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Abstract—We present direct measurements of the spatial dis- |
tribution of both ionizing radiation and low energy neutrons  § 400 -
(En < 200 keV) inside the tracking volume of the Collider 3 [
Detector at Fermilab (CDF). Using data from multiple exposures 300 |-
we are able to separate the contributions from beam losses r
and proton-antiproton collisions. Initial measurements of leakage 200 [

currents in the CDF silicon detectors show patterns consistent
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|I. INTRODUCTION r
-200 —

HE Collider Detector at Fermilab (CDF) [1] records the F o |weal ccAL ccAL WCAL
products of interactions between protons and antiprotonsseo -
with a center of mass energy bH6 TeV. The trajectories of the :
interaction products are recorded by a series of semiconductosgco - % & &
and gaseous detectors witHirs m of the interaction point. The -400 -300 -200 -100 O 100 200 300 400
. . - . Z (cm)

characteristics of these devices are modified by large, chronic

radiation exposures. Specifically, the leakage currents in the

1. Elevation view of the Collider Detector at Fermilab, with itfTdetector

silicon-based detectors increase with the bulk damage of tHe: . e ; .
ponent closest to the proton-antiproton collisions shown. The gg’les in the
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ZiliCOFZ]and eventually the detector ceases to provide Useﬁi@king volume denote the locations where we measure the radiaggn dose.
ata [2].

While a great deal of data are available on the damage of
silicon devices, little is known about the radiation field induce@hermal Luminescent Dosimeters (TLD’s). From multigle ex-
by proton-antiproton collisions. Because semiconductor tracgesures, we are able to separate contributions to th diation
ing detectors are expensive, both in time and effort, a detail&édld due to collisions and protons lost from the beam.®inally,
knowledge of the radiation field is needed in order to estimatee present a comparison of our field map with Ieakagg“:l:urrent
the useful lifetime of a detector and plan for its replacementmeasurements in the silicon.

In this article we present a detailed measurement of the
radiation field in the tracking volume of the CDF detector. We II. RADIATION FIELD MEASUREMENT
measure both ionizing radiation and low energy neutrons usigg The Collider Detector at Fermilab
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Fig. 2.  The principle of thermal luminescence. Photon radiation brings the
material in a meta-stable stat&,, with a long lifetime (left). Heating the
material leads to emission of visible photons (right).

10

and SVX) occupy the region.35 cm < r < 10.6 cm and 1 LT .
—45 cm < z < +45 cm; the outer layers (ISL) are situated in f
20 cm < r < 28 cm, and—95 cm < z < +95 cm. The silicon
detectors, along with the drift chamber (COT) at larger radii, 10 bl vl vl sl
are immersed in a.4 T solenoidal magnetic field. Outside the 10%10°10%10" 1 10 10* 10 10" 10° 20° 120’
tracking volume, calorimeters (CCAL, PCAL, and WCAL in Neutron Energy (eV)
Fig. 1) measure the total energy of neutral and charged particles
from the proton-antiproton collisions, and they are surrounded
by muon detectors (not shown in the figure).

The number opp collisions at the center of CDF is recorded
by the Cherenkov Luminosity Counter (CLC) [3], by means of
the Cherenkov radiation from charged particles produced at the
proton-antiproton interactions. Further up-stream (not shown in i
Fig. 1), and on either side of the detector, two sets of scintillator o
counters surrounding the beam pipe record losses from protons g
and antiprotons ejected from the beam line. Proton(antiproton) g
losses are defined as the coincidence of a counter signal with a J
proton(antiproton) bunch crossing the plane of the scintillator
on its way into the CDF detector.
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B. Thermal Luminescent Dosimeters

Two types of Harshaw TLD chips are used for the radiation 10 sl sl
measurements. One type (TLD-700) is based’iF and is 1001010010010 S e Enelrf,y (e\l,?
sensitive to ionizing radiation and photons. lonizing radiation
B o e e e 15t Hosyon e Svechan roSC e s s e
stable state with very long lifetime. Heating the TLD chip g &0 - &6ttom)_ oy sb
leads to a transition back to ground state accompanied by the
emission of a photon (see Fig. 2). The number of photons
produced is proportional to the population in these meta-stable
states, which is in turn proportional to the amount of ionizing Fi 318cm —"
radiation that has traversed the TLD chip. The other dosimeter
type (TLD-600) is based ofLiF and is sensitive to both
ionizing radiation and low-energy neutrong,{ < 200 keV),
as seen in Fig. 3. The reaction+ °Li — >H + o results in
a transition to the meta-stable state discussed above, by means
of the recoiling tritium ¢H) and helium &) nuclei.

Dosimeters are grouped in two triplets, one of each TLD

type, and put ir8.18 cm x 1.59 cm holders made di.79 mm 1.11 cm dia. (H)
thick FR-4 (see Fig. 4). The TLD's are held in place fy,m Fig. 4. A0.79 mm thick FR-4 TLD holder. TLD-700 (round) and TLD-600

thick kapton ta'pe', and are SUbsequemly placed in CDF uare) dosimeters are kept in placeyum thick kapton tape.
accumulate radiation.
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Fig. 5. a) Response of TLD-700 dosimeters to ionizing radiation as a function 8k
of received dose; note the super-linear behavior for doses abivead. b) 6
The non-linearity correction factor as a function of the dose estimated from -
the linear-response assumption. ) E
0 | |
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C. Calibration and Dosimetry Z (em)
[ May - Oct 2001 Exposure

e r=37.7 cm (ISL space tube)
+ r=17.7 cm (SVX space tube)

We calibrate the TLD response to ionizing radiation with a
1 rad photon exposure from 87Cs source [4]. A calibration
factor (in rad/nC) for each TLD chip is then determined by

y dose (rad)
N
o
)

heating up the chip and measuring the light yield using a 2(5)8
Harshaw model 2000 TLD reader [5]. A reproducibility of 200
~ 1% and a chip-to-chip variation of 3% is observed. 150 [

LiF TLD’s are known to exhibit non-linearity for doses above 100 \x‘,_,,_,dedk//
100 rad. In order to account for this behavior, we expose a 50 -
small sample of TLD's to doses up 10 krad and we measure %00 150 100 B0 o S0 100 150 200
a correction factor, defined as the ratio of the received dose Z(em)

over the dose estimated from the linear-response assumptlE?gne. lonizing radiation dose as a functionzofor the two exposure periods.

(see Fig. 5). Top: the pattern during the first exposure period, dominated by proton beam
The response of the TLD-600 chips to neutrons is calibratébses (proton direction ig-z). Bottom: the dose during the second exposure

with a1 mrad exposure to %2Cf source (see Fig. 3). We obtamperiod, dominated by proton-antiproton collisions aroune 0.
a ~ 10% reproducability and a 15% chip-to-chip variation.
We extract the ionizing radiatiorl)., (rad), each TLD-700 -
chip has received due to its exposure in the detector volun%, The radiation measurements
by using the expression: TLD measurements are taken during two different periods of
the Tevatron operations, in three regions in the CDF tracking
Dy =Cyrkyr Rr = Dyeuri @ volume (Fig. 1): i) on the cylinder supporting the inner silicon
where R; is the reading (nC) from this TLD chig. ; is the (SVX), at 25 locations { along thez-axis and5 in ¢), at
calibration factor (rad/nC) for its response to ionizing radiatiorf, = 17-7 ¢m, ii) on the support structure of the outer silicon
C, 7 is the non-linearity correction factor, an., ., is the (ISL), at40 locations § along thez-axis ands in ¢), atr =
background ionizing radiation dose measured by a number ®f-7 ¢m, and iii) on the inner faces of the plug calorimeter
control TLD-700 chips which were not placed in the detectofPCAL), at80 locations § in 7 and8 in ¢), atz = £175.3 cm.
Averaging the doses measured by the three TLD chips #able | shows the number of protons and antiprotons in the
a given holder, we obtain the ionizing radiation doge,, at Tevatron, the number of lost beam particles recorded, and the
the location of the TLD holder in study. We then calculate thBumber of collisions during the two exposure periods. From
neutron doseD,, (rad), from the TLD-600 chips in that holder, February to May 2001 the ratio of proton losses to collisions

as follows: was 264 x 10°/ pb~!, whereas from May to October 2001
1 collisions were dominant and the ratio wa9 x 109/ pb~!.
D, = kL’G(C%b‘ ky6 Re — D~y) — Dy ctr1 (2) The Tevatron is currently operating with 2 x 10° loss counts
7,6

per pb! of collisions.

whereRs is their reading (nC);., ¢ andk,, ; are the appropriate  The ionizing radiation during these two periods is shown in
calibration factors(C', ¢ is the non-linearity correction factor, Fig. 6. Each point on the plots is the average of the various
and D, .ty is the background neutron dose measured by measurements ig for the givenz location. The uncertainty
sample of control TLD-600 dosimeters. shown is the RMS spread of these measurements. Collisions
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Fig. 7. lonizing radiation dose, as a functionfdue topj collisions (top), Fig. 8. Neutron radiation dose as a functioredbr the two exposure periods.
and due to beam losses (bottom). The shaded band represents the systef@gidhe pattern during the first exposure period, dominated by proton beam
uncertainty from the beam loss measurements. For the second exposure pd@@ees (proton direction ig-z). Bottom: the dose during the second exposure

the ratio of proton losses to collisions wa® x 10° counts / pb!. period, dominated by proton-antiproton collisions arounet 0.
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result in a roughly symmetric distribution around the nominal< s Dose = Ar e | Dose = Ar @
pp collision point ¢ = 0), whereas losses yield asymmetric 2'4 8 N
distributions. N o | o
Assuming that the radiation at a given point is the linear 105 R » & )\ /
super-position of contributions from losses and collisions, we 18 F 4
solve for these two components during the two exposure % 5 ’ 16 | \\.\ e
periods. The resulting ionizing radiation fields are shown in . 14 |
Fig. 7. From them, we estimate that during the second exposure ©* 12 f
H = el 5 1 TR T T T T AR N NN R EN N MRTENRAN R SR

period, pp collisions contribute a dose of 13 rgd per pb Ty T T T T T T
at a radius of37.7 cm atz = 0. The corresponding dose from Z (cm) Z (cm)

losses is~ 0.3 rad per10° counts~ 1.2 rad per3.9 x 10°
counts~ 1.2 rad per phl of collisions. This is a contribution Fig. 9. Fit parameters of the radiation field model in Equation 3; normalization
of ~ 8% to the ionizing radiation (left) and power law exponent (right) as a functionof
~ 8% .
The neutron radiation doses for the two exposure periods
are shown in Fig. 8. Na:-dependence in the region of thep(y y):
silicon detectors and no evident radial dependence of the
neutron radiation is seen, in contrast to the ionizing radiation D(z,y) = A 1
measurements. ¥ = V@ —20)2 + (y — 10)?

where A is the absolute normalizationy is the power law
I1l. M ODELING THE RADIATION FIELD exponent, andzo, yo) is the offset of the beam line compared
to the detectorz-axis. The normalization and the exponent
The ionizing radiation measurements are parameterized usixhibit a strong:-dependence, as seen in Fig. 9. For the region
a model based on previous CDF measurements of the silicohthe silicon £95 cm < z < +95 cm), the power law
radiation damage profile [6]. This model assumes cylindricaxponent has values from = 1.5 atz = 0 to ~ 1.8 at
symmetry of the radiation around the beam line, with a radial= 95 cm.
dependence which follows a power law Iir, wherer is the Using our TLD measurements and this model, we quote that
distance from the beam line. For any poiat y) on a plane at a radius- = 3 cm on the plane = 0, we expect a dose of
perpendicular to the beam axis at we write for the dose, 300 =+ 60 rad per pbr! of collisions. This number can be then
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used in conjunction with the power law of Equation 3, with
values from Fig. 9, to get the prediction of the radiation leve
at any point of our tracking volume. 9
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IV. THE SILICON AS A RADIATION MONITOR 4 f — TLD + Model prediction

[ 8

The prediction of the radiation field reconstructed from the* 35 |
TLD measurements and the simple model presented above, c@n ; |
be tested by comparing to the radiation seen by the silicon
detectors located closest to the beam line.

The increase in the detector leakage curreft ) is
related to the particle fluenc@, (number of particles per unit
area), through the relation:

25 F

2 F

fluence/ [L d

15 |

1 b

Aljeax = Odamage * ®.-V, (4) 0.5 ;
Where agamage i the damage factor which depends onthe °o 7 3 3 4 5 o
type of radiation traversing the silicon and on the temperature ¢ (radians)

of the silicon.V is the active volume of the silicon sensors.

For minimum ionizing particles going through silicon kept at &y 19, Fiuence (particles per unit area) per piof delivered luminosity,
temperature oR0°C, we usetqamage = 3 X 10~'7 Alcm [7].  as a function of the azimuthal angle around the beam line. The points are
After correcting for the actual temperature of the silicon duringom the leakage current measurements at the innermost silicon layer. The
th iod-(8°C | E . 4 f urve is the prediction of the radiation field model constructed from the TLD

e measurement perio (8°C), we solve quappn Of measurements.
the fluence of particles through the innermost silicon layers,
atr ~ 1.7 cm. ) )

The particle fluence calculated this way can be directly:5—2.1in the CDF tracking volume. The TLD measurements
compared to the expected fluence given by the radiation fighjedict a dose 0800 + 60 rad per pb of collisions, at a
model discussed above. We convert the radiation dose dtgtancer =3 cm from the beam line, at = 0. _
particle fluence by using a factor &f87 x 107 minimum  We find our TLD measurements in good agreement with
ionizing particles per rad. leakage current measurements in the silicon.

The measurements of the leakage currents in the silicon werdVe believe that our data can serve as a calibration point
performed during a |ater period than the TLD measuremen{@_r simulations of the radiation environment in future hadron
The particle flux (i.e., fluence per pb) is shown in Fig. 10 colliders.
as a function of the azimuthal angfearound the beam line.
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