
AN OBJECT-ORIENTED CLUSTER SEARCH ALGORITHM

DMITRY SILIN AND TAD PATZEK

Abstract. In this work we describe two object-oriented cluster search algo-

rithms, which can be applied to a network of an arbitrary structure. First

algorithm calculates all connected clusters, whereas the second one finds a

path with the minimal number of connections. We estimate the complexity of

the algorithm and infer that the number of operations has linear growth with

respect to the size of the network.

Introduction

Pore-network modeling approach to study fluid flow in porous media was initi-
ated in pioneering works [5, 6, 7] by Fatt in the fifties. The results obtained by
early nineties were summarized in an overview [4] by Entov. More recent results are
gathered in [3]. In earlier works, the researchers used structured (e.g., hexagonal or
rectangular) networks of capillary tubes with circular cross-sections. Later, more
complicated networks with angular pores and throats were introduced for modeling
two-phase flow [14]. Recently, the pore-network modeling approach was revisited
due to the progress in scanning electron microscopy. With the ability of obtaining
pore space images with super-high resolution, it became possible to construct pore
networks imitating the structure of the void space of real rock and even reproduce
the flow properties [2, 11, 12].
A pore network is a set of nodes and links connecting the nodes. The nodes

model the volumetric properties of the pore space, whereas the links define the flow
properties. Each link connects two nodes, whereas each node can be connected
to several neighboring nodes. The number of neighbors of a node is called the
coordination number. The size of a network is characterized by the total number
of nodes and links.
In two-phase flow, some links and nodes may be entirely occupied by one of the

phases and, therefore, open for the flow of the occupying fluid only. It is important
to find connected clusters of nodes open to the flow of a particular fluid phase. A set
of nodes makes a connected cluster if between any two nodes there is a chain of links
and nodes open to flow. For regular networks, an efficient algorithm of computing all
the connected clusters was proposed by Hoshen and Kopelman [9]. This algorithm
was designed for studies of molecular clusters in a crystal structure. Therefore, it
was assumed that the network is a regular lattice. In pore network flow modeling,
the structure of the pore space is usually extremely irregular because the rock
skeleton is composed of grains of different sizes and shapes. For irregular networks,
a modification of Hoshen–Kopelman algorithm was proposed and implemented in
MatLab by Al-Futaisi and Patzek [1]. This modification proved to be very efficient

Key words and phrases. Pore network, cluster, Hoshen-Kopelman algorithm, object-oriented

approach.

1

2 DMITRY SILIN AND TAD PATZEK

for various network. Its efficiency was augmented by the smart use of MatLab
vectorized operations.
In present work, we describe a new algorithm for calculating the clusters of

connected nodes in an arbitrary network. The algorithm is based on the object-
oriented approach and it is of linear complexity. Two major versions are presented.
The first one computes all the connected clusters of nodes. The other one checks if
there is a connection between the inlet and the outlet of the network and computes
a minimal path in case such a connection exists. The first algorithm is based on
“Depth First” principle, whereas the other one is a variation of “Breadth First”
search [10].
The paper is organized as follows. In the Section 1, we briefly introduce the basic

concepts of object-oriented programming approach, which are used in explaining
the algorithm. In Section 2 we define the node and link classes of objects and
define the network. In Section 3, we describe the first algorithm and estimate its
complexity in Section 4. In the last section we present the second algorithm, which
computes the network inlet-outlet connection. In Appendix, we provide C++ code
implementing both algorithms.

1. Object-oriented approach

Object-oriented approach in programming (OOP) is a powerful development
tool. For the purposes of the present work, we overview only some aspects of this
approach. More information about OOP can be found in numerous publications
that appeared during the last two decades, see e.g. [8] and the references therein.
An object, by definition, is an entity that packages both data and the procedures

that operate on those data [8]. The object data are usually called the properties
and the procedures are called the methods or interface. The similarity between the
objects is determined by the defining class. In a sense, an object is the next step
of complication from a structure. To derive a class of objects from a structure the
latter has to be supplied with an interface. For the procedures affiliated with a given
object, the data are treated as global, whereas for the rest of the code the data are
usually encapsulated and often cannot be accessed directly. One of the benefits of
the OOP approach is the possibility of creating customized tools needed specifically
for the problems in question. These tools can be reused or easily extended through
the mechanism of inheritance, assembled into aggregate objects, etc.
In the case of pore network modeling, our main objects are nodes, links and the

entire network. The nodes and links are discussed in more detail in the next section.
As an object, the network consists of the list of all nodes and the list of all links
along with a structure describing the material properties of the fluids and the solid,
see Fig. 1. A list, in turn, is a generic object containing an array of similar objects.
In C++, a list can be implemented based on Standard Template Library (STL) [15].
The main features of a list include the possibility to easily attach or remove an item
and to scan the items through the mechanism of iterators. Inasmuch as a link and
a node are objects of two different classes, the list of all links and the list of all
nodes cannot be merged into one single list.
The implementations of the algorithms described below also use the mechanism

of pointers. A pointer is a logical address of the object in the memory of the
computer. The usage of pointers eliminates an unnecessary overhead in calling
functions.

CLUSTER SEARCH 3

all_nodes all_links

one_node… one_link …

Pore_network

one_link

one_link

one_node

one_node

Figure 1. The structure of a pore network object

2. Nodes and links

In this section, we define the main objects operated by the algorithm. The
algorithm has been implemented in C++ flow simulation code NetSimCPP [13].
NetSimCPP, in turn, is a derivative of MatLab code ANetSim by Tad Patzek im-
plementing the conclusions of [12]. The objects in NetSimCPP were used for much
more general tasks than in the present paper, therefore we present them in a reduced
form.
Each node object belongs to the class one node described in Appendix. Each

node has a unique integer index, which we call ID. There are also two integer
parameters: an openness flag equal to one if the node is open for a given fluid
phase flow or zero otherwise and cluster no (which is equal to the index of the
cluster whose element the node is). The last parameter is reused in the second
algorithm described in Section 5 for labelling the “already checked” nodes. This
algorithm also requires information whether node is at the inlet or at the outlet
of the network. Two parameters are reserved for this purpose. Two pointers to a
node and to a link are used to store the information about the node and link, from
which this node was approached by the algorithm. Each node also includes a list
of pointers to the links connecting the node to the neighbors and a list of pointers
to these neighbors. Obviously, both lists have the same number of items, which is
equal to the coordination number of the node. Different nodes may have different
coordination numbers, so the length of the lists of links and neighbors is not fixed.
A node object also includes a method, which we will call add to cluster, which is
used in computing the clusters, and a method called next step used in calculating
the inlet-outlet connection.
The link object properties include an integer ID, two node pointers to the nodes

connected by the link and an integer flag signifying the openness of the link, see
class one link in the Appendix.
As we have already mentioned above, the entire network is represented by two

lists: the list of all nodes and the list of all links, see Fig. 1. Such an object is
defined by class pore network in the Appendix.

4 DMITRY SILIN AND TAD PATZEK

1

2 3

5
6

8

12

7

10

9

11

4

Figure 2. Network example

3. The algorithm

We assume that at the beginning the objects are setup, so that each node
“knows” all its neighbors and each link “knows” which nodes it connects and
the parameters node open and link open are defined appropriately. Initially, the
cluster no is zero for every node.
The list of nodes is scanned by calling for each node the function add to cluster

with an integer parameter cluster count. This parameter is increased by one if
the return value of the function is nonzero.
As a method of the node class, the function add to cluster can access the prop-

erties of the current node or properties of the other nodes through their pointers.
The execution of the function add to cluster(cluster count) proceeds in the
following way (the references to the respective lines of the code in Appendix are
provided in parentheses).

Step 1. If cluster no of this node is nonzero or the flag does not equal one, return
immediately with return value zero (lines 3–4).

Step 2. Set cluster no equal to cluster count (line 5).
Step 3. Scan all links and neighbor nodes: if the current link is open, then call

function add to cluster(cluster count) for the respective node (lines 6–
14).

Step 4. Return with return value 1 (line 15).

The function add to cluster(cluster count) is called recursively for different
nodes. Clearly, if the outermost call returns nonzero, it means that a new cluster
has been created and the cluster count must be increased by one.
Let us illustrate the application of the algorithm on a simple example. Consider

the network shown in Fig. 2. The nodes and links open for the flow are shown
as filled circles and solid lines, respectively. The nodes and links which are not
open are shown as non-filled circles and dashed lines. Clearly the network has four
clusters: 1-2-7, 5-8, 6-10 and 11. Let us track the work of the algorithm.

Step 1. Set cluster count equal to one and call function add to cluster for the
first node. Since node 1 is open, its cluster no property is assigned to
cluster count, i.e., to one. Then the lists of links and neighbors are

CLUSTER SEARCH 5

scanned. First link 1-2 is open, therefore the function add to cluster is
called for node 2. Again the second node is open, therefore, the cluster no

property is set equal to one and the list of links and neighbors of node 2 is
scanned. Links 2-3 and 2-5 are skipped because the flag is equal to zero.
Since both link 2-7 and node 7 are open and the node is still “non-aligned”
with any cluster, the cluster no is set equal to the current cluster count

and the links and neighbors of node 7 are scanned. Clearly, links 7-5, 7-
8 and 7-6 are skipped, and checking link 7-2 results in no action because
the cluster no property of node 2 is already nonzero. Thus, the function
returns from node 7, which, in turns completes scanning the links and
neighbor nodes of node 2. Continued scanning of the links and neighbors
of node 1 results in no action because link 1-6 is not open, as well as the
neighbor node 9. The first step of the algorithm results in creating the first
cluster 1-2-7 and the cluster count is incremented by one.

Step 2. For nodes 2–4, the function add to cluster immediately returns zero be-
cause the cluster no of node 2 is nonzero and nodes 3 and 4 are not open.

Step 3. For node 5, the function add to cluster assigns the cluster no equal to
the current cluster count, i.e., two. Scanning nodes 3 and 4 produces no
change because they are not open, nodes 2 and 5 are skipped because the
respective links are not open. Therefore, the function add to cluster is
only called for node 8. The latter has no open links and neighbor nodes
except node 5 whose cluster no property is already nonzero, therefore no
action is performed. Thus, as the result of step 3, the new cluster 5-8 is
detected and cluster count is increased by one.

Step 4. Clearly, scanning node 6 results in detecting cluster 6-7 and further incre-
ment of cluster count.

Step 5. Nodes 7–8 are skipped because they are already assigned to clusters, i.e.,
their respective cluster no properties are different from zero. Node 9 is
not open, therefore no action is performed. Node 10 is already assigned to
a cluster, so no action here as well.

Step 6. Scanning node 11 results in a single-element cluster because the two neigh-
bors 9 and 12 are not open.

Step 7. Finally, node 12 is not open, so no action is performed.

Thus, the algorithm stops after detecting all four clusters.

4. Estimate of complexity

To estimate complexity of the algorithm described above, denote by Nn the
total number of nodes and let Nl be the total number of links. We will call the sum
Nn +Nl the size of the network.
Once a node is assigned to a cluster, steps 2–4 of the method add to cluster

(lines 5–15) are never performed on this node again. Therefore, this part of
add to cluster is performed no more than Nn times. For a given node, the
“if” operation in step 1 can be performed several times. Indeed, the method
add to cluster is called whenever the node is approached from a just incorpo-
rated in the same cluster neighbor through the respective open link. Each link
connecting two open nodes can be explored no more than twice: when the first
node scans its neighbors after being just “signed-up” to a cluster and when the
other node scans its links and neighbors. A link connecting an open node to a

6 DMITRY SILIN AND TAD PATZEK

closed one is checked only once from the open node. A link connecting two closed
nodes is never reached by the algorithm. Therefore, the total number of checks of
the links is no more than twice the number of links Nl. Each check of the link
may or may not result in a call of function add to cluster for one of the end-
nodes. Thus, the total number of calls of add to cluster is estimated from above
by Nn +Nl, which is a linear combination of Nn and Nl.
To summarize, the step 1 of function add to cluster is called O(Nn+Nl) times,

whereas steps 2–4 are called no more than Nn times. In other words, the complexity
is linear with respect to the size of the network.
The above-described algorithm detects and calculates the connected clusters in

the network but does not provide any information about the sizes of the clusters.
The sizes can be easily evaluated by counting the nodes with the same parameter
cluster no, which requires an additional scan of the list of the nodes . However,
the function add to cluster can be slightly modified so that the cluster sizes will
be computed within the algorithm. Using the polymorphism principle, the function
add to cluster can be overloaded by creating a different version with a different
set of parameters. Namely, consider a function add to cluster of two integer
parameters: cluster count and cluster size. The modified function works in
the following way:

Step 1. If cluster no of this node is nonzero or the flag does not equal one, return
immediately with return value cluster size.

Step 2. Set cluster no equal to cluster count and increase cluster size by
one.

Step 3. Scan all links and neighbor nodes: if the current link is open, then call
function add to cluster(cluster count, cluster size) for the respec-
tive node assigning the return value to cluster size.

Step 4. Return the value of cluster size.

The return value of the outermost call of function add to cluster is equal to the
size of the cluster created by this call. In particular, if this value equals zero, then
no new cluster has been created and no increment of cluster count is needed.
Clearly, this modification does not change the linear estimate of the complexity
of the algorithm. A code implementation of this modification of the algorithm is
straightforward and it is not presented in the Appendix.

5. Inlet-outlet connection

In some situations, as in the flow-simulation code NetSimCPP [13], parts of the
whole network are singled out as inlet and outlet. The inlet nodes are the ones
through which the fluids enter the network and the outlet nodes are those through
which the fluids can leave the network. The flow of a given phase is possible only if
there is a chain of nodes and links open to the flow of this phase and spanning from
the inlet to the outlet, e.g., the network 10-8-11-4 in Fig. 3. To figure out whether
such a chain exists it is unnecessary to compute all the clusters. We describe such
an algorithm in this section.
Indeed, the function add to cluster can be called only from the inlet nodes.

This does not prevent recursive calls of this function from the interior nodes. The
computations can be stopped as soon as an outlet node has been reached. A
modification of the algorithm implementing this approach is described below. The
recursive function calls are replaced by maintaining the list of recently checked

CLUSTER SEARCH 7

In
le

t

O
u
tn

le
t

1

3

4

5 6

2

12

11

10

9

8

7

17

16

15

14

13

Figure 3. Network example: the shortest path between inlet and
outlet is 10-8-11-4

nodes. As a byproduct, the minimal number of links connecting an inlet node to an
outlet node is computed. As above, this modification can be implemented through
overloading the original function add to cluster.
At the node level, the algorithm is implemented by method next step, see

the Appendix. This function is called by a pore network method, which we call
find inlet outlet first for all open inlet nodes. Then this function is called for
all nodes on the list constructed by this function and passed by a pointer as a
parameter. If an outlet node is encountered, then the function returns the pointer
to this node, otherwise it returns NULL. It works in the following way.

Step 1. If cluster no of a node is nonzero or the flag does not equal one, return
immediately with return value NULL (lines 4–5).

Step 2. Scan all the links and the neighbor nodes. If the link is open, check the
respective neighbor node. If it is open and, simultaneously, has not been
checked yet and is not at the inlet, pass “this” node pointer and the pointer
to the link to the neighbor’s properties who called and how called, re-
spectively (lines 15–16). If the neighbor is at the outlet, return its pointer
(lines 17–19). Otherwise, label the neighbor as checked (line 22) and add
its pointer to the list of “front” nodes (lines 21–22).

Step 3. If no outlet node has been encountered, return NULL pointer (line 25).

To check whether the inlet and the outlet of a network are connected, a pore
network method, which we call find inlet outlet, is used. This function is called
with the pointers to a list of nodes and a list of links as parameters. These lists
are used to output the inlet–outlet chain of nodes and links if such a chain exists.
Initially, both lists must be empty. If such a chain does exist, then the return value
is the length of the path, otherwise the return value is zero. The method works in
the following way.

Step 1. Create two lists of nodes for storing the current list of checked nodes and
a list of new checked nodes (lines 5–7).

Step 2. Put all open inlet nodes in the current list (lines 10–16)
Step 3. If the current list is not empty, call next step for each node of this list

with the pointer to the new list as the parameter (lines 24–47). If an
outlet node is encountered, that is signalled by a nonzero return value of

8 DMITRY SILIN AND TAD PATZEK

next step, stop scanning (lines 31–42), otherwise swap the lists and iterate
the procedure (lines 43–46).

Step 4. If an inlet-outlet connection has been detected, build the respective span-
ning chain of nodes and links using information stores in the properties
who called and how called in every checked node (lines 55–65).

Step 5. Return the length of the found minimal path equal to the number of links
(line 68) or zero if the inlet and outlet are not connected (lines 70–72)

Clearly, every link is checked no more than twice, therefore, the estimate of the
function calls remains the same as above: O(Nn +Nl).

Conclusions

In this work, we have described two object-oriented algorithms of cluster com-
putation for a pore network. The first one labels every node of the network by an
integer number which is the index of the cluster to which the node belongs. The
second algorithm checks whether there is a cluster spanning from the inlet to the
outlet of the network and calculates the shortest path through the network.
We have demonstrated that the complexity of both algorithms has a linear esti-

mate with respect to the size of the network.

Acknowledgements

This work was sponsored by the DOE OGRT Partnership Program under Con-
tract DE-ACO3-76FS0098 to the Lawrence Berkeley National Laboratory. Partial
support was also provided by gifts from ChevronTexaco and ConocoPhillips to UC
Oil, Berkeley.

References

1. A. Al-Futaisi and T. W. Patzek, Extensiojn of the Hoshen-Koppelamn algorithm to a non-

lattice environment, Physical Review A 6 (2002), no. 3, 197–207.
2. S. Bakke and P. E. Øren, 3-d pore-scale modelling of heterogeneous sandstone reservoir rocks

and quantitative analysis of the architecture, geometry and spacial continuity of the pore

network. spe 35479, European 3-D Reservoir Modelling Conference (Stavanger, Norway), SPE,
1996, pp. 35–45.

3. M. J. Blunt, Flow in porous media - pore-network models and multiphase flow, Current Opin-
ion in Colloid & Interface science 6 (2001), no. 3, 197–207.

4. V. M. Entov, The micromechanics of flow in porous media, Soviet Academy Izvestia. Me-
chanics of Gas and Fluids (1992), no. 6, 90–102.

5. I. Fatt, The network nodel of porous media. 1. Capillary pressure characteristics, Trans.

AIME 207 (1956), no. 7, 144–159.

6. , The network nodel of porous media. 2. Dynamic properties of a single size tube

network, Trans. AIME 207 (1956), no. 7, 160–163.

7. , The network nodel of porous media. 3. Dynamic propertries of networks with tube

radius distribution, Trans. AIME 207 (1956), no. 7, 164–181.

8. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design patterns. Elements

of reusable object-oriented software, Addison-Wesley, Reading, MA, 1995.

9. J. Hoshen and R. Kopelman, Percolation and cluster distribution i. Cluster multiple labeling

technique and critical concentration algorithm, Physical Review B 14 (1976), no. 8, 3438–

3445.

10. Donald Knuth, The art of computer programming, vol. 1, Addison-Wesley Pub. Co., Reading,

MA, 1968.

11. P. E. Øren, S. Bakke, and O. J. Arntzen, Extending predictive capabilities to network models,

SPE Journal (1998), no. December, 324–336.

CLUSTER SEARCH 9

12. T. W. Patzek, Verification of a complete pore network simulator of drainage and imbibition,

SPE Journal 6 (2001), no. 2, 144–156.

13. Dmitry Silin and Tad Patzek, NetSimCPP: Object-oriented pore network simulator, Lawrence

Berkeley National Laboratory, 2001.

14. A. K. Singhal and W. H. Somerton, Two-phase flow through a non-circular capillary at low

reynolds numbers, Technology (1970), 197–205.

15. Alexander Stepanov and Meng Lee, The standard template library, Hewlett Paccard Labora-

tories, 1995.

Appendix

Here we present the C++ code implementing the algorithms described above.
Defining classes, we skip the constructors and destructors as technical details.
We start with the node object. Its class is described by

#include< l i s t >;

using namespace std ;

class one node

{

5 private :

int ID ; // Unique index o f t h i s node

int node open ; // =1 i f open =0 o therw i s e

int c l u s t e r n o ; // =0 i n i t i a l l y

int i n l e t ; // =1 fo r an i n l e t node =0 o therw i s e

10 int ou t l e t ; // =1 fo r i s an o u t l e t node =0 o therw i s e

l i s t <one node∗> ne ighbor nodes ;

l i s t <one l i nk ∗> l i n k s ;

one node ∗ who ca l l ed ;

on e l i nk ∗ how ca l l ed ;

15 public :

// Construc tors and de s t r u c t o r

one node () ;

one node (const one node&);

˜ one node () { ; }

20 // C lus t e r search methods

int i s open () const { return node open ;}

int i s i n l e t () const { return i n l e t ;}

int i s o u t l e t () const { return ou t l e t ;}

int add t o c l u s t e r (int Clus te r) ;

25 one node ∗ next s t ep (l i s t <one node ∗>∗);

one node ∗ t race back node () const { return who ca l l ed ;}

one l i nk ∗ t r a c e b a c k l i n k () const { return how ca l l ed ;}

} ;

The specifier const indicates the methods, which do not change the properties of
the object one node. The object one link is even simpler:

class one l i nk

{

private :

10 DMITRY SILIN AND TAD PATZEK

int l i nk open ; // =1 i f l i n k open =0 o therw i s e

5 one node ∗ end nodes [2] ;

int ID ; // Unique index o f t h i s l i n k

public :

// Construc tors and de s t r u c t o r

one l i nk () ;

10 one l i nk (const one l i nk &);

˜ on e l i nk () { ; }

// C lus t e r search methods

int i s open () const { return l i nk open ;}

} ;

The methods add to cluster are defined according to the algorithms above. For
algorithm 1–4 the function have the following form:

int one node : : a dd t o c l u s t e r (int Clus te r)

{

i f (! open | | c l u s t e r n o)

return 0 ;

5 c l u s t e r n o = Clus te r ;

n o d e l i s t : : i t e r a t o r next ne ighbor

= ne ighbor nodes . begin () ;

l i n k l i s t : : i t e r a t o r n ex t l i n k = l i n k s . begin () ;

for (unsigned i =0; i<ne ighbor nodes . s i z e (); ++ i)

10 {

i f ((∗ nex t l i n k)−> i s open ())

(∗ next ne ighbor)−>add t o c l u s t e r (C lus te r) ;

++next ne ighbor ;

++nex t l i n k ;

15 }

return 1 ;

}

For brevity, we define two new types

typedef l i s t <one node∗> n o d e l i s t ;

typedef l i s t <one l i nk ∗> l i n k l i s t ;

describing lists of pointers to nodes and links, respectively.
Method next step is slightly more complicated:

one node ∗ one node : : n ex t s t ep (n o d e l i s t ∗ f r on t node s)

{

i f (! open)

return NULL;

5 n o d e l i s t : : i t e r a t o r next ne ighbor

= ne ighbor nodes . begin () ;

l i n k l i s t : : i t e r a t o r n ex t l i n k = l i n k s . begin () ;

for (unsigned i =0; i<ne ighbor nodes . s i z e (); ++ i)

CLUSTER SEARCH 11

{

10 i f ((∗ nex t l i n k)−> i s open ())

i f ((∗ next ne ighbor)−>open

&& !(∗ next ne ighbor)−>c l u s t e r n o

&& !(∗ next ne ighbor)−> i n l e t)

{

15 (∗ next ne ighbor)−>who ca l l ed = this ;

(∗ next ne ighbor)−>how ca l l ed = ∗ nex t l i n k ;

i f ((∗ next ne ighbor)−>ou t l e t)

// Done i f a t the o u t l e t

return ∗ next ne ighbor ;

20 // Labe l the ne ighbor as ’ v i s i t e d ’

(∗ next ne ighbor)−>c l u s t e r n o = 1 ;

f ront nodes−>push back (∗ next ne ighbor) ;

}

++next ne ighbor ;

25 ++nex t l i n k ;

}

return NULL;

}

The entire network consists of a list of nodes and a list of links. Note that the
network as an object “does not know” which link connects which nodes: all this
information is distributed among individual nodes and links. Thus, network object
has the following structure:

#include< l i s t >;

using namespace std ;

class pore network

{

5 private :

n o d e l i s t a l l n o d e s ;

l i n k l i s t a l l l i n k s ;

public :

// Construc tors and d e s t r u c t o r s

10 pore network () { ; }

pore network (const pore network &);

˜ pore network () { ; }

// C lus t e r search methods

int f i n d a l l c l u s t e r s () ;

15 int f i n d i n l e t o u t l e t (n o d e l i s t ∗ , l i n k l i s t ∗) ;

} ;

To compute all the clusters means to assign the property cluster no to the number
of the cluster for each open node. This result is achieved by calling the following
method:

int pore network : : f i n d a l l c l u s t e r s ()

12 DMITRY SILIN AND TAD PATZEK

{

n o d e l i s t : : i t e r a t o r next node = a l l n od e s . begin () ;

int c l u s t e r c oun t = 1 ;

5 for (unsigned i =0; i<a l l n od e s . s i z e (); ++ i)

c l u s t e r c oun t +=

(∗ next node++)−>add t o c l u s t e r (c l u s t e r c oun t) ;

return −− c l u s t e r c oun t ;

}

To find out whether there is a cluster of open nodes and links spanning from the
inlet to the outlet and to find a shortest chain the following method can be used:

int pore network : : f i n d i n l e t o u t l e t (n o d e l i s t ∗ node path ,

l i n k l i s t ∗ l i nk pa th)

{

// Create two l i s t s o f node po in t e r s

5 n o d e l i s t f r on t node s [2] ;

n o d e l i s t ∗ c u r r f r o n t = & f ron t node s [0] ;

n o d e l i s t ∗ nex t f r on t = & f ron t node s [1] ;

n o d e l i s t ∗ temp front ;

10 // Put po in t e r s to a l l i n l e t nodes in f r on t node s [0] ;

n o d e l i s t : : i t e r a t o r next node = a l l n od e s . begin () ;

for (unsigned i =0; i<a l l n od e s . s i z e (); ++ i)

{

i f ((∗ next node)−> i s i n l e t ()

15 && (∗next node)−> i s open ())

cu r r f r on t−>push back (∗ next node) ;

++next node ;

}

20 int cha in l eng th = 0 ;

int i n l e t o u t l e t c o nn e c t e d = 0 ;

n o d e l i s t : : i t e r a t o r cu r r f r on t node ;

one node ∗ the node ;

// Find the next from nodes

25 while (! c u r r f r on t−>empty ())

{

++cha in l eng th ;

cu r r f r on t node = cu r r f r on t−>begin () ;

for (unsigned i =0; i<cu r r f r on t−>s i z e (); ++ i)

30 {

the node =

(∗ cu r r f r on t node++)−>next s t ep (n ex t f r on t) ;

// Reminder : i f an o u t l e t node i s encountered ,

// a d d t o c l u s t e r re turns the po in t e r to t h i s node

CLUSTER SEARCH 13

35 i f (the node)

{

// Stop i t e r a t i o n s i f an o u t l e t node has been found

i n l e t o u t l e t c o nn e c t e d = 1 ;

break ;

40 }

}

// Swap the f r on t node l i s t s

i f (i n l e t o u t l e t c o nn e c t e d)

break ;

45 cu r r f r on t−>c l e a r () ;

temp front = cu r r f r o n t ;

c u r r f r o n t = nex t f r on t ;

n ex t f r on t = temp front ;

}

50 // Bui ld the chains o f nodes and l i n k s

// spanning through the network

one l i nk ∗ nex t l i n k ;

i f (i n l e t o u t l e t c o nn e c t e d)

55 {

// Find the spanning chain o f nodes and l i n k s

node path−>push f ront (the node) ;

n e x t l i n k = the node−>t r a c e b a c k l i n k () ;

the node = the node−>t race back node () ;

60

while (the node)

{

l i nk path−>push f ront (n ex t l i n k) ;

n e x t l i n k = the node−>t r a c e b a c k l i n k () ;

65 node path−>push f ront (the node) ;

the node = the node−>t race back node () ;

}

// I f t h e r e i s an i n l e t −o u t l e t connect ion

// then the s h o r t e s t number o f l i n k s i s c ha i n l e n g t h

70 return cha in l eng th ;

}

else

// No connect ion

return 0 ;

75 }

14 DMITRY SILIN AND TAD PATZEK

This method returns the length of a shortest chain if there is a spanning cluster
and zero otherwise.

Lawrence Berkeley National Laboratory 1 Cyclotron Road, MS 90-1116 Berkeley,

CA 94720

E-mail address: DSilin@lbl.gov

Lawrence Berkeley National Laboratory 1 Cyclotron Road, MS 90-1116 Berkeley,

CA 94720 and Department of Civil and Environmental Engineering, University of Cal-

ifornia, 437 Davis Hall Berkeley, CA 94720

E-mail address: TWPatzek@lbl.gov

