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Pushpalatha C. Bhata�

aFermi National Accelerator Laboratoryy

P.O. Box 500, Batavia, IL 60510, USA

The Fermilab Tevatron has the unique opportunity to explore physics at the electroweak scale with the highest

ever proton-antiproton collision energy of
p
s=1.96 TeV and unprecedented luminosity. About 20 times more data

is expected to be collected during the �rst phase of the collider Run II which is in its second year of data-taking.

The second phase of Run II, expected to begin in 2005, will increase the integrated luminosity to about 10-15

fb�1. Discovering a low mass Higgs boson and evidence for Supersymmetry or for other new physics beyond the

Standard Model are the main physics goals for Run II. It is widely recognized that the use of advanced analysis

methods will be crucial to achieve these goals. I discuss the current status of Run II at the Tevatron, prospects

and foreseen applications of advanced analysis methods.

1. INTRODUCTION

The �rst phase of the second major proton-
antiproton collider run (Run IIa) is well under-
way at Fermilab. Major upgrades to the accel-
erator complex include a brand new 150 GeV
proton synchrotron called the Main Injector and
a permanent magnet based antiproton recycler
storage ring. The Main Injector enables 10 times
more protons to be injected into the Tevatron,
as compared to run I. The recycler helps recover
the unused antiprotons from colliding beams of
the Tevatron, store and reuse them in subsequent
collisions. The collision energy is upgraded top
s=1.96 TeV, up from

p
s=1.80 TeV in Run I.

The CDF and D� experiments also underwent
major upgrades in preparation for Run II[1]. The
CDF detector had the inner tracker replaced, a
plug calorimeter added and muon detectors up-
graded. The D� detector acquired a new central
tracker with silicon microstrip and scintillating
�ber tracking layers inside a 2T solenoidal mag-
netic �eld and new scintillating �ber preshower
detectors. The muon system has been upgrad-
ed with a new layer of scintillators in the central
region and an all new forward muon system. A
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forward proton spectrometer has been added to
enhance capabilities for di�ractive physics. Both
experiments required new trigger and data acqui-
sition systems.
A rich harvest of physics is expected from an

order of magnitude more data that is expected to
be collected in Run IIa alone. The broad physics
program consists of the study of Quantum Chro-
modynamics via the study of jets, (particularly
a high statistics study with the high transverse
energy jets), electroweak physics with the W and
Z bosons, beauty and charm quark physics, top
quark physics including the possible evidence and
study of the electroweak production of single top,
and searches for the Higgs boson and for signals
of new physics beyond the Standard Model, no-
tably, the signatures for supersymmetry, lepto-
quarks, technicolor or extra spatial dimensions.
In the following section, I give a short status re-

port on the standard physics signals that are now
being studied at the CDF and D� experiments in
an e�ort to understand the detectors and pursue
studies on a wide range of physics topics. Then, I
discuss, in the subsequent sections, the advanced
analysis methods that are of import in improv-
ing the various aspects of physics analysis and
prospects for exciting physics applications.
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2. EARLY PHYSICS RESULTS FROM
RUN II

By the end of spring of 2002, after a year of run-
ning, the Tevatron had delivered about 55 pb�1

each to the CDF and D� experiments. Most of
these data have been utilized to commission and
tune the detectors. Some data have been used to
look at some standard physics signals. The best
way to evaluate the performance of the detectors
and tune the event reconstruction algorithms and
assess calibration errors in these early days of the
run is to look at known signals in accessible mass
regions. I present here some preliminary results
[2] from such studies using Run II data.
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Figure 1. The K0
s ! �+�� invariant mass spec-

trum using tracks from the Silicon detector.

Fig. 1 shows the invariant mass spectrum from
two unlike sign tracks measured in the D� Sili-
con detector only, which reveals the K0

s
! �+��

decays. Including measurements from the central
�ber tracker improves the mass resolution to 5
MeV. Better alignment of the sub-detectors using
data is expected to provide further improvement
in track parameter measurements.
The dimuon invariant mass spectrum showing

the J/	 and the � peaks using muons tracked
and measured in the D� muon system alone and
the cleaner J=	 peak resulting after matching the
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Figure 2. The di-muon invariant mass spectrum
showing the J/	 and the � peaks (top). The
di-muon invariant mass spectrum after matching
muons found in the muon system with tracks from
the central detector shows a clean signal of J/	
(bottom).

muons with the central detector tracks are dis-
played in Fig. 2.
The electroweak gauge bosons (W;Z) are of

paramount importance both in their own right
and in inclusive signal and/or background chan-
nels in many interesting physics processes. The
Z ! l+l� event samples serve as good calibra-
tion tools for lepton measurements. The invari-
ant mass distributions of Z ! ee from D� and
Z ! �� from CDF are shown in Figs. 3 and 4,
respectively.
The inclusive pT spectrum of jets and the dijet

mass spectrum measured in the D� calorimeter
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Figure 3. The di-electron invariant mass spec-
trum (from D�) showing the Z boson peak.

in the central rapidity region of j � j< 0:5 are
shown in Fig. 5. The jet energy corrections used
are preliminary. With the full Run II data-set the
transverse energy distribution of the jets should
extend to beyond 600 GeV.
Enormous progress is being made at both ex-

periments in understanding calibration and cor-
rections, and in tuning event reconstruction and
particle identi�cation algorithms. A large num-
ber of physics analyses are in progress.

3. ADVANCED ANALYSIS METHODS

Uncovering the signals of new physics in a
hadron collider environment is extremely chal-
lenging because of a wide variety of processes that
can mimic a given signature. Therefore, the use
of advanced data analysis techniques are abso-
lutely necessary for optimal separation of signal
and background. The main data analysis tasks
performed in HEP are particle identi�cation, sig-
nal/background event classi�cation, parameter
estimation (precision measurements), functional
approximation (�tting) and data-driven feature
extraction or exploration. The best use of data is
ensured only with multivariate treatment.
Suitable choice and representation of multivari-

ate data are important �rst steps for a successful
application. These could be labelled simply as in-
telligent pre-processing of data. In some applica-
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Figure 4. The Z! �� signal from CDF Run II
data [3].

tions this pre-processing might be the only nec-
essary multivariate treatment of the data. The
selection of variables for a given analysis appli-
cation can be performed using the characteris-
tic physics information or with algorithmic ap-
proach, employing, e.g., grid searches. Having
selected a set of variables, one might like to ap-
ply a suitable transformation to the variables that
would yield a representation of the data that most
clearly exhibits certain desirable or "interesting"
properties. That is, if x is the original multidi-
mensional datum, then we seek s=f(x) which has
the desirable properties. If a linear transforma-
tion is employed, then, s=Wx, where W is the
tranfer matrix.
The transformation of variables is equivalent

to extracting a map f : Rd ! R
N . If N < d,

then we would have e�ected a dimensionality re-
duction. There are nonlinear algorithms that use
probability density estimation - histogramming,
kernel-based methods and the methods of adap-
tive mixtures, and those that use stochastic op-
timization such as neural networks. For a review
of these methods, see ref. [4]. In the following, I
have chosen to discuss a few potentially interest-
ing methods for HEP applications.
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Figure 5. Inclusive jet pT spectrum (top) and
dijet mass spectrum (bottom) from D� (

R
Ldt =

1:9pb�1).

3.1. Grid Search, Principal and Indepen-
dent Component Analysis

Grid searches provide a systematic way of �nd-
ing good variables and optimal cuts in multidi-
mensional space, albeit not taking into account
the correlations between variables. We developed
a simple random grid search method [5] that can
be used to compare the e�cacy of variables as
well as for a rapid search for optimal cuts for u-
nivariate classi�cation. The results of such a grid
search can be used as a benchmark to compare
more sophisticated multivariate analyses.

To do a more advanced analysis, one would like
suitably transformed variables as discussed earli-
er. Geometrically speaking, then, in a grid search
one �nds optimal cuts along the given coordinates
while the Principal and Independent Component
Analyses (PCA & ICA) one �nds interesting new
directions (coordinates) in the multivariate space.
In the PCA algorithm (also known as

Karhunen-Loeve transform or Hotelling transfor-
m), the variance along the axes is used as the
interesting feature while �nding transformed vari-
ables. The new set of orthogonal basis is obtained
by �nding eigenvectors ui and eigenvalues �i as
solutions of the equation,

Cui = �iui

where C = E(x� �x)(x � �x)T is the covariance
matrix of the data set x. The transformation ma-
trix, W has as its columns the eigenvectors and
the transformed variables are s =Wx.
The ICA [6] is a relatively new technique, in-

vented only in the past decade. It can be seen as
a powerful extension of statistical factor analysis
and PCA. The observed variables are assumed to
be linear or nonlinear mixtures of unknown latent
variables. The ICA technique enables transfor-
mation of data variables to extract these under-
lying statistically independent factors.
The ICA technique has been used in analyzing

medical images, signal processing, and in the �eld
of economics. Application to HEP would be a
completely new exercise, which we have recently
undertaken.

3.2. Neural Networks and their Ensembles
Arti�cial Neural Networks, though inspired

from biology conceptually, are rigorous mathe-
matical models for developing the map - f : Rd !
R
N where N << d and generally N � 1, without

requiring a mathematical description of how the
output(s) depend on the inputs.
Good generalization, that is good predictions

for new inputs, is extremely important to mini-
mize classi�cation errors or to avoid over-�tting
of data. The conventional methods for achiev-
ing good generalization have been (a) optimizing
the size of the network given the training sam-
ple and (b) regularizing the training by penal-
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izing model complexity. But there are new and
sophisticated approaches to achieve better gener-
alization. (See e.g., [7].) And these involve using
of ensembles of networks such as \committees" or
\stacks." The basic concept in the usage of en-
sembles is to use many \nearly the best" networks
with varying models (i.e., in architecture and in-
put variables) rather than the \best" network, in
ways that would help reduce the generalization
error. It would be useful to arrive at rigorous or
heuristic approaches to e�ciently arrive at such
ensembles.

3.3. Self Organizing Maps (SOM)
The self organizing map algorithm is an unsu-

pervised technique which can be used for model-
independent exploration of data by �nding clus-
ter patterns in data. The idea of SOM was �rst
introduced and developed by Kohonen in early
1980's (hence called Kohonen map, as well). The
algorithm maps multidimensional feature space
onto, usually, a 2 dimensional space with a lat-
tice of nodes. Each node is associated with a
vector of weight w of dimensionality d of the o-
riginal space. An input vector is compared to all
the weight vectors and assigned to the node that
best matches the input.

3.4. Support Vector Machines (SVM)
The Support Vector Machines algorithm is a

fairly new one. The main idea is to map the fea-
ture space into a space of su�ciently high dimen-
sions (f : Rd ! R

N ; N >> d) so that the opti-
mal discriminating boundary between classes is a
hyperplane and hence can be found using linear
methods. Given the feature vector x, the optimal
hyperplane is w �b+x where w is the unit vector
normal to the hyperplane and j b j is the distance
of the plane from the origin.
For more details on the SVM method see con-

tribution from Vaiciulis [8].

3.5. Multivariate Analysis Issues
The important issues to pay attention to in per-

forming a multivariate analysis are the following:

� Choosing a set of variables without losing
information

� Choosing the right method for the problem,
which in many cases, has to be done by try-
ing out a few methods.

� Controlling model complexity, i.e., keeping
the number of free parameters in the multi-
variate model small compared to the sample
size.

� Testing convergence of training in stochas-
tic optimization algorithms, i.e., to have a
good criteria to know when the training is
optimal and cannot be improved further.

� Validating the learning or modeling, i.e.,
quantifying the correctness of modeling or
goodness of learning, especially given a lim-
ited sample.

� Computational e�ciency of the method
and/or algorithm - it is important that
the algorithm is computationally e�cient so
that the analysis can be repeated for many
scenarios to ensure the robustness of the re-
sults.

4. APPLICATIONS AND PROSPECTS

The key factors responsible for the sweeping
success of neural network (NN) algorithms for
multivariate analysis are their power, ease of use
and many successful applications in HEP. To cite
a few examples from Run I Tevatron physics - (1)
the top quark discovery at D� bene�tted from
comparisons of conventional analysis with results
from NN analysis [9], (2) precision measurements
of the top quark mass at D� in lepton+jets and
dilepton channels where the advanced methods
helped reduce the statistical uncertainities by a
factor of two, (3) top quark study in all-jets de-
cay mode and searches for single top production
at D� and CDF, (4) world's best limit on �rst
generation scalar leptoquark mass obtained by
D�. There are many spectacular applications of
multivariate methods at LEP and HERA experi-
ments. Some example applications and prospects
have been presented in other talks at this work-
shop [10].
In 1990, I believed that multivariate methods

would provide huge gains in top quark searches.
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Figure 6. Likelihood discriminant distributions
for signal (hatched histograms) and background
events in t�t! lepton +jets channel using the new
matrix element method [12]. The inset shows re-
sults from earlier analyses using a multivariate
likelihood method (left) and NN (right).

We employed multivariate methods, at D�, par-
ticularly neural networks, to optimize signal selec-
tion cuts that helped in top quark physics stud-
ies from discovery to precision measurements[11].
Using advanced multivariate and Bayesian meth-
ods, the D� collaboration measured the top
quark mass to be 173.6�5.6�6.0 GeV in the lep-
ton+jets channel with a better than expected sta-
tistical precision of 5.6 GeV. This extraordinary
feat in Run I of precision top quark mass measure-
ment has now been surpassed by exploiting prob-
abilistic information for each event in the matrix
element method [12] using the same Run I sam-
ple. The comparisons of discrimination between
signal and background are shown in Fig. 6. The
new measurement yields a top mass of 179.9 GeV
with a statistical uncertainty of 3.6 GeV. Run
II, with an expected yield of the order of 500 b-
tagged t�t events in lepton+jets �nal state alone

per fb�1 recorded, ushers in an era of a variety
of precision measurements in top quark physics.
Topping the list of interesting searches in Run

II is that for the Higgs boson. The Higgs mech-
anism is one vital piece of the standard model
that still awaits experimental evidence. There-
fore, the Higgs boson would be the most sought
after particle in Run II. The discovery of a SM-
like Higgs boson will lend credence to the popu-
lar theories of the origin of mass. The Tevatron
Run II Higgs working group explored the discov-
ery reach for the Higgs boson and the results are
shown in Fig. 7. The details of the analysis are
described in published papers and the working
group report [13]. There are valid and intriguing
reasons for the prevailing optimism that the Hig-
gs boson and Supersymmetry may be around the
corner. The most favored Higgs boson mass from
constraints from precision measurements is in the
neighborhood of 100 GeV. In most SUSY model-
s, the Higgs mass is below 150 GeV. The Teva-
tron, although, has good prospects for discovering
a low mass Higgs boson, it is not going to be easy.
It is important to emphasize, however, that the
discovery reach at a given mass requires half the
integrated luminosity if multivariate methods are
adopted instead of conventional univariate meth-
ods.
Searches for signatures from new physics be-

yond the Standard Model such as leptoquark pro-
duction, supersymmetry or technicolor, are also
employing multivariate methods in various stages
of Run II data analysis. Advanced multivariate
and statistical techniques [14] form a powerful
combination that enable optimal use of data, con-
sistent treatment of uncertainties and meaningful
model comparisons.

5. SUMMARY

Run II is well underway at Fermilab. Early
physics results from the upgraded CDF and D�
experiments promise an exciting physics program
in the years ahead. A new era of precision mea-
surements in standard model physics and of excit-
ing opportunities to discover the agent(s) of elec-
troweak symmetry breaking and new physics be-
yond the standard model has commenced. There
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Figure 7. The required integrated luminosity for
5�, 3� observation or 95% C.L. exclusion of the
SM Higgs boson in Run II. For details of the anal-
ysis see ref. [13].

are strong theoretical motivations for new discov-
eries and valid reasons for the prevailing optimis-
m. The multivariate methods will provide sen-
sitivity to new particles with masses beyond the
reach of conventional methods of analysis based
on univariate cuts. Advanced statistical methods
adopting a fully probabilistic approach will enable
better precision measurements and better explo-
rations of model parameters. In short, the use of
advanced multivariate and statistical techniques
will enable new discoveries and produce results
with better precision, robustness and clarity.
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