified by a series of 
rules that are applied to the multiple-frequency EC data.  Both amplitude and phase relationships 
among the processed channels are used at this stage of the process.  Finally, the phase 
information at multiple frequencies is combined to calculate the depth profile for the tube test 
section in reference to known indications on a calibration standard tube. 
 
A series of algorithms has been implemented as MATLAB scripts to provide profiles of flaw 
depth in a SG tube test section from NDE inspection results.  These codes are executed through a 
user interface tool to automatically process EC inspection results acquired with rotating probes at 
multiple frequencies.  Figure 2 shows the main window of the GUI tool, which incorporates 
various algorithms for processing raw EC data.  Pull-down menus, push buttons, and editable 
text areas on the display can be activated to perform the various stages of the data analysis 
process. Figure 2 also shows several forms of graphics that are currently in place to visualize 
data at various stages of analysis.  Subsequent to depth profile calculations, estimated values are 
converted to percent of tube wall thickness.  Reconstruction of helically scanned data into C-
scan format allows the observation of sizing results from any azimuth and elevation view angle 
and for any axial or circumferential cross section of the tube.  Scaling of data in axial and 
circumferential directions allows direct deduction of flaw extent along the tube. 
 
2.3.1  Application of Digital Filters 
 
For processing of eddy current NDE data, digital filters generally serve three basic purposes: 
noise reduction, artifact suppression, and signal enhancement or restoration.  All of these 
operations, however, are fundamentally aimed at improving the S/N ratio.  In this context, noise 
is characteristically defined as any unwanted signal, regardless of its source. Frequency- and 
spatial-domain transformations are widespread in signal and data processing applications.  In 
general, they provide information that may not readily be available in the original domain.  
When frequency-domain filtering is the desired method, data are transformed to the Fourier 
domain, processed, and then reverse-transformed into the original domain.  The choice for using 
either a frequency- or spatial-domain operation depends on the signal features that must be 
suppressed or preserved.  No strict rules can be given for the use of spatial- or frequency-domain 
filtering.  For EC signals, frequency-domain operations are often better suited for reducing low-
frequency baseline fluctuations and high-frequency noise.  Spatial-domain filtering, on the other 
hand, is typically more appropriate for enhancing subtle features in the data.  In general, when 
the frequency content of the signal and noise are well separated, frequency-domain operations 
are the preferred method for noise suppression.  A more detailed description of digital filters for 
pre- and postconditioning of EC inspection data is provided elsewhere [2,3]. 

 

  



 

 

 
Figure 2.  Series of MATLAB-based graphical user interface (GUI) tools (top three rows) for 
automated analysis of EC inspection results acquired with standard commercial instruments.  
Also shown (bottom row) are several graphical display formats, such as image, terrain, and 
cross-sectional NDE profiles of tube test sections, at various stages of analysis. 
 
2.3.2  Signal Enhancement and Restoration 
 
Two basic approaches for improving data quality are the signal enhancement and signal 
restoration methods.  Signal enhancement refines the quality of data without any knowledge of 
the degradation phenomenon.  Signal restoration, on the other hand, is founded on the 
assumption that the degradation source is well understood so that an inverse process could be 
implemented to recover the true response.  The principal objective in both cases is to treat the 
data so the result is more suited for a specific application than the original data.  Although the 
two approaches are clearly differentiated in most standard data processing applications, 
distinction between the two becomes less apparent in practical applications associated with the 
EC testing of SG tubing.  This is because of the difficulty to accurately model the underlying 
degradation phenomenon that arises from the combined influence of many factors, in addition to 
the blurring effect of the coil impulse response.  Both data enhancement and approximate 
restoration schemes have been incorporated into the multiparameter data analysis algorithm.  
Studies to date suggest that comparable results can be achieved by the two techniques for 
processing EC rotating probe data.  Signal restoration, referred to here as approximate 
deconvolution or inverse filtering, is implemented in the frequency domain.  Signal 
enhancement, on the other hand, is implemented directly in the original spatial domain.  
Although deconvolution-based methods are generally expected to produce more accurate results, 
they are also computationally more intensive. 
 
The application of approximate deconvolution schemes to real-time processing of 
multifrequency inspection results has been investigated at ANL [2,3] in a study that was 
prompted by the need for more accurate characterization of complex cracking morphologies in 
SG tubing.  Deconvolution techniques are used in a wide range of signal processing applications, 

  



primarily to recover signals distorted by the sensing environment.  In EC inspection applications, 
pseudoinverse filters could be effective for enhancement of spatial resolution that is degraded by 
the finite spread of the coil-induced field.  Better separation of flaw indications from extraneous 
signals could, in turn, improve the estimation of flaw depth determined from the phase-angle 
information of multifrequency data.  Frequency-dependent signal restoration could also help 
reduce differences in probe response at various frequencies. 
 
When the exact form of the degradation process can only be approximated, signal enhancement 
techniques are often the first choice for the treatment of data.  Because such techniques can be 
implemented directly in the original domain, they are computationally efficient.  Signal 
enhancement is achieved by applying prestored kernels to the EC C-scan.  Both smoothing and 
peak restoration are attained in this manner.  As an alternative approach to the frequency-domain 
signal restoration techniques, polynomial fitting based on the method of least-squares (LS) can 
be implemented to effectively carry out such basic operations as smoothing and peak detection 
directly in the spatial domain.  Primary advantages of this method in comparison to frequency 
domain methods noted earlier are ease of implementation and processing speed.  Polynomial 
fitting can be performed as a one-step convolution operation in the spatial domain.  Convolution 
kernels in this case are pre-stored coefficients and weights (normalization factors) that are 
calculated by the LS method.  Symmetric kernels are used to ensure that the location of the 
signal peak is not shifted.  Two major restrictions for reliable application of this method are the 
uniformity of the digitization rate and continuity of the data.  For EC inspection results, it may 
be necessary to resample data off-line when the digitization rates in axial and circumferential 
directions deviate from each other. 
 
Eddy current readings on a collection of 22.2-mm (0.875-in.)-diameter Alloy 600 tubes with 
laboratory-produced cracking were analyzed by the multiparameter data analysis scheme 
described in this report.  Flaws in this small set of samples consisted primarily of OD axial 
cracking in free-span regions, and circumferential cracking in roll-transition regions, plus a 
single specimen with axial ID cracking at a dented tube support plate (TSP).  Multiple-frequency 
NDE data used in this study were acquired with a standard three-coil rotating probe that 
contained a 2.92-mm (0.115-in.) pancake, a midrange +PointTM, and a 2.03-mm (0.080-in.) high-
frequency pancake coil.  The primary pancake coil readings were utilized for the analyses.  The 
calibration standard contained 18 axially and circumferentially orientated EDM notches that 
originated from the OD and ID of the tube and ranged in depth from 20 to 100% throughwall 
(TW).  All notches were 6.35 mm (0.25 in.) long. 
 
Figure 3 shows the normalized depth profile of specimens with laboratory-grown, longitudinal 
ODSCC.  For both test cases, only the portion of tube near the flaw is displayed.  In reference to 
the calibration standard, the maximum flaw depth estimate in the laboratory-produced specimen 
was ≈80% TW.  Figures 3(a) and (b) display, respectively, the estimated two-dimensional 
profiles of the flawed segment without and with application of the deconvolution process.  
Unlike the gradual tapering of the flaw depth seen in Fig. 3(a), the restored profile in Fig. 3(b) 
shows that the depth of the flaw is rather uniform in the center, with a sharp drop at the two ends 
of the crack.  Similar results are shown in Figs. 3(c) and (d) for another laboratory-produced 
specimen with ODSCC degradation. 
 

  



The fundamental limitation of data enhancement and restoration techniques for the processing of 
EC signals could be attributed to the flow of current in a conducting medium that is governed by 
the diffusion phenomenon.  This limitation suggests that distortion is not simply a modulation of 
signal amplitude.  Instead, the waveform could experience a complete alteration of structure that 
is not linearly dependent on its original form.  Another factor that could significantly influence 
the degree to which a signal can be recovered is the lack of separation between the spectral 
content of flaw indications and extraneous signals.  Internal/external artifacts and design 
discontinuities (e.g., conducting and magnetic deposits, tube dimensional variations, and external 
support structures) could produce signal trajectories with spectral components that are close to 
those from flaw indications.  Furthermore, practical sampling rates that are typically used to 
acquire ISI data with rotating probes do not render the continuous smooth signals that are 
essential for optimal restoration by inverse-filtering schemes.  Finally, it is important to note that 
physically realizable optimal inverse filters are often unstable.  For this reason, approximate 
deconvolution algorithms may provide the best alternative for real-time restoration of EC flaw 
signals for practical ISI applications. 
 
2.3.3  Multiparameter Data Analysis 
 
Multivariate data analysis techniques are the foundation of various operations in the processing 
of EC data.  Both regression and factor-based techniques fit into this category of data 
manipulation.  More prominent areas of application to EC ISI data are in algorithms used to 
suppress unwanted signals and in predictive models that attempt to correlate NDE parameters to 
single or multiple independent variables, such as flaw size or tube structural integrity.  Three 
separate algorithms were investigated and have been adapted for use in various areas of research 
associated with the EC testing of SG tubing: multiple linear regression (MLR), principal 
component regression (PCR), and partial least squares (PLS) techniques.  Conventional LS-
based regression has been used primarily in standard artifact suppression schemes, commonly 
referred to as mixing algorithms.  The more versatile PLS algorithm has been used in a wider 
range of applications, including more sophisticated mixed suppression schemes and predictive 
models [2,3]. 
 
Multivariate analysis is also used in the final stage of data analysis (shown in Block 5 of Fig. 1) 
to estimate the depth profile of a test section.  Processed data from multiple channels is 
simultaneously used to construct a model that correlates the NDE results to flaw size and origin.   
 

    

  



 (a) (b) 
 

    
 (c) (d) 

Figure 3.  Data analysis results for specimens with laboratory-grown, longitudinal ODSCC 
showing terrain plot of (a,c) relative OD depth profile for cracked zone and (b,d) profile restored 
by inverse filtering.  Maximum crack depths are estimated to be ≈80% TW (top) and >80%TW 
(bottom), respectively.  Isometric display of results shows finer details in restored profiles. 
 
The reliability of any predictive correlation depends heavily on the calibration data used to 
construct that model.  Both the range and composition of training data play crucial roles.  In 
regard to the analysis of EC data, information is thus needed on a wide range of flaw sizes and 
types in the calibration standard tube.  In addition, a useful set of test frequencies is of utmost 
importance. 
 
2.3.4  Rule-Based Flaw Identification 
 
As in the manual analysis of EC inspection data, the characteristic behavior of EC signals as a 
function of frequency can be utilized in computer-aided data analysis algorithms.  Because all 
available information is indiscriminately examined, such algorithms allow more effective 
identification of subtle forms of degradation.  Identification of flaws and their origin is 
performed by applying a series of rules to the preprocessed multiple-frequency EC data.  This 
intermediate stage of data analysis is shown in Block 4 of Fig. 1.  Rules are coded as a series of 
conditional statements (i.e., IF-THEN) that are sequentially applied to the selected data 
segments.  Calculation of S/N ratio from the earlier stages of the analysis is used to set the 
minimum threshold for sorting signals that are to be examined.  Combined amplitude and phase-
based rules are implemented to better discriminate between potential flaws and noise.  Rules that 
are currently in place are set to be generally conservative to identify flawed regions of SG tubes.  
As a tradeoff between conservatism and sensitivity, they can be adjusted to some degree based 
on the value of the S/N ratio for a particular test section.  The current set of rules is fixed for a 
specific coil configuration and frequency range.  Future studies in this area should focus on 
semiautomated implementation of rules to more effectively deal with the expected variability in 
coil design and ISI data acquisition procedures. 
 
2.4  Assessment of Sizing Accuracy in Presence of Artifacts 
 

  



To assess the effect of various artifacts on flaw signals, results from the analyses of a subset of 
laboratory-produced specimens were examined.  Data were collected on these tubes with and 
without the removable collars that simulate artifacts such as TSP, sludge, magnetite, and copper 
deposits that may be present to various degrees during field inspections.  Representative test 
cases are displayed as amplitude images of the standard and flawed tube with simulated artifact, 
and terrain plots of the sizing profile near the degraded region of the tube.  Eddy current data for 
each test case involving simulated OD artifact was collected separately, i.e., the entire batch of 
tubes was scanned each time.  Acquisition frequencies represent typical primary and auxiliary 
channels that are used for the inspection of thin-wall SG tubing.  
 
Figures 4 and 5 show representative NDE profiles of laboratory-grown ODSCC with and without 
the simulated OD support structure over the degraded section of the tube.  The estimated 
maximum depth of cracks varied by <10% of tube wall thickness for all of the test cases that 
were considered.  As expected, the effect of OD simulated collars is less significant for larger 
amplitude signals, and more significant for the smaller amplitude portions of the flaw.  For the 
specimens shown here, NDE flaw depth and length vary within the range that is expected from 
such factors as probe alignment and data acquisition parameters (i.e., variations in sampling rate, 
rotational and push/pull speed).  Studies so far suggest that the degree of signal distortion 
depends primarily on the artifact geometry and composition, as well as on signal amplitude at a 
given excitation frequency. 
 
2.5  Comparison of NDE with Destructive Examination Results 
 
Crack profiles from the destructive analyses (fractography) were compared with those obtained 
from the multiparameter algorithm.  Representative test cases are shown in Fig. 6.  Figure 7(a) 
shows comparison of the maximum depths as determined by fractography and the 
multiparameter algorithm.  A linear regression fit and 95% confidence bounds for the observed 
data as a function of the multiparameter estimates are also shown in the figure.  Because the field 
of view of the rotating pancake probe is limited, the depth measurements at points ≥5 mm apart  
 

 
 

(b) 

  



(a) 

(c) 

Figure 4.  Data analysis results for specimen with laboratory-grown ODSCC, showing (a) image 
display of scanned region of standard and flawed tube with TSP collar placed over crack.  Also 
shown are terrain plots of depth profile over approximately same region of tube (b) without and 
(c) with TSP collar.  Estimated maximum depth (<50% TW from plain tube) varies by <10% TW 
for all simulated artifacts. 
 

(b) 

 
 

(a) 
(c) 

Figure 5.  Data analysis results for specimen with laboratory-grown ODSCC, showing (a) image 
display of scanned region of standard and flawed tube with magnetite collar placed over crack.  
Also shown are terrain plots of depth profile over approximately same region of tube (b) without 
and (c) with magnetite collar.  Estimated maximum depth (<50% TW from plain tube) varies by 
<10% TW for all simulated artifacts. 
 
along the crack profile are essentially independent; additional comparisons of the estimated 
depth with that determined by fractography were made at various points along the crack profile.  
Figure 7(b) shows the results for 89 points from 20 cracks, axial and circumferential, ID and OD; 

  



linear regression curve and 95% confidence bounds for the observed data as a function of the 
multiparameter estimates are also shown. 

 
3.  Conclusion 
 
Computer-aided data analysis techniques can provide reliable and efficient processing of 
multifrequency EC data acquired with high-resolution probes.  The basic structure of a data 
analysis scheme for the processing of EC recordings with a standard rotating probe was 
described.  NDE assessments so far have been limited to analyses of data from rotating pancake 
coils.  Implementation of data conversion, calibration, and analysis routines for off-line 
manipulation of inspection results was discussed.  Selected examples from analyses of 
laboratory-produced specimens with chemically induced cracking were provided to illustrate the 
results.  Also flaw profiles estimated by NDE were compared with true-state profiles determined 
by fractography.  The influence of undesired signals from support structures and deposits on the 
sizing results was assessed by analysis of a subset of tubes with simulated artifacts.  Through 
comparative studies, results of these investigations have demonstrated that improved sizing 
accuracy and efficiency in the processing of data can be achieved by integrating suitable 
algorithms for computer-aided analysis of EC inspection results. 
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Figure 6.  Comparison of NDE and fractography profiles of representative laboratory-produced 
specimen with (a) circumferential IDSCC, (b) axial ODSCC, (c) circumferential ODSCC, and 
(d) axial nonplanar ODSCC. 
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 (a) (b) 
Figure 7.  Plots of (a) maximum depth and (b) depth along flaw as determined by fractography 
vs. NDE estimates.  Also shown are regression fit and estimated 95% bounds for observed depth 
as a function NDE depth estimate. 

  


