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ABSTRACT

Sequestration of CO, in coal has potential to reduce greenhouse gas emissions from coal-
fired power plants while enhancing coalbed methane recovery. Data from more than 4,000
coalbed methane wells in the Black Warrior basin of Alabama provide an opportunity to quantify
the carbon sequestration potential of coal and to develop a geologic screening model for the
application of carbon sequestration technology. This report summarizes stratigraphy and
sedimentation, structural geology, geothermics, hydrology, coal quality, gas capacity, and
production characteristics of coal in the Black Warrior coalbed methane fairway and the
implications of geology for carbon sequestration and enhanced coalbed methane recovery.

Coal in the Black Warrior basin is distributed among several fluvial-deltaic coal zones in the
Lower Pennsylvanian Pottsville Formation. Most coal zones contain one to three coal beds that
are significant targets for coalbed methane production and carbon sequestration, and net coal
thickness generally increases southeastward. Pottsville strata have effectively no matrix
permeability to water, so virtually all flow is through natural fractures. Faults and folds
influence the abundance and openness of fractures and, hence, the performance of coalbed
methane wells.

Water chemistry in the Pottsville Formation ranges from fresh to saline, and zones with TDS
content lower than 10,000 mg/L can be classified as USDW. An aquifer exemption facilitating
enhanced recovery in USDW can be obtained where TDS content is higher than 3,000 mg/L.

Carbon dioxide becomes a supercritical fluid above a temperature of 88°F and a pressure of
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1,074 psi. Reservoir temperature exceeds 88°F in much of the study area. Hydrostatic pressure
gradients range from normal to extremely underpressured. A large area of underpressure is
developed around closely spaced longwall coal mines, and areas of natural underpressure are
distributed among the coalbed methane fields. The mobility and reactivity of supercritical CO, in
coal-bearing strata is unknown, and potential exists for supercritical conditions to develop below
a depth of 2,480 feet following abandonment of the coalbed methane fields.

High-pressure adsorption isotherms confirm that coal sorbs approximately twice as much
CO, as CH, and approximately four times as much CO, as N,. Analysis of isotherm data reveals
that the sorption performance of each gas can vary by a factor of two depending on rank and ash
content. Gas content data exhibit extreme vertical and lateral variability that is the product of a
complex burial history involving an early phase of thermogenic gas generation and an ongoing
stage of late biogenic gas generation.

Production characteristics of coalbed methane wells are helpful for identifying areas that are
candidates for carbon sequestration and enhanced coalbed methane recovery. Many geologic and
engineering factors, including well construction, well spacing, and regional structure influence
well performance. Close fault spacing limits areas where five-spot patterns may be developed for
enhanced gas recovery, but large structural panels lacking normal faults are in several gas fields
and can be given priority as areas to demonstrate and commercialize carbon sequestration

technology in coalbed methane reservoirs.
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INTRODUCTION

The amount of carbon dioxide (CO,) in the earth's atmosphere has risen from pre-industrial
levels of 280 parts per million (ppm) to more than 365 ppm, and most of this increase has been
within the last 60 years (Keeling and Whorf, 1998). This increase is attributed widely to the
burning of fossil fuels, and if current trends in resource utilization continue, anthropogenic CO,
emissions will triple during the 21* Century (IPCC, 1996). Recognizing the potential of global
warming related to increased greenhouse gas emissions, the U.S. Department of Energy is
seeking ways to offset industrial CO, emissions. Among the principal ways CO, emissions may
be reduced is by sequestration in geologic formations, including coal. Coal is an especially
attractive target for sequestration not only because it can store large quantities of gas, but
because CO, can be used to enhance recovery of coalbed methane, thereby offsetting the costs
associated with sequestration of CO, (Byrer and Guthrie, 1999; Gentzis, 2000; Hamelinck and
others, 2001).

In a discussion of the state of carbon sequestration science, Reichle and others (1999)
expressed the need for studies assessing the sequestration capacity of geologic formations and
developing screening criteria for the demonstration and commercialization of CO, sequestration
technology. In response to this and other needs articulated by Reichle and others (1999), the
Geological Survey of Alabama, in partnership with the University of Alabama, Alabama Power
Company, and Jim Walter Resources, Incorporated, is conducting a three-year study that

assesses the CO, sequestration potential of coalbed methane reservoirs in the Black Warrior



basin (fig. 1) and develops geologic screening criteria that can be used to evaluate sedimentary
basins and select sites for the demonstration and commercialization of sequestration technology.
The objectives of this study are (1) to develop a geologic screening model that is widely
applicable, (2) to quantify the CO, sequestration potential of the coalbed methane fairway in the
Black Warrior basin of Alabama, and (3) to apply the screening model to identify sites favorable
for demonstration of enhanced coalbed methane recovery and mass sequestration of CO, emitted
from coal-fired power plants. The coalbed methane fairway of the Black Warrior basin (fig. 1) is
a logical location to develop screening criteria and procedures from numerous standpoints.
According to the U.S. Environmental Protection Agency, Alabama ranks 9" nationally in
CO, emissions from power plants, and two coal-fired power plants are within the coalbed
methane fairway (fig. 1). More than 1.2 Tcf (trillion cubic feet) of coalbed methane have been
produced from the Black Warrior basin, which ranks second globally in cumulative coalbed
methane production. Production is now leveling off, and enhanced coalbed methane recovery
through carbon sequestration has the potential to offset impending decline and extend the life and
geographic extent of the fairway far beyond current projections. Based on a preliminary
assessment of sequestration potential in the Pottsville Formation of the Black Warrior basin,
Pashin and others (2001a, b) indicated that, at current rates of emission, potential exists for
sequestration of 35 to 72 years of emissions from coal-fired power plants adjacent to the Black
Warrior coalbed methane fairway that serve the Birmingham and Tuscaloosa metropolitan areas.

This number is promising, but Pashin and others pointed out that a more realistic appraisal
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integrating the complexities and constraints imposed by geology, technology, and infrastructure
is required to develop a plan for carbon sequestration and enhanced coalbed methane recovery in
the Black Warrior basin.

The diverse depositional and structural styles in the Pottsville Formation of the Black
Warrior basin have been central in the development of geologic models for Carboniferous coal-
bearing strata (e.g., Thomas, 1988; Ferm and Weisenfluh, 1989; Gastaldo and others, 1993;
Pashin and Groshong, 1998), which constitute nearly all the economic coal resources in the
highly industrialized regions of eastern North America and Europe (Landis and Weaver, 1993;
Bibler and others, 1998). For sequestration in coal to have a meaningful impact on greenhouse
gas emissions, screening models and technologies must be tailored to take advantage of the
numerous thin (< 6 ft), geometrically complex coal seams that abound in these areas. The Black
Warrior basin is the most attractive of the Carboniferous coal basins for this purpose, because
geologic data from more than 4,000 coalbed methane wells and exploration cores provide a
unique, unparalleled database that is essential for developing screening models and quantifying
sequestration potential (fig. 2).

Experience from more than 25 years of coalbed methane development in Alabama facilitates
identification of screening criteria for sequestration of CO, in coal, because the geologic
variables that determine the distribution and producibility of coalbed methane also influence
sequestration capacity (fig. 3). Accordingly, the methods employed in our research draw heavily

on the time-tested techniques used to evaluate coalbed methane reservoirs (e.g., Elder and Deul,
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Figure 2.--Well control in the Black Warrior coalbed methane fairway and locations of stratigraphic cross sections (plates 1-8).
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1974; Pashin and others, 1991; Ayers and Kaiser, 1994; Kaiser and others, 1994). This report
synthesizes results of the second year of our research, which focused on acquisition and
interpretation of basic geologic data and is proceeding according to schedule. All data acquisition
tasks are still in progress, but enough data have been collected to facilitate a preliminary
characterization of stratigraphy, structural geology, hydrodynamics, geothermics, coal quality,
and sorption capacity. This characterization is helping guide the project by identifying the
strengths and pitfalls associated with each geologic screening criterion. We have also initiated a
vigorous technology transfer program, which includes assembly of a project advisory committee,
development of a project web page, publication of technical reports, and presentations at

technical meetings.



EXECUTIVE SUMMARY

Sequestration of CO, in coal has potential benefits for reducing greenhouse gas emissions
from the highly industrialized Carboniferous coal basins of North America and Europe and for
enhancing coalbed methane recovery. Hence, enhanced coalbed methane recovery operations
provide a basis for a market-based environmental solution in which the cost of sequestration is
offset by the production and sale of natural gas. The Black Warrior foreland basin of west-central
Alabama contains the only mature coalbed methane production fairway in eastern North
America, and data from this basin provide an excellent basis for quantifying the carbon
sequestration potential of coal and for identifying the geologic screening criteria required to
select sites for the demonstration and commercialization of carbon sequestration technology.

The Geological Survey of Alabama, in partnership with the University of Alabama, Jim
Walter Resources, Incorporated, and Southern Company, has undertaken an intensive 3-year
investigation aimed at quantifying the carbon sequestration potential of the Black Warrior
coalbed methane fairway and developing a geologic screening model that is broadly applicable.
This report summarizes results of the second year of this investigation, which has focused on
geologic characterization. Key geologic variables analyzed include stratigraphy, structural
geology, geothermics, hydrology, coal petrology, and production data.

Coalbed methane resources in the Black Warrior basin are distributed among multiple coal
zones in the upper part of the Pottsville Formation (Lower Pennsylvanian). Pottsville coal zones

are a series of fluvial-deltaic depositional cycles that are bounded by regionally extensive



flooding surfaces. Net coal thickness generally increases southeastward, and the greatest
sequestration potential appears to be in the Black Creek, Mary Lee, Pratt, and Gwin coal zones.
Most coal zones contain one to three coal beds thicker than 1 foot that are significant targets for
coalbed methane production and carbon sequestration. Consequently, coalbed methane
operations have relied heavily on the application of multi-seam completion technology, and
similar approaches will be required for carbon sequestration.

Pottsville strata have effectively no matrix permeability to water, so virtually all flow is
through natural fractures. Faults and folds of extensional and compressional origin influence the
abundance and openness of natural fractures, and hence, the performance of coalbed methane
wells. The Black Warrior coalbed methane fairway can be characterized as a southwest-dipping
homocline that is broken by normal faults. Near the southeast margin of the coalbed methane
fairway, frontal folds of the Appalachian thrust belt are superimposed on the faulted homocline.
Fault-related fractures have significantly greater kinematic aperture than joints and have a much
greater tendency to cut across bedding than other natural fractures in the Pottsville Formation.
Therefore, fault zones constitute the most likely avenues along which injected CO, can leak from
coal into the country rock or to the surface.

Temperature-pressure conditions have a strong influence on the carbon sequestration
potential of coalbed methane reservoirs in the Black Warrior basin, because CO, becomes a
supercritical fluid above a temperature of 88°F and a pressure of 1,074 psi. Under supercritical

conditions, coal can contain more gas than is predicted by Langmuir adsorption theory, but the



mobility and reactivity of supercritical fluids in coal-bearing strata are poorly understood. The
mean geothermal gradient in the coalbed methane fairway is about 9°F/1,000 feet, and reservoir
temperature exceeds 88°F in much of the study area. Regional mapping indicates that localized
areas of abnormally high reservoir temperature are superimposed on a southwest trend of
increasing temperature that reflects the shape of the southwest-dipping homocline.

Water in the Pottsville Formation ranges from fresh to saline, and the coalbed methane
reservoirs can be classified as USDW (TDS content <10,000 mg/L) in much of the production
fairway. Fresh-water plumes formed by meteoric recharge of upturned strata along the southeast
margin of the Black Warrior basin contain water with TDS content of less than 3,000 mg/L. In
areas where producing reservoirs can be classified as USDW, enhanced coalbed methane
recovery efforts will require an aquifer exemption to comply with Class II UIC requirements.
However, where TDS content is less than 3,000 mg/L, this exemption is prohibited.

Hydrostatic pressure gradients range from normal (0.43 psi/ft) to extremely underpressured
(0.05 psi/ft) and have a bipolar distribution in the Pottsville Formation. Normal to moderate
underpressure is typical of most areas, and a large area of underpressure is developed around
closely spaced longwall coal mines. However, other areas of underpressure are distributed
among several coalbed methane fields and appear to be natural. Although dewatering related to
mining and coalbed methane operations has given rise to subcritical reservoir conditions
throughout the fairway, potential exists for supercritical conditions to develop as the hydrologic

system equilibrates following the abandonment of the mines and gas fields. No potential for
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supercritical conditions exists within coalbed methane reservoirs in the northern part of the
coalbed methane fairway, whereas in the southwestern coalbed methane fields, potential exists
for supercritical reservoir conditions to develop throughout this interval.

Coal quality parameters have a strong influence on the ability of coal to sorb gas. Rank in the
coalbed methane fields ranges from high volatile B bituminous to low volatile bituminous, and
virtually all coalbed methane production is from coal of high volatile A or higher rank. Mineral
matter has minimal sorption capacity compared to the organic constituents of coal, and in the
Pottsville Formation, ash is dominated by clay, quartz, and pyrite. High-pressure adsorption
isotherms for CO,, CH,, and N, confirm that coal sorbs approximately twice as much CO, as
CH, and approximately four times as much CO, as N,. Comparison of isotherms reveals,
however, that the sorption performance of coal for each gas can vary by a factor of two
depending on coal quality.

Gas content data were compiled from numerous sources and exhibit extreme vertical and
lateral variability that must be accounted for when assessing the potential for enhanced coalbed
methane recovery. This variability is interpreted as the product of a complex burial history that
involved thermogenic gas generation coincident with foreland basin subsidence and the early
stages of post-orogenic unroofing. As the basin cooled during the late stages of unroofing,
however, coal apparently became undersaturated with gas. However, development of a fresh-

water recharge zone along the southeast margin of the basin has apparently facilitated late-stage
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biogenic gas generation that has resulted locally in effectively complete isothermal methane
saturation.

Production characteristics of coalbed methane wells are helpful for identifying areas that are
candidates for carbon sequestration and enhanced coalbed methane recovery and for selecting
which wells should be converted into injectors. Gas production from vertical wells typically
exhibits exponential decline, whereas water production typically exhibits hyperbolic decline.
Mapping peak and cumulative production indicates that many geologic and engineering factors,
including well construction, well spacing, and regional structure influence well performance.
Production patterns are affected significantly by extensional faults and fault-related folds and by
compressional fold hinges. Close fault spacing limits areas where five-spot patterns may be
developed for enhanced gas recovery, but large structural panels lacking normal faults are in
several gas fields and can be given priority as areas to demonstrate and commercialize carbon
sequestration technology in coalbed methane reservoirs.

The project team is conducting a vigorous technology transfer program, which includes
assembly of a project advisory committee, development of a project web page, publication of
technical reports, and presentations at technical meetings. The project is proceeding according to
schedule and budget and work during the final year of this program is expected to continue
according to plan. Next year’s effort will focus on volumetric analysis of sequestration and
enhanced recovery potential and development of a geologic screening model for carbon

sequestration and enhanced coalbed methane recovery.
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EXPERIMENTAL

Information collected to evaluate the carbon sequestration potential of the Black Warrior
coalbed methane fairway and develop geologic screening criteria includes stratigraphic,
structural, geothermal, and hydrologic data. These data were collected from geophysical well
logs available at the State Oil and Gas Board of Alabama. All wells in this report are identified
by State Oil and Gas Board of Alabama permit numbers. Geological and engineering parameters
are reported in a combination of linear and metric units, especially in geophysical well logs, and
to ensure uniformity with previous investigations of the coalbed methane fairway, the units used
in this report are those routinely used by operators and other stakeholders in the region. Coal
quality data were compiled from the databases of the Geological Survey of Alabama, and new
data were derived through analysis of cores and mine faces. To assess sequestration capacity,
sorption isotherms for carbon dioxide (CO,), methane (CH,) and nitrogen (N,) were being run
from coal samples throughout the coalbed methane fairway. Gas- and water-production data
were derived from the databases of the State Oil and Gas Board of Alabama.

To determine the stratigraphic and structural architecture of the coalbed methane fairway,
gamma-density logs were correlated along five lines of cross section spanning the coalbed
methane fairway (fig. 2). These logs were used to identify regionally correlable stratigraphic
markers and to determine the geometry and extent of the coal beds that constitute potential
sequestration targets. Faults were also identified as wells were correlated. Normal faults were

identified on the basis of missing section, whereas reverse faults were identified on the basis of
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repeated section. After wells on the lines of cross section were correlated, one well per township
section was correlated to develop a regional network of reference wells, and in turn, all wells
were correlated to the reference wells.

Next, a series of stratigraphic cross sections was constructed showing the stratigraphic
architecture of the target coal zones (plates 1-10). These cross sections depict gamma-density
logs, major depositional cycles, subordinate parasequences, coal beds, and major sandstone units.
Coal beds and associated organic-rich shale beds were classified according to thickness and
density-log signature into primary resource targets, secondary resource targets, and thin marker
beds. Primary resource targets are coal beds thicker than 2 feet and typically have a blocky log
signature, whereas secondary resource targets are between 1 and 2 feet thick and log as a sharp
spike reaching a recorded density of less than 1.5 g/cc (grams per cubic centimeter). Thin marker
beds include coal and associated organic shale markers that are thinner than 1 foot and are too
thin for the logging tool to record a density as low as 1.5 g/cc. After the coal beds were
correlated, parasequences subordinate to the major depositional cycles were defined by
correlating regionally extensive shale and coal markers. As the parasequences were defined, coal
zones were subdivided into a series of subzones to facilitate identification and characterization of
the major target coal beds.

To facilitate subsurface mapping, stratigraphic, structural, and well-location data from 4,998
wells were compiled into a spreadsheet. Well locations were computed from surveyed line calls

on file at the State Oil and Gas Board of Alabama using the Wellbase module of the Geographix
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Exploration System. Stratigraphic data include the depth of each cycle boundary and net coal
thickness in each coal zone. Coal thickness was determined using high-resolution density logs,
which typically have a scale of 1 inch equals 25 feet. Depending on the logging tool and
recording apparatus, the accuracy of these logs ranges from 0.1 to 0.5 foot. Coal beds thinner
than 1 foot are seldom completed for gas production and were thus excluded from the thickness
determination to provide a reliable approximation of the quantity of coal available for
sequestration. Structural data include bed elevation and fault-cut information. The elevation of
each cycle boundary was computed by subtracting depth from the appropriate structural datum,
which for coalbed methane wells is typically ground level or the elevation of the kelly bushing.
The depth, elevation, and vertical separation of each fault cut identified was determined and
compiled. Vertical separation was determined by the thickness of missing or repeated section.
The uncertainty in the location of each fault cut was quantified, and the juxtaposed coal zones
were identified and recorded.

Maps of coal thickness and geologic structure were made using Geographix Exploration
System software. Maps were gridded and contoured using a minimum curvature algorithm in the
Isomap module of Geographix. The map grids comprise 401 columns by 322 rows and have a
cell size of 820 feet (about 15 acres), which provides the high resolution required to ensure that
well data are honored. Net coal isolith maps for each target coal zone were made using a contour
interval of 1 foot. A structural contour map of the top of the Pratt coal zone was made using a

contour interval of 100 feet. Fault-cut information was used to determine bed-fault intersections,
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but where well control is inadequate, fault and fold traces were compiled from the records of the
Geological Survey of Alabama and the exhibits of the State Oil and Gas Board of Alabama.

To facilitate visualization of geologic structure, 3-D structural models of the coalbed
methane fields have been constructed. In this report, a provisional 3-D model of Cedar Cove and
Peterson fields is presented. Modeling faults is the most time-consuming aspect of well-based 3-
D structural interpretation because most faults are undersampled. Model construction begins by
importing and contouring a cycle boundary. Next, fault cuts are imported, and preliminary fault
cut correlations are made based on trend. Where three or more fault cuts can be assigned to the
same fault, the fault surface is contoured and extrapolated from just above the ground surface to
an elevation of —3,000 ft. The lateral extent of the fault is based on a preliminary estimate of the
length over which the cycle top shows an elevation change consistent with the fault dip. If less
than three fault cuts are available for a fault, a plane of strike, dip, and extent consistent with
fault relationships in the area is constructed and inserted into the model.

Locations of faulted wells, elevation changes of the cycle tops, and anomalous cycle
thickness changes are all used in finding and extrapolating faults. Coal-zone thickness is
generally consistent within a township, and local thickness anomalies generally indicate fault
cuts. Once a fault plane has been placed into the interpretation, the map of the cycle boundary is
cut along the fault trace so that it is no longer continuous across the fault. The cycle top is then
extrapolated into a new intersection with the fault plane. The extrapolation of a cycle top to the

fault is done with a projection tool in 3DMove, but the model typically must be conditioned so
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that only one side at a time will be projected. Bedding cutoff lines are grouped with the other
points on the cycle top and the surface is recontoured to form horizons that join perfectly with
the fault. The contoured cycle surface is then adjusted to ensure agreement with the stratigraphic
separations recorded in well logs. This process is repeated for every cycle top and for every fault
to build the interpretation. The final stage of interpretation is to make numerous cross sections
and check that all cycle variations are geologically realistic, again adjusting the interpretation if
required. As the structural contour maps and 3-D interpretations are developed, new faults are
found, and old faults may be moved or re-sized. Consequently, numerous iterations can be
involved. The current maps represent an early stage of the 3-D interpretation process and so are
likely to be revised in future reports.

Geothermic and hydrologic information required to determine temperature-pressure
conditions in the coalbed methane fairway were obtained from geophysical well logs and
compiled in a spreadsheet with the stratigraphic and structural data. Geothermic information was
determined from bottom-hole temperatures recorded in the headers of well logs. The geothermal
gradient for each well was determined by dividing the difference between average ground
temperature (74°F) and bottom-hole temperature by total well depth. Wells penetrating units
below the Pottsville Formation were excluded from evaluation, because high geothermal
gradients in Cambrian-Mississippian carbonate rocks are not representative of the less thermally
conductive, shale-rich Pottsville Formation. Extreme care was taken to eliminate anomalously

low bottom-hole temperature readings on the bases of insufficient circulation time (less than 6
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hours) and unrealistically low geothermal gradient (less than 6.0°F per 1,000 feet). The
geothermal data population was then analyzed statistically, and contour maps of geothermal
gradient and the temperature of the top of the Pratt coal zone were made using Isomap.

Minimum reservoir pressure was determined from well depth and water-level information
recorded in the headers of well logs or interpreted from resistivity profiles. Fresh water exists at
depth throughout much of the coalbed methane fairway (Pashin and others, 1991; Ellard and
others, 1992), so reservoir pressure was estimated using a fresh-water hydrostatic gradient of
0.433 psi/ft (pounds per square inch per foot). Once data were compiled, the hydrostatic pressure
gradient for each well and the pressure at the top of the Pratt coal zone were computed. The
pressure-gradient population was analyzed statistically, and histograms and pressure-depth plots
were made. Next, maps of hydrostatic pressure gradient and pressure at the top of the Pratt coal
zone were mapped in Isomap using the same general gridding and contouring parameters
discussed earlier.

Coal quality parameters, including rank and grade, may have a strong impact on the carbon
sequestration capacity of coal-bearing strata. Rank and grade data were compiled from the
databases of the Geological Survey of Alabama and U.S. Geological Survey (Bragg and others,
1998) and were augmented by new analyses of samples collected during this study. Coal rank
was determined using volatile matter data (dry, mineral matter-free) and vitrinite reflectance data
(mean-maximum reflectance in oil). To make a contour map of coal rank of the Mary Lee coal

zone in the coalbed methane fairway, vitrinite reflectan