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Abstract. A PIC code to simulate high intensity beams in hadron circular 
accelerators, BNL-Orbit, has been implemented on parallel computers already in 1999. 
The issues of full 6-dimensional tracking and the relevant approximations are discussed, 
as well as solvers for the space charge problem in the presence of walls. 

1. Introduction 

The code Orbit [l] has been designed for PIC tracking of a particle beam in a high 
intensity circular hadron accelerator. In the code, space charge forces are continuously 
calculated and applied to the individual macroparticles of the herd as transverse 
momemtum kicks and as longitudinal energy kicks. 

The Brookhaven edition of the code Orbit, or BNL-Orbit was made fully MPI [2] 
parallel, typically running on a Unix Linux platform. The parallelization of Orbit, with 
space charge calculation done in three dimensions, is structured around the concept 
of longitudinally partitioning the beam into segments, the number of which can be 
varied. The parallelization had to possess the capability to efficiently handle almost any 
beam configuration ranging from coasting beams of uniform longitudinal density with 
lengths equalling the circumference of the machine to bunched beams of non-uniform 
longitudinal density with lengths a small fraction thereof. 

2. Split Operator. Long Bunches 

In Orbit the propagation of the beam is controlled by a Split Operator technique. At 
each stage the herd is transformed through maps calculated for a bare lattice, followed 
by the application of space charge kicks. Maps are provided by an optical program as 
MAD [3] and are arranged sequentially along the circumference of the machine. Space 
charge kicks are applied at certain locations in the lattice: “SC nodes”. 

In PIC simulation the independent variable can be either time t ,  or space s. While 
time can be a natural choice, because the space charge interaction must be calculated 
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,with the position of all the macros at the same time, in a cyclic accelerator, where particle 
traverse the same position in the lattice many times, the position is a convenient clock. 
Orbit uses s as the independent variable. 

To solve the space charge problem in the presence of accelerator chamber walls, we 
use a pre-calculated impedance budget, or direct calculation of the electromagnetic field 
from charges and currents in the beam and image charges and currents induced on the 
wall. Impedances are useful to represent lump properties of the entire wall structure, 
direct calculation is done to address in detail local wall properties. 

Given beam and wall image charge and current distribution, and assuming steady 
state current flow, the electromagnetic problem can be solved via two partial elliptic 
differential equations, Poisson Law and Ampere Law (in the Coulomb’s gauge) 

with p the beam charge distribution, and j’ the current distribution at a source point 
Q. The solution would yield the scalar electric potential and the magnetic vector 
potential A’ in each field point P ,  from which space charge kicks are calculated. 

To find p, one should bin the macroparticles on a suitable grid according to their 
position coordinates (x, y, z ) ,  and to find I one should bin the herd according to the 
momentum coordinates (pz, pv, Ap/p). 

For long bunches, as it is common in circular accelerators like synchrotrons, Orbit 
makes at the present the customary approximative assumption that the flow of beam 
current is parallel to the walls, thus representing the partial compensation between space 
charge repulsion and space current attraction by only solving the Poisson equation 
and multiplying the kicks by a factor l/y2. Then, transverse momentum kicks and 
longitudinal energy kicks assume the form 

where LT and L, are the “lengths” of a kick, and p the perveance 
41’rXqhr~ 

AxP2y3rn~ ’ p=  (3) 

with X the longitudinal current density, h the harmonic number and Ax the (Cartesian) 
grid mesh size. 

For a numerical 
treatment the herd is binned to a grid of points and the equation is solved on that grid by 
finite difference methods. The transverse grid is terminated at the wall boundary, and 
the longitudinal grid covers the whole length of the beam bunch. For long bunches 
in sychrotrons it is impractical to make the longitudinal grid step as small as the 
transverse, but in practice it is not necessary to do so, because the longitudinal space 
charge distribution varies only smoothly along the beam, and the longitudinal motion of 
particles within the beam is much slower than the transverse motion. The longitudinal 
grid will then sensibly consist of beam segments, long enough that the average density 
in each segment, the transverse aspect ratio of the segment, and the wall configuration 

In principle, equation (1) should be solved in 3 Dimensions. 



Aspects of Parallel Simulation of High Intensity Beams in Hadron Rings 3 

around the segment can be considered constant. In Orbit we then write for the beam 
space charge 

P k ,  Y, 4 = P u b ,  Y) P z ( 4  (4) 
with pz(x)  a constant within a segment. 

transverse Poisson problem simultaneously in each segment by parallel computation. 
This approximation simplifies the problem, since we can now only solve the 

3. Problem Decomposition and Load Balancing 

In two dimensions the space charge calculations in Orbit take place at given points called 
nodes, situated around the circumference of the ring. The herd of macro particles, or 
macros, which compose the beam, arrive at each node independent of time and are 
transversely represented as a flat disk. The particles are then binned onto a 2-d mesh 
from which the potential is calculated using a sparse LU solver.The directional derivative 
of the potential is the respective component of the force which is then applied to each 
particle as a kick proportional to the length of the space charge element. Proceeding in 
this manner the entire ring is traversed for a given number of turns. 

The parallelization for 2-d divides the herd as evenly as possible over the number 
of processors. The processors then separately track their particles around the ring. 
At a space charge node, the processors bin their particles onto a local mesh and then 
communicate the local meshes to a global mesh. The calculations then proceed on the 
global mesh as before. This scheme scales linearly. 

In three dimensions a different approach must used. The simulation can no longer be 
independent of time, because to correctly represent the longitudinal interactions between 
adjacent beam segments, all segments must be populated by macros all considered at 
the same time. Therefore, at each space charge node the beam, still represented as 
a flat disk up to this point, is expanded longitudinally to bring each particle to their 
appropriate position at a given time. 

The beam can then be divided into longitudinal segments whose boundaries are 
delineatedby the space charge elements in the ring. The processes each take a number of 
these segments and do all calculations independently. The problem isstill decomposed 
by subdividing the herd, however, the subdivision of the herd is dependent on the 
longitudinal locations of the particles. 

In a typical run for a ring with K space charge elements, N total macros, and 
P processes, NIP macros would initially be injected into the ring by each process. 
Each macro has no constraint regarding its longitudinal position upon injection and 
therefore may be found in any of the K elements. When the first space charge element is 
encountered, the processes synchronize and expand their respective herds longitudinally. 
The ring is spatially decomposed along its length and so each process is assigned KIP 
space charge elements with one of the processes taking the remainder. The macros are 
then exchanged among the processes based on their longitudinal positions. After the 
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exchange each process contains all the macros in the global herd that belong to its KIP 
slices. The communication involved is large only for the first space charge element as 
the synchrotron motion is relatively slow and particles will infrequently migrate between 
processes. The processes then do a 2-d transverse space charge calculation for each of 
their K / P  slices before collapsing the beam and continuing to track. The process repeats 
itself at the next space charge element though with less particle exchange. 

This idea works well for a uniform beam. If the beam is not longitudinally uniform 
the simulation will not be efficiently load balanced, as one process may have many more 
macros than another. Therefore, several factors must be considered when decomposing 
the problem over the process domain. 

The computational burdens which have the greatest effect on the performance of the 
code are dependent on two variables. The number of space charge elements over which 
the Poisson equation must be solved and the number of macros in the herd. Therefore, 
rather than simply dividing the the number of elements evenly among the processes it is 
more efficient to consider the number of elements assigned as a function of the number of 
macros contained within them. BNL-Orbit therefore dynamically calculates an optimal 
decomposition scheme to balance the load at each space charge element, as shown in 
figure 1. 
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Figure 1. Process decomposition superimposed on the longitudinal phase space of a 
herd at (a) injection and (b) at a later time. Example for the SIS [4] 

4. Details of Longitudinal Beam segmentation 

The longitudinal beam segmentation is established using as a guide the shape of the 
beam envelope represented by the square root of the twiss functions p. The length of a 
segment is a fraction of a ,&wavelength, as shown schematically in figure 2. The local 
accelerator chamber profile is associated to each segment. When the herd, that can be 
imagined as a flat disk, reaches a SC node at a longituinal position SSC, all the macros 
are there at different times. To calculate space charge kicks, the beam bunch is then 
reconstructed bringing each macro to the position s at the (center of the) segment where 
it was or will be at a common time, using the transfer maps between s and SSC. After 
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Figure 2. Slicing a beam. The wavy lines represent the envelope of the beam (beta- 
wave). Dashed vertical lines represent planes where the Poisson equation is solved. 

kicks are calculated and applied to the individuual macros, the beam is again flattened 
and transfered to the next node. Figures 3 show a gaussian beam bunch thus expanded 
in a FODO channel. Transfer maps for the expansion are for the bare lattice, within the 
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Figure 3. Expanded Gaussian beam and its 3D renditionh the Ihs figure the beam 
envelope is also shown 

very approximation that leads to the concept of split operators. 

5. 2D Poisson Solvers 

The differential formulation of Poisson Law is in equation (l), the integral expression 
for the potential in a field point P is 

1 P(Q) @(P)  = - 1 -dQ. 47r~Oy~ r ( 5 )  

calculated by integration over the distribution at the source point Q with a Green 
function G(r)  = l / r ,  r = IP - QI. 

In an integral formulation the image charge distribution on the walls is part of the 
input of the problem and must be calculated in advance, conversely, in a differential 
formulation the image is part of the solution. 

Equation (5) can be solved by direct integration (Brute Force) or the integral can 
be reduced to a convolution between the FFT transforms of p(Q) and G(r).  

a ( r )  = Const x F F T - ~  ( G ( w )  * p l ( w ) )  . 
Both BF and FFT are implemented in BNL-Orbit. 



Aspects of Parallel Simulation of High Intensity Beams in Hadron Rings 6 

Figure 4. Solving with perfectly conducting walls 

The differential Poisson Equation, including boundary condition on the walls 
(Dirichlet condition for the function or Neumann condition for its derivative at the 
walls) can be numerically dealt with in various ways. At the present BNL-Orbit is 
limited to perfectly conducting walls, where it is Q,(Pwulls) = 0. The field outside is zero 
and, by Gauss's Theorem, the total wall (image) charge is equal to the beam charge. 

Let us discretize equation (1) on a Ad x N Cartesian grid with equal spacing in the 
transverse coordinates x ,  y .  The equation and its solution (implicit sum on subscript 
and superscript indeces) .can be written as 

Use the second order expression for the second partial derivative (in x )  
a2@ 1 
- = - (@i-l,j - 2 @ i , j  + @i+l , j )  , ax2 h2 (7) 

and write the Laplacian matrix V2 in discrete form over a Cartesian grid that extends 
to the wall 

,C; = -46;6; + 6;+,6; + 6;-16; + 6;6;+l + 6;6;-l. (8) 

The set (6) is a system of linear equations. Figure 4 schematically suggests how to 
achieve a solution for perfectly conducting walls. Walls are mapped to n empty dots, 
and the interior to m full dots. The system of equations is exactly determined, with 
n + m known quantities, i.e. Q, = 0 at the n empty dots and p at the m full dots, and 
m + n unknowns, i.e. m values of Q, to be calculated at the full dots and pimage at the 
n empty dots. 

The solution is found in BNL-Orbit by using one of two alternate methods, 
depending on the problem: (i) by LU decomposition and (ii) by iteration. 

(i) The Laplacian is a symmetric band sparse matrix. To solve the sytem of 
equations of the form Ax = b we use the LU decomposition for sparse matrices. By 
replacing the coefficient matrix A by its LU factorization we have Ax = (LU)x = 
L(Ux) = Ly, where y = Ux; This reduces one equation, Ax = b, to two equations, 
Ly = b and Ux = y. Using forward substitution, one calculates y, after which x is 
calculated using backward substitution. The LU factorization of a symmetric band 
sparse matrix is itself a symmetric band sparse matrix and so is done only once at 
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the beginning of the program and stored in memory. This is very efficient for small to 
moderate grids where storage of the sparse LU factorization is manageable [5] .  

(ii) Instead of LU Decomposition, the discretized Poisson's can be solved by 
iteration. From equations (6) and (8) obtain 

1 
4 (9) @i,j = - &l,j + Qj+l + @i+l,j + QQ-1 - Pi, j)  , 

and solve this by iteration, starting with a guess. At iteration k it is 

Since the beam density generally evolves slowly from one space charge node to the 
next, iterative techniques benefit through more rapid convergence. Several techniques 
were applied to the problem including: Successive Over Relaxation (SOR), SOR with 
Chebychev acceleration, and Conjugate Gradient (CG). Preconditioned CG was also 
considered but memory considerations precluded its use. As expected, CG showed the 
most rapid convergence, however, the basic algorithm requires more operations than 
either SOR technique and was therefore less efficient in this case. It was also found 
that basic SOR was most efficient for small grids ( N  < 128) while SOR with Chebychev 
acceleration was most efficient for large grids ( N  < 128). The number of iterations 
required for convergence to 8 significant digits was approximately 4N for both SOR 
methods using optimal relaxation parameters. 

6. Approximations for the Longitudinal Dimension 

In first approximation, as discussed before, we solve the 3D problem by segmenting the 
beam longitudinally and solving the 2D equation (1) simultaneously in each segment. In 
this approach, the longitudinal space charge forces will be calculated simply by taking 
the differences of the potential at a given radius between adjactent slices. Still, within 
this model we can do something better that takes into account details of the longitudinal 
distribution. A perturbative approach is the following 

In 3D, using the decomposition of equation (4), Poisson becomes 

To 0-th order both pz(z) and aZ(z) are piece-wise constant 

Equating z functions and (2, y) functions on both sides, this yields 

q = PI[, YPP, = -;P&, Y ) .  
That says that an approximate solution to the Poisson equation is obtained by solving 
for @, in the transverse space, using the transverse charge density, and then multiply 
the result by a constant longitudinal &I!, or 

@(O)(Z, Y, 2) = @ p u ( Z ,  3) .  
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For a better solution, let’s use a perturbative method. With 4 a small longitudinal 
potential, write 

@!)(z) = @[I + $(X). 
and insert this into equation (10) 

to find, after cancelling out the lowest order terms 

Pu + w24(z) = 0, with w2 = --. d24(Z> 
d X 2  EO% 

The complete solution is 

@$‘)(z) = @ll+ $%(O)COS(WZ), with aZ(z = 0 )  = all, (12) 

Note that (i) the frequency w in equation (11) is a (weak) function of (x,y). e.g., 
for a Gaussian shaped beam, the transverse charge density and transverse potential 
have similar shape. (ii) The derivative of the longitudinal potential in the center of the 
segment in is M proportional to the longitudinal variation of current in the beam at that 
location -remember that at the lowest order the longitudinal potential is equal to the 
longitudinal charge density- This has nothing to do with the transverse size of the beam 
but with its longitudinal phase space profile. (iii) The previous observation is consistent 
with the impedance models, where the longitudinal space charge kick on the particles 
is proportional to the charge per unit length in the beam. 
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