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The present work shows how data obtained in a depth-sensing indentation test
using a Knoop indenter may be analyzed to provide elastic modulus and hardness of
the specimen material. The method takes into account the elastic recovery along the
direction of the short axis of the residual impression as the indenter is removed.
If elastic recovery is not accounted for, the elastic modulus and hardness are
overestimated by an amount that depends on the ratio ofE/H of the specimen
material. The new method of analysis expresses the elastic recovery of the short
diagonal of the residual impression into an equivalent face angle for one side of
the Knoop indenter. Conventional methods of analysis using this corrected angle
provide results for modulus and hardness that are consistent with those obtained
with other types of indenters.

I. INTRODUCTION

Indentation testing on the submicron scale enables
convenient measurement of the mechanical properties of
thin films and very small volumes of materials. Usually,
the principal goal of such testing is to extract elastic
modulus and hardness of the specimen from experimen-
tal readings of indenter load and depth of penetration.
The methods of determining the area of contact from
depth measurements, and hence hardness, and extraction
of modulus from the unloading response are founded
upon the elastic equations of contact of Hertz and also
Sneddon.1–6 The methods rely on the analysis of the
shape of the elastic unloading curve following elastic
plastic contact between an indenter and a specimen. The
most common indenter geometries used are the three-
sided Berkovich indenter, the four-sided Vickers in-
denter, and the spherical indenter. These indenters have
some degree of geometrical symmetry about them that is
not shared by the less commonly used Knoop indenter.
The Knoop indenter has an elongated four-sided pyrami-
dal geometry that has the advantage of providing very
shallow depths of penetration and the ability to respond
to differences in the ratio of hardness to modulus of the
specimen material. This response manifests itself in
the relative sizes of the lengths of the diagonals of the

residual impression. In the present work, we show how
the more commonly used methods of analysis (e.g.,
multiple-point unload4 and single-point unload meth-
ods5) may be modified to apply to load and depth data
obtained with a Knoop indenter. The new method of
analysis takes into consideration the elastic recovery
of the specimen material during unloading which is as-
sumed to be a function ofE/H of the specimen material.
Comparison with experimental data is presented to illus-
trate the theory.

II. ANALYSIS OF LOAD–DISPLACEMENT DATA

A. Berkovich indenter

The three-sided Berkovich indenter has an included
face angle ofu 4 65.3°, giving a projected areaA of
the indentation as a function of the depthhp beneath the
contact as

A = 3=3hp
2 tan2 65.3 ,

= 24.5hp
2 . (1)

It is convenient to regard the pyramidal geometry of a
Berkovich indenter as an axis-symmetric cone for the
purposes of analysis. The equivalent cone semiangleai is
calculated from

tan ai = S3=3 tan2 65.3

p
D1/2

. (2)a)Address all correspondence to this author.
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Upon unloading, the contact response is elastic and the
relationship between the load and the depth of penetra-
tion for a cone is given by6

P =
2E*

p
he

2 tan a8 , (3)

wherea8 is now the combined angle of the indenter and
the residual impression,E* is the combined modulus
of the specimen and the indenter,4 andhe is the difference
in the depth of penetration at full load and the depth of
the residual impression at full unload. The normal dis-
placementh of points on the surface beneath the indenter
is a function of the radial distancer from the axis of
symmetry and is given by

h = Sp

2
−

r

aDa cot a8 r ø a . (4)

As shown in Figure 1, as the indenter is unloaded, then
the tip of the indenter (atr 4 0) moves through a dis-
tancehe and the edge of the circle of contact with the
specimen surface (atr 4 a) moves through a distanceha.
Making use of Eq. (4), at loadPt the displacementshe

andha are thus

he =
p

2
a cot a8 ,

ha = Sp

2
− 1Da cot a8 , (5)

and hence

ha = Sp − 2

p Dhe . (6)

Now, from Fig. 1(b), we have

ht = hp + ha

= hp +
p − 2

p
he . (7)

The multiple-point unload method uses the slope of the
tangent to the initial unloading to determine the quanti-
ties of interest. From Eq. (3), the slope of the elastic
unloading is given by

dP

dh
= 2

2E* tan a8

p
he , (9)

Substituting back into Eq. (3), we have

P = 1⁄2
dP

dh
he . (10)

Substituting Eq. (10) into Eq. (6) and lettingP 4 Pmax,
we have

ha = F2~p − 2!

p G Pmax

dP/dh
. (11)

hp can now be found from Eq. (7), which leads
to the projected area of contactA and hence hardnessH.
The bracketed term in Eq. (11) is termed an “intercept

correction factor” which evaluates to 0.72 for a cone as
shown above, or exactly 0.75 for a sphere and unity for
a cylindrical punch. Oliver and Pharr4 find that a value of
0.75 should be used as a result of the inevitable rounding
of the tip of real pyramidal indenters. The combined
modulus of the system can be determined from the slope
of the initial unloading:7

E* =
dP

dh

=p

2b

1

=A
, (12)

whereA can be found from Eq. (1), andb 4 1.034 is a
geometry correction term to be applied for a Berkovich
indenter8 and accounts for the nonaxissymmetric nature

FIG. 1. (a) Schematic diagram of indenter and specimen surface ge-
ometry at full load and full unload for conical indenter. (b) Load versus
displacement for elastic-plastic loading followed by elastic unloading.
hr is the depth of the residual impression,ht is the depth from the
original specimen surface at maximum loadPt, he is the elastic dis-
placement during unloading, andha is the distance from the edge of the
contact to the specimen surface at full load. Upon elastic reloading,
the tip of the indenter moves through a distancehe, and the eventual
point of contact with the specimen surface moves through a distanceha.

L. Riester et al.: Analysis of depth-sensing indentation tests with a Knoop indenter

J. Mater. Res., Vol. 16, No. 6, Jun 2001 1661



of the triangular pyramid geometry. The above analysis
ignores any materials-related effects such as piling up
and sinking in.

B. Knoop indenter

The analysis method described above for the Berko-
vich indenter relies on the conversion of the actual in-
denter geometry to an equivalent cone. That is, the elastic
theory is applied to the unloading for a conical indenter
of semianglea from a preformed impression in the speci-
men surface. Various adjustments may be made to ac-
count for real indenter geometry. A similar analysis may
be applied to the case of Vickers, comer cube, and other
indenters. However, an interesting issue arises for the
case of a Knoop indenter. A Knoop indenter is a four-
sided pyramidal indenter with unequal angles such as
shown in Fig. 2 and where the projected area of contact
is given by

A =
d2

2
@cot u1 tan u2# , (13)

whereu1 4 86.25° andu2 4 65° andd is the length of
the long diagonal of the residual impression. Expressed
in terms of the plastic depthhp, Eq. (13) becomes

A 4 2hp
2 tanu1 tanu2 . (14)

As will be shown below, analysis of experimental data
obtained with a Knoop indenter on fused silica, using the
methods above for an equivalent cone angle of 77.64°,
show that both the hardness and the modulus are over-
estimated. The reason is that, in this material, there is
substantial elastic recovery of the short diagonal of the
residual impression compared with negligible elastic re-
covery of the long axis direction. The long axis of the
impression made by a Knoop indenter is approximately
seven times larger than the short axis at full load. Upon
removal of load, elastic strains stored within the material
are relaxed as the specimen material attempts to regain its
original shape. Now, since the long axis of the impres-
sion made by a Knoop indenter is much greater than
the short axis, the restoring forces perpendicular to the
long axis (i.e., those resulting from the relaxation of

elastic strains on the short axis) have a much longer
“moment arm” than those perpendicular to the short axis.
In other words, the sides “collapse” inward as the in-
denter is withdrawn. (A similar effect is demonstrated
when breaking an egg by pressing along the long axis as
compared with along the short axis.9) This means that
observed elastic recovery in the short axis direction can
be substantial compared to that in the long axis direction,
especially for materials with a low value ofE/H where
elastic recovery is more pronounced. Other indenters
(such as Vickers and Berkovich) while not axissymmet-
ric have equal lengths of axes, and there is an equal
balance of restoring forces on the specimen material dur-
ing unloading.

The observed differences in elastic recovery on the
axes of a Knoop indenter for highly elastic materials have
been widely reported in the literature, and there exists a
small number of theoretical treatments to account for this
behavior. Marshall, Noma, and Evans10 likened the elas-
tic recovery for a Knoop indenter to that of an elliptical
cone with major and minor axes and applied elasticity
theory to arrive at an expression for the recovered inden-
tation size in terms of the geometry of the indenter and
the ratioE/H (see Fig. 2).

b8

d8
=

b

d
− a

H

E
. (15)

In Eq. (15),a is a geometry factor found from experi-
ments on a wide range of materials10 to be equal to 0.45.
The ratio of the dimension of the short diagonalb to the
long diagonald at full load is given by the indenter
geometry, and for a Knoop indenter,b/d 4 1/7.11. The
primed values ofd andb are the lengths of the long and
short diagonals after removal of load. Since there is ob-
served to be negligible recovery along the long diagonal,
we can say thatd8 ≈ d. WhenH is small andE is large
(e.g., metals), thenb8 ≈ b indicating negligible elastic
recovery along the short diagonal. WhenH is large andE
is small (e.g., glasses and ceramics), there we would
expectb8 ! b.

The elastic analysis described previously for the Berk-
ovich indenter relies on Sneddon’s solution for a conical
indenter in which the depth as a function of load is given

FIG. 2. (a) Geometry of Knoop indenter. (b) At full load, the length of the long diagonal at the contact depth is 7.11 times as long as the length
of the short diagonal. After unloading, elastic recovery along the direction of the short axis diagonal means that the distanceb reduces tob8. Very
little elastic recovery is seen along the direction of the long axis so thata 4 a8.
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by Eq. (3). For materials with a low value ofE/H (e.g.,
metals) we would expect these analysis methods to give
acceptable results even for a Knoop indenter since the
amount of elastic recovery is small. For glass and ceram-
ics, the experimental readings of load and displacement
for a Knoop indenter will be affected by the elastic re-
covery along the short axis dimension and this will not be
accommodated by Eq. (3). Upon loading, to reach a par-
ticular depth of penetration, we would need to apply a
higher value of load compared with an equivalent conical
indenter to overcome the elastic recovery forces arising
from the elastic recovery along the short axis direction.
Thus, in an experiment involving a Knoop indenter on,
for example, glass, the depth of penetration at any par-
ticular load would be less than for an equivalent conical
indenter.

The degree of elastic recovery expressed in terms of
the length of the short diagonal of the residual impression
is quantified empirically by Eq. (15). Figure 3 shows the
region of interest about the short axis of a Knoop in-
denter. For a load/unload cycle with a Knoop indenter,
elastic recovery forces act in addition to those experi-
enced by an equivalent cone due to the required com-
pression, and subsequent expansion, of the “elastic
recovery volume” ABC in Fig. 3. This volume goes to
zero as the dimensionb8 approachesb. It is possible
to account for this in the analyses methods given here by
increasing the effective angleu2 so that compression and
relaxation of the elastic recovery volume is accommo-
dated. How much should the angleu2 be adjusted? Evi-
dently, the adjustment should be a function ofE/H and

incorporate the results of Eq. (15). Rearranging Eq. (15)
assuming that there is no recovery along the long axis
such thatd8 4 d, then

b8

b
= 1 − a

d

b

H

E
, (16)

whered/b 4 7.11 anda 4 0.45.10 With reference to
Fig. 3, it can be seen that the angle of the residual im-
pression changes fromat to at8 according to

tan a r8

tan a r
=

b8

b
. (17)

Let us assume that the same fractional change of angle
may be attributed to the proposed increase in angleu2 of
the indenter. The corrected angleu28 for the Knoop in-
denter which accounts for elastic recovery forces is thus

tan u28 = Sb8

b
tan u2D , (18)

where b/b8 is given by Eq. (16). For the purposes of
analyses, we can immediately see that an initial guess at
the ratio ofE/H is required for insertion into Eq. (16).E
andH can then be calculated by the methods described
above and the ratioE/H adjusted for convergence. It
should be noted that absolute values forE andH are not
required initially but only their ratio. Thus, an informed
initial estimate should result in a fairly rapid convergence.

III. COMPARISON WITH EXPERIMENTAL DATA
AND DISCUSSION

It is of interest to evaluate the applicability of the
analysis by comparison with nominal values of modulus
and hardness with those calculated from the experimental
data. Experiments for this purpose were conducted using
a UMIS11 indentation instrument with a Knoop indenter
on fused silica, a standardized steel hardness block, and
a sample of alumina. The nominal values of modulus
and hardness for these materials are 70 and 7.6 GPa,12

203 and 8.3 GPa,13 and 380 and 18 GPa,14 respectively,
representing a range of hardness and modulus combina-
tions. It is well-known that the indentation response of
materials is dependent on the ratio ofE/H, whereH is the
hardness related to the yield stress through a constraint
factor. The materials studied here represent a wide range
of E/H being approximately 9 for fused silica, 24 for
steel, and 21 for alumina. For each material studied, a
relatively large maximum load (500 mN) was used so
that the elastic recovery factor of the residual impressions
could be measured optically and compared with those
calculated from the load displacement data. A constant
load rate was used throughout, and the results presented
here were the average of four indentations on each speci-
men. The standard error for maximum depths of penetra-
tion was 0.11% for fused silica, 0.6% for the steel, and
0.5% for the alumina specimens.

FIG. 3. Schematic diagram of the geometry of contact near the recov-
ered impression made by Knoop indenter. When there is elastic re-
covery along the short axis of the diagonal, the dimension of the short
diagonal changes fromb to b8 and the corresponding change in the
angle of the residual impression is fromar to ar8.

L. Riester et al.: Analysis of depth-sensing indentation tests with a Knoop indenter

J. Mater. Res., Vol. 16, No. 6, Jun 2001 1663



Elastic modulus and hardness were calculated using
the analysis procedures described above. Multiple un-
load points from maximum load were taken, and the
multiple-point unload method was used to determine
elastic modulus and hardness. In all cases, data from the
upper 10% of the unloading were used for the calcula-
tions. A Poisson’s ratio of 0.22 was assumed for the
fused silica and the alumina, and 0.3 for the hardened
steel in theanalyses. Values ofE and Poisson’s ratio used
for the diamond indenters were 1000 GPa and 0.07, re-
spectively. Nominal values for modulus and hardness
for each material were used for determining the ratio
E/H for the analysis and also the results from a simula-
tion calculation of load displacement curves, and these
are shown in Table I. In all analyses, an intercept factor
of 0.75 was used. A geometry correction factor of
b 4 1.034 was used for the Knoop analyses withb 4 1.0
for the cone analyses.4 It could be argued that
b 4 1.012, that found by King8 to be applicable for a
Vickers indenter, might be more appropriate for the
Knoop indenter, but the final results do not significantly
depend on the actual value chosen. The results were

adjusted for the shape function of the indenter. This was
established by performing a series of tests on the fused
silica sample at a range of maximum loads and then using
the analysis method in reverse together with the nominal
value of elastic modulus and correcting for elastic re-
covery to arrive at an area function which related the
actual area of contactA with the ideal area of contact
Ai. The area function so obtained is shown as the ratio
A/Ai against the plastic depthhp in Fig. 4. The results for
load and displacement for all experiments were also cor-
rected for instrument compliance (estimated to be
1 × 107 N/m) and initial penetration depth.

Figures 5–7 show the load–displacement responses
from the experiments and also from a simulation calcu-
lation15 using the nominal values of elastic modulus and
hardness as inputs. Table I shows the results obtained for
each specimen. The first column for each specimen
material shows results from experimental data corrected
for elastic recovery, and the second column shows the
values obtained from experimental data using the uncor-
rected analysis where the Knoop indenter was considered
as a cone with an equivalent angle of 77.64°. The “elastic
recovery factor” (“ERF” in Table I) is the length of the
recovered short diagonalb8 expressed as a percentage of
the unrecovered lengthb calculated from the nominal
values ofE andH for each specimen. Also shown is the

TABLE I. Summary of analysis results for three specimen materials.
For each material, columns show results of analysis of experimental
data taken with a Knoop indenter using the new method of analysis
that corrects for elastic recovery and results of analysis of experimen-
tal data using the assumption of an equivalent cone angle of 77.64° and
no correction for elastic recovery. Data presented are the following:
elastic modulus; hardness from analysis of unloading; maximum pen-
etration depthht; residual depthhr; elastic recovery factor calculated
from nominal values ofE andH, ERF; elastic recovery factor calcu-
lated from measurements of experimental residual impressions (ob-
served); the equivalent cone angle based upon the dimensions of the
Knoop indenter and taking into consideration elastic recovery. The %
difference between the calculated values and the nominal values ofE
and H are shown. For maximum penetration depth and depth of re-
sidual impression, the results of the simulation calculation based upon
the nominal values of modulus and hardness are given. The residual
depth estimated from the intercept of the experimental load–
penetration curve with the depth axis is also shown (hr observed).

Parameter

Analysis type

Steel Fused silica Alumina

Knoop Cone Knoop Cone Knoop Cone

E (GPa) 213 241 67.8 86.6 394 457
% diff 4.9% 19% −3% 24% 3.7% 20%
H (GPa) 8.5 9.7 5.5 8.1 16.0 18.4
% diff 2.8% 16.7% −27%a 6.6% −11% 2.1%
ht (mm) 1.05 1.05 1.41 1.41 0.77 0.77
Simulated 1.09 1.40 0.81
hr (mm) 0.46 0.46 0.056 0.056 0.25 0.25
Simulated 0.47 0 0.25
Obsd. 0.60 0.45 0.34
ERF 86.3% 0 65.3% 0 84.4% 0
Obsd. 97.5% 70.0% 85.3%
a (deg) 78.5 77.6 80.0 77.6 78.6 77.6

aUnderdeveloped plastic zone.

FIG. 4. Area function of Knoop indenter as found on indentation tests
on fused silica withE 4 70 GPa andH 4 7.6 GPa withn 4 0.22.
The vertical axis shows the ratio of the actual area of contactA divided
by the ideal area of contactAi for an indenter with perfect geometry at
any given value of the plastic depthhp. A ratio of A/Ai 4 1 indicates
that the actual shape of the indenter is identical to the expected shape.
Open circles indicate raw data, and the solid line is a smooth curve
fitted to data and used to calculate the indenter shape correction factor
A/Ai for a given value ofhp.
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elastic recovery factor calculated from measurements on
the residual impressions in the specimen surfaces as
shown in Figs. 5–7. Finally, an equivalent cone angle is
given which enables the relative “bluntness” of the vari-
ous indenter geometries to be compared.

It is immediately evident from the data in Table I that,
for the hardened steel specimen, the values of modulus
and hardness obtained without correcting for elastic

recovery effects (the “cone” analysis) are overestimated
by 19% and 17%, respectively, compared to nominal
values. Correcting for elastic recovery results in a 4.9%
increase in the estimation of modulus and a 2.8% in-
crease in hardness compared to nominal values. For this
material, the elastic recovery effect is relatively small
and is quantified by the calculated value of “ERF” in the
table at 86.3% (i.e., ERF4 100% indicating no elastic
recovery of the short diagonal). The values of maximum
penetration and residual depth calculated using the simu-
lation calculation are consistent with those estimated
from an analysis of the slope of the experimental unload-
ing curve.

For the fused silica sample, Table I shows that the new
procedure underestimates the modulus by about 3%
while the uncorrected procedure overestimates the modu-
lus by 24%. The new procedure underestimates the hard-
ness value by approximately 27% while the uncorrected
procedure overestimates the hardness by about 7%. The
reason for the seemingly poor correlation with hardness
is that, for a conical indenter, the mean contact pressure
depends upon the cone semiangle and the modulus of the
specimen material (and independent of the load due to
geometrical similarity) according to

pm = 1⁄2
E

~1 − v2!
cot a . (19)

Now, the Knoop indenter is very “blunt” and made
more so by the correction to the angleu2 arising from
elastic recovery as described in the present paper. If for

FIG. 5. Load–displacement curve for Knoop indenter on hardened
steel. Data points indicate the experimental results, and the solid line
represents simulation calculation using nominal values ofH andE.

FIG. 6. Load–displacement curve for Knoop indenter on fused silica.
Data points indicate experimental results, and the solid line represents
simulation calculation using nominal values ofH andE.

FIG. 7. Load–displacement curve for Knoop indenter on alumina.
Data points indicate experimental results, and the solid line represents
simulation calculation using nominal values ofH andE.
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fused silica, we take the hardness as being 7.6 GPa (with
E 4 70 GPa andy 4 0.22) and inserting this as the
mean contact pressure in Eq. (19), we find that the lim-
iting angle for a plastic impression isa 4 78.3°. Any
conical indenter with an included half-angle greater than
this will result in a mean contact pressure less than the
nominal hardness of the material. Now, this is normally
not an issue with Vickers or Berkovich indenters since
the equivalent cone angles are much smaller than this.
However, in the present work, the Knoop indenter results
in an equivalent cone angle of 80° (see Table I), which
means that, theoretically, no matter what the load,
the mean contact pressure is less than the hardness of the
material. The elastic analysis (both the analysis and
the simulation) depend on the mean contact pressure be-
ing equal to the hardness of the material. The multiple-
point unload method of analysis (the “Oliver and Pharr”
method) uses the tangent to the slope of the elastic un-
loading curve which is assumed to follow that of Sned-
don’s analysis for the unloading of a cone. It is a
straightforward matter to determine the expected shape
of the unloading curve and extrapolate this back to zero
load to determine an expected value of the depth of the
residual impression. When this is done for the fused
silica results, the expected depth of the residual impres-
sion is 0.056mm; that is, the analysis predicts an almost
elastic response in accordance with the simulation cal-
culation. However, the experimental evidence indicates
that there is indeed a substantial depth of residual im-
pression. Physically, one would expect some plastic de-
formation in the specimen due to the singularity of
stresses at the tip of the indenter, and this is indicated in
the experimental data in Fig. 6. However, since the
analysis methods used to determine hardness depend on
elastic equations, it is presumed that in these analysis
methods that the mean contact pressure computed by the
elastic equations will be greater than the hardness of
the material. Evidently, for very blunt indenters this
cannot occur and, thus, the method of analysis breaks
down. The computation of modulus is not affected, and
hence, the determination of the area function from the
experimental results remains valid. Thus, the reason for
the low values of hardness predicted for the fused silica
specimen in Table I is that the mean contact pressure
computed by the elastic equations is less than that of the
actual hardness of the material. The reason that this same
problem does not occur for the alumina sample (which is
harder than fused silica) is that the mean contact pressure
depends on both the cone angle and the specimen modu-
lus. The modulus of the alumina is very much higher than
that of fused silica, and so for the same cone angle, the
mean contact pressure is consequently higher since
the contact area is reduced. Thus, we do expect a fully
developed plastic zone for the alumina but not for the
fused silica specimen.

It should be remembered that we used a series of in-
dentations on the fused silica sample to establish an area
correction function for the indenter shape as shown in
Fig. 4. We should therefore not be surprised to see a
close comparison in elastic modulus for the new proce-
dure and the nominal value of modulus. However, the
validity of the new procedure is tested, somewhat indi-
rectly, by using the same indenter area function in the
analysis for the other two materials, with different ratios
of E/H considered in the present work, and we comment
upon this further below.

For the alumina sample, Table I shows that the new
method of analysis overestimates the modulus by about
3.7%, and the uncorrected analysis overestimates the
modulus by 20%. The new method of analysis underes-
timates the hardness by about 11%, and the uncorrected
analysis overestimates the hardness by 2%. Considering
the variability in properties associated with any ceramic
material with processing schedule, we should not perhaps
expect such a good correlation between the experimental
readings and the nominal values as we have obtained for
fused silica and the steel hardness block. Unlike the case
of fused silica, there is a reasonable agreement between
the simulated and experimental unloading curves and the
depths of residual impression. This is a consequence of
the combination of elastic modulus and effective cone
angle resulting in a calculated mean contact pressure that
is larger than the hardness of the material.

It is of interest to compare the calculated elastic re-
covery factor to that observed from measurements of the
diagonals of the impressions in the experimental
samples. Measurements taken from the micographs
shown in Fig. 8 were used to calculate the observed elas-
tic recovery factor, and these are compared with the cal-
culated values in Table I. It can be seen that Eq. (16)
provides a reasonable estimate of the elastic recovery
factor if the ratio ofE andH for the specimen is known
beforehand. For the specimens shown in Fig. 8, the
measured length of the long diagonals for a load of
500 mN are 31mm for steel and 33 and 19.5mm for
alumina. The calculated Knoop hardness values from the
load divided by the area given by Eq. (3) are 7.4 GPa for
steel, 6.5 GPa for fused-silica, and 18.7 GPa for alumina.
These values are consistent with the nominal values
given previously except that the value of the measured
hardness for the fused silica is somewhat lower than ex-
pected indicating a less than fully developed plastic zone
for this material under the test conditions reported here.

The selection of the fused-silica specimen for deter-
mination of the area function of the indenter deserves
comment. The indenter area function should cover a wide
range of penetration depths so as to be applicable for
results taken with a wide variety of specimen materials.
The area function calibration is most important however
at small values of penetration depth, i.e., near the tip of
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the indenter where bluntness and damage are most likely.
Fused silica is an excellent material for determining the
indenter shape since it offers a reasonably high value of
hardness and a low value of modulus thus permitting
useful data to be generated over a wide range of penetra-
tion depths, unlike e.g., steel which would provide few
data at low penetration depths and more data at larger
penetration depths where the correction is not so impor-
tant. No matter what material is selected for establishing
an area function, it is important to note that the results
depend upon the application of the new method of analy-
sis presented here since this analysis takes into account
the elastic recovery associated with the Knoop indenter.
It should be further noted that the computed area function
depends upon a known value of elastic modulus of the
specimen material and not the hardness. While the pro-
cedure described here might appear to be somewhat cir-
cular, the overall soundness of the analysis is supported
by the results obtained for the steel and the alumina
specimens, not only for the computed values ofE andH
but also the correspondence between the experimental
and simulated load–displacement curves shown in
Figs. 6 and 8.

The analysis method for the Knoop indenter given
in the present work incorporates the effect of the elastic
recovery of the short axis diagonal by adjusting the cor-
responding face angle for the indenter to be large by
approximately the same amount. This means that the ex-
tra volume to be compressed or released is accommo-
dated. It should be remembered that this only applies for
the Knoop indenter for which there is an unbalanced

elastic recovery force due to the elongated geometry. In
a Berkovich, Vickers, or conical indenter, elastic recov-
ery of the specimen material is balanced uniformly and is
therefore already incorporated into the Hertz equations.

IV. CONCLUSIONS

The present work shows how conventional methods of
analysis of depth-sensing indentation test data may be
modified to suit the elastic recovery associated with in-
dentations made with a Knoop indenter. Without this
modification, both elastic modulus and hardness are
overestimated by an amount that depends on the ratio of
E/H of the specimen material. The new method of analy-
sis expresses the elastic recovery of the short diagonal of
the residual impression into an equivalent face angle for
one side of the Knoop indenter. Conventional methods of
analysis using this corrected angle provide results for
modulus and hardness that are consistent with those ob-
tained with other types of indenters.
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FIG. 8. Optical micrographs of a residual impression in specimen
surface for a Knoop indenter at 500 mN load for (a) hardened steel, (b)
fused silica, and (c) alumina. The measured lengths of the long diago-
nals are (a) 31mm, (b) 33mm, and (c) 19.5mm, and this provides a
scale for the figure. The Knoop hardness values from Eq. (3) are (a)
7.4 GPa, (b) 6.5 GPa, and (c) 18.7 GPa.
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