
Fermilab FERMILAB-Conf-03/130 June 2003

Abstract-- RTDB is a fast, memory-resident object database

with built-in support for distribution. It constitutes an attractive
alternative for architecting real-time solutions with multiple,
possibly distributed, processes or agents sharing data. RTDB
offers both direct and navigational access to stored objects, with
local and remote random access by object identifiers, and
immediate direct access via object indices. The database
supports transparent access to objects stored in multiple
collaborating dispersed databases and includes a built-in cache
mechanism that allows for keeping local copies of remote
objects, with specifiable invalidation deadlines. Additional
features of RTDB include a trigger mechanism on objects that
allows for issuing events or activating handlers when objects are
accessed or modified and a very fast, attribute based
search/query mechanism. The overall architecture and
application of RTDB in a control and monitoring system is
presented.

I. INTRODUCTION

HERE exist various architectural solutions to the
problem of organizing systems consisting of multiple

collaborating processes. Let us focus our attention on the
exchange of data or objects between processes and consider a
solution based on a database. If a set of processes comprising
a family of integrated applications all exchange data through
the same database then they are guaranteed to be consistent
all of the time. Since the purpose of using the database is to
organize sharing of data/objects, traditional databases,
although offering persistence, are not very attractive for real-
time applications because of prolonged access times. Also,
persistence for transient or internal data is not typically
needed. Instead, one can use a memory-resident database, a
database built especially for this purpose that offers fast
access times owing to eliminated disk I/O.

Memory-resident databases differ from disk databases in
that data resides in the main memory. These databases,
working as organized repositories of shared data, are geared
toward fast, programmatic access and therefore are especially
suited for telecommunications and control applications.

Manuscript received May 9, 2003. This work was supported by the U.S.
Department of Energy under Contract No. DE-AC02-76CH03000.

J. M. Nogiec is with the Fermi National Accelerator Laboratory, Batavia,
IL 60510 (telephone: 630-840-3081, e-mail: nogiec@fnal.gov).

E. Desavouret is with the Fermi National Accelerator Laboratory,
Batavia, IL 60510 (telephone: 630-840-4402, e-mail: desavouret@fnal.gov).

The fast access requirement makes object orientation
especially attractive, and favored over a more common
relational model.

Several commercial in-memory databases exist, such as
eXtremeDB [1], BoostEngine [2], Polyhedra [3], Powerdata
SDK [4], or Vaccess [5].

II. ARCHITECTURE

The Real-Time Database (RTDB) is built as a toolkit. It
allows a real-time developer to built an integrated solution
encapsulating an in-memory database suitable for his or her
application. Only needed features are used and algorithms
can be optimized for a given situation.

RTDB is used to keep complex data structures or object
states accessible by multiple processes. It resides in a shared
memory and is directly accessible by any local process, which
allows for a very rapid access to data. Processes can work
directly with data, making copying of data unnecessary.

Objects inside the database are accessible via their names,
identifiers, and references. Initially access has to be done via
a name, and then the program can navigate using object
identifiers or references (pointers). The access by name is
location independent (node independent), assuming the name
is unique within the application. A hashing function assigns a
unique identifier to each name. These identifiers are
implemented as indices in a hash table of objects, which is
unique for each local database. Since random access is very
rapid in main memory, pointers can be followed quickly.
Therefore, the hash table contains pointers to the data, rather
than the data itself, which eliminates a problem of storing
objects of various sizes. Objects can form complicated
structures inside the database, referring to each other via
references or identifiers. Since references are actually
pointers, the use of them is limited to static objects only.

RTDB, following the toolkit approach, allows for
separately supplying hashing algorithms including various
solutions to handling collisions and allowing for selecting an
algorithm offering the optimal distribution of keys in the hash
table for a given application.

III. FEATURES

RTDB offers several interesting features, which extend its
capabilities and together establish the unique character of that
database system.

RTDB: A Memory Resident Real-Time Object
Database

Jerzy M. Nogiec, Eugene Desavouret,Member, IEEE

T

A. Data Representation

RTDB stores data in the exact form in which it is used by
the application, eliminating the need for translating data from
one representation to another. Such a translation is needed,
for example, if a relational representation is used. All local
user processes have direct access to data as opposed to using
a server, which introduces unwanted delays. Remote accesses
can't be implemented the same way; therefore, a server,
acting as a proxy for the remote process, is used.

B. Concurrency Control

A set of operations is provided by the database to allow for
database level and object-level locking.

Applications can control concurrency by locking the entire
database, which amounts to serial execution of all operations
and therefore drastically reduces the costs of concurrency
control.

User processes can also acquire single or multiple object
locks, examine locking states, and forcibly free locks.
Acquiring multiple locks at a time can prevent deadlocks.
The capability to unlock objects locked by other processes
can prove useful when implementing a mechanism to recover
from processing exceptions and processes terminating
without releasing all previously acquired locks.

Following the philosophy of a toolkit, RTDB implements
basic concurrency control mechanisms but policies must be
designed and implemented by the application.

C. Triggers

RTDB offers a mechanism similar to the trigger
mechanism typically found in relational database
management systems. A trigger can be attached to any object
inside the database. It can be defined to be activated upon an
object modification or access. Three types of actions can be
defined: a) a user-defined trigger handler procedure is
invoked, b) a user-specified task is spawned, or c) a user-
defined event is broadcast (It is important to note here that
broadcast is implemented using a guaranteed delivery
protocol.) Handler procedures are executed inside caller
process' address space; therefore, they have direct access only
to local resources. Typically, they are used to ensure data
consistency or for verification. When a required action may
take longer and can be conducted asynchronously, a separate
task can be spawned to handle the trigger processing. Since
events can be delivered to multiple distributed processes, the
trigger-induced event allows for having a number of listener
processes that can register for the event and perform
necessary processing. The triggering process updating an
object does not need to know about other processes interested
in changes to the object.

D. Attribute- based queries

RTDB incorporates an object retrieval mechanism that is
based on object attributes. Each object in the database has a
set of binary attributes assigned to it that can be freely
manipulated by the application. Therefore, the values of

attributes for a particular object can change during the
lifetime of the application. The meaning of the attributes is
supplied by the application. The database provides operations
to select objects based on subsets of attributes. For example,
one can use attributes to define classes or states of objects. In
such a case, the following queries would be possible:

selectclass = *and state = suspended
selectclass = dataSourceand locked != true
selectclass = pressureand alarmRedZone = true

The actual implementation does not use a query language
to avoid delays introduced by translating query statements,
but rather uses a library of functions enabling definitions of
searches by specifying bit masks with included and excluded
attribute sets.

This query mechanism is very fast and represents a
compromise between a slow and complex, yet powerful query
language and solutions with no provisions for system
supported queries.

E. Versioning

RTDB has provisions for keeping multiple versions of an
object. It allows for having access to a limited history of
changes. Such a mechanism can prove useful when
examining trends or restoring previous states.

The system also offers a working version of an object,
called a shadow. The application can work on updating the
shadow of an object and then with one call can replace the
object with its shadow. Depending on the application,
working on the shadow may require obtaining a lock on the
object first to prevent concurrent unsynchronized updates.
Having a shadow version frees processes from copying an
object to and from the database, and therefore improves
performance of the system.

IV. DISTRIBUTEDDATABASE SYSTEM

Local RTDB memory databases can collaborate to form
one distributed database. The set of collaborating databases is
defined in a node collaboration list. There are two RTDB
mechanisms that help to build distributed systems:
transparent access to remote data and distributed
synchronization.

Requests to access objects that can't be satisfied locally are
broadcast to collaborating nodes. The received response is
returned to the user process and a copy is put into a local
database (cached). A local cache is implemented to improve
performance when accessing static data. The decision to
cache an object locally belongs to the application.

Collaborating nodes are also connected via an event bus,
which implements a subscribe-publish model of a software
bus. Owing to the event bus, events initiated by database
triggers are passed between all the collaborating nodes.
Processes that have subscribed for a particular event can
either wait for notification or check to see that the event has
happened, regardless of the originating node of that event.

V. APPLICATION OFRTDB

The RTDB system has been used in the implementation of
the Distributed Monitoring and Control System (DMCS) [6],
[7]. The DMCS serves a dual purpose; it is required to
monitor and control the environment while performing
special tests and measurements of accelerator magnets.
Therefore, the system has been constructed as a general-
purpose monitoring and control system and a measurement
tool at the same time.

The DMCS is a multi-platform system consisting of a set
of distributed computers connected via a local area network.
Functionally, the system follows the traditional, hierarchical
approach: graphical user interfaces and data analysis
applications run on workstations under Unix while data
acquisition and direct control run on process control
computers under the VxWorks real-time operating system.
Most of the system components are available on both
platforms. System processes, distributed between multiple
nodes, communicate via a software bus.

The system configuration is described using the Data Base
Definition Language (DBDL). Currently, the system
description includes four classes of objects: scans, process
variables, devices, and calculations. DBDL enables the user
to define all of the objects present in the system. The
resulting configuration is loaded to the process control
computers for interpretation. All configuration objects are
kept in RTDB.

RTDB plays a central role in the system. It resides in each
of the process control computers and stores the system
configuration, the state of the process under control, test
conditions, and measurement results.

The RTDB query mechanism is used primarily to browse
through stored objects and select objects of interest to the
user via the provided graphical user interfaces.

The trigger mechanism has been used to implement alarms.
Upon the modification of an object, a trigger handler
procedure examines the object's state and determines if any of
the defined alarm values has been exceeded. If it is the case,
an alarm event is broadcast.

The trigger mechanism has been also used to implement
the software quench detection for the high temperature
superconducting leads [9]. Voltages and temperatures along
the leads have been defined as quench thresholds. Exceeding
one of the defined thresholds is equivalent to detecting a
quench, and this results in a request sent to the power control
system [8] to ramp down the current. The voltage and
temperature values are checked in a trigger handler executed
whenever any of the temperatures or voltages is updated in
RTDB by a monitoring scan.

The DMCS databases contain a practically constant set of
objects and have a well-defined phase of creation, followed
only by accesses and modifications, but no insertions.
Therefore, instead of chaining, overflow bucket creation or
rehashing, the hash table is reorganized, which offers a very
good performance for this application.

The dynamic contents of the databases are continuously
written to the non-volatile memory by specialized data
archival scans.

VI. CONCLUSION

Memory-resident databases offer an interesting
architectural alternative when building multi-process systems.
Thanks to short and predictable access times, they seem to be
especially suited for real-time applications and data
acquisition systems. Moreover, in-memory databases can,
similarly to traditional databases, be constructed as
distributed systems. As repositories to be primarily accessed
programmatically, they can follow an object model rather
than a relational model of data.

RTDB, being a toolkit, offers many opportunities for
extending and improving. One of the possible development
directions is to work on increased robustness of the system. It
could be achieved, for example, by monitoring processes to
detect process exceptions resulting in blocking the database,
so the whole system is not brought to a halt by an errant
process. This problem is similar to a classical deadlock
caused by a process suspended while inside a critical region.

Memory-resident databases can also be used in multilevel
database systems and form, together with object persistent
storage systems and relational databases, hierarchical
database storage systems [10].

VII. A CKNOWLEDGEMENT

Authors would like to thank John Tompkins and Mike
Lamm for their support and for making this work possible.
Jerzy Nogiec thanks Sergey Sharonov for his friendly
remarks during the development of RTDB and Kelley
Trombly-Freytag for valuable comments on the text of this
article.

VIII. REFERENCES

[1] http://www.mcobject.com/extremedb.htm
[2] http://www.solidteeh.com
[3] http://www.polyhedra.com
[4] http://www.powerdata.com
[5] http://www.vista-control.com
[6] J. M. Nogiec, E. Desavouret, D. Orris, J. Pachnik, S. Sharonov, J. Sim,

J. C. Tompkins, and K. Trombly-Freytag, "A Distributed Monitoring
and Control System," International Particle Accelerator Conference
PAC'97, Vancouver, 1997

[7] J. M. Nogiec, E. Desavouret, J. Pachnik, S. Sharonov, and J. Sim, "An
Open Distributed Monitoring and Control System," Proceedings of the
International Conference on Computing in High Energy Physics
CHEP'97, Berlin, 1997

[8] J. M. Nogiec, E. Desavouret, "Distributed Power Supply Control and
Monitoring System," ICALEPCS 2001, San Jose, 2001

[9] J. M. Nogiec, S. Feher, D. F. Orris, J. Sim, M. Tartaglia, "Architecture
of HTS Software Protection System," International Particle Accelerator
Conference PAC'99, New York, 1999

[10] J. M. Nogiec, K. Trombly-Freytag, D. Walbridge, "Hierarchical Data
Archival System for EMS," PCaPAC 2002, Frascati, Italy, 2002

