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An analytical formula for the longitudinal coupling 
impedance of a hole is developed using a variational 
method. We show that the coupling impedance can be 
expressed as a sum of functional series, whose argument is 
the dimensionless quantity kd alone, where E is the free- 
space wave number and d is the radius of the hole. When 
expanded in powers of kd ,  we recover the long wavelength 
result as a limiting case. The numerical evaluation re- 
veals that the impedance can be well modeled by an RLG 
resonator circuit. We also show the qualitatively good 
agreement between the theory and the MAFIA-T3 sim- 
ulation for the geometry of a hole in a coupled waveguide 
with rectangular cross section. 

I. PROBLEM STATEMENT 
The geometry of our problem is shown in Fig. 1 where 

a charge is moving in the z-direction with velocity close to 
the speed of light. The distance between the plane screen 
and the beam path is 6, and the origin of the coordinate is 
at the center of the hole with radius d .  The local cylindrical 
coordinate system ( p ,  8, y) is also shown. We calculate the 
longitudinal coupling impedance for this geometry. 
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Figure 1 
Infinite Flat Screen with a Hole. 

11. Low FREQUENCY SOLUTION 
Denoting El and HI as the fields without the hole and 

E2 and H2 as the fields with the hole, we can express the 
longitudinal coupling impedance as [l] 

where n x E2 E J, is the magnetic current induced in the 
hole, which is not known until we solve the problem. 

Assuming a small hole, namely kd = 27rd/A << 1, Bethe 
obtained the solution for the magnetic current in the hole 
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P ep x E o + j - d m H O I  2kZo n x E = -  
q/-- -- Jm, x 

J m ,  E 

(2) 
where Eo and Ho are the field evaluated at the center of 
the hole in the absence of the hole, and Jm,E and Jm,H 
denote the magnetic current induced in the hole due to the 
incident electric and magnetic fields, respectively. 

The magnetic field from the unit source current can be 
obtained using the image principle. In the plane of the 
hole, it becomes 

, Hz.= 0;  lo e - j k r  H ,  = --- 
A xz + 62 ( 3 )  

where the coordinate system defined in Fig. 1 is used. 
Assuming a small hole in which the field strength is uni- 

form but the phase is varying, we may rewrite the source 
field as 

Then, the longitudinal coupling impedance becomes 

which results in Z ( k )  = (2Zod3/3x2b2)k .  
If we apply the above formula to a cylindrical beam pipe 

of radius b with a hole of radius d, the longitudinal coupling 
impedance becomes, with HO = & in Eq. (71, 

Zod3 Z ( k )  = j- 
67r2b2 k’ 

which is exactly the same as the well-known results [l]. 

111. VARIATIONAL SOLUTION 
A .  Variational Formalism 

We begin by defining an “impedance functional” which 
is stationary with respect to the unknown quantity (mag- 
netic current density in the hole). 

We define the impedance functional 2 as 

2 = - / J + (E2 - E l ) d V .  (9) 

In the above definition, as we subtracted the contribution 
from the source field, the entire contribution is from the 
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scattered field which satisfies the homogeneous Maxwell's 
equations. We note that if the electric field is real, the 
longitudinal impedance is the complex conjugate of the 
impedance functional, Z ( k )  = Z'(k)' .  zp  = (Ed)4 ( 1  + - . . . 
plane of the screen where El satisfies the boundary condi- 
tion n x El = 0, 2 reduces to 

It may be interesting to compare Z g ) ( k )  and Z$) ex- 
panded in powers of kd.  We find that 

32z0d2H,2 22 
If the integrating surface is chosen to  coincide with the 2 7 ~  25 

By using Rumsey's reaction concept [3 ,  41, we can derive 
the variational expression for 2 as [5] 

+ j  

19 zp = 
( 1 0 )  2 7 r  

-> 
2 In the low frequency range, it is found that 2(2) N 

j (220d3H,2/3)E,  which is the same as the low frequency 

Since HO - b-', the above result shows that the 

1 [Jsa Hi . (n x E")dS]  z = -  
4 jwc J,, J,,[n x Ea(r)]. Eo(r].') - [n x Ea(r')]dSdS''  result found in the previous section. 

( 1 1 )  
. I  

where Hi is the incident magnetic field on the screen (pre- 
viously denoted as HI), E" is the assumed electric field 
in the hole, and co(rlr') is the free-space dyadic Green's 
function. 

The above formula is a homogeneous equation in the 
sense that the result does not depend on the amplitude 
of the assumed electric field Ea. In fact, this is a general 
expression for the impedance functional of an aperture in 
a conducting plane as long as the plane is the symmetry 
plane separating two regions, namely, an infinite plane or 
coupled waveguide structure. Details of the calculation 
depend on the shape of the aperture and the assumed tan- 
gential electric field in the aperture. 

B. Results 
In order to evaluate the variational expression repre- 

sented by Eq. ( l l ) ,  we assume a trial function for E" based 
on the Bethe's solution in Eq. (2) :  

P- 1 nxE'  = ee b , p " ( l - $ ) i - " + e ,  un(1--),-2. fi2 
u .. 

n=l  n=l  
(12 )  

This field satisfies Meixner's "edgefield" condition [6] .  
The coefficients u,, and b, are unknown quantity and de- 

pendent on the frequency. We used the method developed 
by Levine and Schwinger [7] to determine these coefficients, 
and the detailed results can be found in [5]. 

Once the u, and b ,  coefficients are determined, we can 
use them to calculate the longitudinal coupling impedance. 
It turns out that the coupling impedance is numerically 
equal to the impedance functional. We also found that 
the magnetic current from the electric and magnetic field 
does not couple in contribution to the coupling impedance. 
Thus we write the impedance as 

Z ( N + ' w  = Z(N) E + zgf), (13) 
where M or N denotes the order of approximation or the 
number of terms used for trial fields. 

We found that the coupling impedance does not have the s t a  
tionary property in general. 

impedance scales as (d /b )2  

kd 

Figure 2 
Comparison of Impedances due the Incident Magnetic 

Field, Z H ,  and Electric Field, Z E .  

Numerical results of 2:' and Zg' are presented in 
Fig. 2.  It shows that the impedance of magnetic type ZH 
is mainly inductive (Im ZH > 0), and the electric type ZE 
exhibits capacitive behavior (Im Z E  < 0). 

The results, using the three terms Z(3)  = 2:) + Zg), 
are shown in Fig. 3, from which we find that the maximum 
value of Re Z(E)  is Re Z(k) , , ,  = 0.216Zo. For all other 
d/b, it becomes Re Z ( k ,  d/b) , , ,  = O . Z l S z ~ ( d / b ) ~ .  

IV. BROADBAND RESONATOR MODEL 
Since the impedance shown in Fig. 3 is similar to the 

impedance of a parallel RLGresonator circuit, it would be 
useful if we described the impedance in terms of circuit 
parameters. The impedance of an RLGresonator circuit 
is 

(14) 
R Z ( w )  = 

1 + j q  (e - 2) 
' 

where R is the shunt impedance, Q is the quality factor, 
and wr is the resonant frequency. 
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Figure 3 
Variational ResuIts Using Three-Term Electric Field. 

(The ratio d/b=l.O is used.) 

The resonant frequency and the quality factor can be 
read from Fig. 3. For the Q value, we used the def- 
inition Q = wr/2Aw, where lZ(w)l at the frequency 
w = wr + Aw is 0.707 of its maximum value. The 
shunt impedance can be determined in two ways. We 
can either use the impedance in the low frequency limit, 
Z ( k )  = j(2Zod3H;/3)k, or the impedance at resonance, 
Z ( k )  = 0.216Zo(d/b)’. Denoting these two models as 
BBR-1 and BBR-2, respectively, the circuit parameters 
are shown in Table 1. 

Table 1 
Circuit Parameter Based on BBR Model 

I - I  

BBR-1 1 1.35(c/d) I 1.8 10.164 Zo(d/b)* 
I BBR-2 1 1.35(c/d) 1 1.8 1 0.216 Zo(d/b)’ I 

We compared the impedances from the two models with 
the variational result, which is shown in Fig. 4. Note that 
( Z ( k ) / Z o ) / k d  is plotted, which is the useful quantity in 
the instability calculation. 
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Figure 4 
Comparison of Impedances from Variational Solution and 

Broadband Resonator Model. 

V. APPLICATION TO ACCELERATOR CHAMBER 
We also applied the above results to the accelerator 

chamber. As a model geometry we considered the rect- 
angular waveguides coupled by the hole in the common 

wall. In the analysis, we used the image charges in or- 
der to  remove the waveguide wall. By doing SO we could 
investigate the contributions from the real charge and the 
image charges to the impedance separately. We found that 
the image-charge contribution is small, as long as d/b is 
small 151. 

We compared the variational results with a MAFIA-T3 
[8] simulation. The geometry used in the MAFIA-T3 sim- 
ulation has a 2 cm-by-1 cm rectangular waveguide with a 
hole of varying radius on the 1-mm-thick common wall. 

The results for the hole with a radius of 1 mm corre- 
sponding to d/b=0.2 are shown in Fig. 5. The agreement 
between the two results is qualitatively good. From the 
range of frequency we can conclude that the appropriate 
length scale is the size of the hole and not the size of the 
waveguide. Thus the scaling we found in the previous sec- 
tion also applies to the waveguide geometry. 
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Figure 5 
Coupling Impedance of the Hole with a Radius of 1 mm 

in the Coupled Waveguide. 
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