Assessing the Technology Needs of Sub-economic Resources

Phase I: Greater Green River and Wind River Basins -Fall 2002-

EG&G Services: Ray Boswell, Ashley Douds, Skip Pratt, Kelly Rose, Jim Pancake & Kathy Bruner Advanced Resources International: Vello Kuuskraa & Randy Billingsley

Table of Contents

Summary & Background Materials

- Overview of Past Resource Assessments
- GSAM Facts Sheet
- **GasTIPS** article, Summer 2002
- PowerPoint Presentation, presented at the August 2002 COGA conference, Denver, CO

Detailed Geologic Analyses

Greater Green River Basin (GGRB)
Wind River Basin (WRB)

Model Inputs and Analyses

Greater Green River Basin (GGRB)
Wind River Basin (WRB)

Final Report, GGRB & WRB

Geologic Analyses Greater Green River Basin

늘 Type Log Lines of Section **Reference Map Net Sandstone Isopach Maps** Lewis 3 Lewis 4 Lewis 5 Lewis 6 Lewis 7 Lewis 8 Almond A Almond B1 Almond B2 Almond B3 Almond B4 Almond C Frontier 0 Frontier 1 Frontier 2A Frontier 2B Frontier 3,4 Frontier 5 Muddy Dakota **Morrison**

Net Sandstone Isolith Maps

- Lance UOA
- Lewis UOA
- Almond UOA
- Ericson UOA
- L. Mesaverde UOA
- Frontier UOA
- Dakota UOA

Stratigraphic Cross Sections

- N-S Lewis UOA: A-A'
- W-E Lewis/Almond UOA: B-B'
- W-E Lewis/Almond/Ericson UOAs: C-C'
- N-S Lewis/Almond/Ericson UOAs: D-D'
- 🐂 W-E L. Mesaverde UOA: E-E'
- N-S L. Mesaverde UOA: F-F'
- N-S L. Mesaverde UOA: G-G'
- N-S Frontier/Dakota UOA: H-H'
- N-S Frontier/Dakota UOA: I-I'
- N-S Frontier/Dakota UOA: J-J'
- W-E Frontier/Dakota UOA: K-K'
- 💘 W-E Frontier/Dakota UOA: L-L'

Structural Cross Sections

- W-E Lance UOA: M-M'
- GGRB Basin Cross Section N-N'

Model Inputs and Analyses Greater Green River Basin

🔪 UOA Area Map

Federal Land Access Map

Drilling Mid-Point Maps

- Lance UOA
- Lewis UOA
- L. Mesaverde UOA
- Frontier/Dakota UOA

Pressure Maps

- Lewis UOA
- Mesaverde "Almond UOA"
- Frontier UOA

Structural Complexity Maps

- Lewis UOA
- Mesaverde "Almond UOA"
- Frontier UOA

Model Inputs

- Tabular Data by Depth
- Histograms

Geologic Analyses Wind River Basin

- Type Log
 Lines of Section Reference Map
 Stratigraphic Cross Sections
 E-W U. Cretaceous UOA: A-A'
 - N-S U. Cretaceous UOA: B-B'
 - N-S U. Cretaceous UOA: C-C'
 - W-E Frontier-Muddy: D-D'
 - N-S Frontier to Tensleep: E-E'
- Structural Cross
 Sections
 - WRB Basin Cross Section F-F'

Net Sandstone Isopach Maps

- **Frontier 1,2**
- Frontier 3
- Frontier 4
- **Frontier 5**
- 🛰 Muddy
- 🔭 Lakota-Morrison
- Net Sandstone Isolith Maps
 - Lower Fort Union UOA
 - Lance UOA
 - Meeteetsee-Mesaverde
 - **Frontier UOA**
 - Muddy UOA
 - The Nugget UOA
 - Tensleep

Model Inputs and Analyses Wind River Basin

UOA Area Map Drilling Mid-Point Maps

- **Fort Union UOA**
- **Lance UOA**
- Meeteetsee-Mesaverde UOA
- **Frontier UOA**

Pressure Maps

- **Fort Union UOA**
- **Lance UOA**
- Meeteetsee-Mesaverde UOA
- **Frontier UOA**

Structural Complexity Maps

- **Fort Union UOA**
- The Lance UOA
- Meeteetsee-Mesaverde UOA
- **FrontierUOA**

Model Inputs

- Tabular Data by Depth
- **Histograms**

|--|--|

Overview of Major Low-Permeability Resource Studies

1.0 Introduction

In 2000, NETL conducted a review of the adequacy of the resource characterization databases used in its Gas Systems Analysis Model (GSAM). This review indicated that the most striking deficiency in GSAM's databases was the poor representation of the vast resource believed to exist in low-permeability sandstone accumulations in western U.S. basins. The model's databases, which are built primarily around the United States Geological Survey (USGS) 1995 National Assessment (for undiscovered resources), reflected an estimate of the original-gas-in-place (OGIP) only in accumulations designated "technically-recoverable" by the USGS – roughly 3% to 4% of the total estimated OGIP of the region. As these vast remaining resources are a prime target of NETL programs, NETL immediately launched an effort to upgrade its resource characterizations.

In preparation for this effort, NETL contractors EG&G and Advanced Resources International conducted a review of existing low-permeability assessments to assist NETL in determining the nature of low-permeability resource data available and to evaluate the types of additional data and information needed to properly support NETL gas program R&D planning.

NETL set three primary requirements for its new resource characterization data sources. First, the data must include as much of the existing resource as possible. Instead of datasets that are restricted to resources deemed recoverable with either current technologies, or incremental improvement on existing technology, our models require as much of the gas-in-place as possible. This gives the modeling activity the potential of identifying those R&D approaches that may produce the technology leaps that will render large volumes of "unrecoverable" gas recoverable. Second, the resource must be described in significant detail. Assessments that characterize large volumes of gas using regional averages to not allow the model to sensitively discern the potential impact of various alternative R&D approaches. For example, finely segmenting the resource based on depth alone provides significantly improved modeling of technologies that affect drilling costs. Finally, the resource assessments needed to include information on the reservoir properties that control gas recovery. Assessments that deal with extrapolations of past production rates are to closely tie to past technologies and practices. In the case of low-permeability sandstones, this requirement necessitated estimates of the likely contribution of natural fracturing to bulk permeability.

Upon review of existing data, NETL concluded that no existing data were appropriate sources for its modeling needs, and a decision was made to conduct new, detailed log-based, gas-in-place assessments.

1.1 Summary of Key Prior Resource Assessments

NETL's review focused on the work of the National Petroleum Council (NPC), the United States Geological Survey (USGS: both the national assessments and the in-place studies conducted in

cooperation with NETL), and The Scotia Group. The general findings were as follows – subsequent sections outline these studies in greater detail

USGS gas-in-place studies: USGS gas-in-place studies for key western, tight gas basins, provide an invaluable base of information, and form the basis for ongoing efforts. These reports highlighted the concept and importance of basin-center gas formations, providing rationale for off-structure exploration and development of overpressured, low-permeability reservoirs. They also increased the awareness that a truly massive volume of natural gas exists in these basins, providing the impetus for accelerated and targeted technology development. Finally, these studies reaffirmed that a combination of sweet-spot/natural fracture detection and advanced drilling/completion would be required. However, much of the USGS's in-place assessment work is now dated (in particular the 1987 Piceance basin and 1989 Greater Green River basin studies) and the information gained over the past decade needs to be incorporated. Also, the USGS studies, particularly the earlier two, do not provide the detailed disaggregation of the resource that would be needed to support the types of technology modeling envisioned in this effort.

The Scotia Group appraisals: The studies by The Scotia Group provide valuable insight into the USGS's in-place resource estimates. However, Scotia's work to quantify current recoverable volumes does not relate well to the type of information needed by NETL. In many basins, Scotia's work discards 80% or more of the resource as "technically non-viable" without discussion as to the specific conditions and barriers that make these resources presently too costly to produce. Furthermore, as with all assessments that are tied to the specific technology of a given time, the studies will quickly became obsolete and not amenable to renewed assessment with different technology assumptions.

The National Petroleum Council Reports: The NPC assessments, being based on a particular set of technology assumptions, are similarly not amenable to modeling of alternative future technology/policy scenarios. In addition, these studies do not appear regularly, and are not always based on the latest data (the NPC's 1999 report was based primarily from assessments taken from the 1992 study, which was, in turn, based largely on the 1980 study).

The USGS National Assessments: The USGS National Assessments have limited utility for NETL's technology planners and modelers. Although the USGS did not recognize tight gas as part of the national resource base for their 1989 national assessment, these resources were included for the 1995 assessment. However, tight gas resources in several major emerging basins (such as Wind River, Anadarko, and Fort Worth) were not appraised. The appraisal methodology relies on the extrapolation of historical data on well performance and development practices and therefore does not incorporate the role of future technologies in any detail.

1.2 Other Significant Contributions

The following provides brief descriptions of additional resource studies that have contributed to our present understanding of the nation's tight gas resources.

• *1973 Federal Power Commission*: The FPC assembled an industry panel to provide an initial review of the tight gas resources of the Green River, Piceance, and Uinta basins.

The study estimated a resource base of 600 Tcf gas-in-place.

- *1978 Federal Energy Regulatory Commission:* FERC's report relied heavily on the FPC study, and added assessments of the tight gas-in-place for the Northern Great Plains (130 Tcf) and San Juan basin (63 Tcf).
- *1978 Lewin and Associates:* Lewin and Associates provided the initial comprehensive appraisal of tight gas resources. Thirteen high-potential basins were studied. The work was conducted at a play level, allowing for substantial improvement in the estimation of missing data. Lewin used type-well productivities and mapping of prospective areas to estimate 423 Tcf gas-in-place in tight formations. The study excluded formations below 13,000 feet.

Table 1 provides selected results from these early efforts. This work provided the foundation for the 1988 Study for the Secretary of Energy by the Bureau of Economic Geology (BEG) and ICF-Lewin as well as the 1992 study by the NPC. It was these latter two landmark studies that helped to establish industry and public acceptance of the potential of low-permeability reservoirs as major contributors to domestic gas supply.

	FPC '73 – FERC '78	LEWIN 1978
Northern Great Plains	130	74
Greater Green River	240	91
Uinta	210	50
Piceance	150	36
Wind River		3
Big Horn		24
Douglas Creek Arch		3
Denver		19
San Juan	63	15
Permian/Val Verde		24
Edwards Lime		14
E.Texas/Cotton Valley		67

Table 1: Selected findings of early tight-gas resource assessments (Tcf gas-in-place)

- *1990-1991 ICF Resources*: Under sponsorship from DOE/METC, ICF conducted detailed field-level studies to determine remaining gas-in-place and expected recoverable volumes for tight gas formations in East Texas (31 Tcf in-place, 6.2 Tcf recoverable) and the San Juan basin (17 Tcf in-place, 2.3 Tcf recoverable).
- *1991-1992 DOE/METC:* METC conducted the initial, and to-date only, extensive well log analysis and mapping to assess the resource potential of the primary low-permeability sandstone formations in the Appalachian basin. The study estimated that 28 Tcf of gas remained in Silurian Clinton sandstones and 25 Tcf remained in the various Devonian and Mississippian sandstones.
- *Reports of the Potential Gas Committee*: Similar to the NPC, the PGC assesses gas volumes that can be expected to be produceable in the future under reasonable future

prices and foreseeable technology advances. Resource volumes are divided into probable (roughly equivalent to the concept of reserve growth, i.e., extensions and new pools in established areas), possible (not associated with known fields, but in favorable areas), and speculative (in formations/areas not now productive) categories. PGC's methodology is based on expert estimates of the volume of potential reservoir rock, multiplying that volume by an expected yield, and then discounting the resulting volume for geologic risk. Unfortunately (for NETL's purposes), PGC lumps tight-gas resources with the "conventional" reservoirs into a large category of "traditional resources".

2.0 USGS GAS-IN-PLACE ASSESSMENTS

The resource studies of the late 1970s and early 1980s outlined in Section 1.2 clearly established that the Rocky Mountain basins contained significant volumes of gas in low-permeability formations. Estimates of the resource potential of the Greater Green River basin, for instance, had shown from 90 to 240 Tcf gas-in-place. This gas was marginally- to sub-economic at best given prevailing E&P technologies and economics, and therefore became a prime target for federal R&D efforts. Suspecting that the resource was being significantly under-estimated, the USGS and DOE-METC began work to comprehensively assess the resources present in the major basins. This work was conducted independently from the USGS's regular national assessments (see section 5.0) and employed a drastically different methodology.

For this work, the USGS method was to evaluate the total tight-gas resource-in-place of specific basins through exhaustive volumetric study of vast rock sequences. Only two sacrifices to practicality are noted. First, gas in sandstones less than 10 ft. thick are discarded. Second, gas in normally-pressured sandstones or in units in the transition zone between overpressured and normally-pressure units are not counted in all studies (the GGRB study was limited to the overpressured units). Gas-in-place volumes were determined in the conventional way, with most parameters being based on a sampling of well data or assigned by regional experts. Recoverable volumes were then estimated from in-place numbers by application of estimated recovery factors. A key methodological aspect of these studies is that many of the variables (thickness, porosity, recovery factor, etc.) are expressed as probability functions and processed through a probability model, ultimately yielding a range of possible resource sizes, each with an assigned likelihood of occurrence.

2.1 1987 USGS Piceance basin study (R.C.Johnson and others; USGS open-file #87-357)

This initial report utilized the ongoing DOE work at the MWX site to provide a resource assessment of the low-permeability sandstones of the Mesaverde Group in the Piceance basin. The Mesaverde was divided into three stratigraphic plays, a lower (dominantly-marine) Iles play, a thin, intermediate Rollins sandstone play, and an upper (dominantly-fluvial) Williams Fork play. Being marine/shoreline in origin, the Iles includes numerous relatively-continuous sandstones (including the Morapos, Castlegate, Sego, Corcoran, and Cozette). The Rollins (or Trout Creek) sandstone, a particularly widespread blanket sand at the top of the Iles sequence, was regarded as separate play because it is persistently water-bearing. The primarily non-marine sandstones in the overlying Williams Fork play are highly-lenticular and channelized. Each of these three units are divided into basin-center (Ro > 1.1%) and transition (Ro from 0.73% to 1.1%) plays, resulting in six assessed plays.

Total sandstone volumes for each were calculated from isopach maps based on 60 well logs/outcrop sections. All the sandstone in each play was assumed to occur at the play's average depth (with an average overburden) with temperature and pressure based on assumed gradients. Porosity and gas saturations were based primarily on data from the MWX wells. These data were used to create initial in-place resource estimates for each play.

To provide for a probabilistic presentation of these data, each parameter (with the exception of

porosity, which is assumed to be perfectly positively correlated with gas saturation) is assigned values at 0%, 50%, and 100% probability levels. The USGS further tweaked the distributions until the two answers matched. These volumes were then aggregated assuming a 75% degree of dependency between the six plays.

In order to calculate the volumes likely to be recovered under specific cost/technology conditions, recovery factors were estimated. These values were also defined probabilistically. Two scenarios were conducted; 1) current technology with \$5.00/Mcf price and 2) advanced technology with unspecified (but high) price. Technology in this case basically means the technical limits on recovery factor.

PLAY		Resources			y Factor	Rese	erves
	Mean	F05	F95	Cur.	Adv.	Cur.	Adv.
Williams Fk b/c	205.6	286.9	133.0	3%	15%	6.0	30.1
Williams Fk tran.	116.9	189.5	37.7	3%	18%	3.6	21.6
Rollins - b/c	3.4	6.1	1.6	5%	20%	0.2	0.6
Rollins - tran.	0.6	0.9	0.2	10%	22%	0.05	0.1
Iles - b/c	72.0	107.3	20.0	3%	15%	2.1	10.6
Iles – tran.	24.1	39.4	8.0	6%	20%	1.5	4.9
6-play aggregate	419.6	605.3	274.4			13.4	67.9

Table 2: 1987 USGS Piceance basin study results (values in Tcf).

2.2 1989 Greater Green River basin (*B.E.Law and others; Wyoming Geological Association; 40th field conference guidebook, pg. 3 - 25*)

This report describes the GGRB Cretaceous and Lower Tertiary overpressured, tight sequence. The assessment encompasses up to 14,000 ft. of stratigraphic section over an area more than 50,000 km² in size. The subject rocks range from alluvial plain to marine basin and include marine shales, marginal-marine sandstones with overall blanket geometries, and highly-lenticular fluvial sandstones encased in non-marine shales with associated coals.

The *Cloverly-Frontier Play* includes the sandstones formed during the initial Cretaceous shoreline regression (extension eastward) in the region. It is the deepest play and extends throughout the basin with the exception of the Moxa Arch, which was excluded due to the presence of conventional reservoirs. The overlying *Mesaverde Play* includes the major Upper Cretaceous clastic wedge in which the Rock Springs, Blair, Ericson, Almond, and other sandstone-bearing units prograded eastward over Hilliard-Baxter-Steele-Mancos marine shales. This play occurs mainly in the eastern and northern parts of the basin. The *Lewis Play* consists of isolated sandstones formed within the Lewis Shale during the transgression that drowned Mesaverde environments. Lewis reservoirs occur in the eastern half of the basin. The *Fox Hills/Lance Play* includes marginal marine and fluvial sandstones that prograded eastward across the Lewis Sea at the close of the Cretaceous. These sandstones are included in the assessment only where overpressured in the deeper parts of the basin. The Tertiary *Fort Union* play is the shallowest unit and is only overpressured in a relatively small area of the southeastern (Washakie) basin center.

	Cloverly-	Mesaverde	Lewis	Fox Hills	Fort Union
	Frontier			Lance	
Play Area (ac.)	7,783,000	5,200,000	2,500,000.	2,600,000	331,000
Avg. Thickness	110 ft.	1,350 ft.	400 ft.	675 ft.	600 ft.
Avg. Porosity	5.0%	6.5%	8.0%	7.5%	8.0%
Avg. Depth	17,500 ft.	15,500 ft.	12,000 ft.	10,000 ft.	10,200 ft.
Avg. Gas Sat.	45%	45%	50%	40%	40%
OGIP	304 Tcf	3,347 Tcf	610 Tcf	707 Tcf	96 Tcf
Fut. RF $(50^{\text{th}}\%)$	5%	7%	12%	8%	8%
Future RGIP	16.4 Tcf	265.2 Tcf	81.8 Tcf	61.5 Tcf	8.3 Tcf
Curr. RF $(50^{\text{th}}\%)$	1%	1%	2.5%	1%	1%
Current RGIP	3.7 Tcf	41.4 Tcf	18.0 Tcf	8.4 Tcf	1.1 Tcf

 Table 3: 1989 USGS Greater Green River basin study results

Play area was determined by identifying the vertical and horizontal distribution of overpressuring and determining how much of the play s sandstone distribution fell within these limits. The authors used whatever data they could gather do to this; often this was mud weight and temperature data, although some DST and pressure-test data were available. Rock thickness was based on sandstone isopach mapping. Porosity distributions by play were generally based on expert opinion informed by assumed porosity-depth relationships. One key assumption of the work is that *the sandstones are assumed to be uniformly gas-charged*. Water saturation is allowed to vary only in relation to estimated porosity and water is assumed to be present only at irreducible levels. Pressure, temperature and Z-factors are estimated in a standard way. Recovery factors (1% to 5%) were assumed for each play, also as a distribution, for two cases consistent with those used in the Piceance study.

Of course, what makes this study notable, is the magnitude of the total gas-in-place estimate; 5,075 Tcf, more than five times that of the earlier Piceance basin study. Two-thirds of this volume was found to be contained within the various sub-units of the Mesaverde Play. The key parameter estimates and results by play are given in Table 3.

2.3 1996 Wind River basin study (R.C. Johnson and others, Open-file #96-264)

As with other USGS assessments, the study area is divided into geologic plays that are separately analyzed. Eight stratigraphic units are considered, most with overpressured (equated to areas with temperature of 300 °F or higher), moderately-pressured (present vitrinite reflectance exceeds 1.1%), and transitional (Ro between 0.73% and 1.1%) plays. Each of the 22 assessed plays is partitioned into numerous sub-plays (analogous to large, irregular, grid cells) to allow for some regional variation in volumetric properties.

The sub-plays are generally areas of relatively consistent drilling depth. For each sub-play, depth, area (closure), pay thickness, porosity, saturation, temperature, pressure, and trap fill (which seems to be analogous to expected dry hole percentages) are estimated. A degree of variance around the estimated mean is also estimated (for example, thickness varies to values

plus and minus 50% from the mean at the 5th and 95th percentiles). A single set of variances, as well as temperature, pressure and Z-factor gradients (all linear functions of depth) were used for all sub-plays within each play. Sub-play resources are calculated, then aggregated to provide mean estimates at the play level. Play-level results are then aggregated for the study area. Although the specific report doesn't use the name, this study is the first to use GRASS (the Gas Resource Assessment Spreadsheet System), an Excel application of the USGS probabilistic methodology. It is also the first to use a large number of grid-cell/sub-plays to allow for regional differentiation of input parameters.

	Area	Por	Sg	Fill	F50	F95	F05
Frontier - overpressured	2,093	6	50	100	118	76.5	170
Frontier - mod. pressured	695	7	50	100	29.2	18.8	42.6
Frontier - transitional	269	7	50	50	3.6	1.7	7.6
Cody Sh overpressured	413	6	50	100	30.6	19.9	44.2
Cody Sh m. pressured	413	7	50	70	19.2	12.4	28
Cody Sh transitional	233	7	50	30	2	0.8	3.8
Fales SS - overpressured	41	6	50	100	1.2	0.8	1.7
Fales SS - m. pressured	285	7	50	100	7.3	4.7	10.7
Fales SS - transitional	82	7	50	30	0.5	0.2	1.3
Mv-shoreline - o/p	636	6	50	100	34.7	22.6	50.2
Mv-shoreline - m/p	960	7	50	50	17.2	11.1	25.2
Mv-shoreline – trans.	533	7	50	20	3.8	1.6	7.4
Mv-fluvial - o/p	489	6	50	100	48.9	31.9	70.8
Mv-fluvial - m. pressured	1,067				71.8	46.3	105
Mv-fluvial – transitional	582	7	50	50	17.4	7.3	33.5
Meeteetse - o/p	498	6	50	100	51.3	33.4	74.2
Meeteetse - m. pressured	886	7	50	100	59.7	38.4	87.1
Meeteetse – transitional	470	7	50	50	12.5	5.2	24
Lance - mod. Pressured	1,206	7	50	100	316	203	461
Lance – transitional	927	7	50	50	48.9	20.5	94.1
L. Ft. Union – Sealed	1,348	7	50	0-70	83	37.4	153
L. Ft. Union – Unsealed	420	8	50	0-30	18.2	7.7	35.1
Aggregated TOTAL					995	603	1,530

Table 4: 1996 USGS Wind River basin study results

2.4 1999 Bighorn basin study (*R.C. Johnson and others; USGS open-file #99-315-A*)

The authors used the scant drilling information available for the central Bighorn basin to guide the USGS fourth Rocky Mountain region volumetric assessment of the in-place resources in a likely basin-centered, low-permeability gas accumulation. Methodological alternations were necessary to accommodate the near lack of real data for this basin.

The resource occurs within the Upper Cretaceous formations ranging from the Frontier (deepest) to the Lance. Much of the accumulation is believed to be normally pressured or underpressured.

A moderately-sized area of overpressuring has been identified below 14,000' in the basin center from mudlog and drillstem test data. As with the Wind River study, sub-thrust areas along the western margin of the basin were not assessed.

Eight plays were identified as follows: 1) Muddy sandstone overpressured, 2) Muddy sandstone transitional, 3) Frontier Formation overpressured, 4) Frontier Formation transitional, 5) Mesaverde Formation overpressured, 6) Mesaverde Formation transitional, 7) Meeteetse Formation, and 8) Lance Formation. The USGS used the GRASS methodology to produce the volume results.

	Area	Por	Sg	Fill%	F50	F95	F05
Muddy - overpressured	889	7	50	100	13.4	8.7	19.6
Muddy - transitional	1,357	7	50	50-70	5.5	2.3	10.0
Frontier – o/p	1,047	7	50	100	41.9	27	61.1
Frontier – transitional	1,937	7	50	50-70	24.6	10.3	47.4
Mesaverde – o/p	301	7	50	100	38.5	24.8	56.2
Mesaverde – trans.	1,781	7	50	20-70	75.8	31.8	146
Meeteetse – trans.	1,805	7	50	50-70	44.9	18.4	86.5
Lance – transitional	1,444	7	50	50-70	89.8	37.6	173
Aggregated TOTAL					334	161	600

 Table 5: 1999 USGS Bighorn basin study results

The authors speculate that the Bighorn basin contains lower resource volumes, in comparison to the similarly-sized accumulation in the Wind River basin, because of 1) a generally-lower thermal maturity and 2) a lack of widespread overpressuring (only 28% of the appraised resource is from the overpressured plays).

3.0 SCOTIA GROUP RESOURCE/RESERVE ASSESSMENTS (1993-1998)

Beginning in 1993, NETL commissioned the Scotia Group to re-assess the various USGS estimates of total tight gas-in-place in selected western basins and to estimate how much of that gas should be recoverable under current cost and technology conditions. Re-assessment was probably deemed necessary given perceived skepticism over the large volumes presented by the USGS (particularly the 5,000 Tcf GGRB figure). The USGS numbers were indeed revised downward by Scotia, *primarily by showing that the USGS methodology possibly over-estimated typical porosities and water-saturations* in all the basins. The Scotia methodology changed very little with each study, as a result, all four reports are described together.

3.1 Scotia Methodology

The Scotia reports used a volumetric approach to determine in-place resources, then applied various cost and performance criteria to partition the resource among different resource and reserve categories. The reports give a single estimate for each resource category, then applies a distribution of recovery factors to obtain different potential-additions-to-reserve numbers, each with a given probability of occurrence.

Like the volumetric USGS studies, subsurface well log correlation and mapping were used to obtain play area estimates. Scotia also used gamma-ray-based (50% cut-off) sand counts to get first approximations of pay thicknesses, and like the USGS, only sands over 10 ft. in thickness were included. Whereas the USGS relied on a panel of experienced geologists to assign porosities and water saturations to each play, Scotia used log (some core) analyses, tailored for tight sandstone applications, to determine porosities and saturations for various depth ranges within each play. Scotia s data indicated much lower typical porosities and higher water saturations than the USGS had assigned, resulting in significantly lower GIP estimates. Specifically, Scotia found that porosities were not normally-distributed around a mean (as assumed by the USGS), but skewed to the lower values. Also, Scotia determined that the lower-porosity units tended to have higher than expected water saturations.

To high-grade the resource into categories that were likely to contribute to reserves (i.e., contain economically-recoverable gas at current technologies), cut-offs of porosity (varying from 4-10.5% depending on play and depth), Sw (60-65%), and Vsh (35%) were established for separate 500'-thick depth slices. These cut-offs generally attempt to limit the rock volume to that with expected permeability greater than 0.001 md. (Note: for the GGRB study, 1,000' depth slices were used). Porosity and Sw values/distributions were generated for both the base resource and technically-viable volumes from digitized well logs. Pressures and temperatures are calculated from gradients to derive Formation Volume Factors. Base resource gas-in-place (in rocks with Vsh<50%) and gas-in-place expected to contribute to reserves (Vsh<35% and porosities and Sw above the depth/play dependant cut-offs) were calculated. Table 6 compares the various Scotia estimates with those prepared by the USGS.

Reserves are typically the subset of economically-recoverable volumes that have already been proved by the wellbore. This definition is typically slightly modified for application to the low-permeability, basin-centered resources (the subject of this memo) to account for the vast volumes

that have not actually yet been discovered, but are nonetheless, widely accepted to exist.

Basin	USGS GIP estimate	Scotia GIP estimate
Greater Green River	5,064 Tcf	1,974 Tcf
Uinta		396 Tcf
Piceance	420 Tcf	307 Tcf
Wind River	995 Tcf	488 Tcf
Bighorn	334 Tcf	

Table 6: Comparison of USGS and Scotia gas-in-place assessments

Scotia further analyzed these resources to determine volumes likely to contribute to reserves. As a first cut, large portions of the resource are excluded as *technically-nonviable* (Table 7). Porosity (and associated calculated permeability), saturation, and volume-of-shale cutoffs that varied with depth were used to identify this fraction. It appears that these values are determined based on estimates of how much porosity is necessary in a given depth range to make locations economically-feasible (the assumption is that they must have permeability (estimated from porosity) greater than 0.001 md to be producible at commercial rates given 1993 costs and 1993 capabilities in hydraulic fracturing). Therefore, some of the resource labeled technically-nonviable may in fact be technically possible, but only *economically*-unviable (and only economically-nonviable at the time of the writing).

	Gas-in-place	Technically-viable	Tech. Non-viable
Greater Green River	1,974 Tcf	848 Tcf (43%)	1,126 Tcf (57%)
Uinta	396 Tcf	71 Tcf (18%)	325 Tcf (82%)
Piceance	307 Tcf	53 Tcf (17%)	254 Tcf (83%)
Wind River	488 Tcf	62 Tcf (13%)	426 Tcf (87%)

Table 7: Scotia studies - distinction of technically viable and non-viable portions of OGIP

Scotia further divided the technically-viable resources into those that occur in reservoirs with demonstrated production and those that, thus far, have not responded to typical completion and stimulation efforts (Table 8). The *non-demonstrated resources* are those that *should* be economically-productive based on available data, but have thus far not been economically recoverable in practice. Unexpected highly-lenticular geometries of reservoirs is one of the prime suspects for making apparently viable resources non-demonstrated.

Table 8: Scotia studies - distinction of demonstrated and non-demonstrated portions of the technically-viable resource

-	Technically-viable	Demonstrated	Non-demonstrated
Greater Green River	848 Tcf	615 Tcf (73%)	233 Tcf (27%)
Uinta	71 Tcf	18 Tcf (25%)	53 Tcf (75%)
Piceance	53 Tcf	45 Tcf (85%)	8 Tcf (15%)
Wind River	62 Tcf	16 Tcf (26%)	45 Tcf (74%)

A further subdivision (Table 9) of the demonstrated resource category is based on the position of the resource relative to a conceptual economic basement . This basement is the depth below

which increased drilling costs and technical/geologic risks tend to make average-sized prospects in a particular play *uneconomic*. This depth varies by play, and will change with time as costs and technologies change. *Established resources* occur above the economic basement, *nonestablished resources* are located below economic basement and above the deepest commercial production. Note that for non-established resources, it is the commerciality that is not firmly established (generally due to depth); the presence and produceability of the gas is generally accepted. *Speculative resources* occur below the deepest commercial production at the date of the report (commerciality is doubtful and gas presence is unestablished). The speculative category was devised after the GGRB study was completed.

	Demonstrated	Established	Non- established	Speculative
Greater Green River	253 Tcf	68 Tcf (27%)	185 Tcf (73%)	
Uinta	18 Tcf	4 Tcf (22%)	9 Tcf (50%)	5 Tcf (28%)
Piceance	45 Tcf	9 Tcf (20%)	15 Tcf (33%)	21 Tcf (47%)
Wind River	16 Tcf	8 Tcf (50%)	0 Tcf	8 Tcf (50%)

Table 9: Scotia studies - distinction of established, non-established, and speculative portions of the demonstrated resource.

Calculation of economic basement was done separately for each play. Current EUR distributions were used to estimate the expected revenue. Dry hole risks were assigned to each play (for the GGRB study, all wells in the play were included - the two later studies excluded wells located in non-demonstrated areas). The expected monetary value of production is then plotted versus drilling cost (a proxy for depth) - the point where increasing cost reduces EMV to zero is the economic basement.

Reserves (Table 10) are subsets of both the established and non-established resource fractions. These are the maximum volumes that can be profitably recovered assuming a fully efficient drilling pattern and excluding existing wells. Scotia describes that the key factor in estimating reserves in tight sands is the determination of drainage area (and shape) as it relates to the prevailing spacing. The relative recovery of different wells within the drainage area is thought to be consistent (approximately 85%) and a function of the abandonment pressure set by current economics. Decline curves were used to estimate EUR from producing wells, although seasonal curtailment and other external factors complicated this. Average production profiles by play were created and analyzed to determine maximum drainage radius.

The Scotia work in the Rocky Mountain areas has provided a solid review of the USGS in-place resource estimates. However, Scotia's work clearly does not provide the type of information required by NETL for two reasons. First, in many basins, Scotia qualifies 70% or more of the resource as technically-non-viable. What is missing is an assessment of the specific conditions of the resource that currently makes it non-viable, and what work could be done that could make more of the resource viable. An appraisal that indicated a basin's potential for improving its technically-recoverable resource base would be very valuable to R&D planners. This thinking also applies to the non-demonstrated and non-established portions of the viable resource. What conditions are making the resource too costly to produce, and what degrees/types of technology advancement are needed. The second issue derives from the fact that the Scotia reports

imposed current conditions (cost, technology). Because these parameters change with time, the studies can quickly become obsolete.

Table 10: Scotia studies - recoverable reserve (current technology) fractions of the established	
and non-established resources	

	Reserves - established	Reserves – non-established
	resources	resources
Greater Green River	23 Tcf	12.0 Tcf
Uinta	0.9 Tcf	2.3 Tcf
Piceance	2.6 Tcf	3.0 Tcf
Wind River	2.1 Tcf	0.0 Tcf

Table 11: S	cotia Studies	- results	by play
-------------	---------------	-----------	---------

	Resources		Res	erves	
Play	Base (Tcf)	Viable	Establ.	Estab.	Non-estab.
		(Tcf)	(Tcf)	(mean)	(mean)
UINTA: Wasatch	59.9	7.1	3.8	1.33	0.55
UINTA: Mesaverde	335.6	63.6	None	None	1.70
PICEANCE: Marine	85.6	26.6	2.8	0.78	2.16
PICEANCE: Paludal	52.3	8.2	None	None	None
PICEANCE: Fluvial	141.2	13.3	5.7	1.58	None
PICEANCE: Multi-pay	28.2	5.2	0.9	0.20	0.78
WIND RIVER: Frontier	61.1	23.5	1.1	0.53	
WIND RIVER: Cody	61.0	7.4	1.7	0.50	
WIND RIVER: Mesaverde	92.6	5.7	0.3	0.14	
WIND RIVER: Meeteetse	89.7	12.5	None	None	
WIND RIVER: Lance	176.4	11.4	4.3		
WIND RIVER: Ft. Union	6.9	1.0	1.0	0.51	
GGRB: Cloverly/Frontier	285	252	None	None	3.07
GGRB: Mesaverde/Almond	228.2	71.7	40.1	14.2	3.2
GGRB: Mesaverde/Ericson	636.2	231.1	None	None	3.5
GGRB: Mesaverde/Rock S.	102.0	58.0	None	None	None
GGRB: Mesaverde/Blair	7.3	5.0	None	None	None
GGRB: Mesaverde/Undiff.	83.5	26.0	None	None	None
GGRB: Lewis	229	60.0	27.0	8.4	3.6
GGRB: Lance/Fox Hills	349	125	None	None	None
GGRB: Fort Union	54	20	None	None	None

4.0 NATIONAL PETROLEUM COUNCIL STUDIES

As part of its continuing support of DOE and the Secretary of Energy, the National Petroleum Council (NPC) has prepared three landmark natural gas studies over the past 20 years that address low-permeability resources and reserves. The initial study, completed in 1980, was devoted specifically to the size and recoverability of low-permeability resources. It included data on ten appraised basins plus information on other non-conventional sources. The second study, completed in 1992 (titled "The Potential for Natural Gas in the United States"), re-examined low-permeability resources as part of a larger review of domestic natural gas supplies. This study updated the information on the ten basins appraised in 1980, and added new resource information on the Appalachian, East Texas, Arkansas-Louisiana, Texas Gulf Coast, Anadarko, and Permian basins tight gas formations. The most recent, completed in 1999, ("Meeting the Challenges of the Nation's Growing Natural Gas Demand"), addresses the key issues surrounding the development of domestic natural gas, including low-permeability resources. The latest study provided only minor updates to the resource numbers given in the 1992 report, making adjustments only for basins and plays where actual drilling and development results have deviated widely from the 1992 projections. A new study by the NPC is now in the initial stages.

4.1 1999 NPC Study

The 1999 NPC study devoted considerable attention to addressing various conditions that may restrict future gas supply. The NPC found many reasons to be optimistic about the future of gas, as the resource base appears to be sufficient to support high demands, at least through 2015; however, the following issues and concerns related to low-permeability resources were raised:

- Future supplies will clearly be dependent on continuing technology advance. NPC notes a concern that it may be difficult to maintain the current pace of technology advancement given ongoing trends in industry and federal R&D spending.
- A large proportion of the nation's tight gas resource is located on federal lands, especially in western onshore basins. NPC provided an initial review of the impact of federal land access and suggested that further analyses is necessary to allow informed discussion as to the appropriateness of various federal policies.
- As the nation turns to unconventional sources of supply, the average productivity of wells will decline, resulting in an ever-increasing number of wells to supply a given volume. NPC notes a concern that the domestic industry may not be capable of such activity given capital and infrastructure limits (including the availability of rigs and skilled personnel).

The NPC remained confident that these challenges will be met, and projected an increase in domestic natural gas production from 19 Tcf per year to 27 Tcf per year in 2015. Tight gas sandstones are expected to contributed significantly to this production increase - annual tight gas production is expected to roughly double from 3 to 5.7 Tcf per year. NPCs predictions are based on a technically-recoverable unconventional natural gas resource base of 290 Tcf (current technology) to 372 Tcf, with nearly two-thirds of that resource held in tight sands (Table 12).

Resource	Current Technology	Advanced Technology
Tight Gas	177.6	230.6
Gas Shales	38.8	52.6
Coalbed Methane	58.4	74.0
Other	14.7	14.7
TOTAL	289.5	371.9

Table 12: Technically-recoverable low-permeability resources included in the 1999 NPC study – by resource type (Tcfg).

Table 13: Technically-recoverable low-permeability sandstone resources included in the 1999 NPC study – by region (Tcfg).

Region	Current Technology	Advanced Technology
Appalachia	13.4	18.3
Arkla – E. Texas	23.6	29.8
Texas Gulf Onshore	8.3	9.1
Rocky Mountains	104.8	137.0
Mid-Continent	12.8	16.9
Permian Basin	14.7	19.5
Lower 48 TOTAL	177.6	230.6

The 1999 NPC study relies heavily on the low-permeability resource volumes developed in the older 1980 study. A few modest adjustments were made when current activity and expectations differed significantly from the 1980 assumptions. For tight gas, the changes were modest, primarily reflecting reduced tight gas estimates for the San Juan basin. Small upwards adjustments were made for tight gas resources in East Texas and Appalachia.

4.2 1992 NPC Study

The second NPC study incorporated much of the data from the 1980 assessment, gathered industry input for missing tight gas plays, and utilized the 1990-91 ICF data for formations in East Texas and the San Juan basin. The study included only those formations that NPC felt would be likely industry targets through 2010. To determine likely production levels at various price and technology scenarios, NPC utilized GRI/EEA s Hydrocarbon Model. The NPC concluded that 232 Tcf can be extracted from tight gas sands using 1991 technologies. Assuming that technology improvements continued to 2010 at historical rates, NPC estimated that 349 Tcf could be recoverable by 2010 (see Table 14).

The NPC estimated that technology advancements over the preceding two decades had resulted in annual reduction in drilling costs of approximately 3 to 4% per year and expansion of the resource base by approximately 0.7% per year. Both of these historical trends were anticipated to continue, or accelerate, through 2010. Model results indicated that these continued advances would result in a reduction in gas prices of nearly \$1/Mcf and an increase in supply of nearly 3 Tcf per year by 2010. As a result of this technology, the NPC estimated that 349 Tcf of gas could be extracted with 2010 technology. Additional tight gas, bringing the total recoverable to 437 Tcf, could be realized with a "second generation" of advanced technology that were postulated to appear by year 2030.

	New fields	Old fields	New plays	TOTAL
Appalachia	3.4	0.0	10.5	13.9
ArkLaTex.	4.2	4.2	19.0	27.4
S. Tex. Onshore	7.1	5.5	5.8	18.4
Williston	0.4	0.3	0.0	0.7
Rockies Forelands	26.4	7.3	89.9	123.6
San Juan basin	1.3	6.5	0.0	7.8
Mid-continent	8.4	2.7	10.8	21.9
Permian	2.3	4.0	12.4	18.7
TOTAL	53.6	30.4	148.4	232.4

 Table 14: 1992 NPC study results (technically-recoverable tight gas at current technology)

4.3 1980 NPC Study

For their initial work on non-conventional resources, the NPC provided estimates of the tight gas resource potential of 10 high-potential basins (primarily in the Rockies and Texas). These estimates were made for the near-term, single most productive formations that industry would most likely target. The NPC then used these data to guide the assessment to the remaining known tight gas regions in the U.S. The NPC provided estimates for total gas-in-place, maximum recoverable volume, and likely recoverable gas for different cost and technology scenarios. NPC estimated 444 Tcf in-place in the priority basins with an additional 480 Tcf potential in speculative areas. This study excluded resources below 15,000 feet.

	OGIP	Technically-	Base tech. &	Adv. Tech &
		Recoverable	\$2.50 price	\$2.50 price
Great Plains-Williston	147.7	100.1	54.7	74.0
Greater Green River	136.1	86.5	3.1	12.4
Wind River	33.7	23.3	7.0	8.8
Uinta	10.5	15.3	12.2	14.8
Piceance	49.1	33.0	12.9	12.9
Denver	13.2	7.9	0	0
San Juan	3.3	2.2	0	1.5
Val Verde (Ozona/Sonora)	4.5	2.8	0	1.7
Edwards Lime (trend)	14.3	8.7	2.1	8.1
Cotton Valley (trend)	21.9	12.8	5.4	8.4
Sub-total: Appraised	444	292.6	97.4	142.6
Extrapolated				
Other Western	69.5	48.9	15.0	17.3
Other Southwestern	183.5	113.4	37.6	87.6
Mid-Continent	8.1	5.4	1.3	4.0
Eastern	227.5	139.9	45.2	107.2
Sub-total: Extrapolated	480	307.6	99.1	216.1
TOTAL	924	600	197	359

Table 15: 1980 NPC tight gas resource assessment (values in Tcf gas)

5.0 USGS NATIONAL ASSESSMENTS

The USGS included tight gas sandstones for the first time in its 1995 assessment. The USGS included tight sandstones within a new category called "continuous accumulations". To assess these accumulations, the USGS devised a new methodology that differed significantly from that typically employed in the national assessment. The method was also much different from the volumetric approach used in the ongoing USGS gas-in-place studies described earlier. Although the play-based approach was retained, a USGS model called UNCLE was used to calculate the probable future additions to reserves from estimates of geologic risk, play area, success rates, and expected EURs. The success ratio and EUR estimates were based on data from existing wells.

	Technica	Technically-recoverable gas (Tcf)				
	95% chance	5% chance	Mean			
Region 2 – Pacific Coast						
05 Oregon and Washington	2.8	30.9	12.2			
Region 3 - Colorado Plateau and Ra	inge					
20 Uinta and Piceance basins	11.6	23.4	16.7			
21 Paradox basin	0.05	0.5	0.2			
22 San Juan basin	10.7	36.9	21.2			
Region 4 – Rocky Mountains						
28 Central Montana	19.9	79.0	43.2			
31 Williston basin	0.1	0.2	0.2			
37 Southwestern Wyoming	56.0	213.5	119.3			
39 Denver basin	1.5	5.7	3.2			
Region 6 – Gulf Coast						
47 Western Gulf	1.8	3.7	2.6			
49 East Texas basin	3.6	9.4	6.0			
Region 8 – Eastern		÷				
67 Appalachian basin			46.0			
TOTAL			229.3			

Table 16: 1995 USGS National Assessment – technically-recoverable resources estimated for continuous-type plays in sandstones

Specific findings of the USGS relative to low-permeability formations are as follows:

- An unlikely extraction effort would be required to obtain all the gas deemed as recoverable amounting to 960,000 productive wells and 570,000 dry holes.
- Most low-permeability sandstone gas would be extracted from a relatively small subset of the productive wells: 50 % of the recoverable resource would be produced from 100,000 wells averaging about 1.5 Bcf per well; or 75% would be produced from 250,000 wells that would average about 0.5 Bcf per well.
- A subsequent economic analysis of the low-permeability resources (USGS Circular 1145) judged that only 21 Tcf of the technically-recoverable resource was economically-

recoverable at a \$2.00/Mcf gas price. A rise in price to \$3.34/Mcf was expected to add only 7.5 Tcf additional gas to the economically-recoverable category. Of this 28.5 Tcf recoverable at \$3.34/Mcf price, 11.7 Tcf occurred in the San Juan basin, 5.5 Tcf in the Louisiana-Mississippi Salt basins, and 5.2 Tcf from Central Montana. The Rocky Mountain region contributed only 5.5 Tcf with 3.3 Tcf from southwestern Wyoming and 2.2 Tcf from Uinta-Piceance.

	Play	Success	Mean	Est. EUR	Adds to
	Prob.	Ratio	Number	per cell	reserves
Play (cell size in acres)			open cells	(mean)	(mean)
GGRB: Cloverly/Frontier	100%	60%	29,000	1.43 bcf	37.3 Tcf
GGRB: Mesaverde	100%	70%	24,102	1.80 bcf	51.7 Tcf
GGRB: Lewis	100%	70%	13,739	1.31 bcf	19.0 Tcf
GGRB: Fox Hills/Lance	100%	70%	9,500	0.90 bcf	10.2 Tcf
GGRB: Ft. Union	100%	70%	1,180	0.80 bcf	1.0 Tcf
Piceance: Williams Fork	100%	55%	10,304	0.92 bcf	4.9 Tcf
Piceance: Isles	100%	55%	10,508	0.90 bcf	4.8 Tcf
Uinta: Wasatch East	100%	88%	1,240	1.40 bcf	2.1 Tcf
Uinta: Wasatch West	100%	30%	1,132	1.35 bcf	0.5 Tcf
Uinta: Mesaverde/basin flanks	100%	60%	6,132	1.06 bcf	3.8 Tcf
Uinta: Mesaverde/deep syncline	100%	20%	3,200	1.06 bcf	0.6 Tcf
Columbia River: sub-basalt (160)	100%	70%	7,037	1.42 Bcf	12.2 Tcf
San Juan: Dakota (160)	100%	60%	9,266	1.48 Bcf	8.2 Tcf
San Juan: Mesaverde (160)	100%	55%	7,396	2.36 Bcf	9.6 Tcf
San Juan: Pictured cliffs (160)	100%	50%	7,294	0.90 Bcf	3.3 Tcf
Montana: Bio. gas - hi (160)	100%	80%	7,520	0.90 Bcf	5.4 Tcf
Montana: Bio. gas - med (160)	100%	70%	67,354	0.43 Bcf	2.0 Tcf
Montana: Bio. gas - lo (160)	100%	50%	119,832	0.26 Bcf	1.5 Tcf
Williston: Niobrara (320)	80%	33%	68,752	0.11 Bcf	1.9 Tcf
Denver: J-sand. deep (320)	100%	60%	2,315	0.60 Bcf	0.8 Tcf
LA-Miss: Cotton Valley (640)	100%	100%	1,740	3.47 Bcf	6.0 Tcf
Michigan: Antrim - dev. (40)	100%	99%	15,703	0.32 Bcf	4.9 Tcf
Michigan: Antrim - undev. (80)	100%	80%	54,976	0.32 Bcf	13.9 Tcf
Illinois: New Albany Sh (160)	100%	50%	30,727	0.12 Bcf	1.9 Tcf
Cinc. Arch: Dev. Sh. (160)	50%	50%	45,046	0.12 Bcf	1.4 Tcf
Appalachia: Clinton - hi (40)	100%	90%	224,287	0.12 Bcf	24.6 Tcf
Appalachia: Clinton - med (40)	100%	70%	108,939	0.08 Bcf	5.7 Tcf
Appalachia: Clinton - lo (40)	50%	30%	124,550	0.05 Bcf	0.9 Tcf
Appalachia: U. Dev hi (40)	100%	80%	147,758	0.08 Bcf	10.0 Tcf
Appalachia: U. Dev med (40)	100%	50%	91,046	0.08 Bcf	3.8 Tcf
Appalachia: U. Dev lo (40)	50%	30%	124,061	0.05 Bcf	0.9 Tcf
Appalachia: Big Sandy (150)	100%	90%	13,429	0.60 Bcf	9.1 Tcf
Appalachia: Silt/Sh. (60)	100%	85%	35,454	0.09 Bcf	2.8 Tcf
Appalachia: Lo-T.M. Sh. (150)	100%	70%	39,500	0.12 Bcf	3.5 Tcf

Table 17: 1995 USGS national assessment – details on additional areas

6.0 Advanced Resources International (ARI) Study of the Greater Green River Basin

ARI's analysis of the Greater Green River Basin had three objectives:

- Update the gas-in-place estimates for two of the major formations the Mesaverde and the Frontier focusing only on the overpressured zones.
- Assemble information of the key reservoir parameters governing recovery from these formations
- Provide estimates of recoverable resources using current and advanced E&P technology characterizations.

The partitioning study divided the GGRB into 20 geologically-consistent areas based on structural features, deposition, depth, reservoir pressure, and other information. A series of base maps were prepared to calculate gas volumes in-place in each partition. A structural overprint of the basin was completed using satellite imagery, aeromagnetic and gravity data and was used to rank each partition according to its estimated potential for natural fracturing. Historical drilling and production data were then used to estimate expected well performance in each area. The study reported 1,005 Tcf gas-in-place in the Mesaverde and 213 Tcf gas-in-place in the Frontier (Table 18).

Partition	Mesaverde			Frontier		
	Gas-in-	Tech-rec.	Tech-rec.	Gas-in-	Tech-rec.	Tech-rec.
	place	CurrTech	adv. tech.	place	CurrTech	adv. tech.
Pinedale	238	19.2	27.1	17	0.8	4.7
Sand Wash deep	89	13.1	18.2	8	1.3	2.2
Hoback	197	11.1	15.8	29	2.4	4.2
Wamsutter Arch	63	7.1	9.4	7	3.2	1.9
Farson deep	80	6.0	18.1	23	1.0	4.6
Red Desert	181	12.7	8.5	43	2.4	7.0
Cherokee Arch	13	2.5	12.0	2	0.7	0.6
East Sand Wash	37	3.3	4.7	7	0.7	1.3
Washakie deep	84	8.4	3.5	12	0.2	2.4
East Washakie	23	2.1	3.0	4	0.4	0.6
Red Desert deep	10	0.8	1.1	9	1.3	1.0
Green River deep				24	0.9	5.5
Vermillion				11	4.0	1.8
West Washakie				4	1.1	1.4
West of Moxa Arch				12	2.7	1.7
Dad dix				2	0.4	0.6
TOTALS	1,005	86.4	121.4	213	23.4	41.2

Table 18: ARI partitioning study results (values in Tcf gas)

The key findings and conclusions of the ARI partitioning study are as follows:

- A structural interpretation of the basin is essential for estimating the key parameter controlling well performance natural fracture enhanced reservoir permeability.
- The following are the three most essential technology advances; 1) identification of naturally-fractured areas prior to drilling; 2) utilization of horizontal drilling technologies; and 3) cost reduction for multiply-completed vertical wells in which thick vertical columns of stacked sandstones exist.

facts

Gas Exploration, Production, and Storage

04/2002

U.S. DEPARTMENT OF ENERGY NATIONAL ENERGY TECHNOLOGY LABORATORY

CONTACT POINTS

Technical Assistance

Anthony Zammerilli (304) 285-4641 anthony.zammerilli@netl.doe.gov

Program Management

Brad Tomer (304) 285-4692 brad.tomer@netl.doe.gov

Policy Analysis

John R. Duda (304) 285-4217 john.duda@netl.doe.gov

ADDRESS

National Energy Technology Laboratory 3610 Collins Ferry Road

P.O. Box 880 Morgantown, WV 26507-0880 (304) 285-4469 fax

626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 (412) 386-4604 fax

CUSTOMER SERVICE

(800) 553-7681

STRATEGIC CENTER FOR NATURAL GAS WEBSITE

www.netl.doe.gov/scng



GSAM THE GAS SYSTEMS ANALYSIS MODEL

Measuring Natural Gas R&D Value

Overview

The Department of Energy (DOE) is charged with ensuring the nation's energy security, economic health, and environmental protection by promoting the most efficient and responsible utilization of the nation's energy resources. To support this goal, DOE planners in the Strategic Center for Natural Gas at the National Energy Technology Laboratory conduct detailed analyses of alternative R&D and policy scenarios using the Gas Systems Analysis Model (GSAM). GSAM's complex suite of resource databases, market characterizations, and computer programs allows decision-makers to assess and compare the potential impact of alternative R&D/Policy scenarios on future national gas supply, price, and use, as they craft the nation's natural gas R&D portfolio.

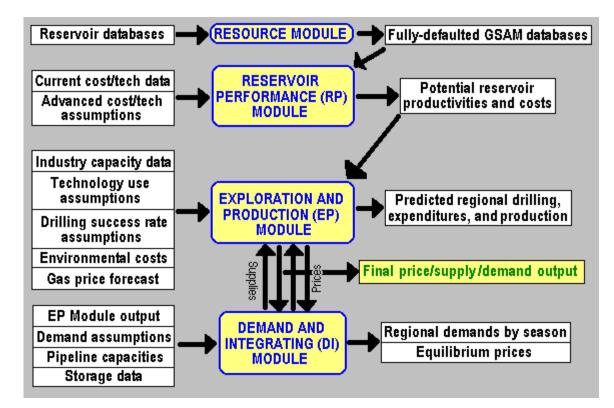
GSAM estimates the potential impact of alternative technology/policy scenarios on the production and use of natural gas in North America.

Model Capabilities

The primary use of GSAM is to provide insight into the role of technology and policy in impacting future natural gas use. Specifically, GSAM can assess the impact of the following:

- Technological advances that alter the productive capacity of natural gas reservoirs.
- Technological advances that alter the costs and risks of finding and producing natural gas.
- · Changes in industry's capacity to explore for and produce natural gas.
- Changes in regulation, taxation, and royalty structures that impact the natural gas industry.
- Changes in the rate at which natural gas technologies are utilized in the marketplace.
- · Changes in the size and efficiency of the national gas storage system.
- · Changes in the capacity, cost, and efficiency of the overall national gas pipeline system.
- Alternative scenarios for the future markets for natural gas.

What Sets GSAM Apart?


GSAM has been specifically designed to model natural-gas supply technologies. Whereas other models are limited to broadly defined "high" and "low" technology cases, GSAM provides means to evaluate the potential impacts of specific technologies and policy actions. There are four main aspects of the model that allow this to occur.

- GSAM is based on estimates of remaining gas-in-place. GSAM is unique in that it uses a resource characterization that goes beyond current estimates of what is "technically recoverable". By including large volumes of gas currently viewed as uneconomical and unrecoverable (a category that once included both tight gas and coalbed methane), the model can help us determine what paradigm-altering technologies will be needed to allow the next dramatic expansion in the nation's natural-gas resource base.
- GSAM uses production type curves to estimate future supply: As compared to complex and time-intensive reservoir simulation or overly-simplistic decline curve projections, GSAM's type-curve approach provides a superior means to quickly and scientifically estimate how technology advances will impact future production rates on large volumes of reservoirs.
- GSAM contains detailed reservoir-specific characterizations: Instead of idealized abstractions that reflect general reservoir behavior, GSAM's resource database contains real field-derived data for more than 5,000 existing reservoirs that represent more than 90 percent of the natural gas production in the United States and Canada. In addition, more than 10,000 as-yet undiscovered gas accumulations are characterized using the latest estimates from the United States Geological Survey. This extraordinary level of detail allows GSAM estimates to be highly responsive to the natural geologic variation present within the nation's natural- gas resource pool.
- GSAM is a fully integrated model of the entire North American gas system: GSAM incorporates a variety of market constraints including: (1) measures of industry supply capacity, (2) expected future prices for gas, (3) the rates at which technologies can be expected to penetrate the market, (4) a representation of natural gas transmission capacity, (5) the national gas storage system, and (6) expectations for demand in various end-use markets for gas. These constraints allow the model to determine if the additional supplies enabled by advanced exploration and production technologies can be realistically produced and delivered where and when needed.

How GSAM works

GSAM works through sequential modules to estimate the impact a hypothetical change in some aspect of the natural gas system might have on the operation of the system as a whole. Greatly simplified, GSAM's upstream modules estimate the potential productivity of individual reservoirs for two (current and advanced) cost/technology cases. The downstream modules then evaluate which reservoirs will be produced in each year, and under which technology/cost case, given market constraints, prices, and assumed industry utilization rates.

- Upstream Modules: The Resource and Reservoir Performance Modules of GSAM answer the question, "How could a change in technology and/or costs affect production potential of the nation's gas reservoirs?" These modules accomplish this by running each of 15,000+ resource segments through simple, 3-second simulations based on production type curves. Yearly gas volumes, costs, and an estimate of the minimum acceptable supply price required to make the production economic, are output.
- **Downstream Modules:** GSAM's downstream modules can be run in two separate modes to determine how the upstream module's estimates of production potential will be realized. One mode uses a standard gas-price forecast such as provided by the Energy Information Administration's Annual Energy Outlook (AEO). GSAM's Exploration and Production Module then selects which reservoirs will be produced, based primarily on the availability of advanced technology and expected industry drilling capacity. Alternatively, the user can allow GSAM's Demand and Integrating Modules to determine if markets exist for these volumes, and if the gas can be economically delivered to those markets, by invoking characterizations of the pipeline network, gas storage system, and expected future demand. In this mode, GSAM's internal linear solver works to calculate a balance of supply and demand by region and season, and provides its own estimate of likely future gas prices.

GSAM consists of a complex suite of state-of-the-art computer modules and databases.

GSAM The Gas Systems Analysis Model

Measuring Natural Gas R&D Value

Outputs

Some of the outputs of a full GSAM run include:

- Natural-gas production by region, resource type, geologic play, and location on federal or private lands.
- · Costs incurred in producing the gas.
- · Royalties and taxes paid.
- Estimates of industry activity, including wells drilled, success rates, pipeline utilization, and more.
- Natural-gas prices at the wellhead and end user.
- Natural-gas consumption by region, season, and sector (industrial, commercial, residential, and electric generation).

How DOE uses GSAM

Development of GSAM began in 1991. Peer reviews in 1994 and 1997 guided enhancements to the model. Although several key components are still in development, including integration with the DOE oil-system model, TORIS, GSAM has already contributed through the following applications:

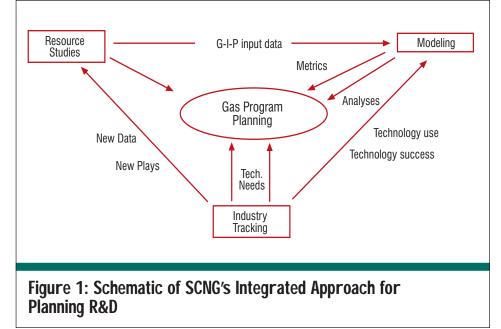
- Gas R&D Program Metrics—DOE periodically runs GSAM analyses to estimate the future impact of its ongoing R&D programs. A calibrated base case (the most likely future scenario) is compared to alternative cases that do not include the expected R&D outcomes of various program elements. The difference between these cases is an estimate of the realized impact of that R&D. These impacts are then analyzed with respect to timing, program costs, and conformance to program mission, to determine program benefit. Metrics analyses using GSAM were conducted in 1995, 1999, and 2001.
- Gas R&D Program Planning—DOE also runs GSAM to test the potential impact of various contemplated activities. In this mode, a large number of possible impacts are run iteratively in an attempt to identify those aspects of the national gas system that may provide the most leverage in achieving the program's goal of increased supply at reasonable prices. The insight from such analyses supports the setting of program goals and prioritizing program portfolios.
- Gas Policy Analyses—GSAM is used by DOE to investigate the impacts of various policy initiatives. Examples of policy analyses supported by GSAM include studies to estimate the economic impact of changes in taxation and royalty on (1) low-volume "stripper" wells and other marginal, high-cost resources; (2) land-use regulation that restricts access to vast gas resources, both offshore and in key western basins, and; (3) environmental regulations that add incremental costs to gas production.

EMERGING RESOURCES

Assessing Technology Needs of "Sub-Economic" Gas Resources in Rocky Mountain Basins

By Ray M. Boswell, Ashley S.B. Douds H. Raymond "Skip" Pratt Kathy R. Bruner, Kelly K. Rose and James A. Pancake *EG&G Services* Vello A. Kuuskraa and Randal L. Billingsley *Advanced Resources International*

The Department of Energy has undertaken a new program of detailed, gas-in-place resource assessments to support the identification of the most promising R&D opportunities.


he goal of the Department of Energy's (DOE's) natural gas program is to assure the long-term sustainability of affordable domestic natural gas supply through steady expansion of the nation's economicallyrecoverable gas resource base. To do this, the National Energy Technology Laboratory's Strategic Center for Natural Gas (NETL-SCNG) implements a portfolio of R&D projects designed to enable and accelerate the transition of sub-economic resources into recoverable resources and, ultimately, into reserves. To support this effort, NETL has undertaken a coordinated program combining technology modeling, industry tracking, and resource assessment (Figure 1).

This article describes the work undertaken to supply this effort with specially-tailored assessments of the marginally-economic and sub-economic resources that are a prime target of DOE-supported technologies. Phase I, now nearing completion, has focused on vast low-permeability and deep gas resources of the Greater Green River (GGRB) and Wind River (WRB) basins of Wyoming. This report provides an overview of the ongoing effort. A more detailed report will be posted on NETL's website (www.netl.doe.gov) in the Fall of 2002.

Broad Resource Base is Disaggregated

This work differs from previous studies in that it conducts detailed log-based regional resource assessment within a gas-in-place framework. Detail is provided through the analysis of hundreds of well log suites to produce datasets that capture the natural variety in key geologic and engineering parameters such as depth, pay thickness, porosity, pressure, and water saturation. This dissaggregation of the resource into numerous, uniquelydescribed segments is vital to allowing NETL computer models to sensitively probe the "response" of the resource to individual R&D cases. In addition, the detailed geographic dissaggregation of the resource will provide an improved means to assess the impact of various federal land access and environmental policies on future supplies.

The effort uses a gas-in-place approach that attempts to describe resources without reference to economic or technical viability. Other, less inclusive characterizations, such as the

Table 1: United States Geological Survey Assessments of Resources for GGRB and WRB						
Greater Green River Basin			Wind River Basin			
Play	GIP ('89)	Tech. Rec. ('95)	Play	GIP ('96)	Tech. Rec. ('95)	
Ft. Union	96	1	Ft. Union	101	Not Assessed	
Fox Hills/Lance	707	10	Lance	365	Not Assessed	
Lewis	610	19	Meeteetsee	124	Not Assessed	
Mesaverde	3,347	52	Mesaverde	194	Not Assessed	
Frontier-Cloverly	304	37	Frontier	151	Not Assessed	
Total	5,064	119	TOTAL	935	Not Assessed	

United States Geological Survey's National Assessment of technicallyrecoverable resources, are not suitable for technology modeling as they presuppose what might be recoverable in the future. Because history has shown that it is very easy to underestimate what technology can accomplish (see sidebar on the topic of "Resource Growth" at end of article), we have attempted to characterize as much of the remaining gas-in-place as possible. This will allow DOE's Gas Exploration and Production Team to probe the full resource base, looking for opportunities to continue past successes where dramatic technology advance has allowed vast resources previously viewed as "unrecoverable" (such as coalbed methane and gas shales) to be added to the nation's resource base.

Initial Study Areas: The Greater Green River (GGRB) and Wind River (WRB) Basins

It is well established that the basins of the Rocky Mountain region hold large quantities of natural gas in lowpermeability formations. From 1987 to the present, the United States Geological Survey (USGS) has worked with NETL to raise industry awareness of the vast resources of the Piceance-Uinta (420 tcf). Greater Green River (5,064 tcf), Wind River (935 tcf), and Big Horn (334 tcf) basins. Yet, despite the enormous potential, many took the view that the vast majority of these resources were too widely disseminated and tightly held to ever be recoverable. This viewpoint was supported in 1995, when the USGS reported as part of its National Assessment that the technically-recoverable resource in the low-permeability plays of the Greater Green River basin was roughly 119 tcf (Table 1). Resources in the Wind River basin were similarly assessed to hold 935 tcf of gas in-place but were not included in the USGS 1995 National Assessment. In effect, roughly 98 percent of the 6000 tcf of gas believed to exist within the Greater Green and Wind River basins was deemed "not technically recoverable." To better constrain the potential of this resource, and to assist in identifying those technologies that may unlock this potential, these two basins were selected as the targets for Phase I of this effort.

Units of Analysis

For both basins, well log information was collected with the goal of obtaining quality log suites from one or more of the deepest wells in each township. To ensure the dataset was not biased to higher quality reservoirs, well productivity was not considered. Based on the USGS's previous work, the team began with the section from the Cretaceous Lance/Fox Hills formations through the Mississippian Madison Limestone in the GGRB. and the interval from the Lower Fort Union Formation to the Tensleep Sandstone in the WRB. The team then considered regional geology, industry completion practice, the needs of NETL's analytical models, and time and resource constraints, to finalize the selection of "units of analysis" or UOAs. (Figure 2).

Determination of Volumetric Parameters

Each UOA was correlated in loop fashion to establish the occurrence and distribution of lithofacies (Figure 3). Correlations and sandstone thickness mapping were generally accomplished

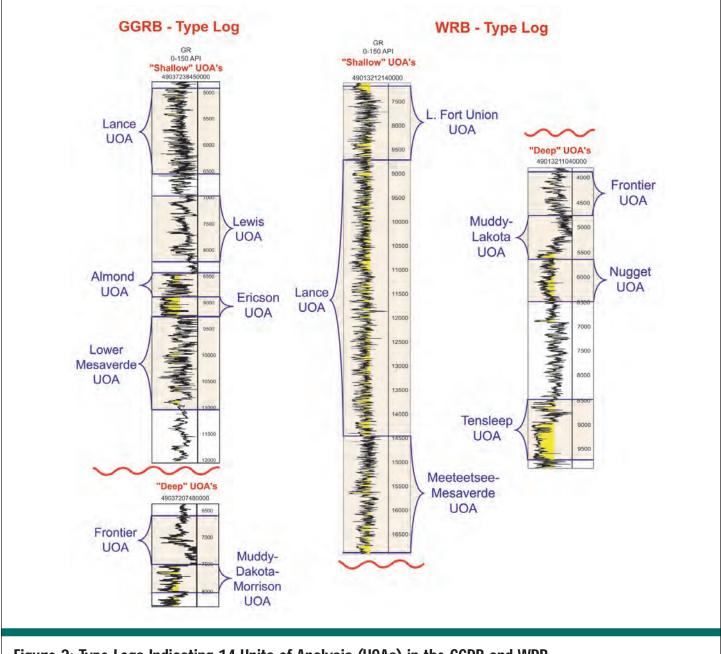


Figure 2: Type Logs Indicating 14 Units of Analysis (UOAs) in the GGRB and WRB

on a UOA-level (Figure 4); however, where appropriate and possible (primarily in marine and marginal-marine intervals), correlations were accomplished on a sand-body level (see Figures 3 and 5).

Well log suites were analyzed to provide drilling depth to unit mid-point (Figure 6) and average volumetric parameters across the UOA. Volumetric parameters include average porosity, water saturation, pressure, temperature, and thickness of potential pay. Average porosities were determined almost exclusively from recent vintage compensated density-neutron logs. Saturations were calculated using shaley-sand corrections (Simondoux) based on log-based determinations of shale volume (V_{sh}) and shale resistivity (R_{sh}), and regional estimates of formation water resistivity (R_w) . These characterizations will be revisited once ongoing NETL studies to sample and analyze Rocky Mountain region formation waters provide better R_w data. Pressure and temperature at the play mid-point were determined from drilling depth and township average gradients based on information obtained from logs and from commercial databases (e.g., *IHS Energy Data*).

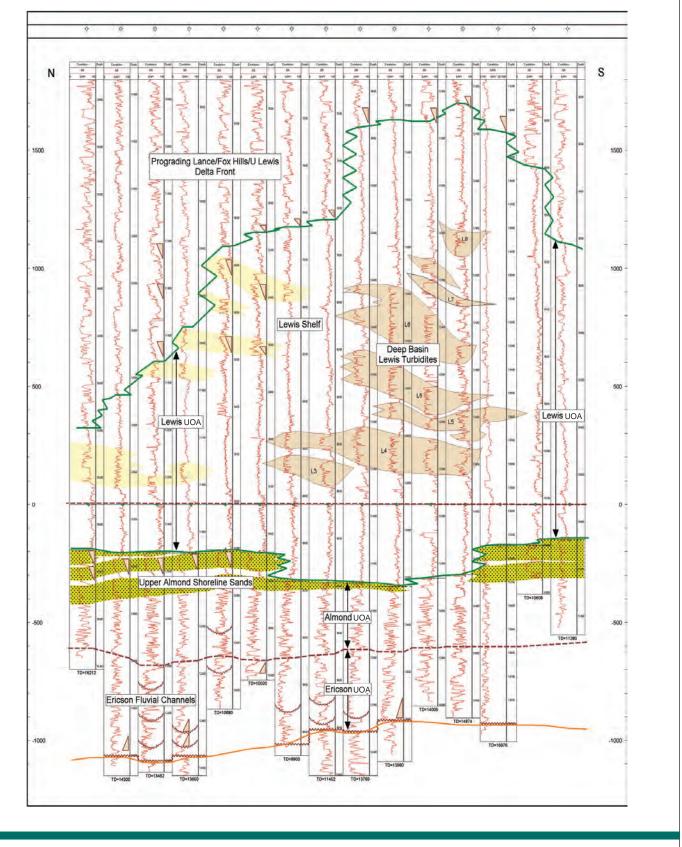
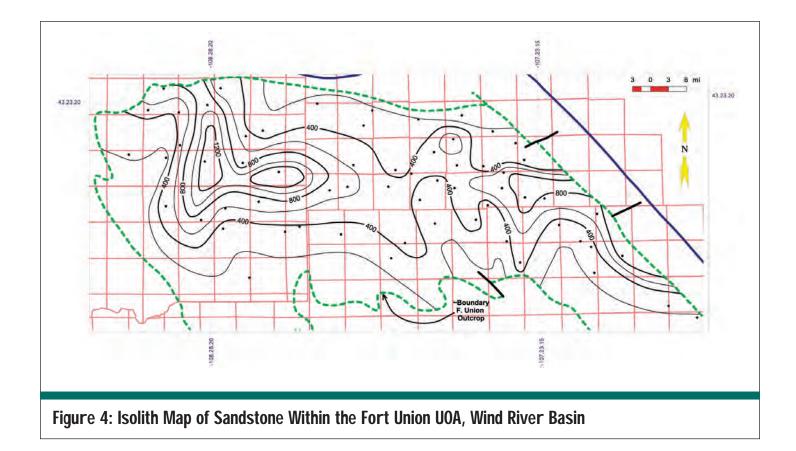



Figure 3: North-South Stratigraphic Cross-Section of the Lewis, Almond, and Ericson UOAs in the Eastern Greater Green River Basin.

The volumetric parameter called "potential pay" thickness bears further discussion. The term "pay" is usually equated with the thickness of an interval that is expected to produce under current circumstances. Geologists are accustomed to establishing practical reservoir or field-specific porosity (for example 6 or 8 percent) and water saturation (commonly 60 percent) cutoffs in determining pay. However, the goal to create resource descriptions that allow the models to determine what segment of the total resource might be pay as much as 20 years into the future under cost/ technology scenarios that are very different from what currently exists. Therefore, aggressive cut-offs of 4 percent porosity and 70 percent S_w were used in defining "potential pay" with the understanding that under most technology/cost conditions, the models may not consider much of this lowquality resource to be viable.

Despite efforts to create detailed and

disaggregated datasets, it remained necessary to average variable parameters across large vertical sections. For many units of analysis, this averaging did not create any major difficulties, as parameters such as porosity and saturation were often fairly consistent within a unit. However, for the upper Mesaverde "Almond" unit, the presence of the high-quality marginal-marine "Upper Almond" sandstones within the same unit with numerous lower-quality "Main Almond" units presented a problem. The solution was to prepare separate characterizations of the "best" and "rest" within that unit. Included within the "best" category are zones that, in the team's judgment, would be most likely to be completed (commonly those marked by density-neutron cross-over). Although the models do not currently have the capacity to utilize this distinction, modifications are being planned that will allow more accurate

modeling of the standard industry practice of high-grading zones within a play for completion.

Permeability Analyses

The final element in providing datasets to model the future economics and productivity of these resources is an estimation of permeability. First, an estimate of total permeability was generated through the detailed analysis of the productivity and log character for 10-20 calibration fields per unit of analysis. A statistically representative "type" well was chosen for each calibration field. Log based porosity, thickness and saturation for each "type" well was used to constrain gasin-place for a decline curve analysis. Production data were analyzed using a Fetkovich-style type curve approach to define the bulk producing permeability around the wellbore. Existing porositypermeability relationships were used to constrain the expected matrix

contribution to the bulk system. The difference between expected matrix permeability and the bulk system permeability was ascribed to the presence or absence of a fracture permeability overprint in the reservoir (calibration field). The estimates for incremental fracture-related permeability in each calibration field were then correlated to the corresponding structural complexity as determined through analysis of aeromagnetic, gravity, and other satellite imagery data (Figure 7). From these correlations, estimates of areally variable matrix and fracture permeability contributions were generated, as appropriate, for each cell of each UOA.

Geographic Dissaggregation

To provide the needed geographic disaggregation of the resource, each unit of analysis is divided into cells on the scale of townships (deeper units) or quarter townships (shallower units). Well-log-based estimates for each volumetric parameter were gridded to provide interpolations for each grid cell. For example, for a deep unit of analysis that covers 80 townships, the datasets will consist of 80 uniquelycharacterized reservoirs - each 1 township in size. Lastly, the available remaining acreage within each cell for of each unit of analysis was determined by removal of all grid cells from which at least a quarter of the available acreage has been drilled. This approach produces a conservative estimate of remaining resources.

Results and Products

The primary result of this work has been the construction of detailed and disaggregated resource characterizations for major gas accumulations in the GGRB and WRB that will allow meaningful analyses of the relative impact of alternative future technology,

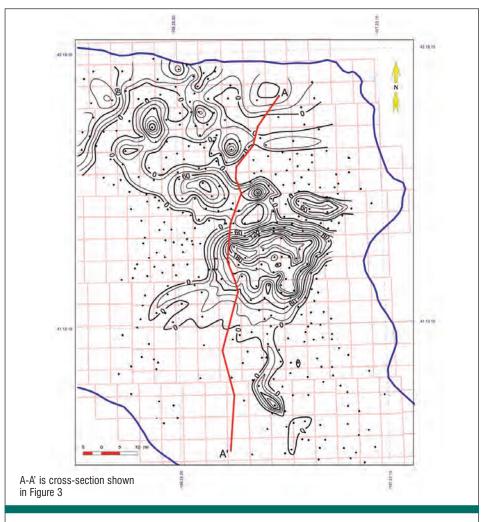


Figure 5: Isopach Map of Lewis-4 Sandstone

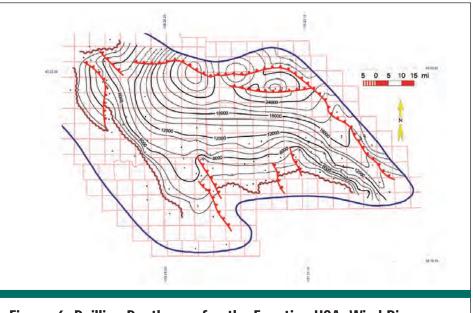
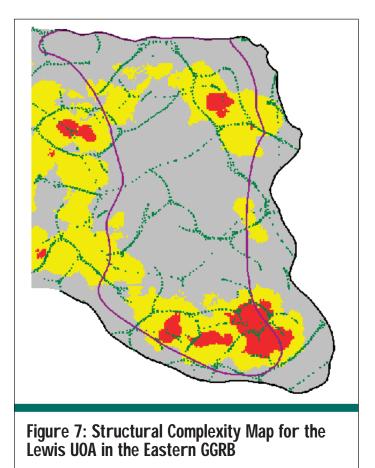



Figure 6: Drilling Depth map for the Frontier UOA, Wind River Basin (Depth is to the mid-point of the UOA)

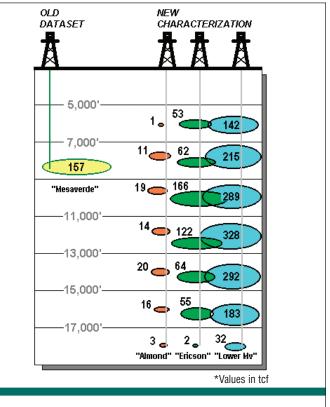


Figure 8: Analytical Methodology Provides More Detailed Resource Information

cost, and policy scenarios. This new dataset, by compartmentalizing the resource both geographically and vertically, contains many unique packets of resource that capture the natural variation in drilling depth, porosity, water saturation, pressure, temperature, and permeability (see Figure 8).

Table 2 summarizes the preliminary resource characterizations for the various plays. These data provide average values (with the exception of the acreage and gas volume totals) for key volumetric parameters that vary within 500 to 4000 individuallycharacterized, 4-square-mile-sized cells. For example, for the Lewis UOA, cell-level values for potential pay thickness vary from 0 to 699 feet with an average of 100 feet; depth varies from 5,000 to 17,600 feet with an average of 10,211 feet.

Given this database, NETL will now assess the impact of technology on roughly 3,013 tcf of marginal and subeconomic resource in the GGRB. Roughly half this resource resides within the sandstones of the lower Mesaverde UOA. Nearly one-quarter of the total GGRB resource (711 tcf) lies below 15,000 feet drilling depth. For the Wind River basin, 1,332 tcf of gas, with 533 tcf below 15,000 feet, have been characterized. Roughly half of this resource occurs in the thick sandstone packages of the Lance and Meeteetsee/ Mesaverde UOAs. The total appraised resource of 4,345 tcf represents a significant expansion of NETL's modeling capacity - previous datasets contained only 257 tcf in comparable formations across both basins.

These results provide our preliminary estimate of the gas-in-place in sandstones of the target formations with the exclusion of: (1) deposits above 5,000 feet of drilling depth; (2) areas already tapped by production, (3) areas likely to hold oil instead of gas primarily an issue for the deeper WRB UOAs: (4) areas which calculate with water saturations in excess of 70 percent; and (5) gas in zones with porosities less than 4 percent as determined from logs. For the WRB Frontier, Muddy-Lakota, and Nugget UOAs, no gas resources above 13,000 feet were included. For the WRB Tensleep UOA, the cut-off to exclude likely oil accumulations was set at 15,000 feet. Also, as new and better information on R_w values is obtained, significant alterations in potential pay thickness and gas volume could occur.

The results obtained for the WRB are in close agreement with those provided by the USGS in 1996. For the

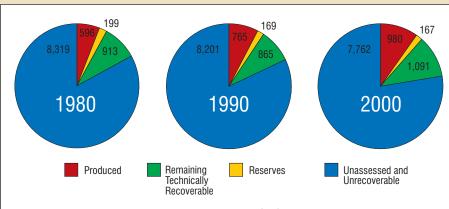
GGRB Gas Resource: GREATER GREEN RIVER BASIN UOAs 3,013 Tcf							
Deep Gas Resource: 711 Tcf		LEWIS	ALMOND	ERICSON	L. MSVD	FRONTIER	DAKOTA
Total Area (Acres)		3,891,200	6,097,920	7,782,400	8,125,440	11,258,880	10,749,440
Avg. Thickness (ft.)		100	44	173	369	47	52
Avg. Porosity (%)		7%	9%	9%	8%	8%	8%
Avg. Water Sat. (%)		56%	60%	47%	53%	43%	40%
Avg. Depth (ft.)		10,211	9,615	10,663	10,767	15,472	15,670
Avg. Pressure (psi)		5,428	5,075	5,488	5,559	10,186	10,415
Avg. Temperature (oF)		223	214	226	223	255	257
Avg. Z-Factor		1.05	1.03	1.06	1.06	1.39	1.4
Total Resource (tcf)		132	87	528	1,481	368	417
Deep Resource (tcf below 15,000')		10	3	60	214	198	226
WRB Gas Resource:			14	/IND RIVER B			
1,332 Tcf							
Deep Gas Resource: 533 Tcf	FORT UNION	LANCE	MEET/MSVD	FRONTIER	MUDDY +	NUGGET	TENSLEEP
Total Area (Acres)	1,103,360	1,354,240	1,546,240	1,525,760	1,672,960	1,681,920	1,246,720
Avg. Thickness (ft.)	441	512	461	91	34	76	285
Avg. Porosity (%)	10%	9%	8%	6%	6%	5%	6%
Avg. Water Sat. (%)	57%	51%	43%	46%	45%	47%	22%
Avg. Depth (ft.)	8,110	10,117	11,991	18,191	18,423	19,485	20,458
Avg. Pressure (psi)	3,627	5,104	6,933	12,420	12,559	13,444	14,184
Avg. Temperature (oF)	189	222	252	351	355	372	387
Avg. Z-Factor	0.94	1.03	1.16	1.52	1.52	1.57	1.61
Total Resource (tcf)	180	322	374	74	30	76	276
Deep Resource (tcf below 15,000')	0	2	109	62	23	61	276

GGRB, perhaps the most significant difference is a substantial reduction in pay thickness for the Lewis and Lower Mesaverde plays. For the deeper Frontier and Dakota plays in the GGRB, we have calculated larger gas volumes due primarily to higher assessed porosity.

Next Steps

Our analyses indicate that approximately 4,345 Tcf of potentially accessible gas exists in-place in the

America's Growing Gas Resource: Can the Trend Continue?


Over the past two decades, the nation has produced roughly 390 tcf of gas. Over the same period, the amount of technically-recoverable gas thought to remain has grown by roughly 10 percent (from 1,112 tcf to 1,258 tcf based on estimates of the Potential Gas Committee). In short, we have more gas left now than we did 20 years ago!

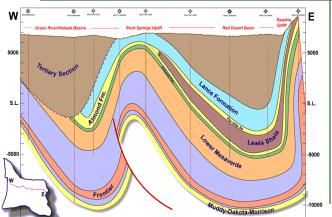
The reasons for this remarkable record of resource growth are a series of quantum leaps forward in both technology and information that have allowed the nation to access previously overlooked or undervalued resources. Examples include coal-bed methane, gas shales, and tight sandstones. Once considered permanently "unrecoverable", these sources now represent roughly 25 percent of the nation's gas supply.

subject intervals of the Greater Green River and Wind River basins. In the coming months, this resource characterization will be subjected to intense analysis using NETL's analytical models. These analyses will focus on determining the recoverability profile (the proportion of the resource that is the technicallyand economically-recoverable) under a variety of technology/cost scenarios. These data will be used internally by DOE planners to support project selection and other programmatic activities. In addition, the data will be closely compared to information recently gathered by DOE on federal land access restrictions to more accurately quantify the impacted resource under both current and potential future technology/cost/policy conditions. In August 2002, NETL will kick off Phase II of this effort, consisting of technically challenging places. Compounded by declining industry investment in gas supply R&D, it will be difficult to sustain past trends. Clearly, future resource growth will depend heavily on DOE's success in developing new tools and information that will unlock more of the nation's "unrecoverable" resource.

similar resource characterization studies of the marginal and subeconomic resources of the Anadarko (Oklahoma) and Uinta (Utah) basins.

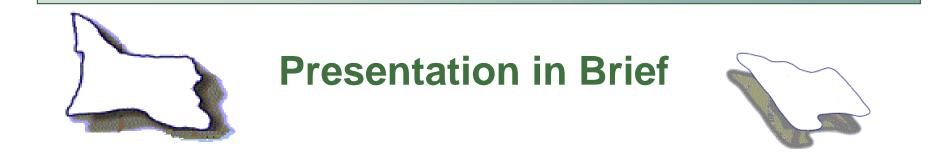
For more information on the status of this project, contact James Ammer, NETL Project Manager for Natural Gas Supply and Storage, at 304-285-4383 or at james.ammer@nelt.doe.gov/.

*Remaining recoverable estimates taken from reports of the Potential Gas Committee – for illustrative purposes, graphs assume a total domestic in-place resource of 10,000 tcf.


continue? There is no question that it must continue in order to assure the vast and diverse resource bank that will enable production rates to keep pace with rising demand. However, the gas remaining in the ground is located in deeper, more geologically complex, and in general, more

How long can resource growth

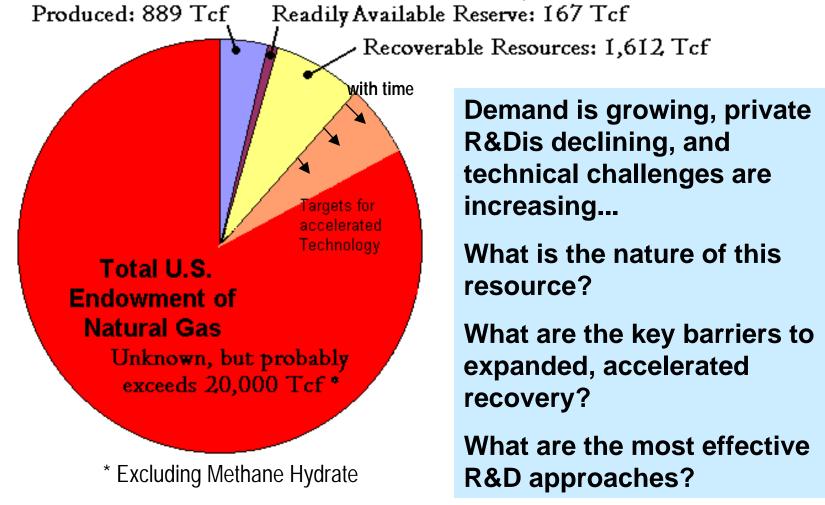
Energy and Environmental Solutions



Assessing Technology Needs of Sub-economic Gas Resources Phase I: Greater Green River and Wind River basins

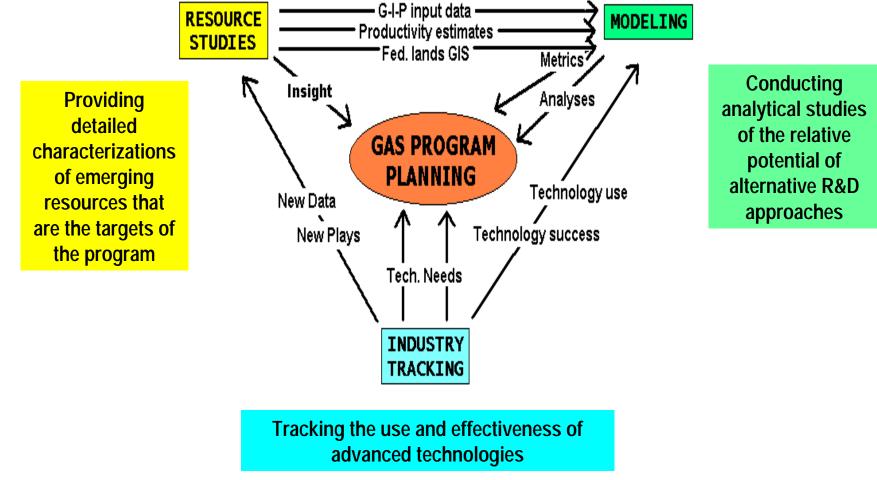
Ray Boswell, Ashley Douds, Skip Pratt, Kelly Rose, Jim Pancake, Kathy Bruner-EG&G Services Vello Kuuskraa, Randy Billingsley, Greg Bank-Advanced Resources International

WHAT? Studies in the Greater Green and Wind River basins as part of a new program of detailed characterizations of marginal and sub-economic resources

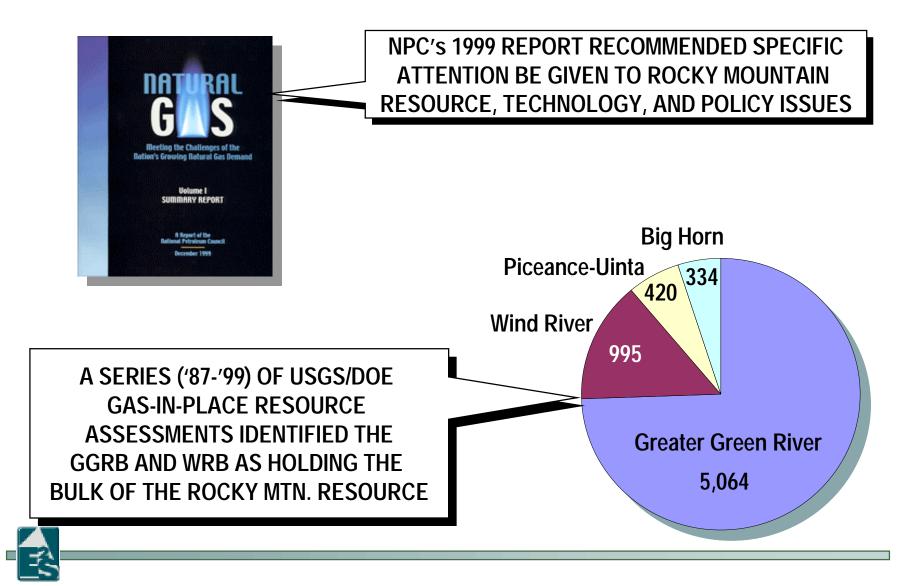

HOW? Log-based, gas-in-place approach focusing on detailed geographic and vertical dissaggragation of the resource

WHY? Primarily - to allow NETL to model the role of technology in expanding the nation's recoverable resource base

Also - to add new information on natural gas resources and, where applicable, resources on federal lands

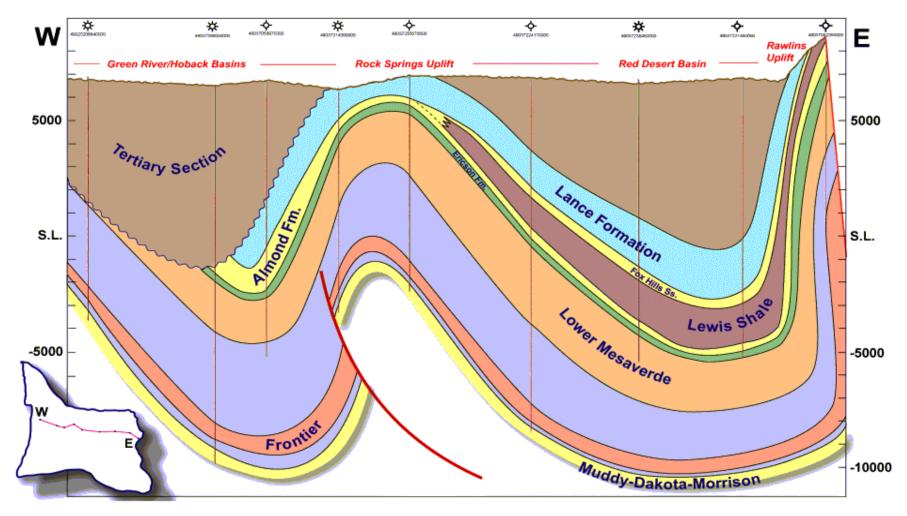


Vast Resources Await New Technologies for Entry Into Nation's Resource Base

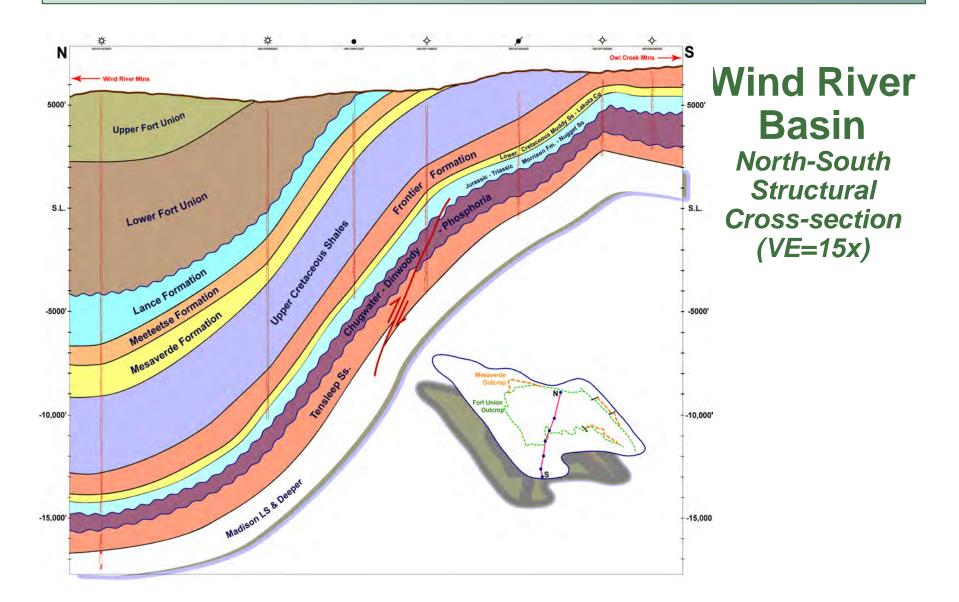


E²S Support to NETL Natural Gas E&P Program

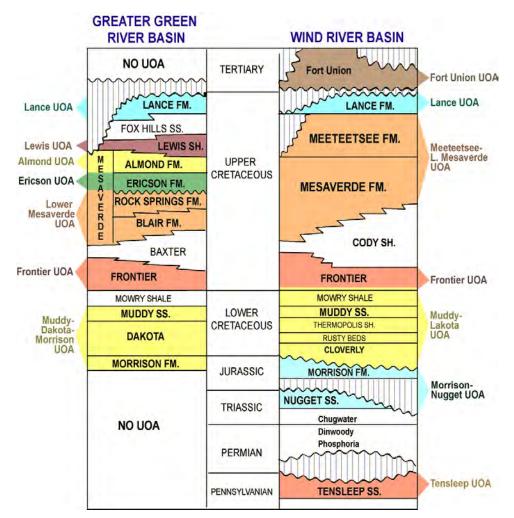
What to Study First?

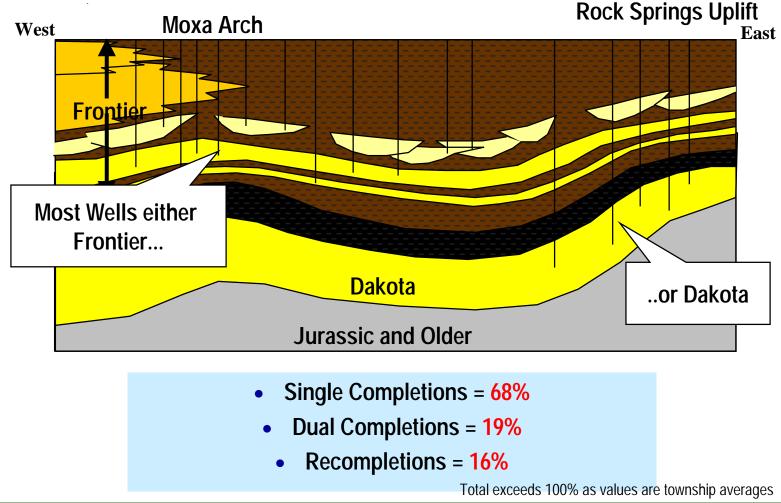

98% of GIP Considered Not Recoverable USGS Assessments of Resources in GGRB and WRB

Grea	ter Green River	Basin	Wind River Basin			
Play	GIP ('89)	Tech. Rec. ('95)	Play	GIP ('96)	Tech. Rec. ('95)	
Ft. Union	96	1	Ft. Union	101	Not Assessed	
Fox Hills/Lance	707	10	Lance	365	Not Assessed	
Lewis	610	19	Meeteetsee	124	Not Assessed	
Mesaverde	3,347	52	Mesaverde	193	Not Assessed	
Frontier-Cloverly	307	37	Frontier	151	Not Assessed	
TOTAL	5,063	119	TOTAL	995	Not Assessed	


Values in trillion cubic feet of gas

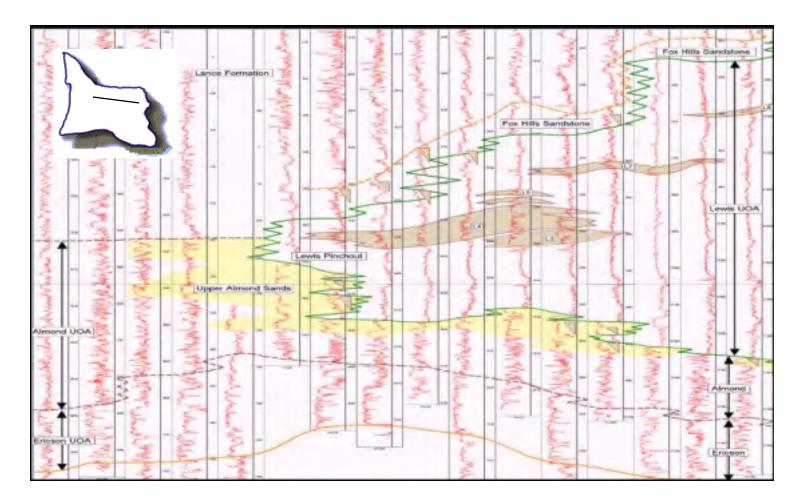
Greater Green River Basin West-East Structural Cross Section (VE=26x)



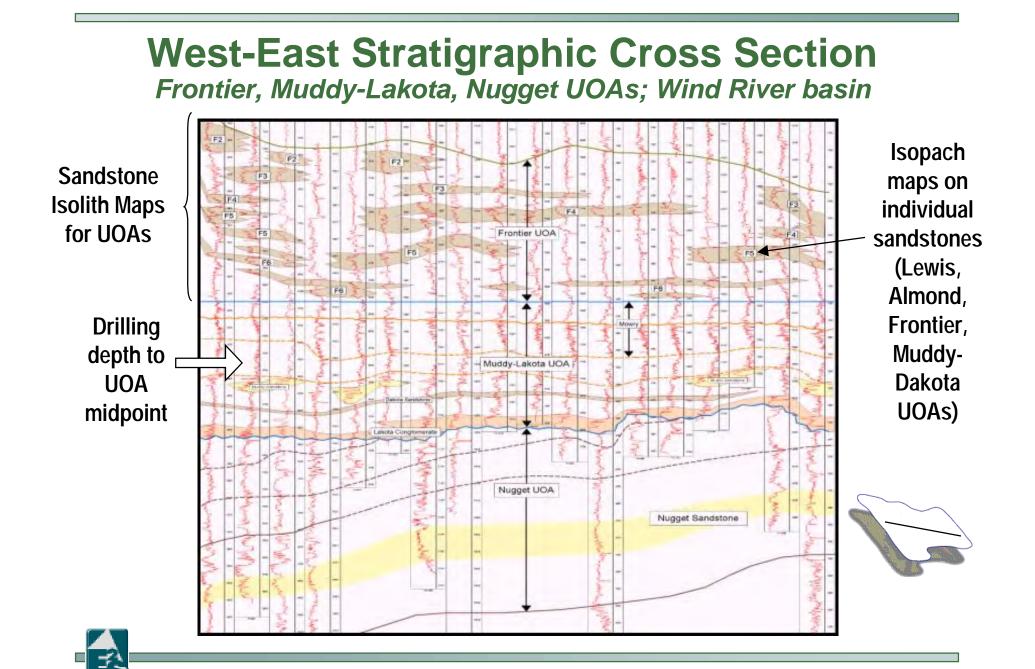

The Units of Analysis (UOAs)

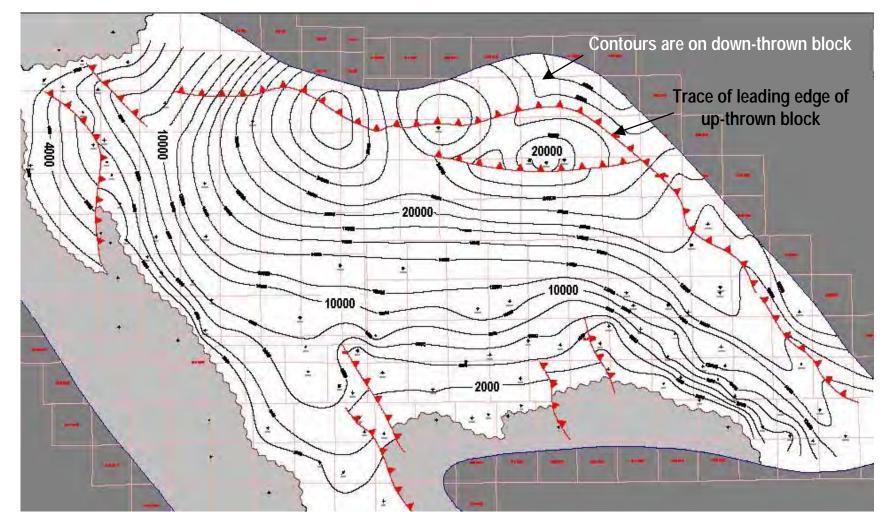
- Similar to Plays
- Encompass vast majority of target resource
- Deeper units lack data required for this methodology
- Partition resource into units consistent with our goal of modeling industry behavior: UOAs represent resources to be targeted by a single well

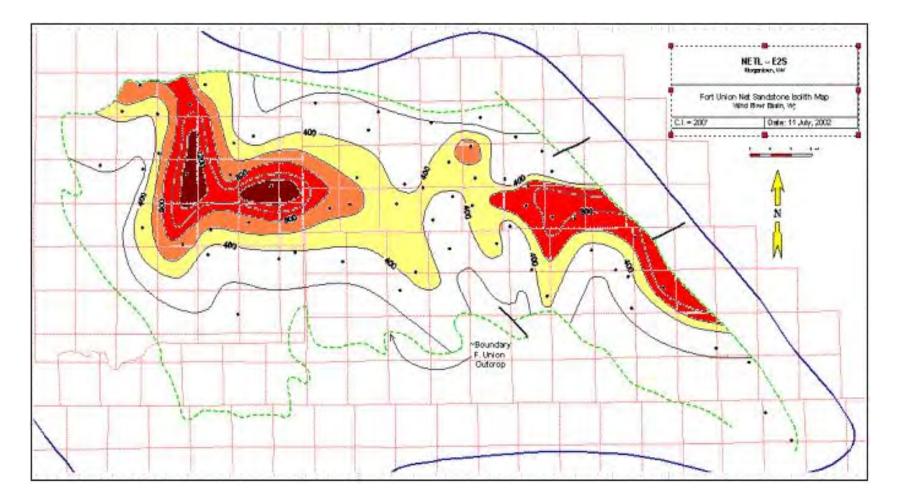
Determining UOA; Frontier-Dakota; GGRB 5-township survey of completion practice


Data Density The search for complete well log suites

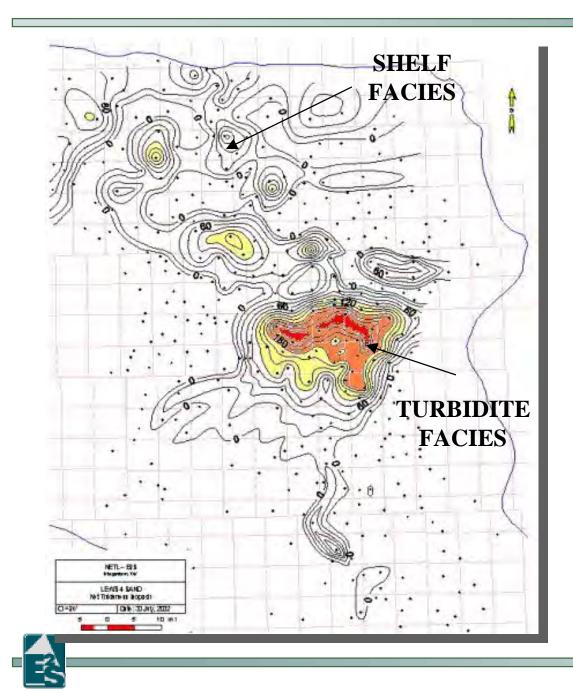
		UOA	No. of Wells	Full Log Suites in Appraised Area	Townships in Appraised Area	Full Suites per Township	
•		LEWIS	399	297	168.9	1.76	
• • •	m	ALMOND	369	293	264.7	1.11	
	R	ERICSON	301	242	337.8	0.72	
•	G	L. MESAVERDE	153	136	352.7	0.39	
	G	FRONTIER	266	158	488.7	0.32	
		MUDDY-MORRISON	192	131	466.6	0.28	
•		FORT UNION	75	44	47.9	0.92	
•		LANCE	63	28	58.8	0.48	
		MEETMESAVERDE	60	27	67.1	0.40	
	ľ	FRONTIER	136	19	56.2	0.34	
•	WR	MUDDY-LAKOTA	123	16	56.6	0.28	
		NUGGET	95	8	55.0	0.15	
FRONTIER		TENSLEEP	82	4	24.8	0.06	


Variable data density = varying degrees of resolution in resource computation

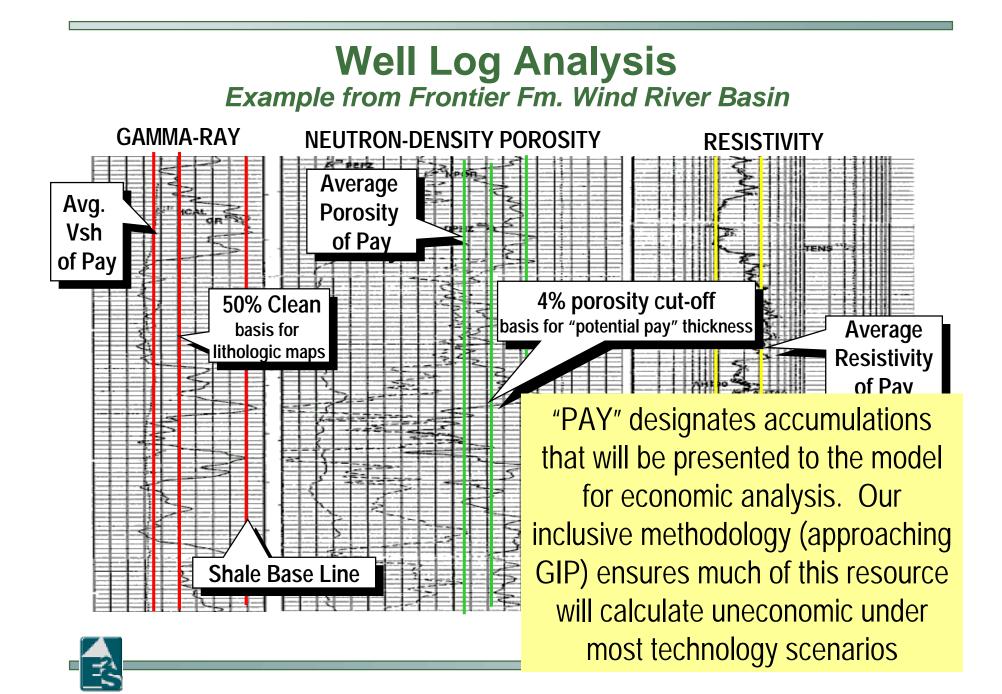

West-East Stratigraphic Cross-Section Lewis, Almond, Ericson UOAs; GGRB

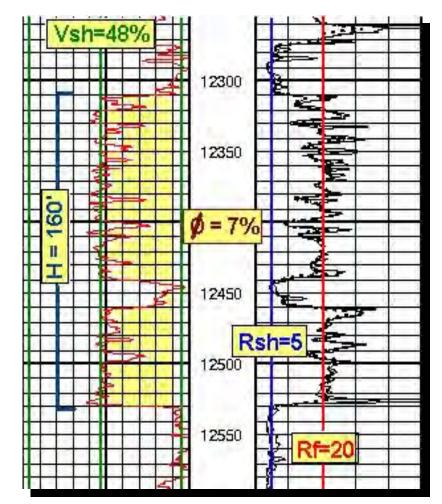


Drilling Depth to UOA Mid-point Frontier UOA, Wind River Basin



Net Sandstone Isolith Fort Union UOA: Wind River Basin

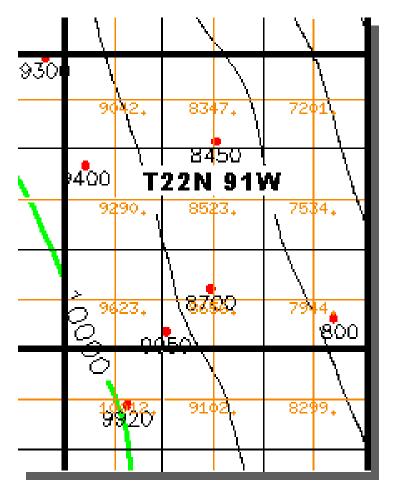




Sandstone Isopach Map Lewis "4" sand: Eastern Greater

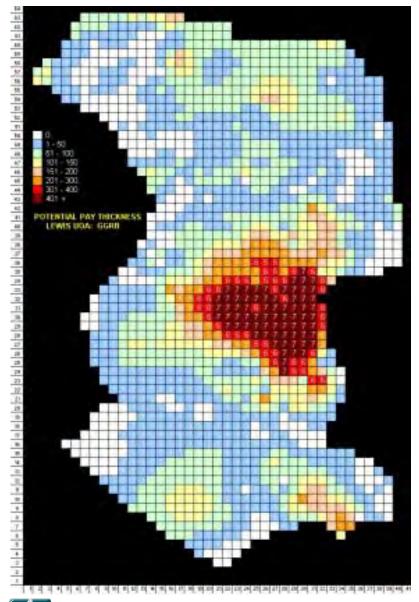
Green River Basin

Uncertainty in Rw = ?Sw = ?GIP Example from Lewis UOA, Eastern GGRB



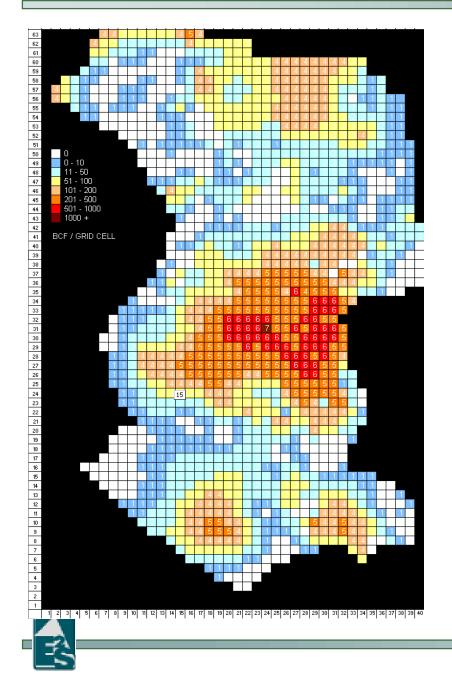
- Rw assigned from best available data - but generally is poorly known
- High Shale Volume
- Low Porosity
- Moderate Resistivity

$$Rw = 0.005$$
 $Sw = 18\%$ $Rw = 0.05$ $Sw = 37\%$ $Rw = 0.5$ $Sw = 49\%$



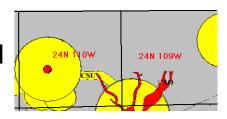
Gridding Translating Well Data to Cell Data

- Example; computer interpolates drilling depth from well data for nine 2,560-acre cells per Township
- Grid Cell size is based on the data density for the play
- Identical gridding for remaining volumetric parameters (Thickness, Porosity, Sw, Pressure)



Potential Pay Thickness Per Cell Lewis UOA; GGRB

- Values for 3,477 grid cells with average drilling depth > 5,000'
- Dark red = area with >400' potential pay

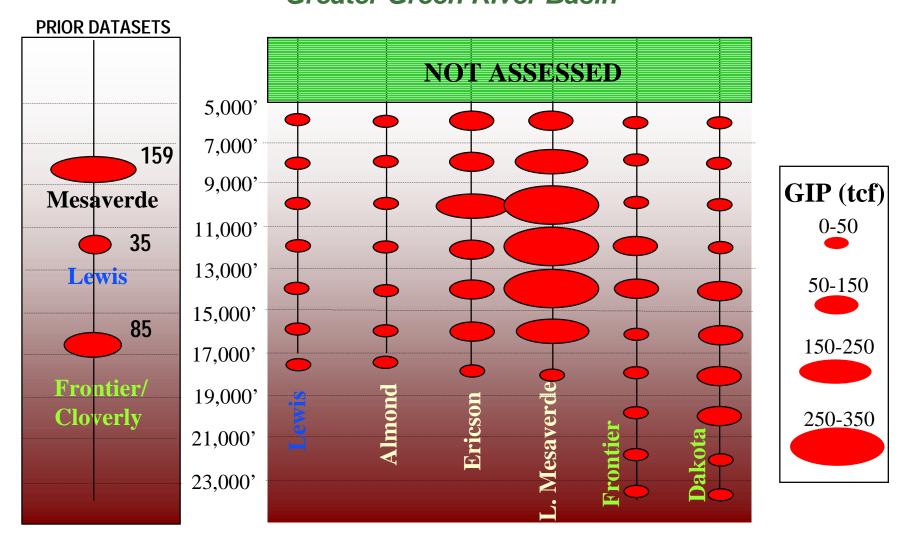


Gas-in-Place Per Cell Lewis UOA : GGRB

- Achieves a detailed geographic representation of resource parameters
- White = areas of historical production or no sand

WILL ALLOW FOR DIRECT COMPARISON TO LAND

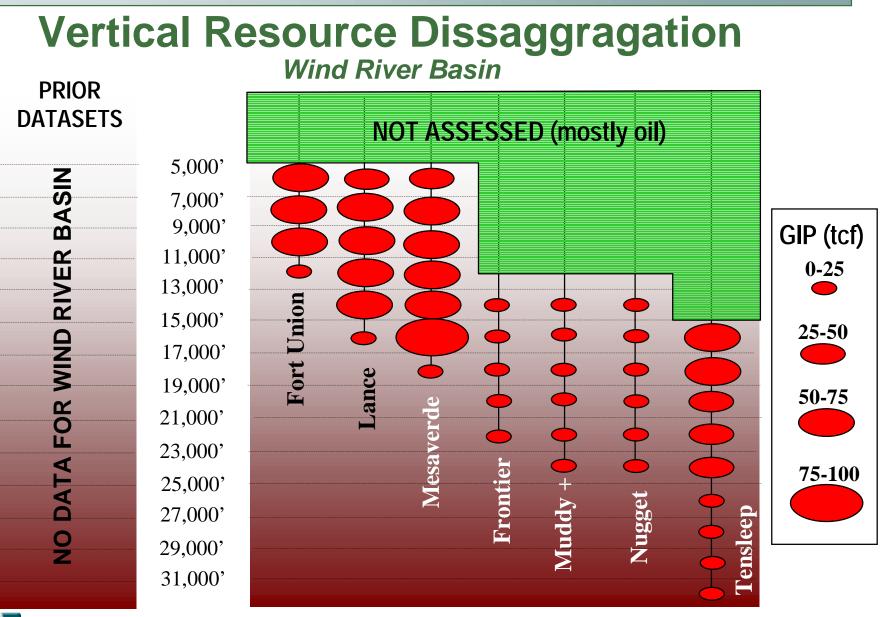
ACCESS INFORMATION



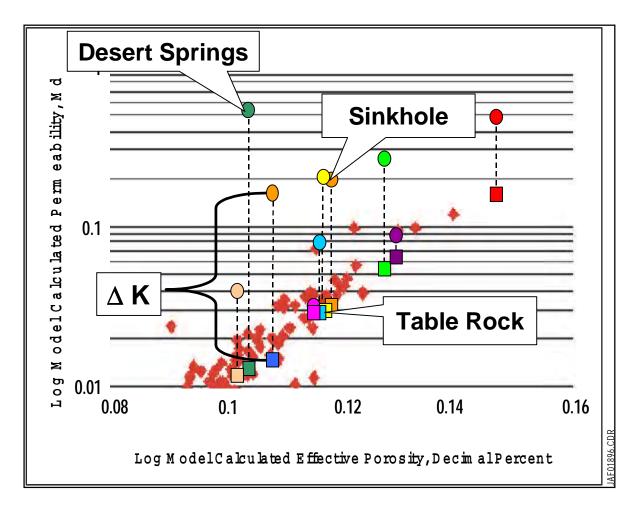
Summary Volumetric Results: GGRB UOAs 3,013 Tcf gas-in-place: 711 tcfg below 15,000'

	LEWIS	ALMOND	ERICSON	L. MSVD	FRONTIER	DAKOTA
Total Area (Acres)	3,891,200	6,097,920	7,782,400	8,125,440	11,258,880	10,749,440
Avg. Thickness (ft.)	100	44	173	369	47	52
Avg. Porosity (%)	7%	9%	9%	8%	8%	8%
Avg. Water Sat. (%)	56%	60%	47%	53%	43%	40%
Avg. Depth (ft.)	10,211	9,615	10,663	10,767	15,472	15,670
Avg. Pressure (psi)	5,428	5,075	5,488	5,559	10,186	10,415
Avg. Temperature (oF)	223	214	226	223	255	257
Avg. Z-Factor	1.05	1.03	1.06	1.06	1.39	1.4
Total Resource (tcf)	132	87	528	1,481	368	417
Deep Resource (tcf below 15,000')	10	3	60	214	198	226

Vertical Resource Dissaggragation Greater Green River Basin

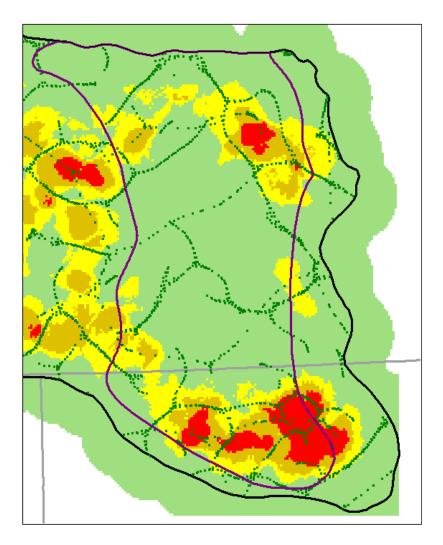


Summary Volumetric Results: WRB UOAs 1,322 Tcf gas-in place; 533 tcfg below 15,000'

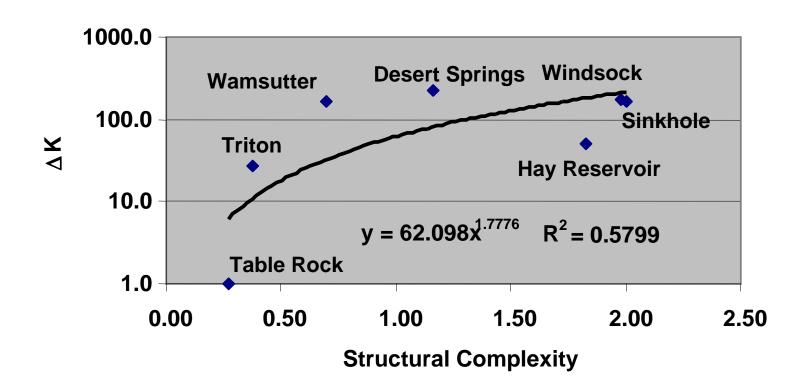

	FORT UNION	LANCE	MEET/MSVD	FRONTIER	MUDDY +	NUGGET	TENŠLEEP
Total Area (Acres)	1,103,360	1,354,240	1,546,240	1,525,760	1,672,960	1,681,920	1,246,720
Avg. Thickness (ft.)	441	512	461	91	34	76	285
Avg. Porosity (%)	10%	9%	8%	6%	6%	5%	6%
Avg. Water Sat. (%)	57%	51%	43%	46%	45%	47%	22%
Avg. Depth (ft.)	8,110	10,117	11,991	18,191	18,423	19,485	20,458
Avg. Pressure (psi)	3,627	5,104	6,933	12,420	12,559	13,444	14,184
Avg. Temperature (oF)	189	222	252	351	355	372	387
Avg. Z-Factor	0.94	1.03	1.16	1.52	1.52	1.57	1.61
Total Resource (tcf)	180 📷	322	374	74	30	76	276
Deep Resource (tcf below 15,000')	0	2	109	62	23	61	276

Estimation of Permeability

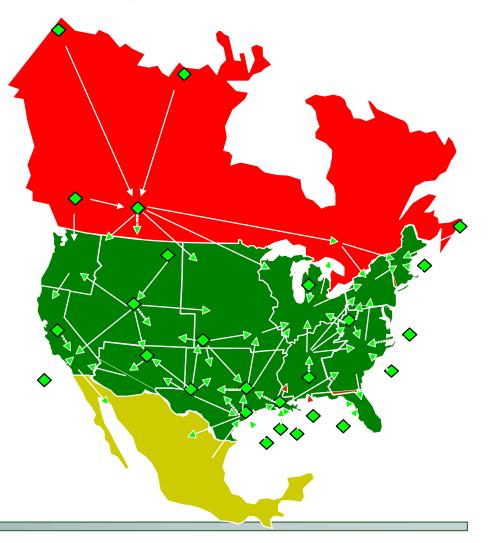
Total Reservoir Permeability vs. Matrix Permeability

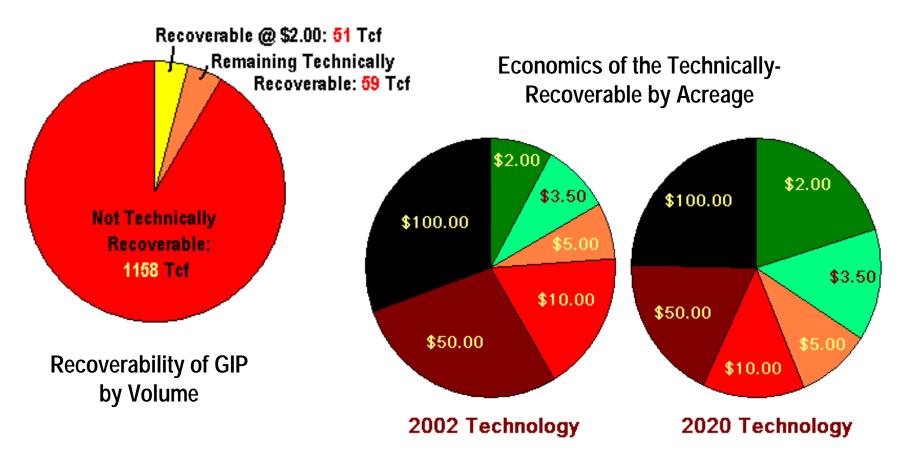


- Matrix Perm estimated through porosity-perm. Relationships
- Estimated Bulk Perm compared to expected matrix perm - the difference (∆ K) is attributed to natural fracture overprint
- How to estimate fracture overprint?

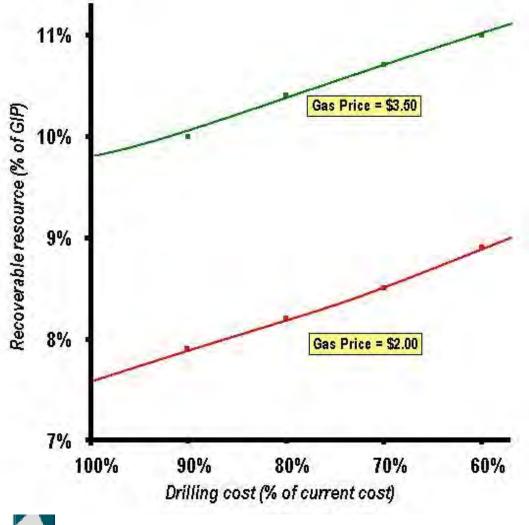

Estimating Fracture Overprint Predicting Structural Complexity

- Estimate Structural complexity by Township or 1/4 Twn. through reference to aeromagnetic and gravity data
- Correlate incremental permeability in Type fields to Structural Complexity
- Estimate Fracture perm
 overprint

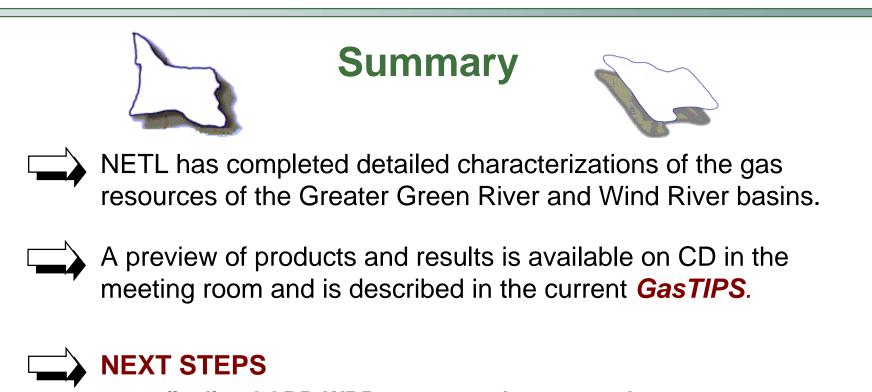

Testing the Permeability Methodology 58% R-squared: Lewis UOA - GGRB


Gas Systems Analysis Model The Nation's leading tool for estimating the impact of technology/policy on North American gas supply and prices

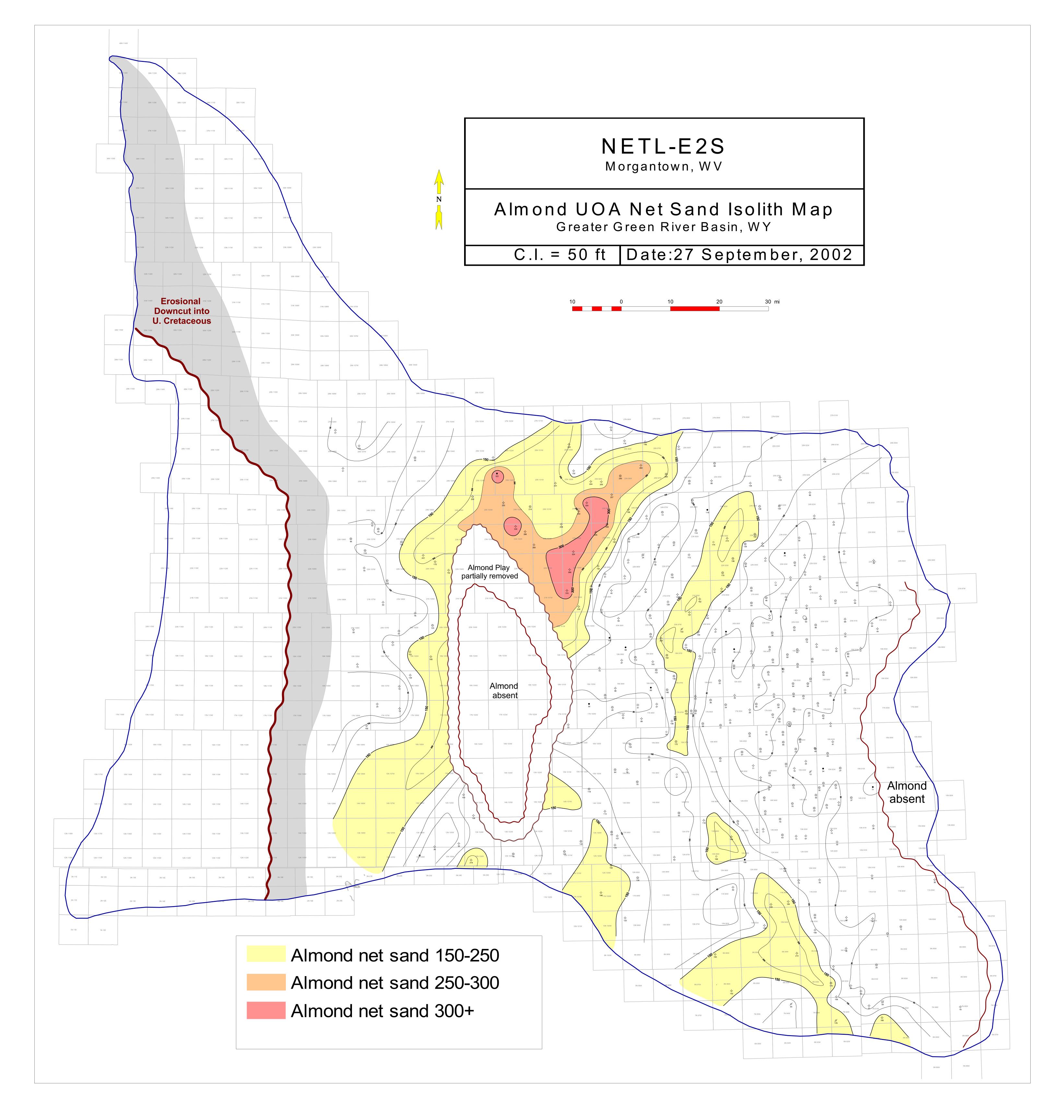
- A national model designed to analyze the impact of future technology/cost on total use production and use.
- Estimates unique response for each of 15,000 reservoirs.
- Integrates supply, demand, and infrastructure characterizations.
- Has supported numerous analyses for the federal and private sectors.

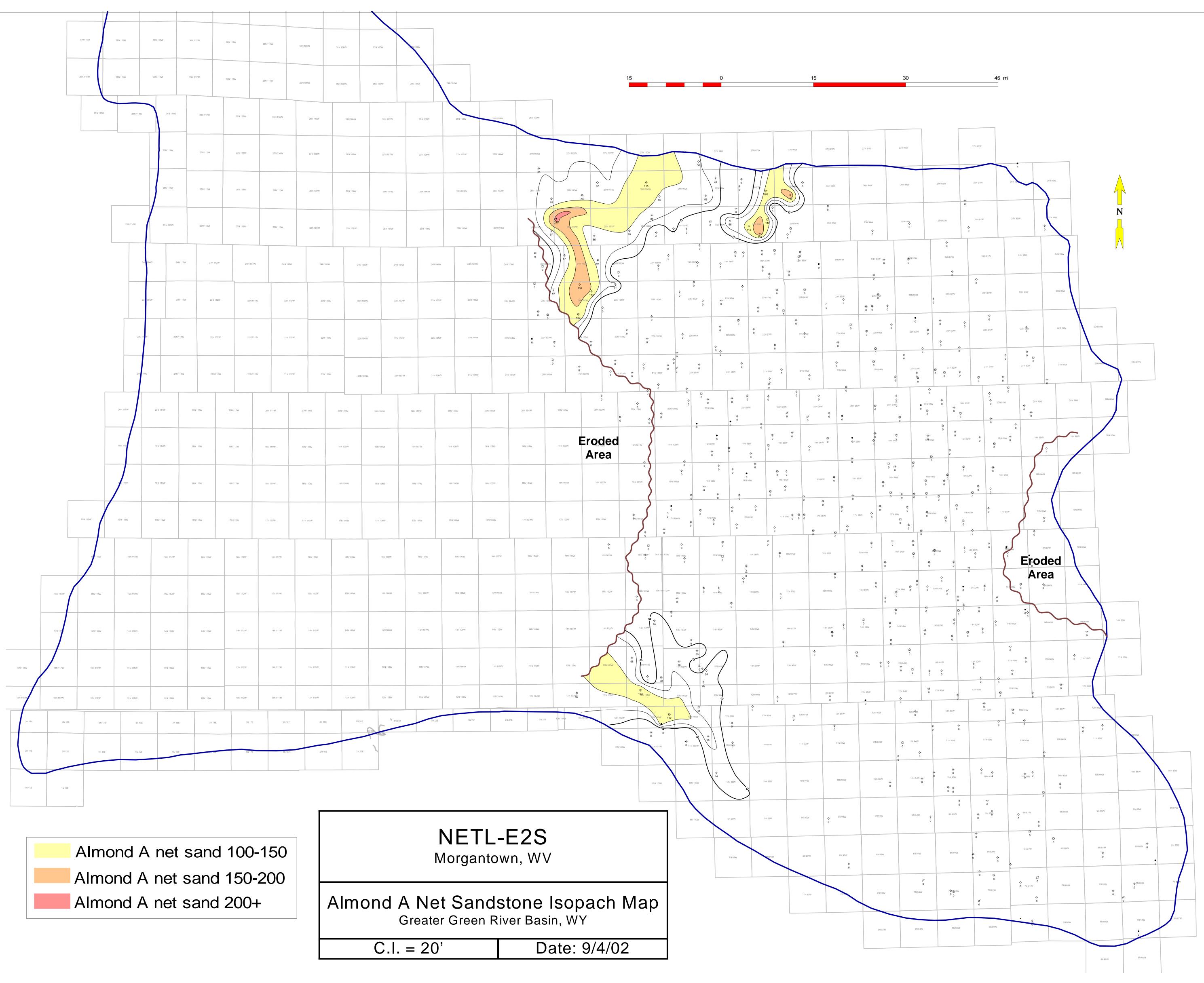


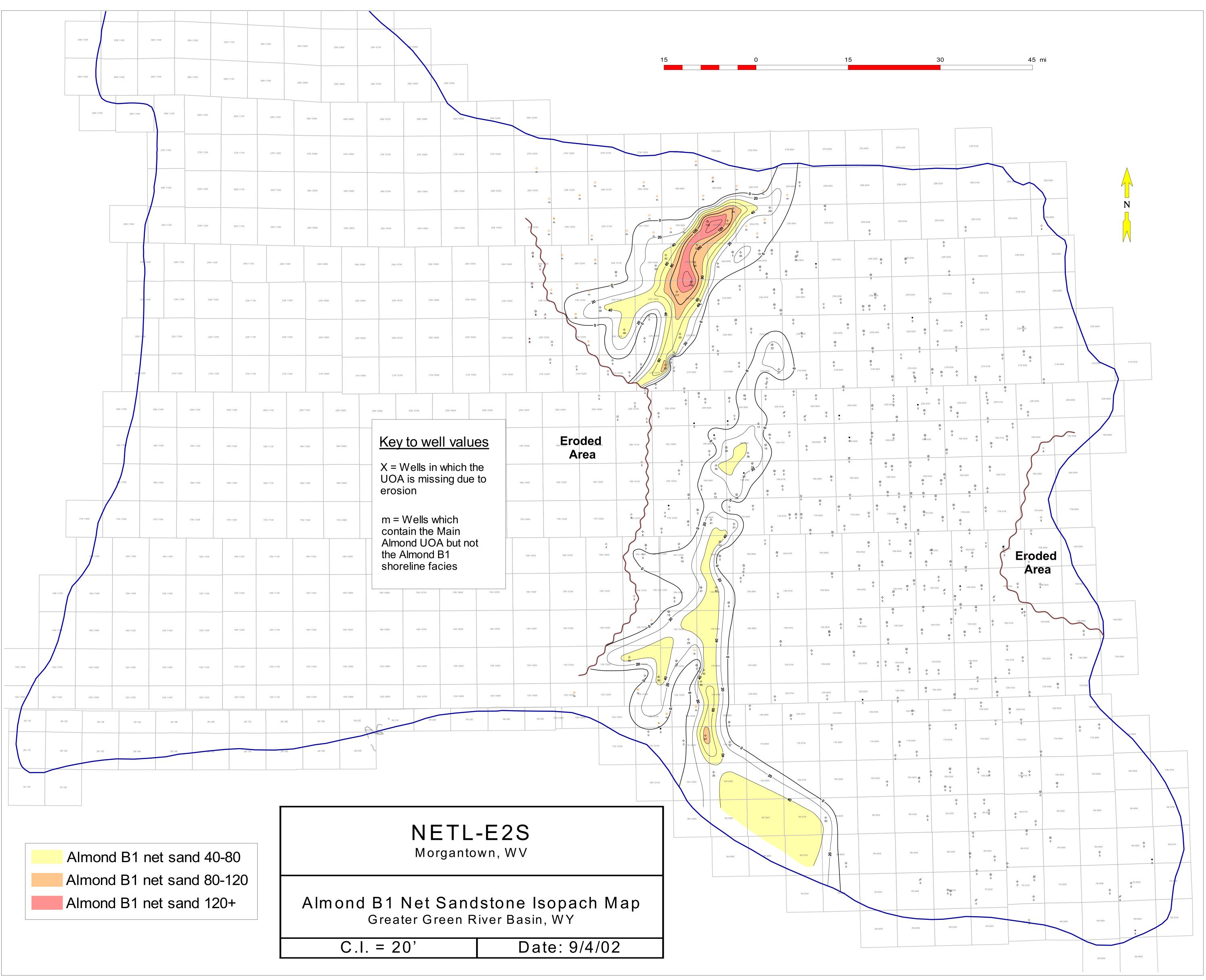
Impact of Technology on Resource Economics Lower Mesaverde UOA: GGRB

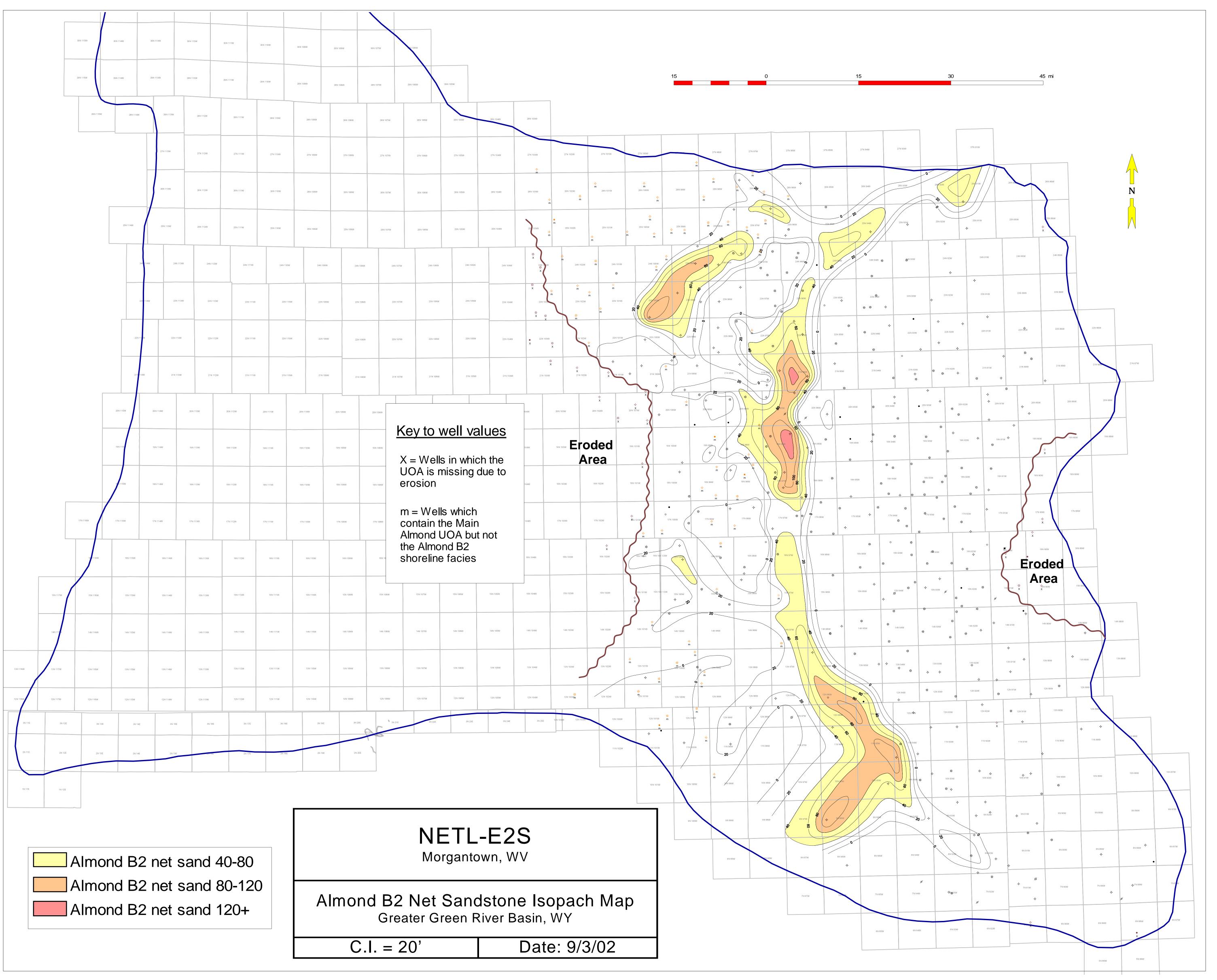


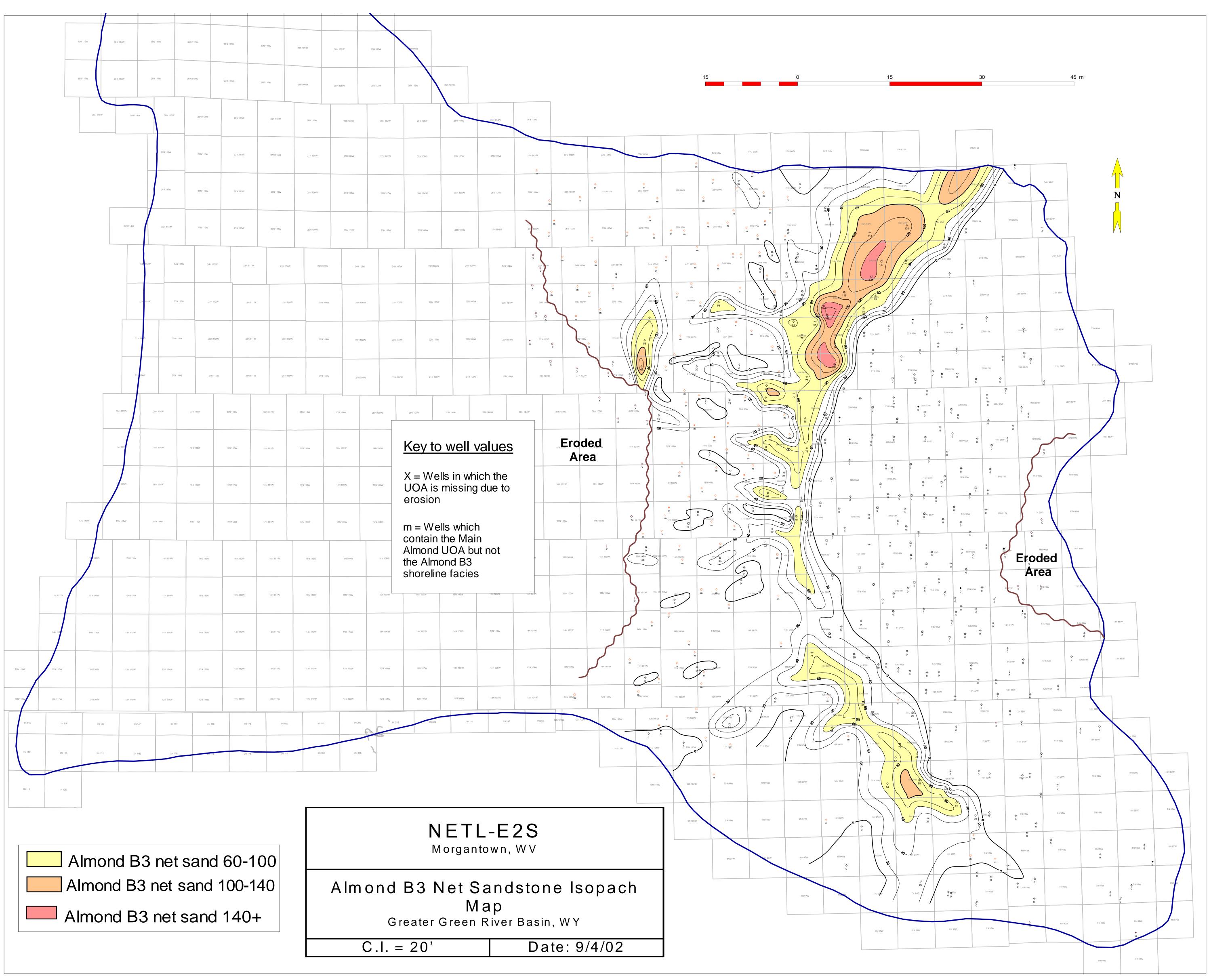
Modeling the Impact of Specific Technologies Drilling Cost Reduction v. Recoverable Resource

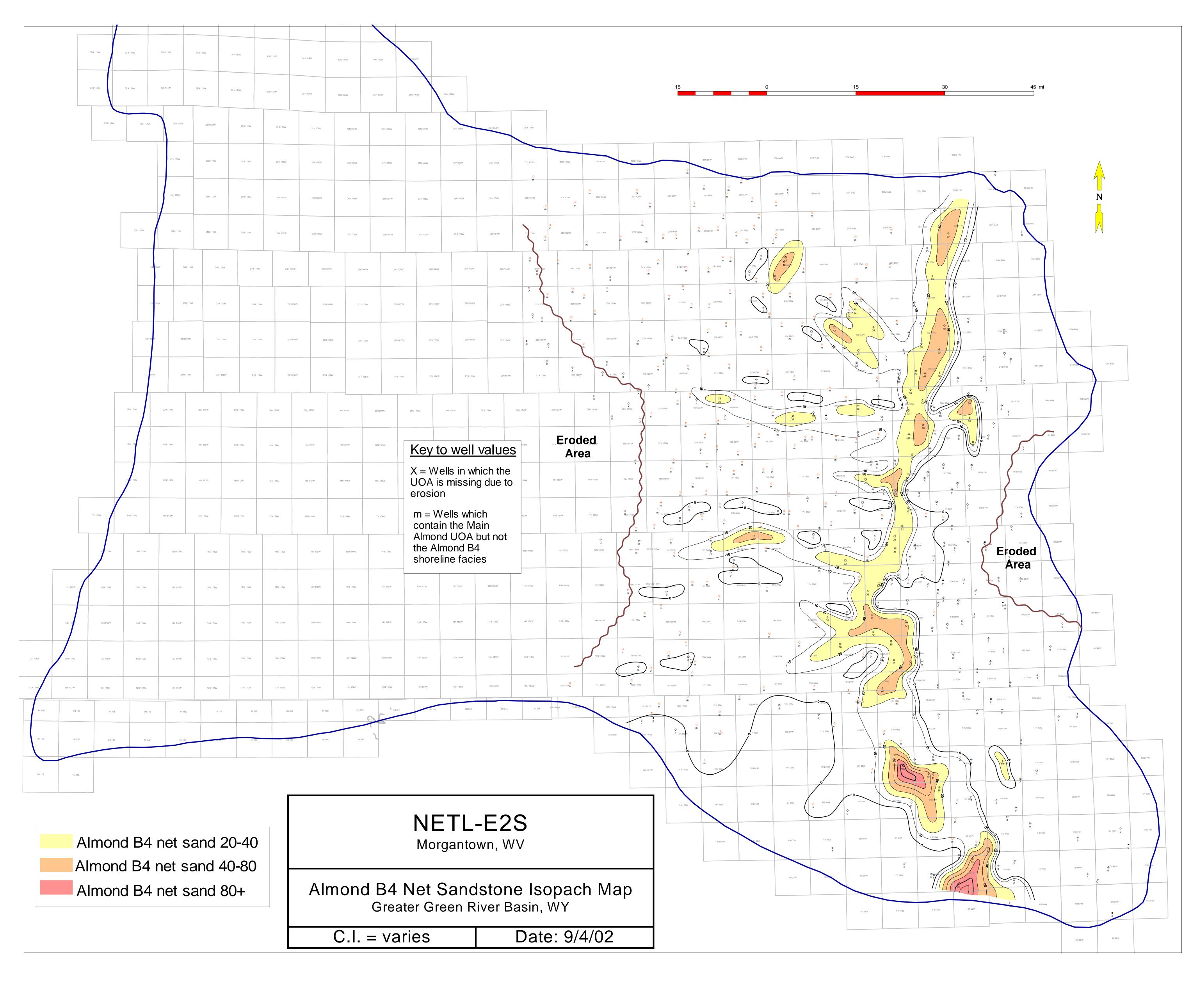

In LOWER MESAVERDE; each 10% reduction in drilling costs increases economicallyrecoverable by 0.3% (4 Tcf)

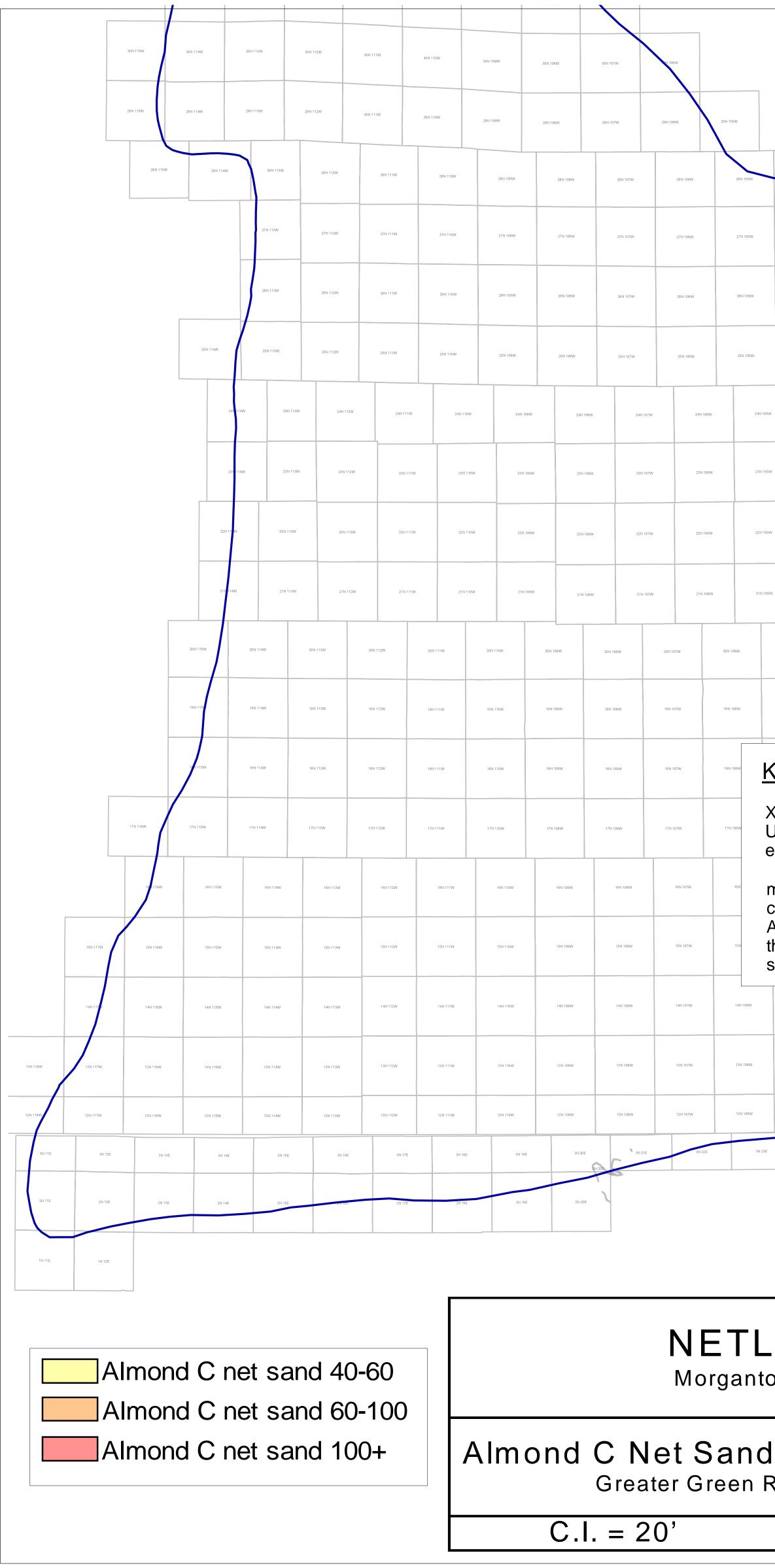


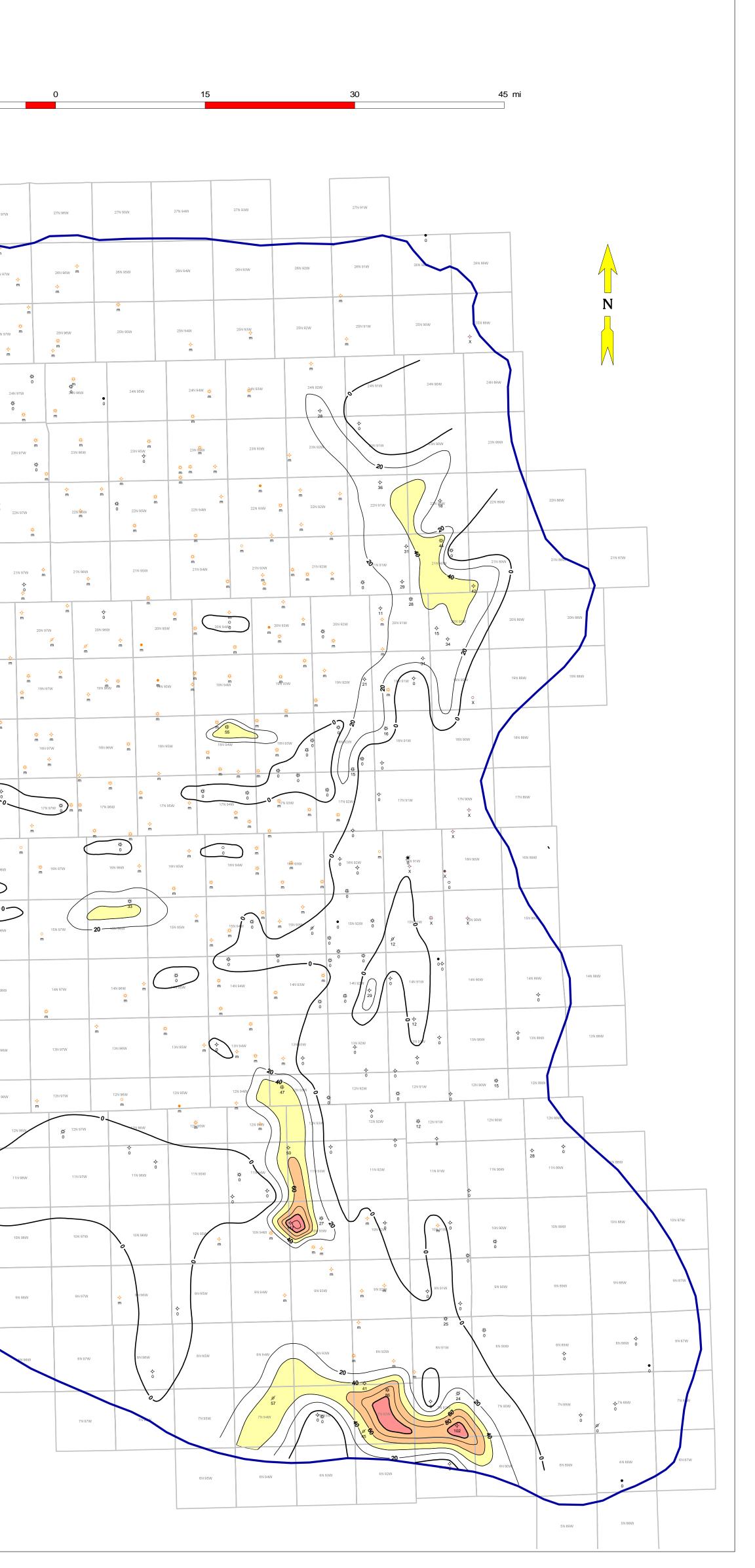


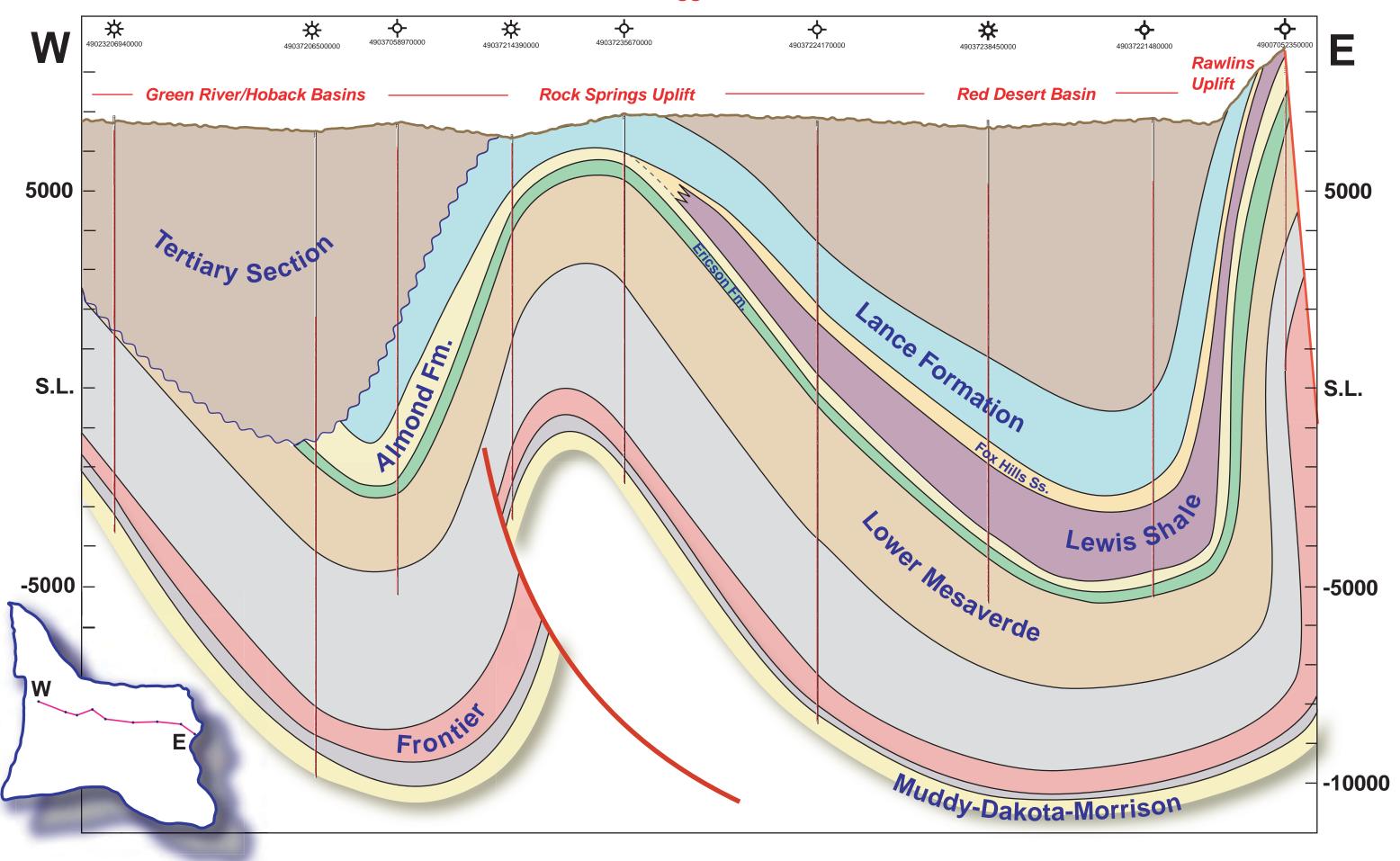

- finalize GGRB-WRB reports and post to web
- conduct analytical studies of the impact of technology
- initiate resource studies for the ANADARKO and UINTA basins
- compare GGRB resource data to detailed land access information to provide new insight into the impact of federal land policy

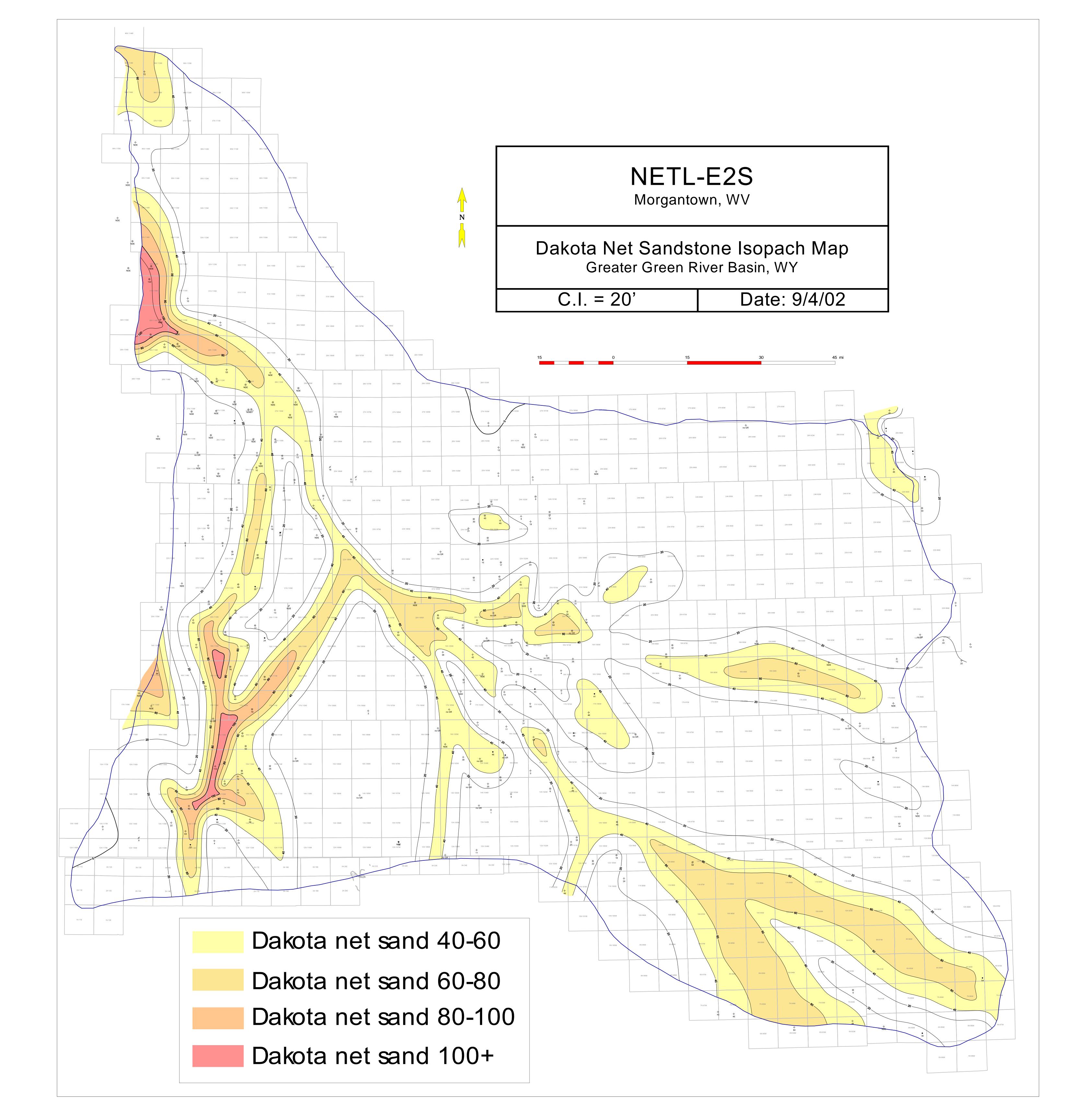


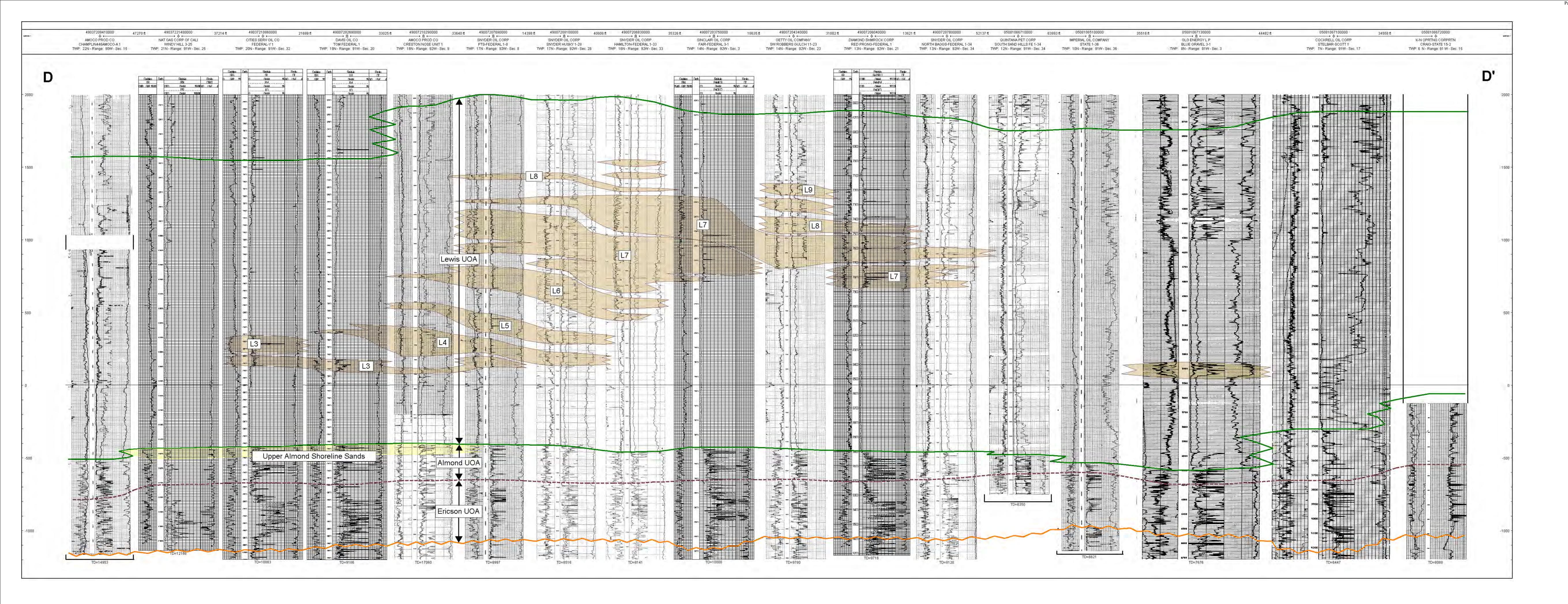




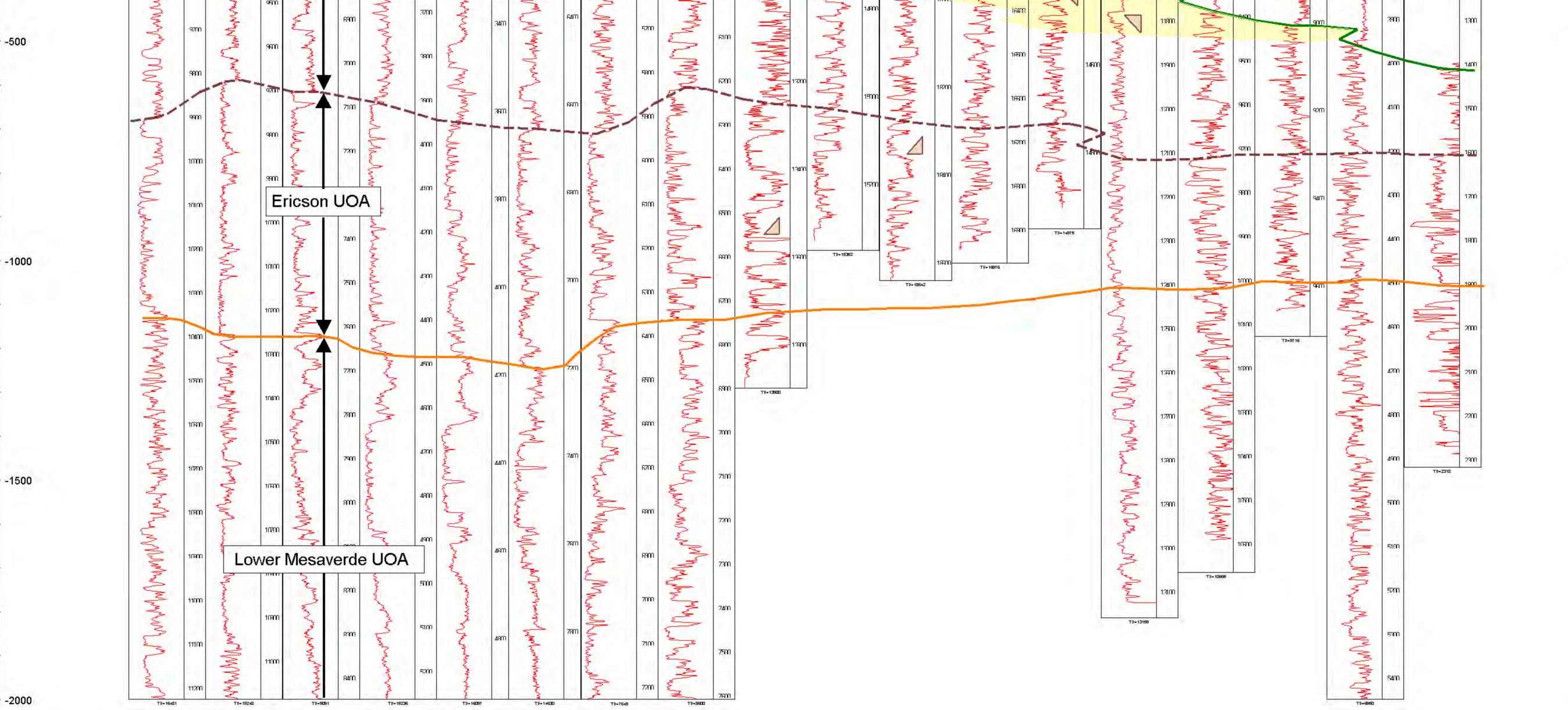







					15			0		15		
28N 104W	28N 103W											
27N 104W	27N 103W	27N 102W	27N 101W	27N 100W	¢ m	27N 98W	27N 97W	27N 96W	27N 95W	27N 94W	27N 93W	
					m	¢ m	ф т ф	\$				26N 92W
26N 104W	26N 103W	26N 102W ↔ m m	m 26N 101W	m 26N 100W � m	26N 99W	26N 98W 🔶 m	ት 26N 97W m - ት m	26N 96W m 	26N 95W	26N 94W	26N 93W	2011 9210
		• m		¢ m		¢ m * ¢	*		₩ m	25N 94W	25N 93W	25N 92W
25N 104W	25N 103W	25N 102W	25N 101W	25N 100W ¢- m ¢- m m	25N 99W	m 25N 98W m	25N 97W m m m m	25N 96W ** m • m	25N 95W	¢ m	↔ m	
	×x	¢- m	*			* m	• 🔶 💏 m 24N 97W		24N 95W	24N 94W 💥		↔ m 24N 92W
24N 24N	104W 24N 103W 英 X	y 24N 102W	m 24N 101W 発 0	24N 100W ¢ m	24N 99W¢- m		↔ 0 m	* m	• 0		m	¢ 28
05W 23N	************************************			23N 100W	↔ m 23N 99W	↔ ↔ ^{23N 98W}	☆ m 23N 97W	* * * m m 23N 96W	₩ 23N 95W �		23N 93W	23N 92W
2314	104W 25N 105V	₩	∲- m			m m	*	* 0 * m m	0 	☆ ☆ m m ☆ m	∲ m	m
05W 22N	104W • 22N 103V		22N 101W	22N 100W	∲ 22N 99W m	∲ m 22N 98W	₩ m 22N 97W	-¢- m 22N\$\$\$W m	m	₩ m 22N 94W	↔ m 22N 93W	m 22N 92W m
	X	×	∲ m	m		∲ 0		* m	☆ m	<mark>☆</mark> m	o m	∽ m n
05W 21N	104W 21N 103	₩ X W W 21N 102W	↔ 0 X 21N 101W		o m ∞ m X 21N 99W	1	∲ m 21N 97W	• 21N 96W m • • m	21N 95W	₩ m 21N 94W	21N 93W - - - - - - -	21N 92W m ☆ m
			÷ x	+ 0 + 0 - X		* **	¢ m m	¢ m		*	~	¢ m
20N 105W	20N 104W	20N 103W	20N 102W	-¢- X 20N 101W ¢- m	↔ m 20N 100W		20N 98W	20N 97W Ø m Ø m	20N 96W	20N 95W	2011 94W0 m	20N 93W m ☆ 0 m
			X	× ····	m	m	^ m #			• m		* m * m 197993W
19N 105W	19N 104W	19N 103W	19N 102W	19N 101W	19N 100W	1910 99W 	19N 98W ** m m	19N 97W	↔ ☆ 19N ∰W m	M9N 95W ↔ m	19N 94W	☆ w
				×			 m	⇔ m m	18N 96W	m 18N 95W	18N 94W	m
Key to	well v	alues	18N 102W	18N 101W	18N 100W	181 99W • m • m	18N 98W	18N 97W � m	10N 90W M	* m		* * 0 * * 0 0 * 0
X = We	lls in whi	ch the	17N 102W		m 0 m 17N 100W	¢ m 0 17N 99W	0 0 17N 96W	17N 97W * *	☆ m ☆ m 17N 96W	 17N 95W m	辞 0 17N 94W	ф 0 m
UOA is erosion	missing	due to	17N 10299		₩ 0	↔ m	n i	¢ m +	* * m		* * * * * * *	* m
	ells which		-\$- X 16N 102W	↔ 0 16N 100W 16N 100 1/	∽ m ^{2W} 16N 100W	₩ m	0 m 16N 98W	₩ 16N 97W	* 0 16N 96W * m	∲ m (16N 95W	0 ★ 0 m 16N 94W ★ m	180 93W m
contain	the Mair	า			m	m			*	* [*] [*]	{	* * m m
Almond the Alm	l UOA bu Iond C	it not	15N 102W	15N 101W 15N 100 1. ়়়	15N 100W	☆ ↔ m _{15N} ∰W	0 15N 98W	0 m	20	∲ m 15N 95W	15N 94/V 0 mm	m m 15N 93/4 0 0
shorelin	ne facies	•		* *	↔ 0 	* m					*	* 0 0
14N 105W	14N 104W	14N 103W	14N 102W	☆ m 14N 101W	14N 100W	14N 99W	14N 98W	14N 97W	∲ 14N 96W m ₩ m	€ 0 mrssw	☆ m 14N 94W	* m 14N 93W m * m
								* m	¢ m	* m	☆ 	Ő
13N 105W	13N 104W	13N 103W	13N 102W		* m 13N 10000	13N 99W	13N 98W	13N 97W	13N 96W	13N 95W 🔶 💏	→ 13N 94W ★ m m m m	13N93W � m 0
12N 105W	12N 104W	12N 103V m	12N 102W	↔ ↔ 0 m ¶2N 101W	12N 100W		12N 98W	12N 97W	12N 96W O	12N 95W	12N 94W	2 40 47 47 2N 83W 0
1210 10500	1214 10449				× ×		¢- m 12N 98W	☆ m ★ 12N 97W	-0	m 12 <mark>10</mark> 95W	↔ m 12N 9¢W m	12N 93W
ie 3N ;	24E 3N 25E	12N 104W 12N 103W	12N 102W	12N 101W	12N 100W	×		0		*		¢- 50
			11N 102W	11N 101W	∲ 0 _{11N 100W}	Ф 0 11N 9 0 /V	11N 98W	11N 97W	11N 96W	∲ 0 11N 95W	* 111 v4W	111 93W
						*	-0					* 27
				10N 101W	10N 100W	m 10N 99W	10N 98W	10N 97W	10N 96W	10N 95V	10N 94W ¥ -∲ n m	n 10 saw
					_ \							9N 93W
-	\sim				9N 100W	9N 99W	W8e Ne	9N 97W	∳ 9N 96W m	9N 95W Ф	9N 94W	• 99 93W
-E											8N 94W /	8N 93W
own,	WV					Wee 118	W86 N8	8W 97W		\$0 0		
					-					7N 955W	7N 94W	
dsto	ne la	sopa	ich I	Мар				7N 97W	711 211	Ween		
	Basin									6N 95W	6N 94V	, 6N 93
			11/00	<u> </u>	4							
	Da	te: 9/	4/02	_								

Greater Green River Basin - Structural Cross Section Vertical Exaggeration 26.5X

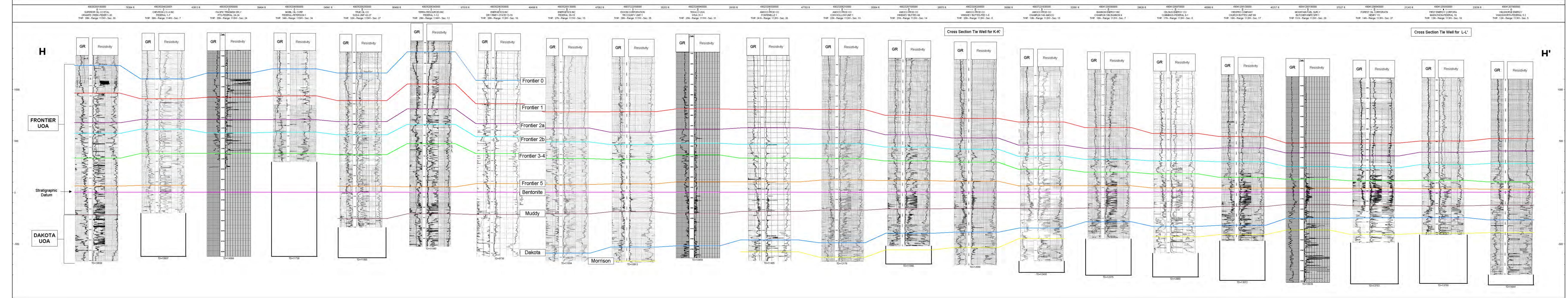


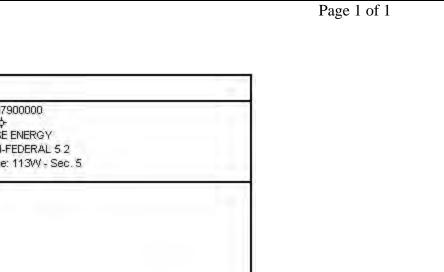
6	Correlation I GRD	Depth Carrelation GRD	Depth Carrelatio	n Depth Correla GR:	on Depth Carrelation GB	Depth Carrelation	Depth Carelation GRS	Depth Carrelation GPR	Depth Carelation	Depth Carrelation D	epth Carrelation (epth Constation Depth	h Carrelation Depi	h Carelation GPD	Depth Carrelation GPD	Depth Carelation [Depth Carelation Dept GRS	th Carrelation Depth GRD	C
•	0 649 150	0 G4PI 15		150 0 G4F	150 0 GAPI 1000	150 0 GAPI 11	50 0 G4PI				0 GAPI 150	0 GAPI 150	0 GAPI 150 0 1187	0 GAPI 150	0 G4P 150	0 G4PI 150	0 G4PI 150	0 GAP(150	C
	My hymn		Ram Mark	4300	1100	m M	300	300			m MM	54m	•	May Mary	sm WWW	AND	sam	n .13m	
	May Manual Manual	m with And With	200 march	AT AN	າສກ	Muldury	Why way			1000 LINE AND A	Murt Annual	1390	n 1717	n.Mm. M	m M	sm with	14Th Ital	n .12m	
	MAN	7m	7m manufally	4500	Tertiary			37		15	M Mar 1			Mary		7mm		n -110	
	Mary May	zam and an	700 May	Ann were		e Re	MAL	the second	1 1	Mart Martin and	NAMAN	Fc	ox Hills Sa	ndstone		710		n ann	
	hand franker	zam MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM	73M WYMM	4711	1500	1200	42m	3911				Rm 2 1271				770	R911 171	n	
	M. Maryan M.	A MM MMM MM	74M	4900 March	រណ	Manhar	and Marine	300		1100	and the second	1431 Martin	n 124	n marke	970	73m	197	ກ ສາກ	
	Why William	77m Mary	m My My	4977	1700	14m	AM WWW		410		5		C Juniphone	more	9900	74M	7m 190	n -711	
	5	m M	7700	m 200	1800	hard and a filled	ALM WWWWWWWWWWW	why man	2m	11700	Sample	200 1450 200 200	n 1777	n	see how	7500 Your IV 1990	m m	ກ	
		AN WWWWWWW	7800 7800	5100	1900	1977	450 MM Mars		431	All and a second	armal way with	1497	e randomik M	- A	L8	Multi Multi	77m 100	n an	
	MWW AMMA MAMAA	m WW	2900 January	SM W	200	MANNAMA	Marynhum	am A	44m		3	300		vis UOA		770 Munuhan	M MM	n	
		am why how	m	53M WWW	2100	1977	49m Windhall Am	A MAN	4977	- A	an and a second	Summer Jung Tag	Marian	man	insue manufacture	m Man	74m 73m	n an	
	- Andry My	Sum Minut	81m May Mark	54m	2200	M	Martin	Arm And And	AFT	110m	SSD .	₩ 1490	177	n Water por	LT w	7911	241	n .an	
	1	m WW	800 M	FM WWW	2400	200	x Hills Sa	Indstone		and marked	al martine for	1510 1510	- And	MM			75m 77m	n1m	
	- And	and have been	St Marth	SM W	200	they have	the has	4400	49TT MANANA	11800 11	#M./m.	#m 1571	127	- Annon Maria	N. N.	810 W	The second secon	n n	
	Mutum	mul lung	RAW WAY	5700	m	22m Joy Marked M	5200	15m	4911 (MUN)	month	Annon	150	n Alamati	Strong and	And my Char	800 Manual Andrews			
			m W	5900 Jan	2700	pre When pre		4AM Martin	Mentil Investil Mar	1700 17	m Mr. M	7m 1540	n Manual 13	MM		8400	290		
	1 MMM	m MMMM	SE ANNA		200 200	240	Mannahar	47m	51m	- Martin	prof and have not	Way Im	C NINAMAN 13	Mr. Andrew		870			
	Man	m MMMM	87m	sm 2	290		5900 Same	4971	570	17784	m	200	a martin	mon	whenterne	sau har	870 310	And A	
	Mary	m Munut	Sam Ann	FAIL 2		A martine	- Marthanne	1997 Mary	5311	Munully	and phase	Marrie 157	0 MM	n	mm mm	8700	320	n em	
	Jun		800 Manufacture		3100	2000	580	STM ANAL	5400		tom how h	74/11	e manufacture	Maryan	17m	SSU Manufacture	8400 230	n m	
	(my/my)		mul min	RAW MARY	m V	when when the	Mont	570	9701	2 - Winder	handhard	AND 1990	0 And 120	n and a second	II Josephan (1997)	800 Martinet	201	n an	
	M	am Mr	au Manual	RSUU ANNALAN	300	300	ATT A	5300		12800 3 12800 12	um	AU1 1900	or Handway	2 Charles	11400 W	m Why	9m 4 3m	n sm	
	Andrew Maria	All water	sm Z	d UOA	2400	M. M. Mary	Mr.M.	5400 Jun 1	570	The state of the s	and the second	160	n Mulanna 1201	e	Im My M	an my Mr. mar	and the same	n 1000	
	Mm	Marine			390 J	M	MMMMMM	FTTT	Unner Alm	nond Shorel	ine Sande	11571		Man		9000 P	811 2 371	n 1100	

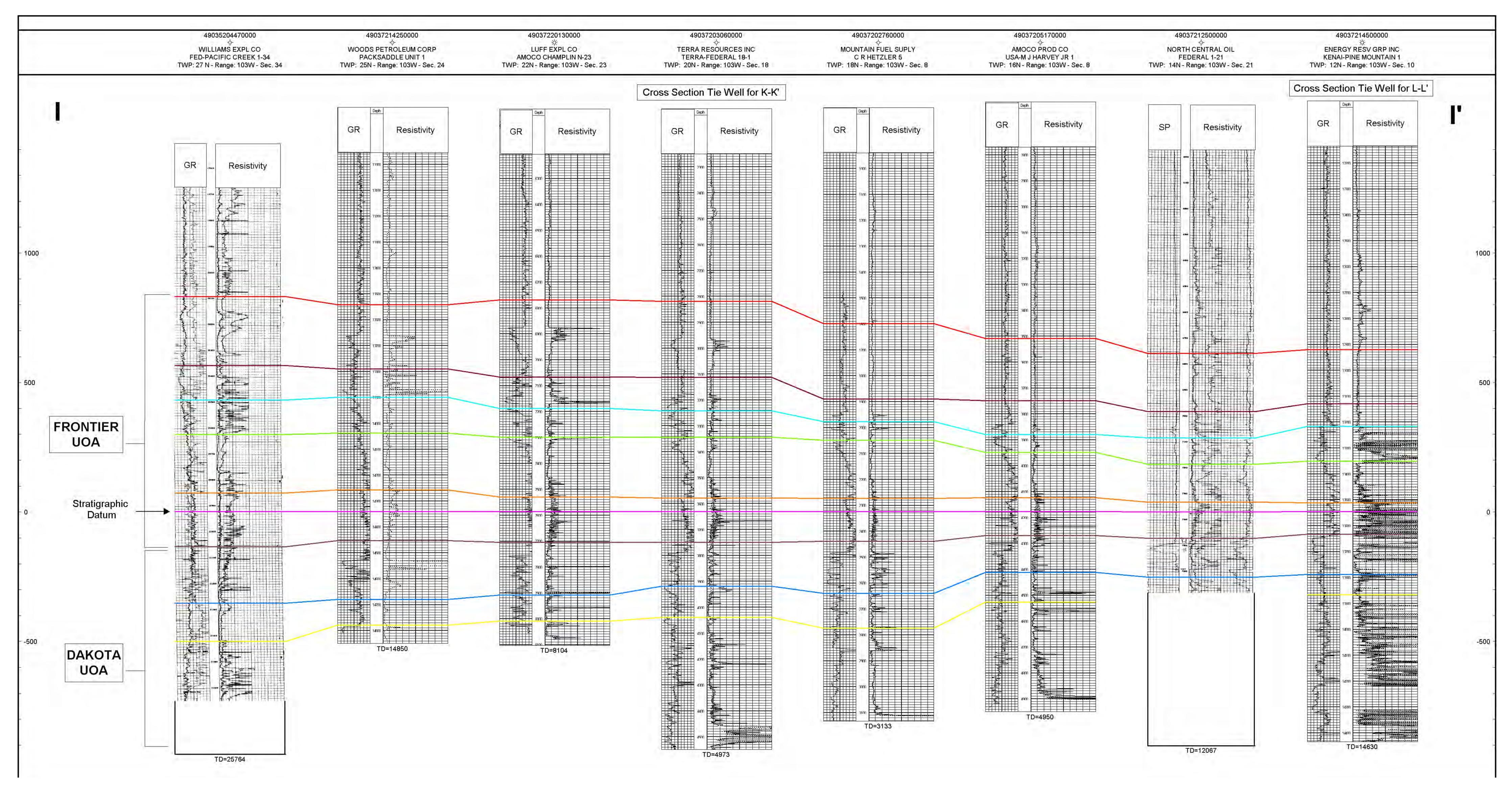
-500

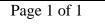
-1000

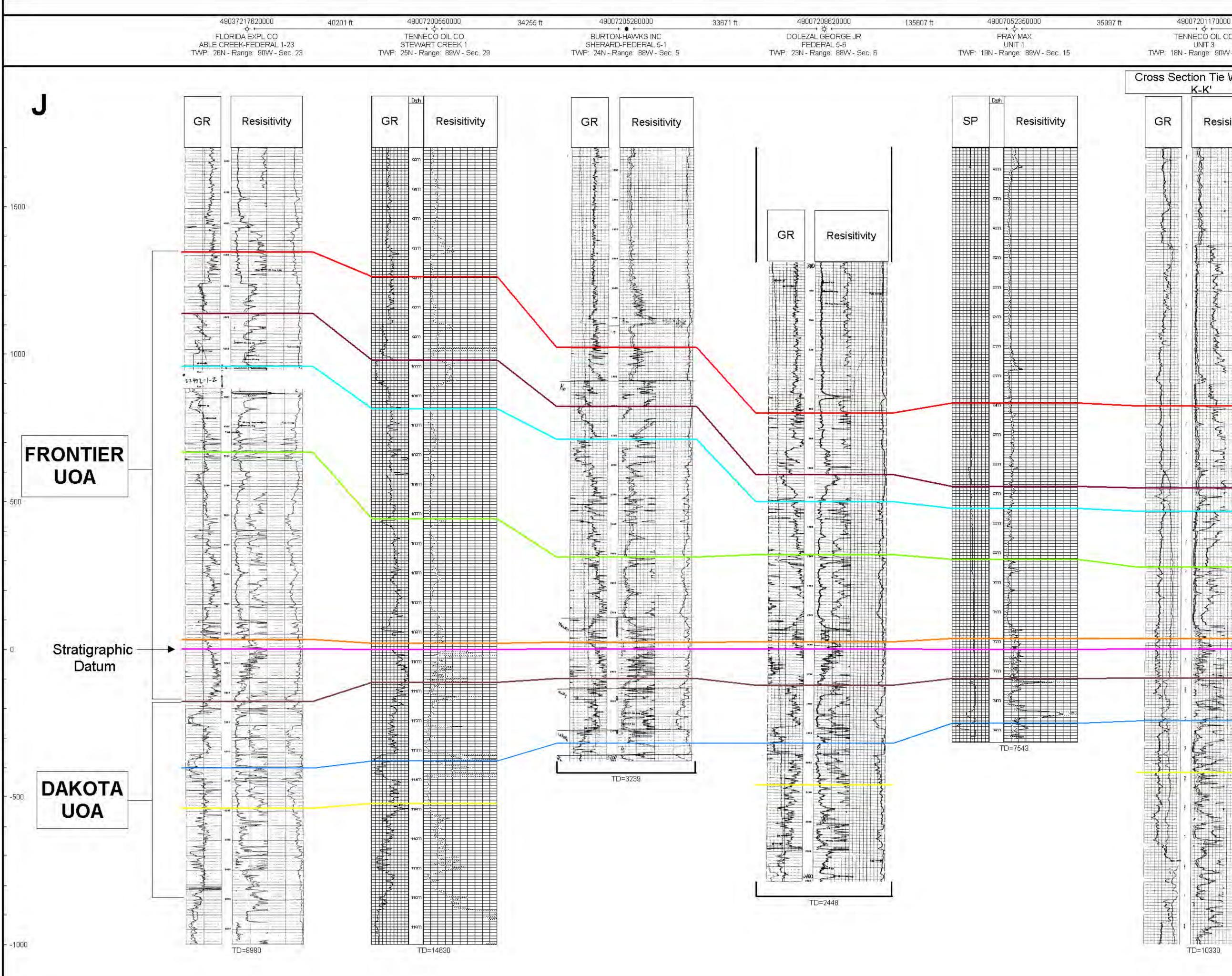
-1500

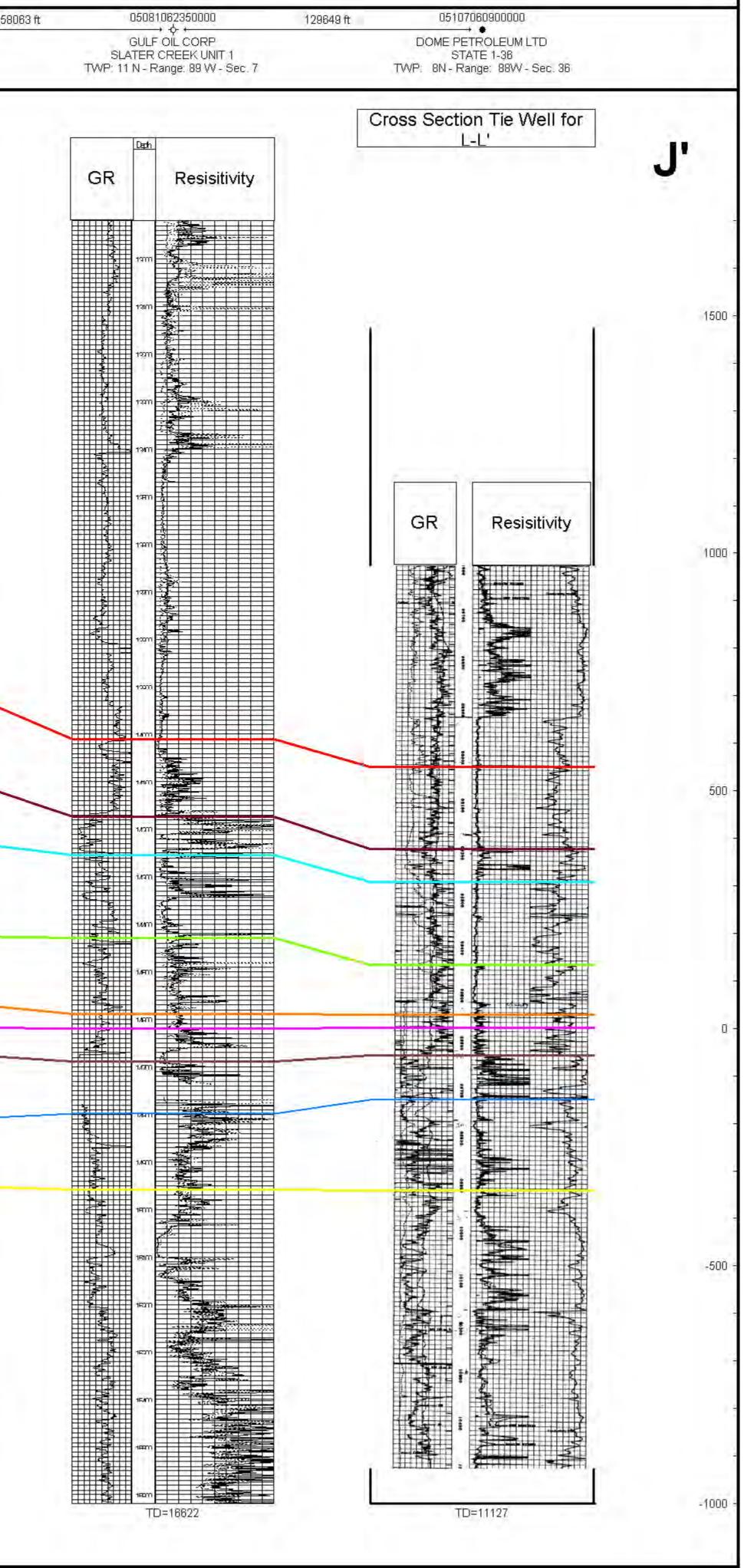

-1500

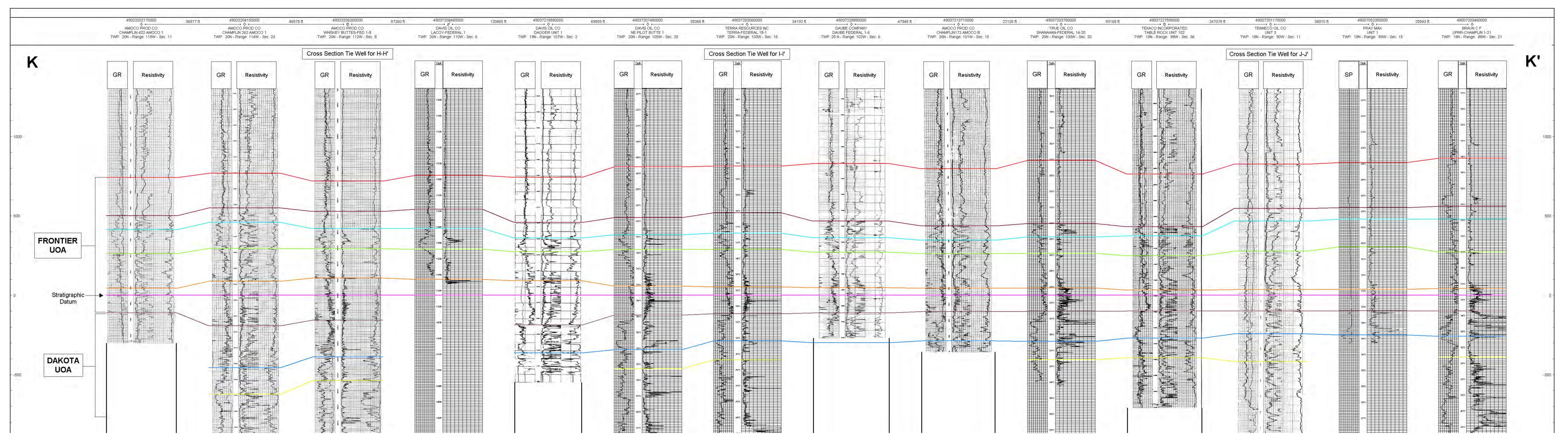

-2000

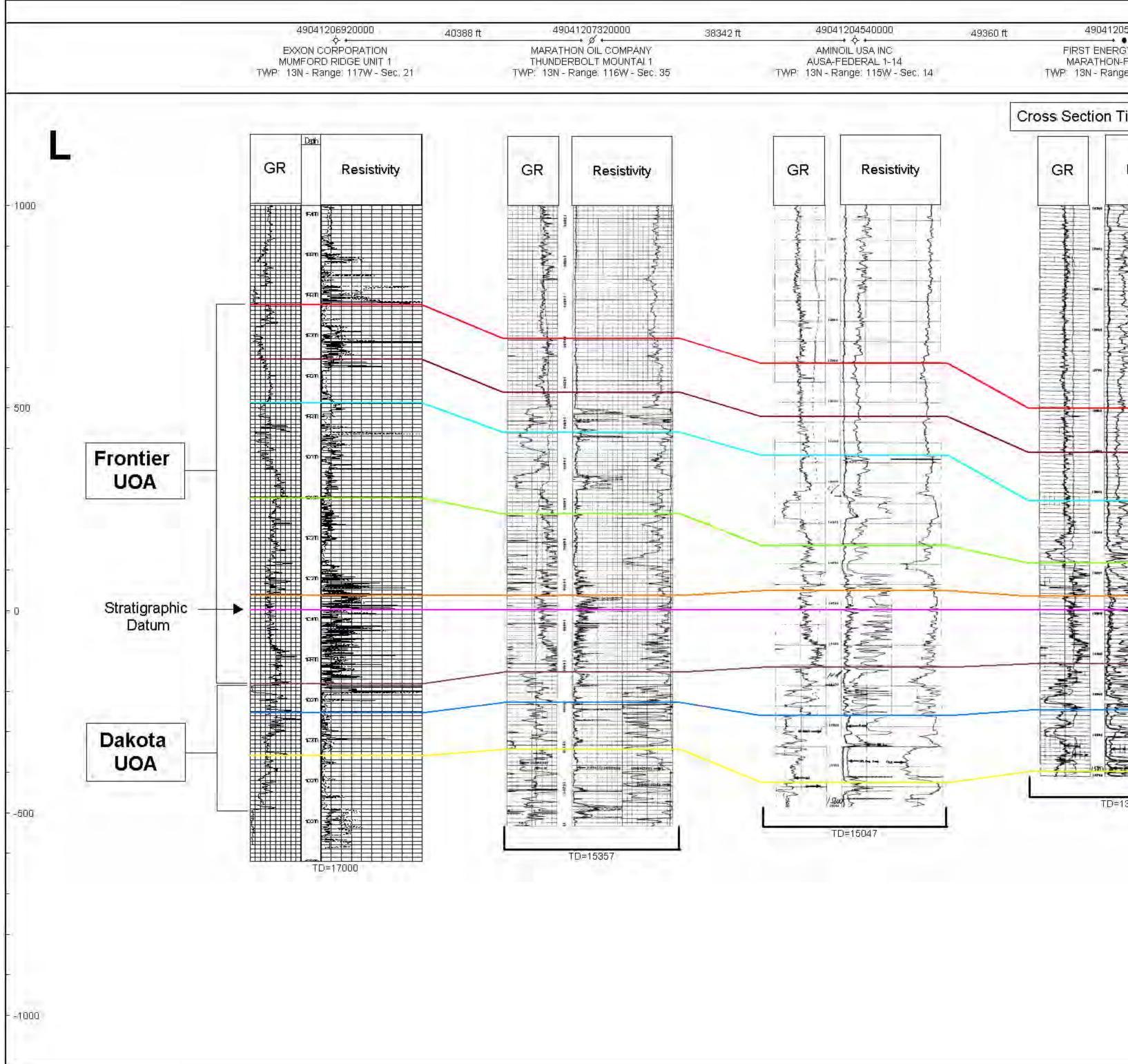

-1000

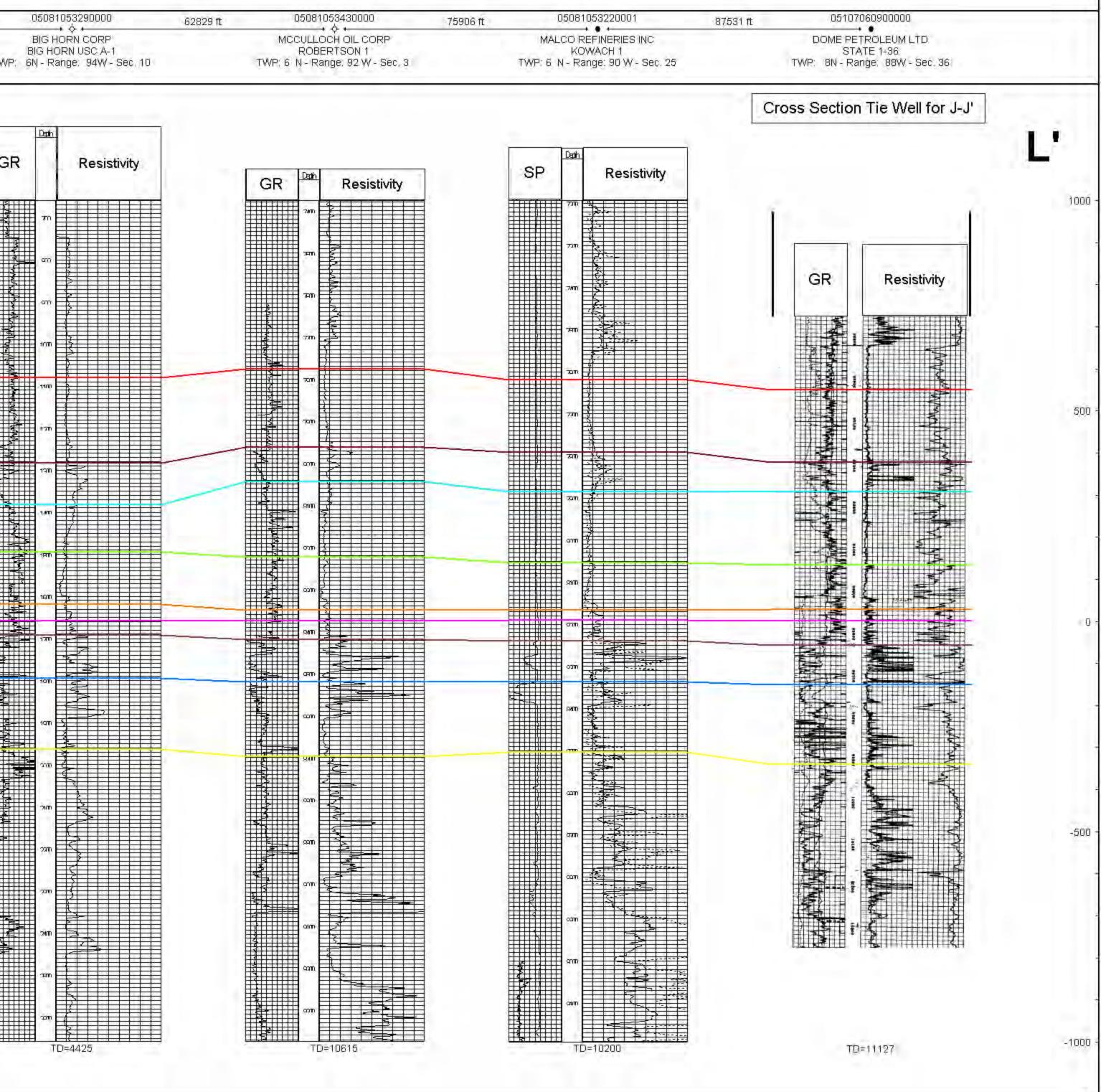

-500

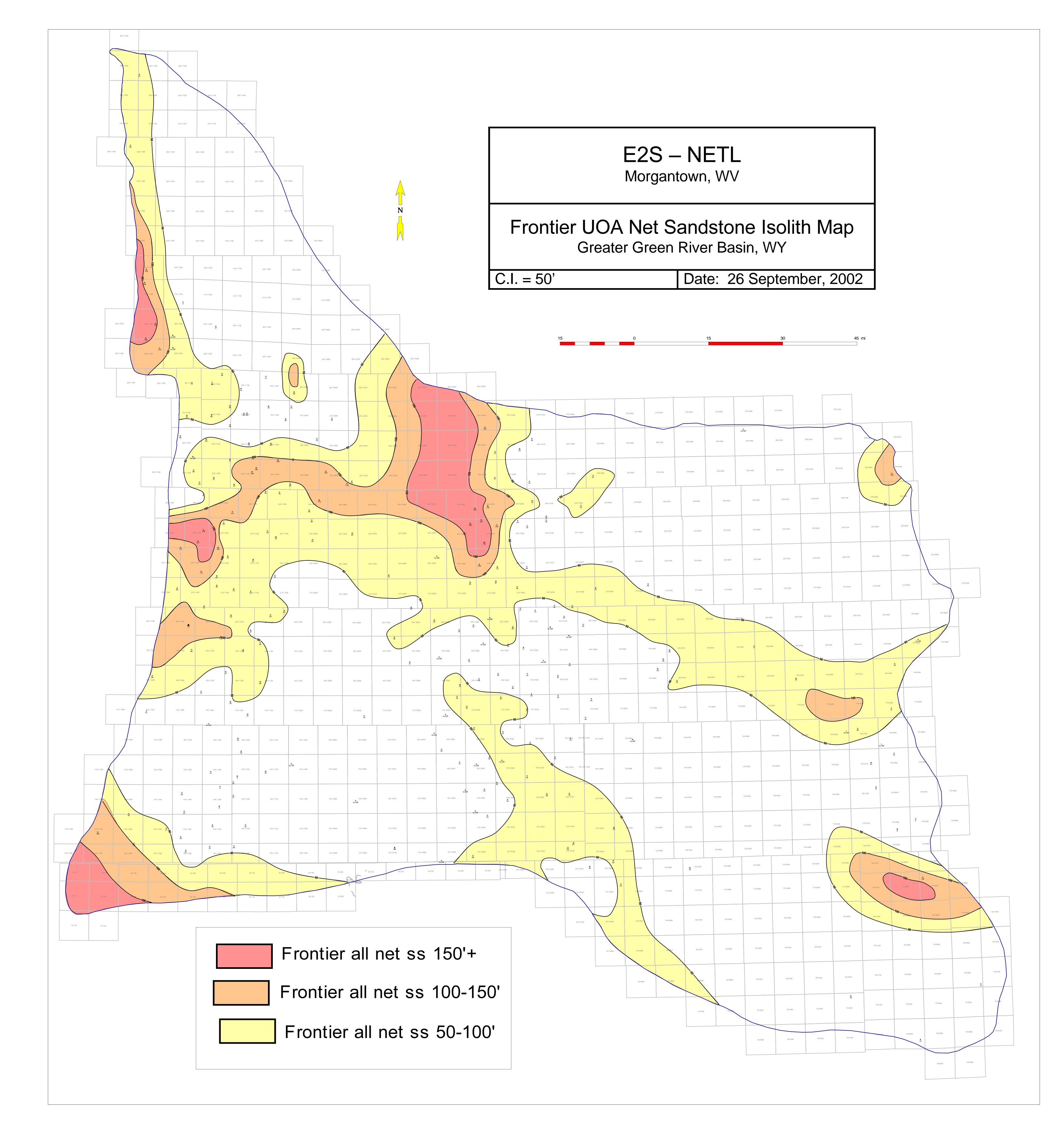


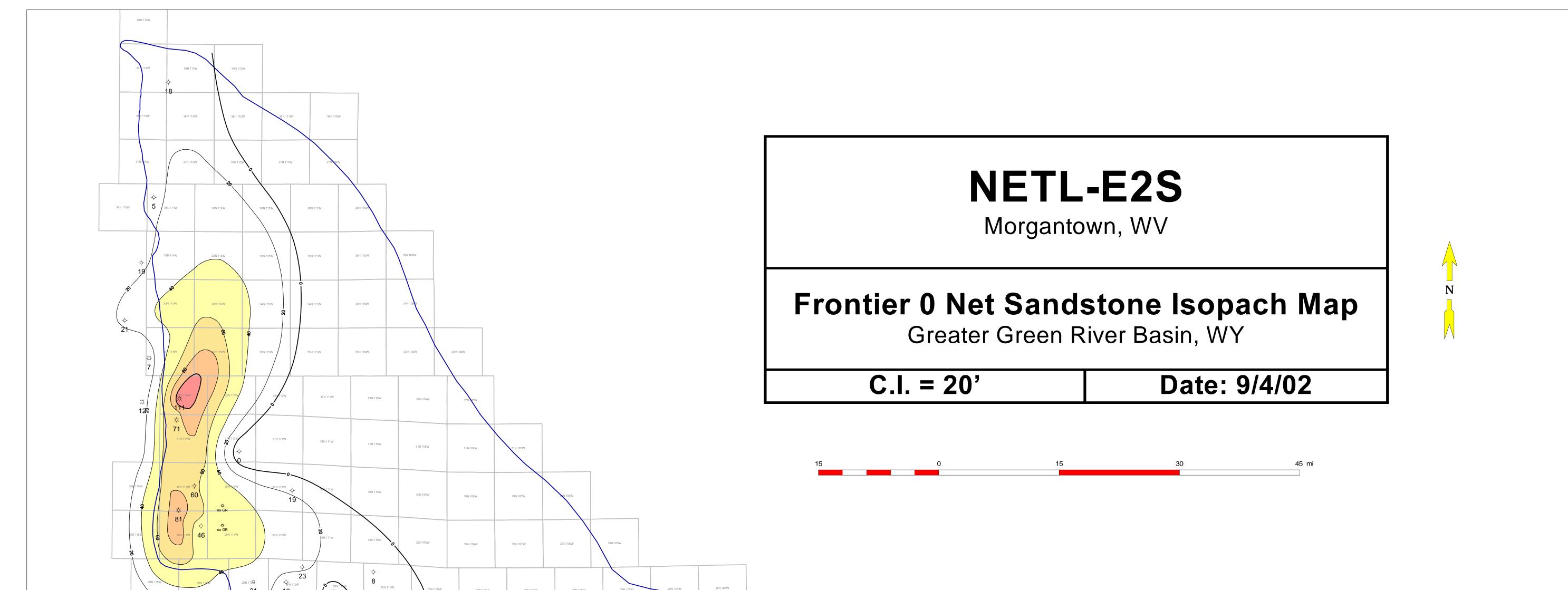




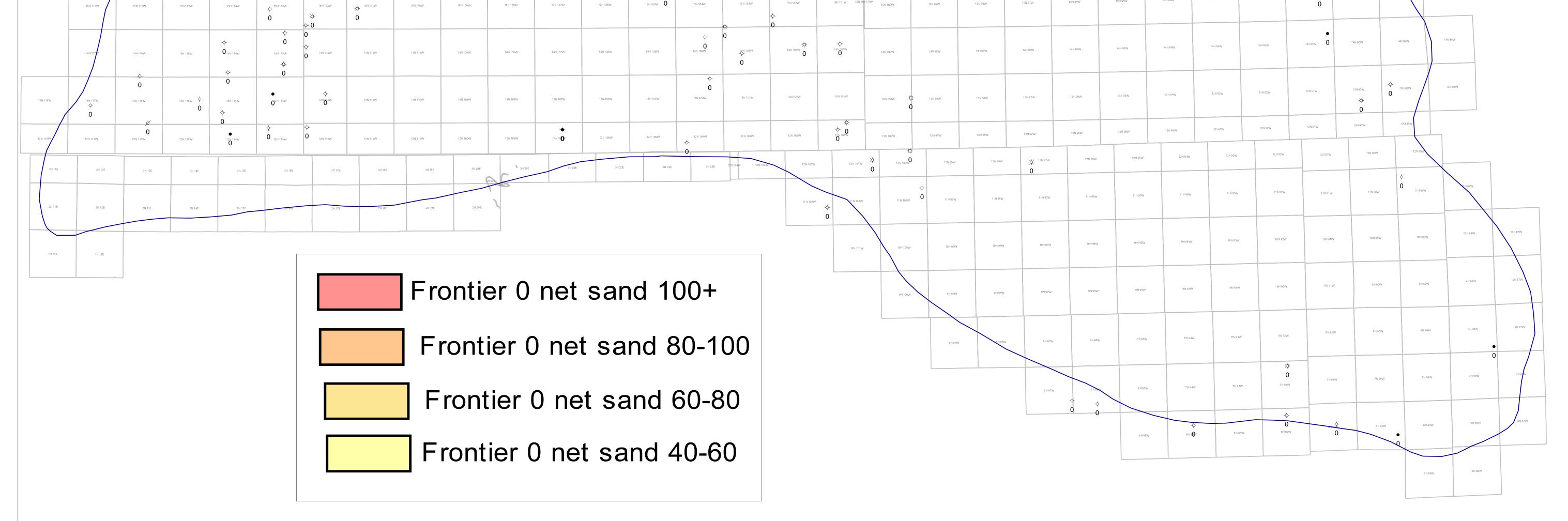


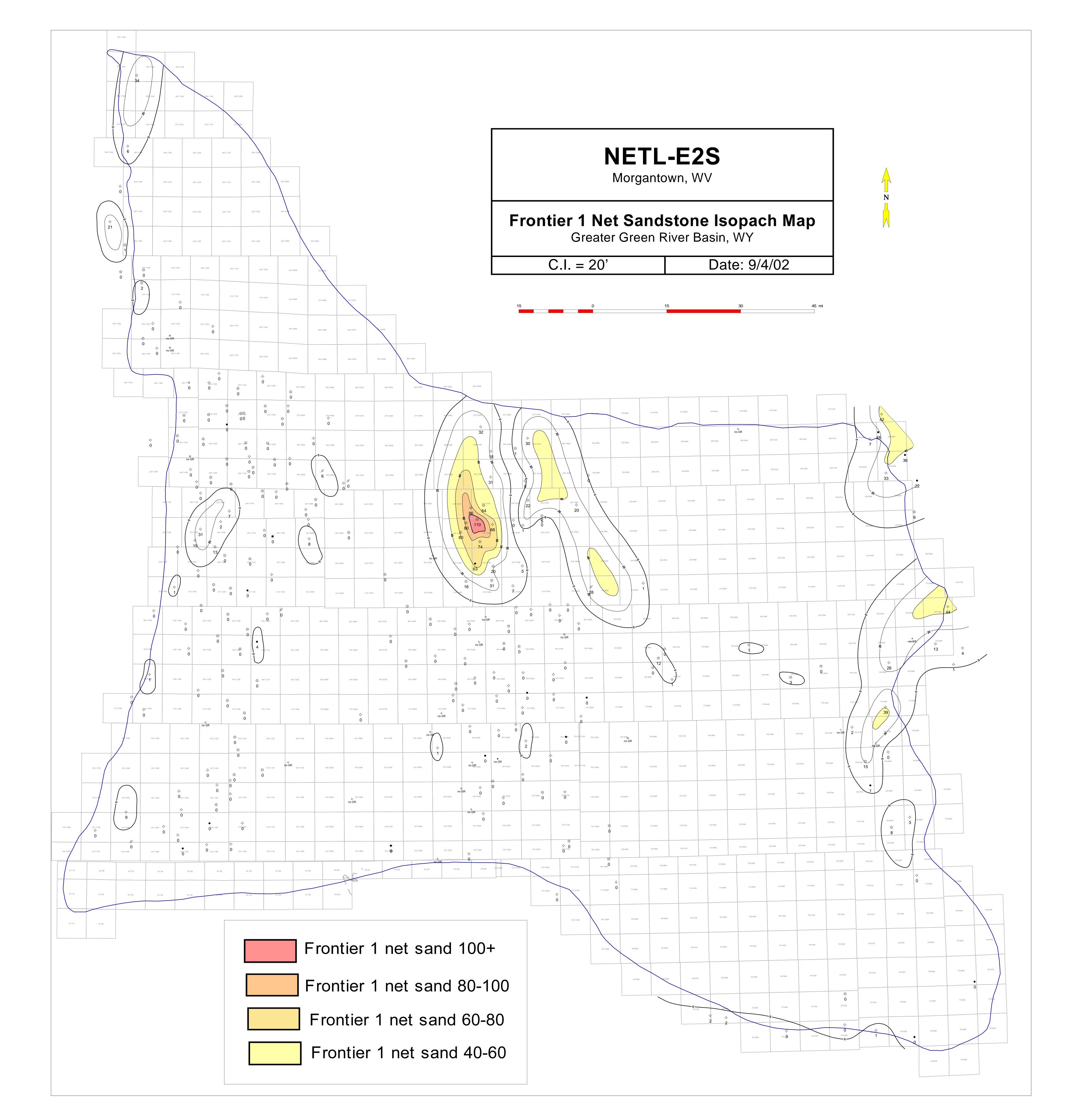

000	86975 ft			46027 ft			50322 ft	4900	7204740000 → ☆ ← ′ OPER CORP	580
- CO DVV - Sec. 11		DEEP C	RUE OIL CO REEK UNIT 31-31 Range: 190W - Sec. 31		TRIGG-BROV	RLG CO INC VNING-FED 1-12 nge: 91VV - Sec. 12		DENN	' OPER CORP Y ALVIN E 1 ange: 90W - Sec. 27	
e Well for	5									
		Dart	1		Deph					
sisiti∨ity		GR	Resisiti∨ity		GR	Resisitivity		GR	Resisitivity	
								1/miles		
		TRA TRA TRA						2		
		EMT			7400			-Wint Vilan	the second	
		aen			me and the second			"our-why.Win	Jan mar	
+ + {								internet a		
								Andrew Control	A straight	
~		сл.			770			Sope Notes	and the second	
								- Minerary	The state	
		am			The second secon			3 Miner Vanski	Why have	
								Ster Man		
					am 5			a she was	A from	
		nırç						5 Nata Kilder Berryn Au	A LAN	
		771					_	1		
		747			am 2			NA-MA	The state	
5		771 771 771 771 771 771							The state	
										-
T-L								Adventer august	A MAN	-
Ş	-	7						North Mark	the man	
A.								and the second	A A A	
£								North North		
10 10 10 10 10 10 10 10 10 10 10 10 10 1								Police Contract		_
	_								7. 3	
t t				-				the stand		-
<u> </u>										
N.V.										
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~									Star and	
								WW in		
A A		rn Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer Transformer T								
		ari and	3					The second		
		ал 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								
								Jour .	1 1	
								- Tr	A ANA	
<u> </u>			D=12560			-11085			∑Ş ⊃=10130	

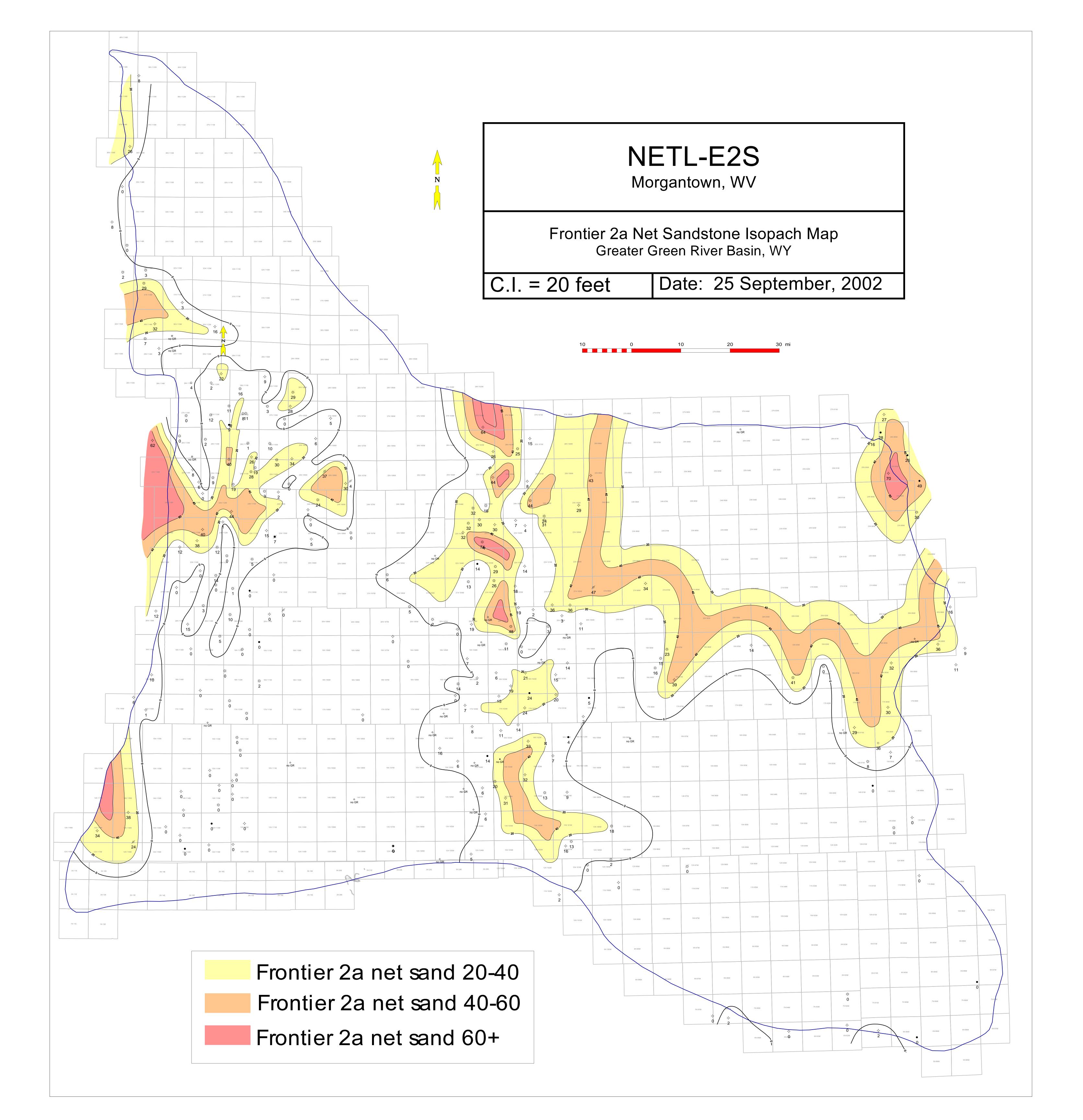


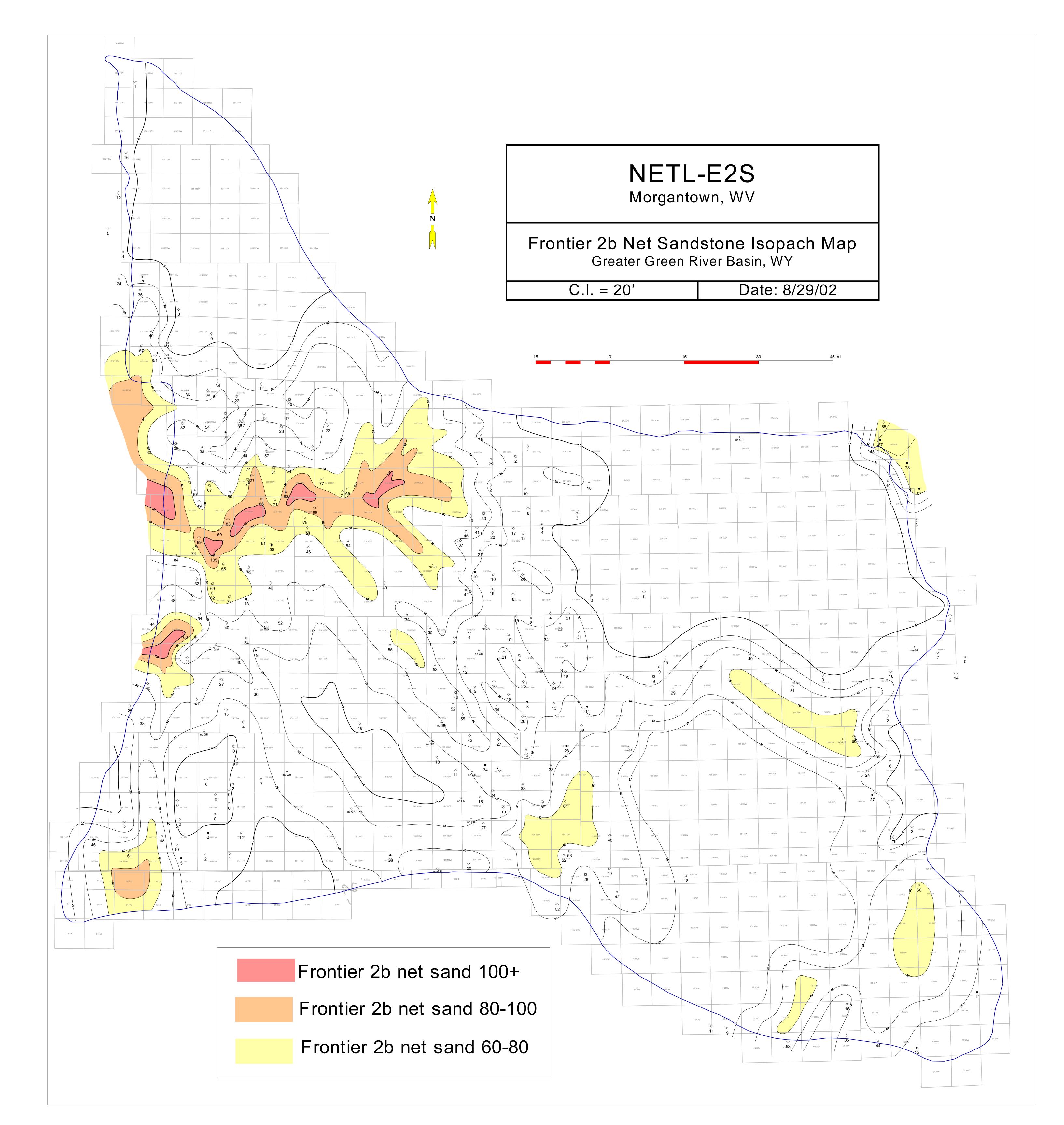



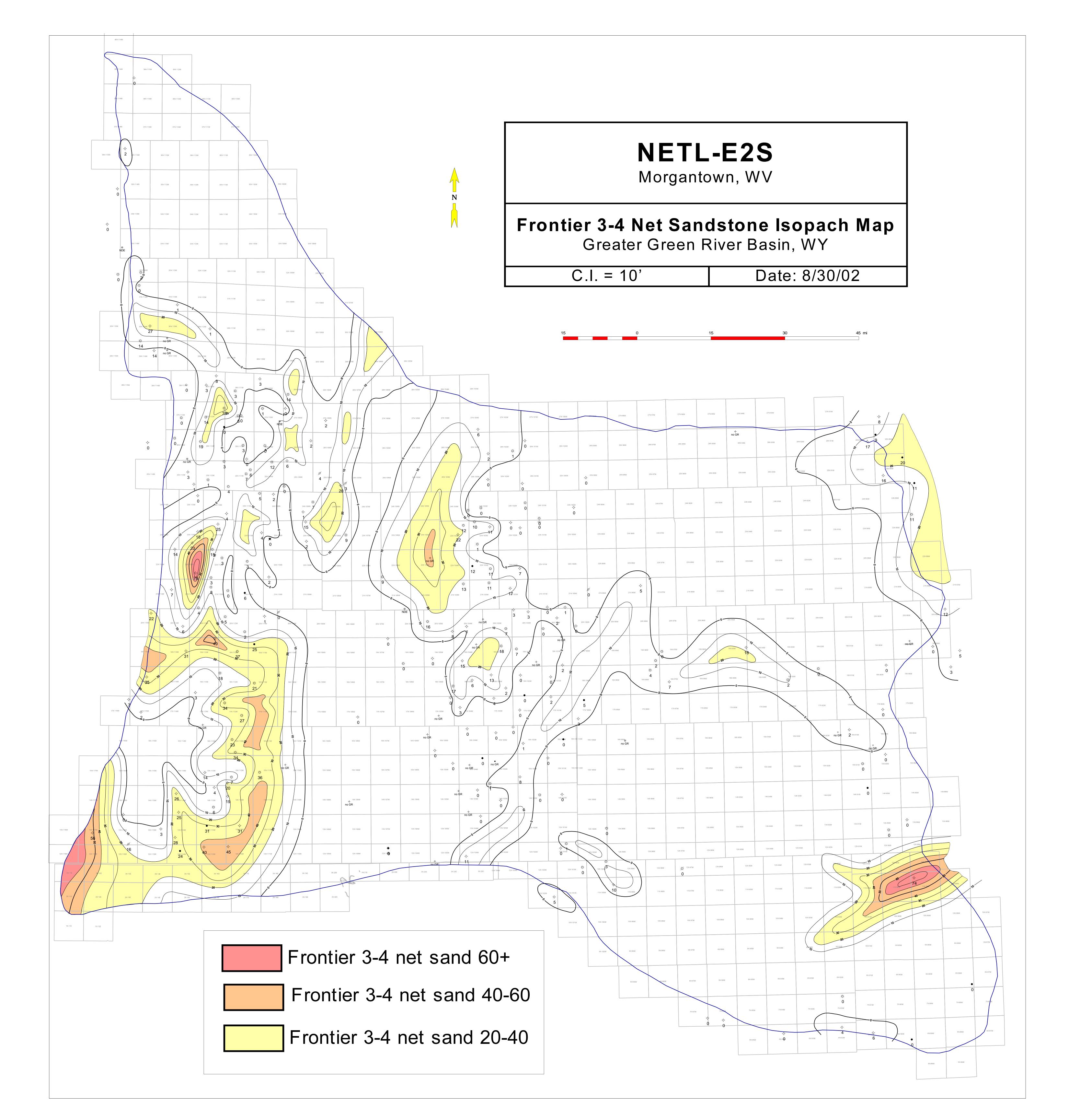


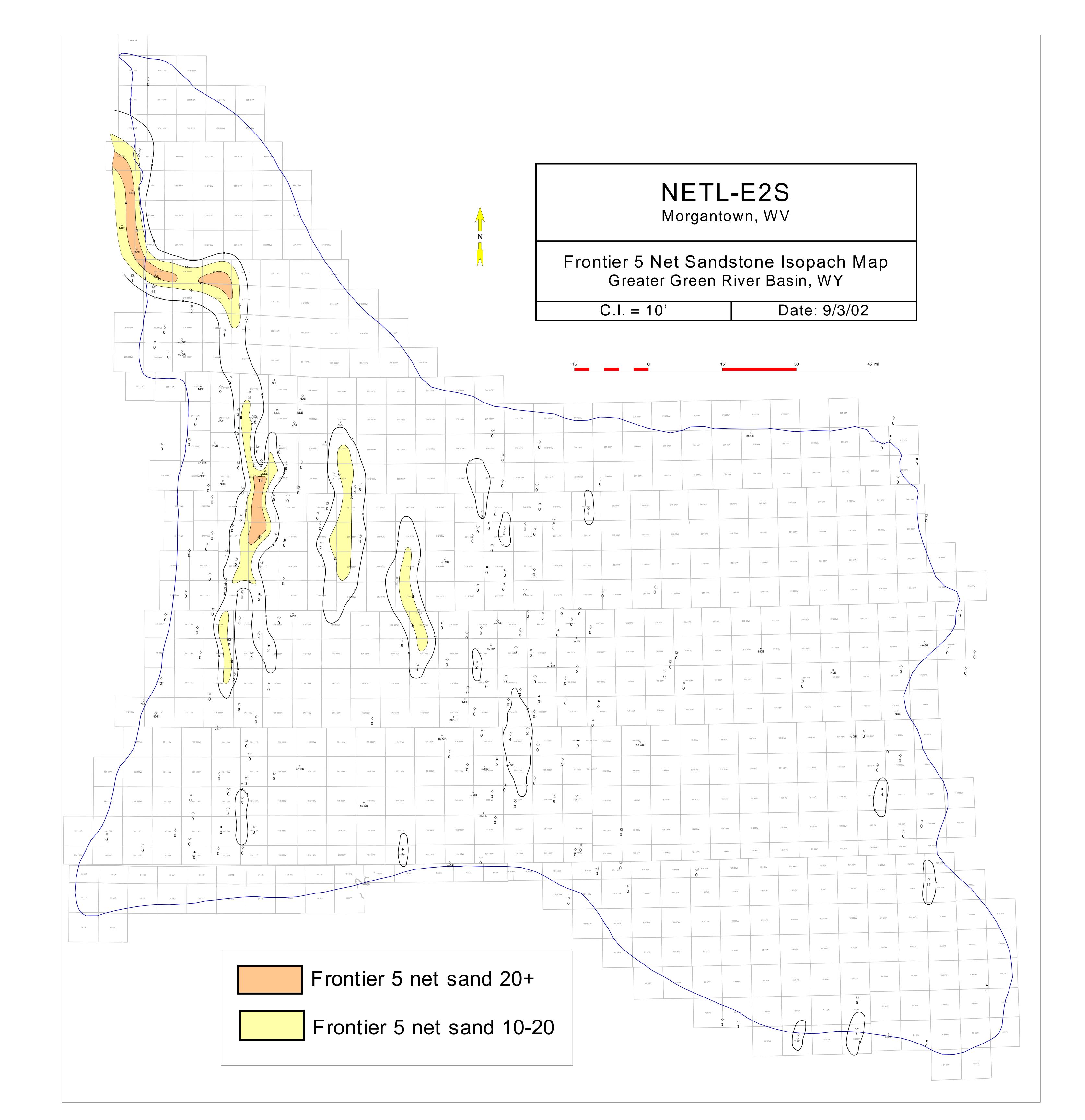


Resistivity	Tie Well for H-H'	DERAL 16 13W - Sec. 16
GR Resistivity		BURNT FORK UNIT 1 TWP: 13N - Range: 112W - Sec. 15
GR Resistivity GR Fin Fin Fin Fin Fin Fin Fin Fin		GOVERNMENT 1X-3 TWP: 12N - Range: 107W - Sec. 3
		RICHARDS MTN UNIT 1 TWP: 12 N - Range: 105W - Sec. 19
GR rrm rrm rrm rrm rrm rrm rrm rr	Detted	TEPEE MOUNTAIN II 1 TWP: 12N - Range: 104W - Sec. 17
	Cross Section Tie Well for I-I"	KENAI-PINE MOUNTAIN 1 TWP: 12N - Range: 103W - Sec. 10
		UNIT 17 TWP: 12N - Range: 101W - Sec. 3
		HIAWATHA DEEP UNIT 3 TWP: 12N - Range: 100W - Sec. 15
GR       Resistivity         Transport       Transport         Transport	l Dette l	THORNBURG FEDERAL 14-27 TWP: 7N - Range: 96W - Sec. 27



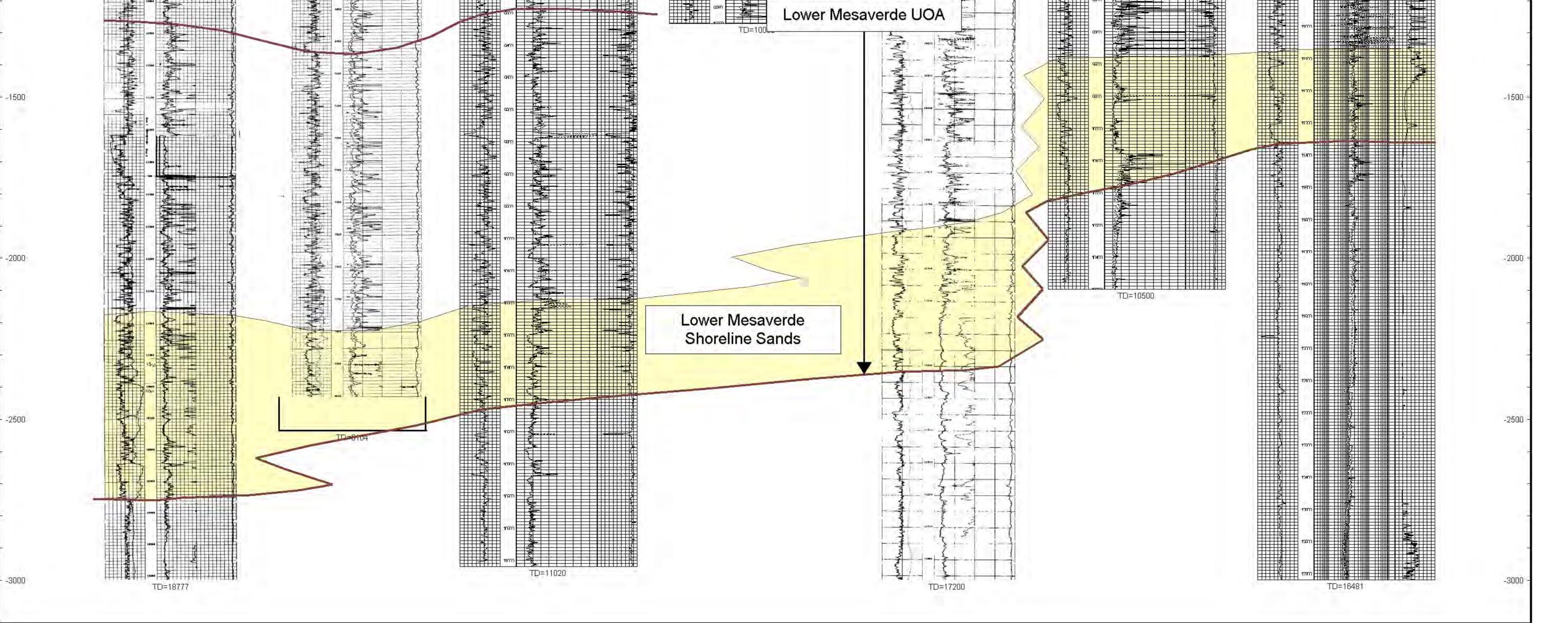



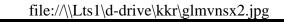



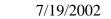


	27N 113W ** 29	¢ ^{2™ 112W} 1 2 ³	森 2 2 ^{27N 1}	0W ↔ 0 27N 100	gw ₂₂Ŋ ↔	106W 27N 107	W 27N 108	W 27N 105W	27N 104W	27N 103W	27N 102W	27N 101W	27N 100W	ETH COM	27N 98W	27N 97W	27N 9	6W 27N	27N 94	v 27N 93W		27N 91W		-¢- 0	
ې کا کا کا	な 8 _{26N 113W} 谷 0	26N 112W 26N	m茶 浩和 0 0	1 5 10W 26N 10		N 108W 25N 107	W 25N 106	W 26N 105W	26N 104W	28N 103W	26N 102W	-¢- 0 25N 101W	26N 100W	26N 99W	26N 96W	26N 97W	260 1	26W 26N	95W 26N 9-	W 26N 93W	v 26N 92V	W 26N 91W	2611 00	0 25N 89W	
25N 114W	22(113W ¢ 0 ¢	25N 112W 25N 25N 112W 25N 0 25N	↔ 0 ↔ 4 25N1	☆ - ☆- 0 0 10W 25N 10	уэчу <b>ў</b> 0 ²⁵ N	N 106W 25N 107	7W 25N 106	W 25N 105W	25N 104W	25N 103W	0 	25N 101W	25N 100W	-¢- ^{25N 99W} 0	25N 98W	25N 97W	/ 25N	96W 251	195W 25N 6	4W 25N 93V	N 25N 92	25N 91W	25N 90	● 0 25N 89W - 0	•
	о у 24N 113VV	24N 112W	0	-\$- 0 24N 110W	☆ ^{24N 109W} 0 -	24N 108W	24N 107W	24N 106W 24	105W 24N	104W 発 ^物	33W 24N 1	0 102W 0 241	N 101W 24N	00W 24N 96	ew 24	IN 98W 2	24N 97W	24N 96W	24N 95W	24N 94W 2	24N 93W :	24N 92W 24	N 91W	24N 90W 24N 89W	0 *
231 114W	v 23N 113W 0	-¢- 0 23N 112W	23N 111W 0 +	23N 110W	0 0 23N 109W - -	23N 108W	23N 107W	23N 106W 23	i 105W 23N	· · · · · · · · · · · · · ·	0	· · · · · · · · · · · · · ·	N 101W 23N	00W 23N 9	ew 23	3N 96W	23N 87W	23N 96W	23N 65W	23N 94W	23N 93W	23N 92W 2	3N 91W	23N 90W 23N 89W	0
22N 11-W		-☆- O 22N 112 <b>Q</b>	交 220111W 0	22N 110W	22N 109W	22N 108W	22N 107W	22N 106W 22	1 105W 22N	104W • 22N 1 0	₀₃₩ 22№ ☆ 0		2N 101W 22N	100W 22N (	99W 2	22N 98W	22N 97W	22N 96W	22N 95W	22N 94W	22N 93W	22N 92W 2	12N 91W	22N 90W 22N 89W	22N 88W
21N114W	ф 0 ^{21н 113W}	券 0 21N 112W 0	2in 11W 0	21N 110W	21N 109W	21N 108W	21N 107W	21N 108W 21	N 105W 21N	次 0 104W 21N	☆ 0 - 수- 103W 0 M	102W 2	1N 101W 211	100W <b>0</b> 21N	99W 2	-ф- 21N 98W <b>O</b>	21N 97W	21N 96W	21N 95W	21N 94W	21N 93W	21N 92W	21N 91W	21N 90W 21N 89W	2111 887
-¢- 0 20N 115W	20N 114W -¢- 0	13W <b>D</b> 20N 112W	↔ 2011 ¶w	V	20N 106W	20N 106W	20N 107W	20N 106W	☆ 20N 105W 0 -	20N 104W -\$- 0	20N 103W	фф- О О 20N 102W	-\$- 0 0 -\$- 20N (0 ^W	20N 100W -\$- 0	20N 99W	20N 98W	20N 97W	20N 96W	20N 95W	20N 94W	20N 93W	20N 92W	20N 91W	20N 90W 21	N 89W
19N 115W	19N 114W	ж О 13W 19N 112 О	0 ¢ 0 19N 111W	19N 110W	19N 109W	19N 108W	0 19N 107W	19N 106W	19N 105W	19N 104W	₩ 19N 103 <b>0</b>	☆ 0	19N 101W	19N 100W	19N 99W	19N 98W \$	☆ ^{19N 97W} 0	19N 96W	19N 95W	-\$- 19N 94W O	19N 93W	19N 92W	19N 91W	19N 90W	9N 69W
	18N 114W 18N	13W 0 18N 112W	☆ ^{18N 111W} 0	18N 110W	18N 109W	18N 108W	18N 107W	O 18N 106W	18N 105W	0 18N 104 5 0	ф- О 18N 103W	↔ 0 18N 102W	0 	18N 100W	18N 99W	交 0 18N 98W	) ↔ 0	18N 96W	18N 95W	18N 94W	18N 93W ☆ 0	☆ Q _{N 92W}	18N 91W	-¢- 0 18N SOW	18N 89W
ф О О О	17N 114W 17N	13W X 17N 112W	± 27N 111W 0	17N 110W	17N 109W	17N 108W	17N 107W	17N 106W	-¢- 0 17N 105W	-¢- 0 ^{17N 104W}	-¢- O 17N 103W	0 -¢- 17N 102W 0	ф- О 17N 101W	• 0 171N 1000W	17N 99W	17N 08W	17N 97W	17N 96W	17N 95W	17N 94W	17N 93W	17N 92W	17N 91W	17N 90VV -ф- О	17N 89W
(116W 16N 115W	16N 114W	16N 113W 🔆 16N 0	N 112W 16N 11	W 16N 1101	W 16N 1	109W 16N 108W	v 16N 107W	/ 16N 106W	16N 105W	ф О 16N 104W	-¢- ( 0 _{16N 103W}	ф- 0 -ф- 0	16N 1●W 0	6N 100 1/2W 16N 100W	16N 99W	16N 98W	16N 97V	v ten sev	, 16N 95W	16N 94W	16N 93W	16N 92W	-ф- 0 16N 91W	16N 90W	16N 89W
N 116W 15N 115W		· 举 0							0 	- 0			-¢- 0	1							15N 93W	15N 92W	15N 91W [÷]	-¢- 0 ± 15N 90W	15N 89V

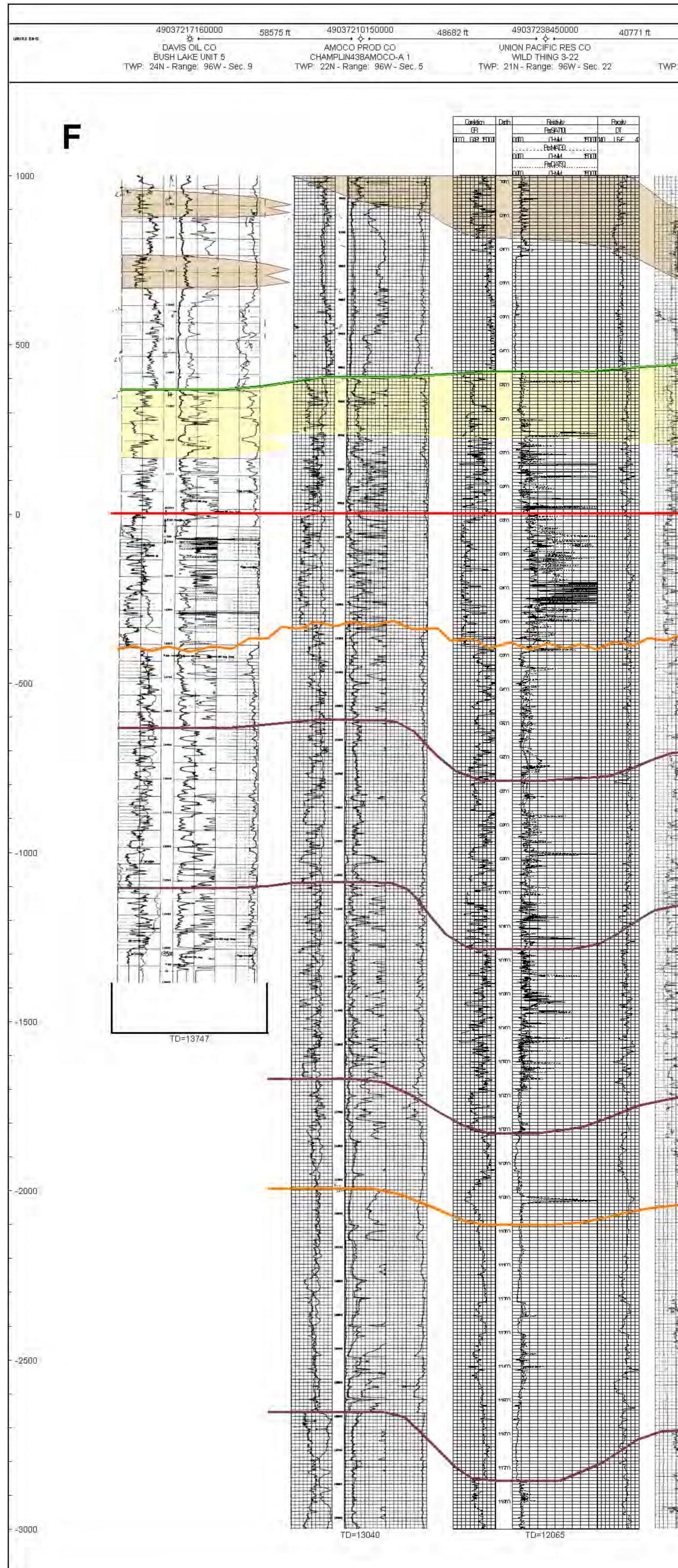




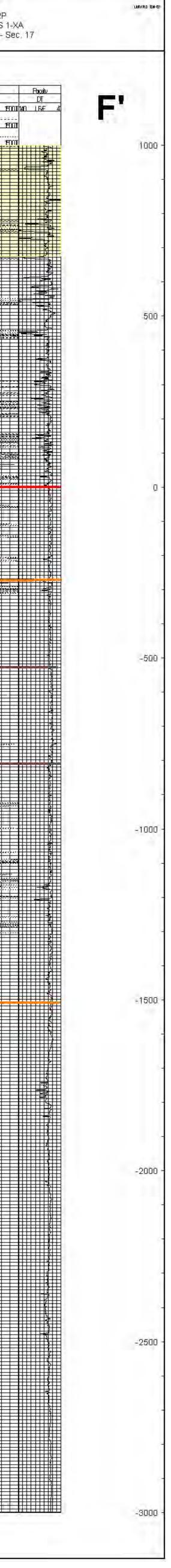



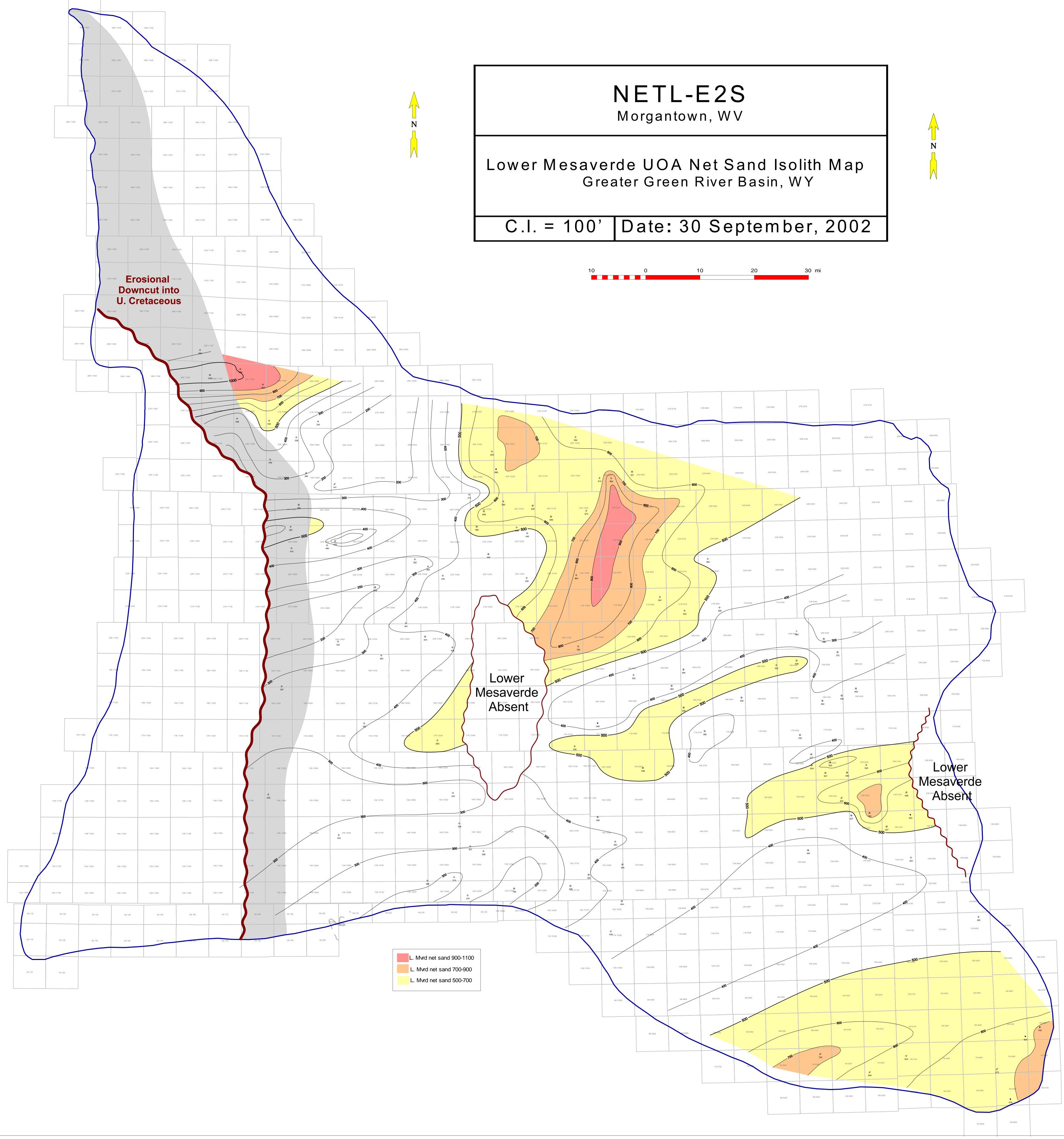




WN-5	49037217520000 47438 ft 49037222610000 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	HUSKY OIL LTD FEDERAL 7-5	1624 ft 49037209900000 90947 ft → ↓ ↓ DAVIS OIL CO BIG WIND UNIT 1 1319 FSL 1320 FEL TWP: 22N - Range: 106W - Sec. 3	49037219580000 1 DAVIS OIL CO DAGGER UNIT 1 1120 FNL 2050 FEL TWP: 19N - Range: 107W - Sec. 2	01333 ft 49037203790000 105 AMOCO PROD CO CHAMPLIN 157 AMOCO 660 FSL 460 FVL TVVP: 19N - Range: 110W - Sec. 35	950 ft 49037206020000 → → BRINKERHOFF DRLG CO HENRY UNIT 1 588 FSL 2052 FEL TVVP: 15N - Range: 110VV - Sec. 7	LMVR DOON
G		Greation     Depth     Resistive     Proate       GR     Resqual     DT       0000     GR 15000     0000     0-MM     15000140     L6.F     4       0000     GR 15000     0000     0-MM     150001     15000       0000     GR 15000     0000     0-MM     15000       0000     GR 15000     0-MM     15000       0000     GR 15000     0-MM     15000<	Condition     Depth     Resistivity     Roasty       GF6     ASPL     DT       Q     GAP     15     DT       Q     GAP     GAP     15       Q     GAP     GAP     15       Q     GAP     GAP     GAP       Q     GAP	Multiple and the and t	Cardebin     Dath     Pesitivity     Prosity       GR     U.B     DT       DOD     GPR 15000     DOD     D-MM     15000 140     LS.F     4       DOD     GPR 15000     DOD     D-MM     15000 140     LS.F     4       DOD     GPR 15000     DOD     D-MM     15000 140     LS.F     4       DOD     GPR 15000     DOD     D-MM     15000 140     LS.F     4       DOD     GPR 15000     DOD     D-MM     15000 140     LS.F     4       DOD     GPR 15000     DOD     D-MM     15000 140     LS.F     4       DOD     GPR 15000     DOD     D-MM     15000 140     LS.F     4       DOD     OT     D-MM     15000 140     LS.F     4       DOD     GPR 15000 160     GPR 15000 160     GPR 15000 160     GPR 15000 160       DOD     GPR 15000 160     GPR 15000 160     GPR 15000 160	Gradebion     Depth     Festivity     Ted/3       GFD     Festivity     GAD       Q     GAM     2017/357     N       Q     GAM     GAM     2017/357       Q     GAM     GAM     GAM       Q     GAM     GAM     GAM       Q <td< th=""><th><b>G'</b> 200</th></td<>	<b>G'</b> 200
1				Mining In the second property of the second p			150
	Fox Hills Sandstone			UOA			100
							51
				Mundarada and a state of the st			
			Ericso	n UOA			-5
			SFI GE				-100

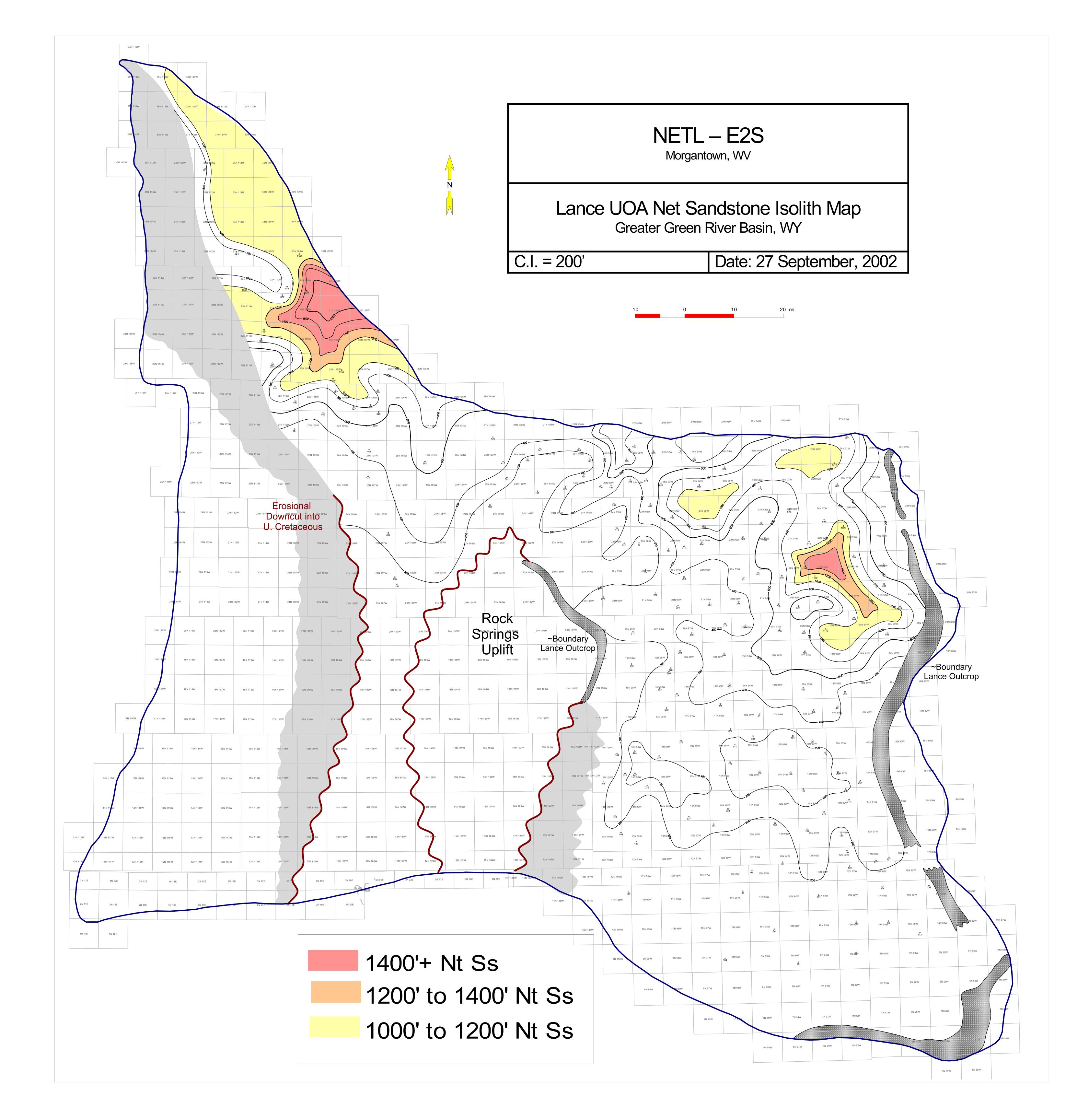


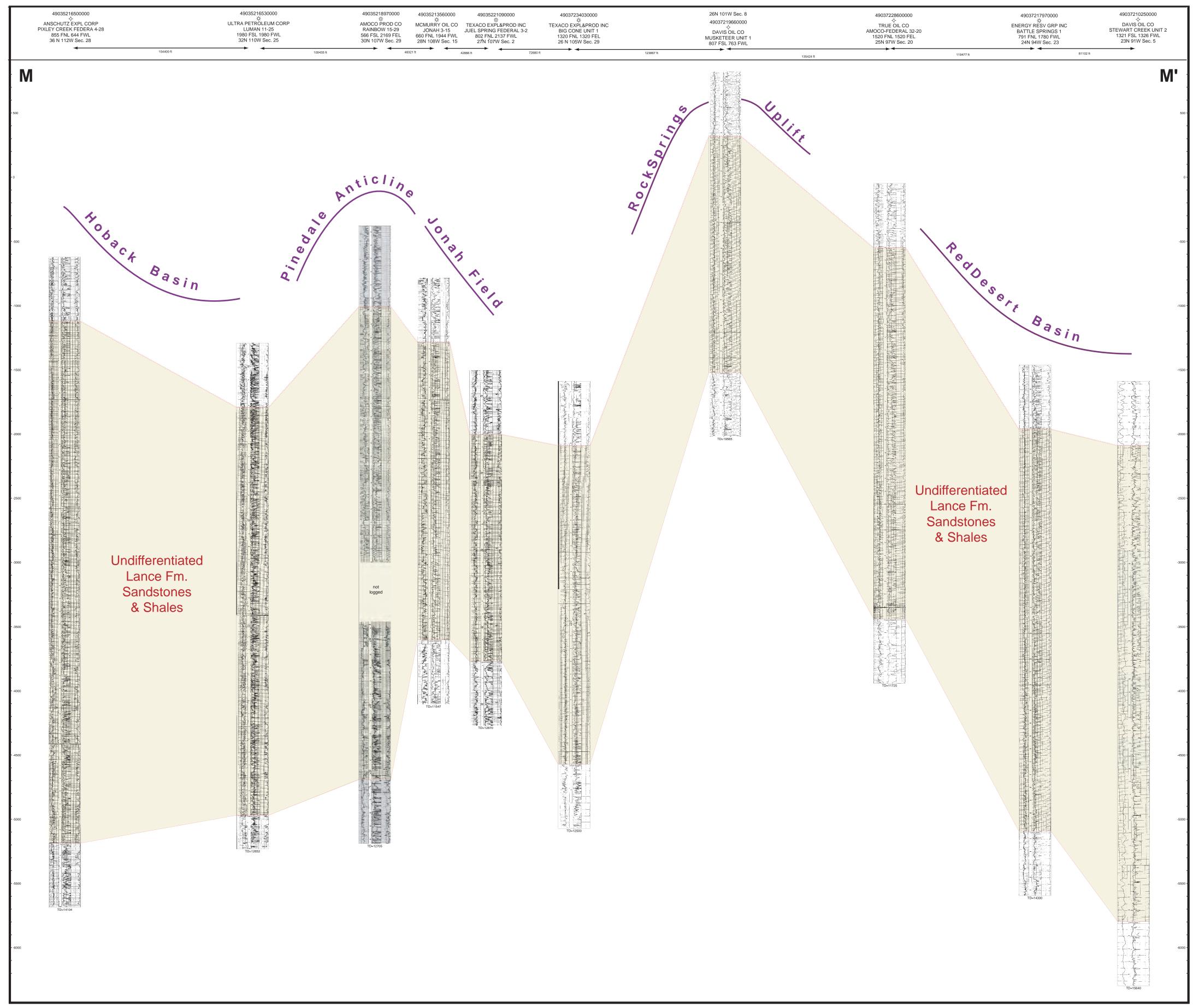


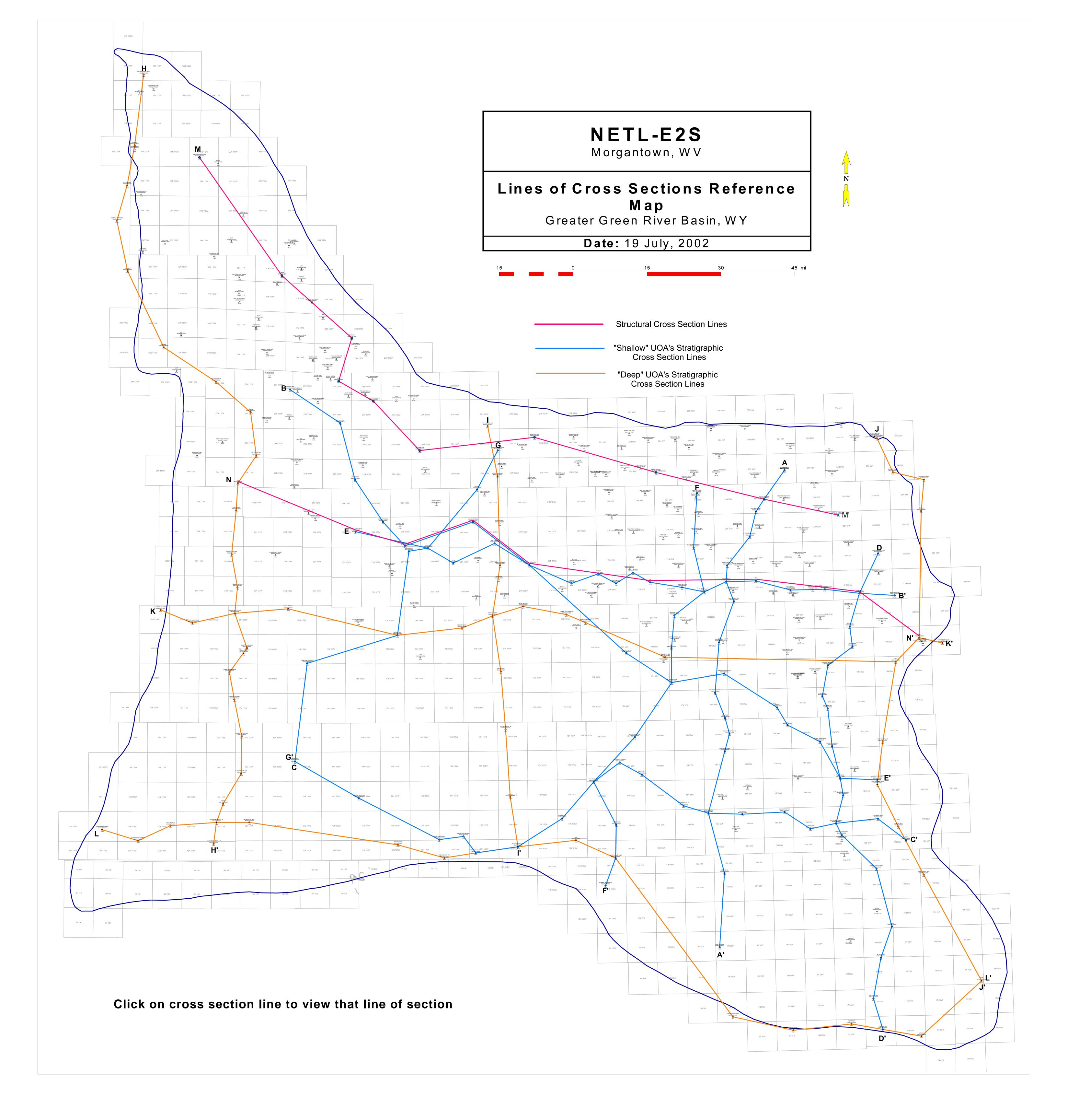



49037238160000 • • UNION PACIFIC RES CO MUSTANG SALLY 4-17 WP: 20N - Range: 97W - Sec. 17	35133 ft 49037214610000 3 第4 TEXACO INCORPORATED UNIT 41 TWP: 19N - Range: 97W - Sec. 19	16960 ft 49037218010000 71	0679 ft 49037205220000 6497 AMOCO PROD CO BITTER CREEK II UN 1 TWP: 16N - Range: 99W - Sec. 22	7 ft 49037220290000 51.	990 ft 49037216540000 3: → ☆ → WEXPRO COMPANY KINNEY UNIT 6 TWP: 13N - Range: 100W - Sec. 13	5580 ft 05081065180000 3128 WEXPRO COMPANY HIAWATHA DEEP UNIT 3 TWP: 12N - Range: 100W - Sec. 15	89 ft 05081062890000 • SAMEDAN OIL CORP FEDERAL TALAMANTES 1-XA TWP: 11N - Range: 100W - Sec
		Image: set of the set of			eline Sands		

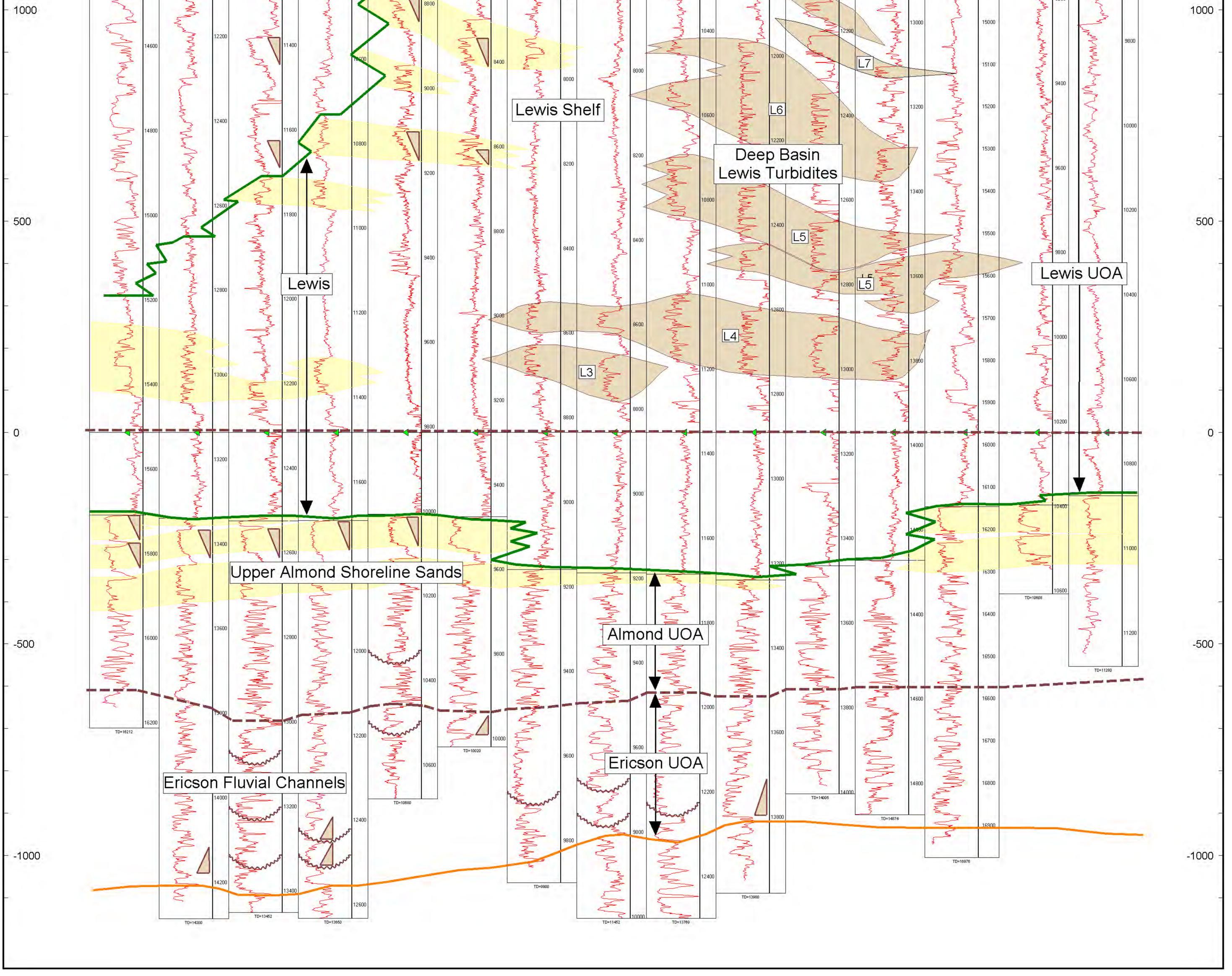


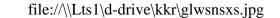


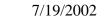


40N 114W

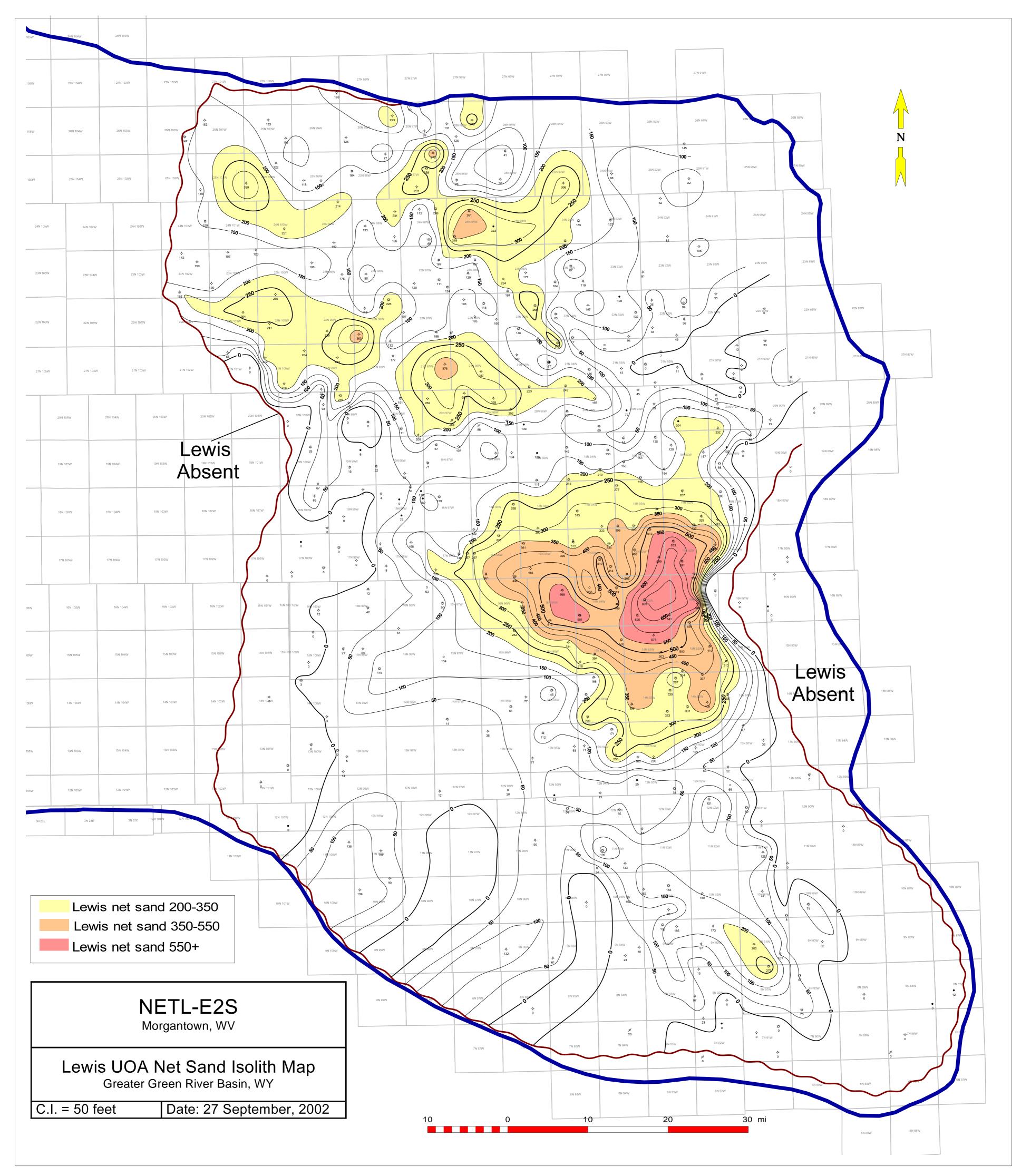

DW-E	$\frac{49037209500000}{79478 \text{ f}} \frac{49037227750000}{49037227750000} 3_{1499 \text{ f}} \frac{49037227650000}{49027 \text{ f}} \frac{49037226950000}{49037227650000} 4_{3869 \text{ f}} \frac{49037238000000}{4903723800000} 1_{430329 \text{ f}} \frac{490372491010000}{490372491010000} 5_{7064 \text{ f}} \frac{49037249010000}{49037249501000} 2_{1756 \text{ f}} \frac{49037247950000}{49037247950000} 3_{3012 \text{ f}} \frac{49037223750000}{49007204820000} 3_{3012 \text{ f}} \frac{4903723750000}{49007204820000} 3_{3012 \text{ f}} \frac{4903723750000}{4900720482000} 3_{3012 \text{ f}} \frac{4903723750000}{4900720482000} 3_{3012 \text{ f}} \frac{4903723750000}{4900720482000} 3_{3012 \text{ f}} \frac{4903723750000}{4900720482000} 3_{3012 \text{ f}} \frac{490372375000}{4900720482000} 3_{3012 \text{ f}} \frac{490372375000}{49007204$	LMVRDV
00	Dirit         Dath         Correlation         Correlation	150
00		100
		50
	500 500 500 500 500 500 500 500 500 500	

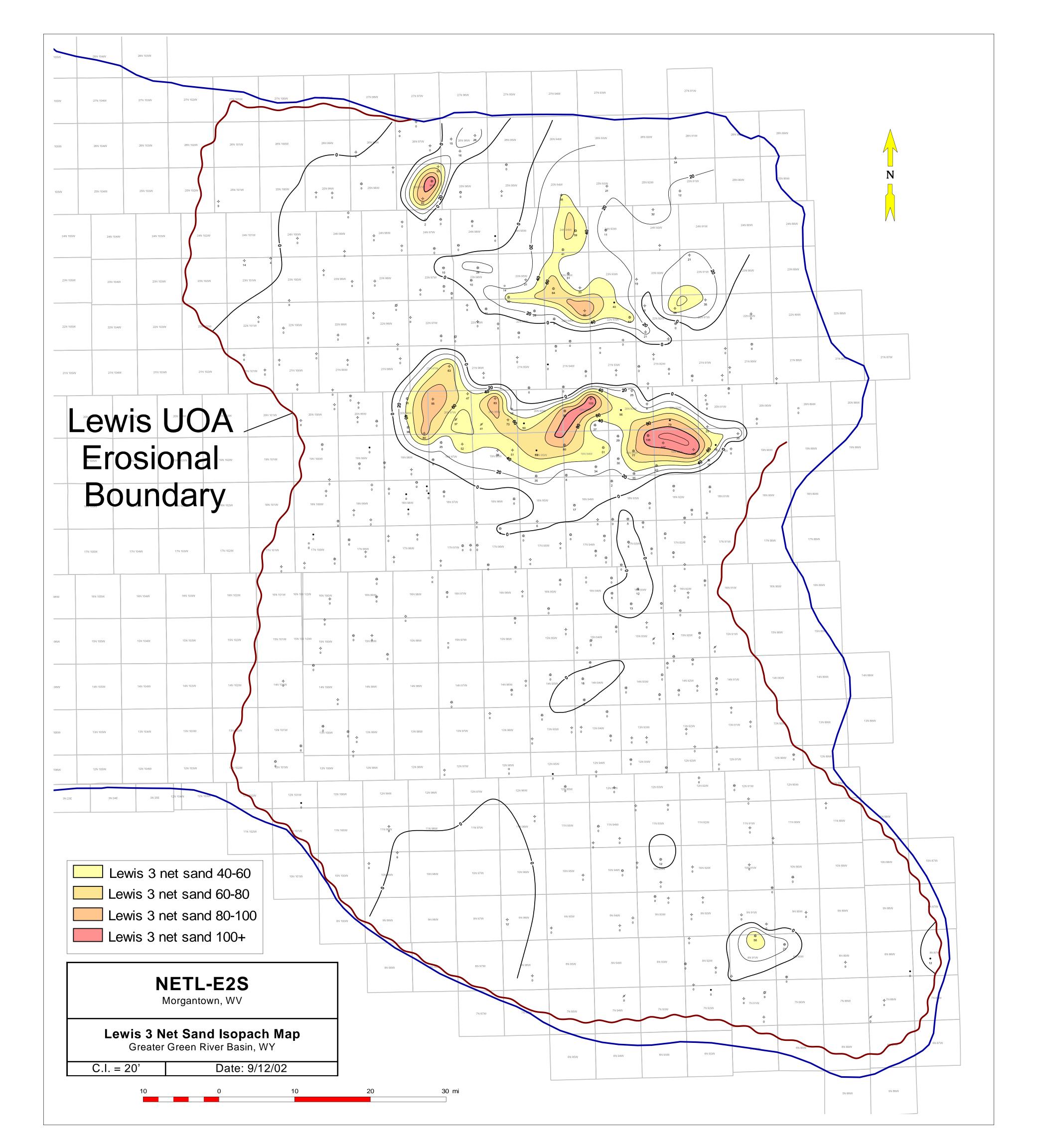


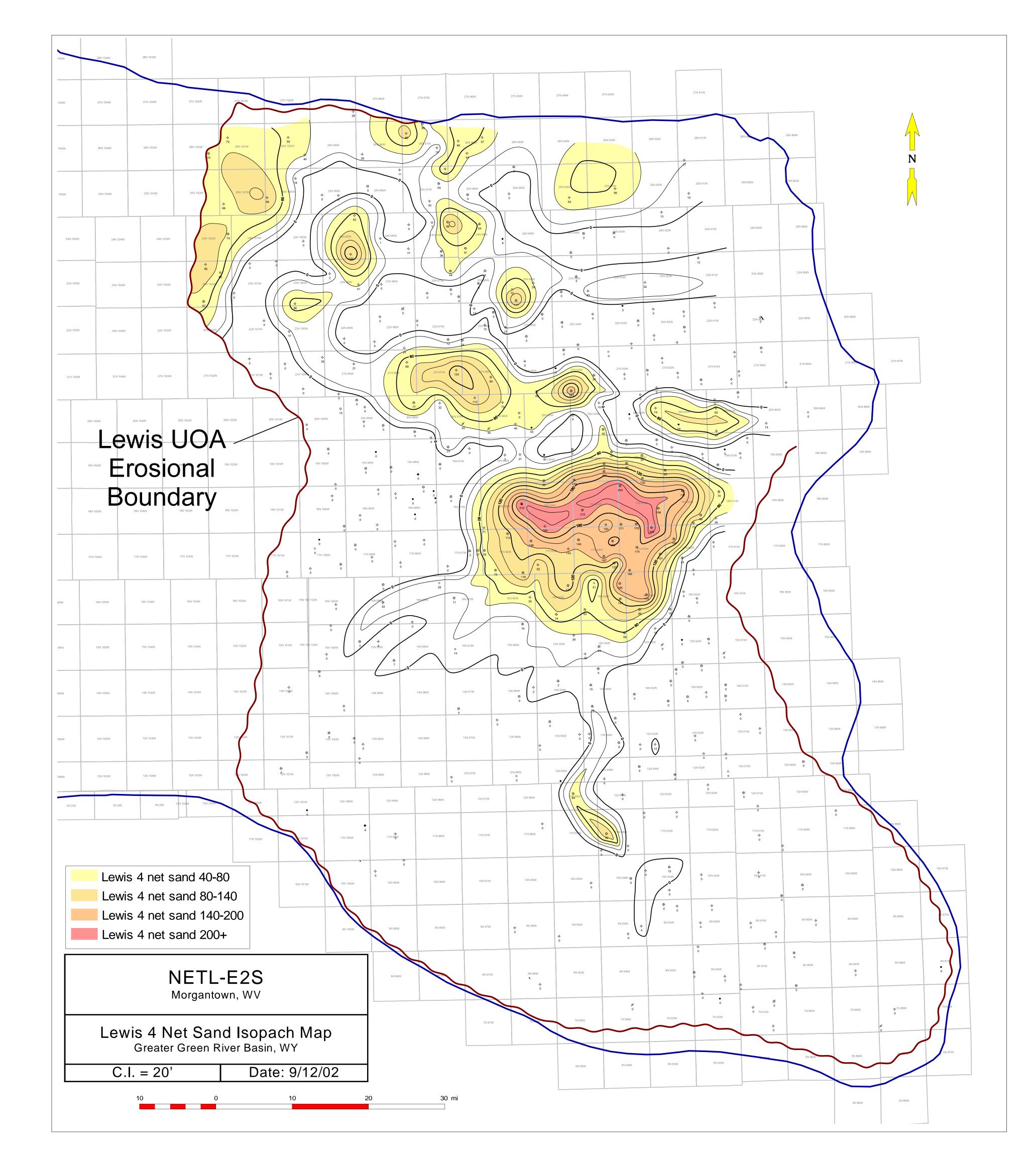


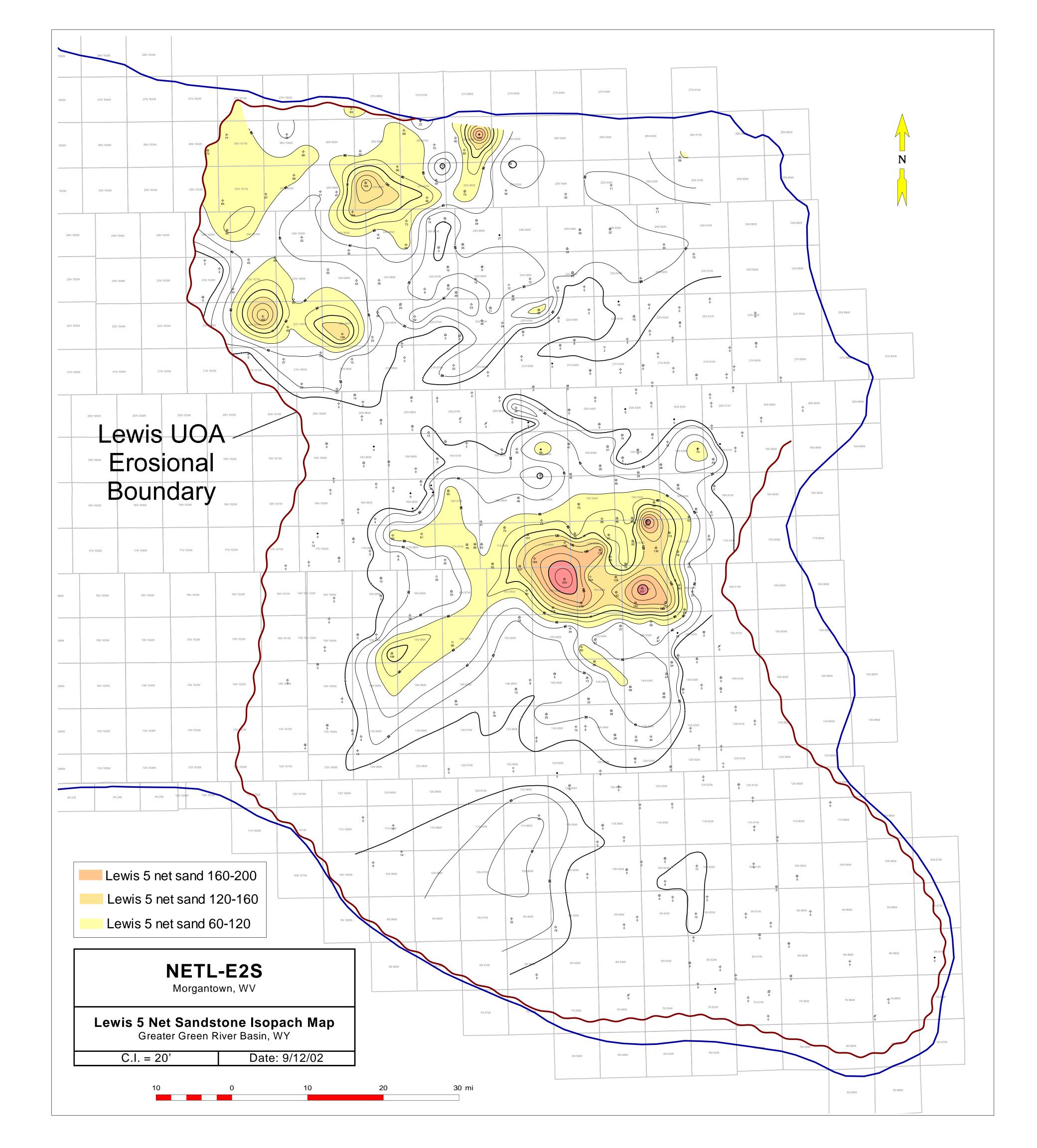


## Lance Formation - Northern Greater Green River Basin Structural Cross Section M-M'

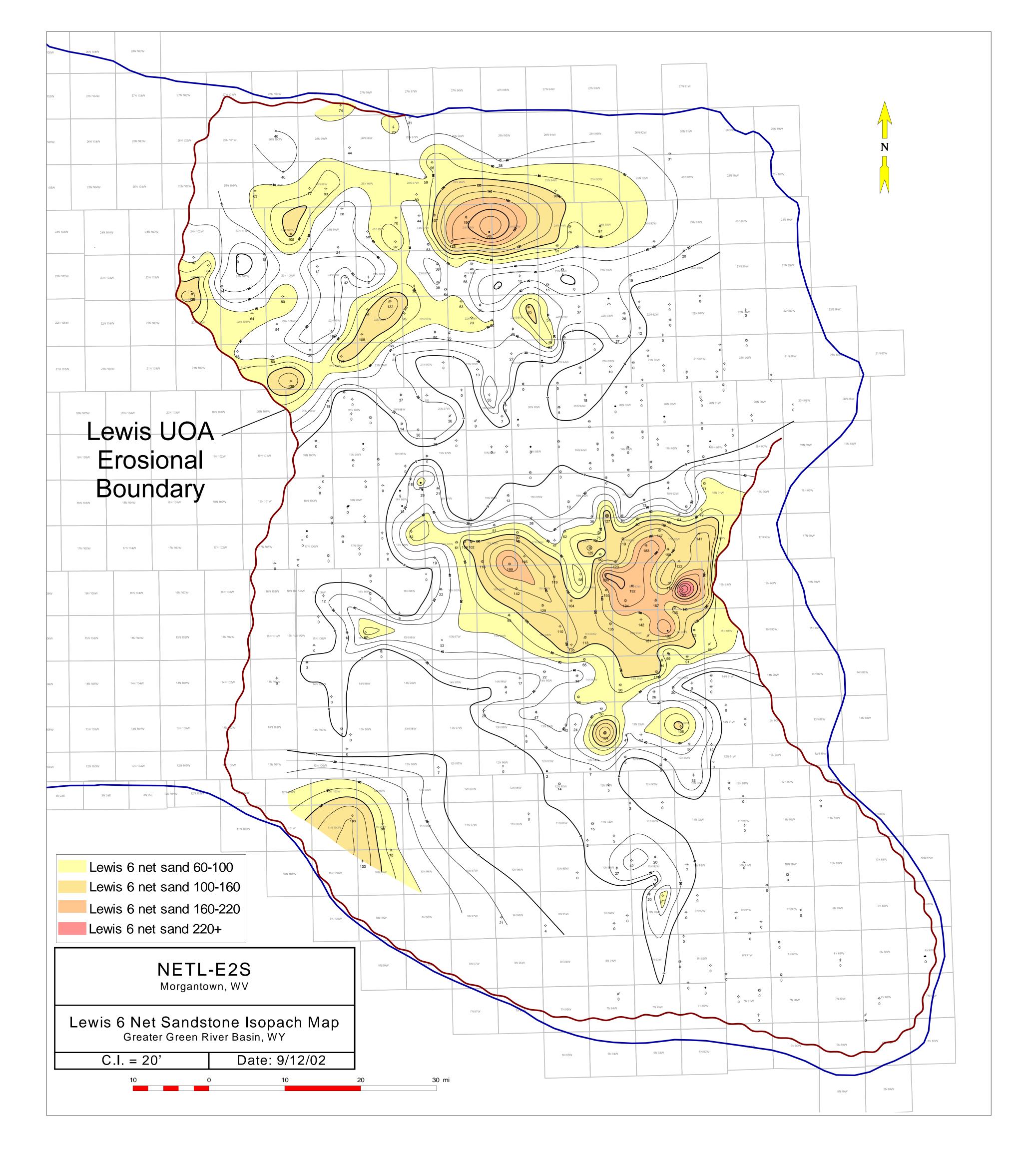


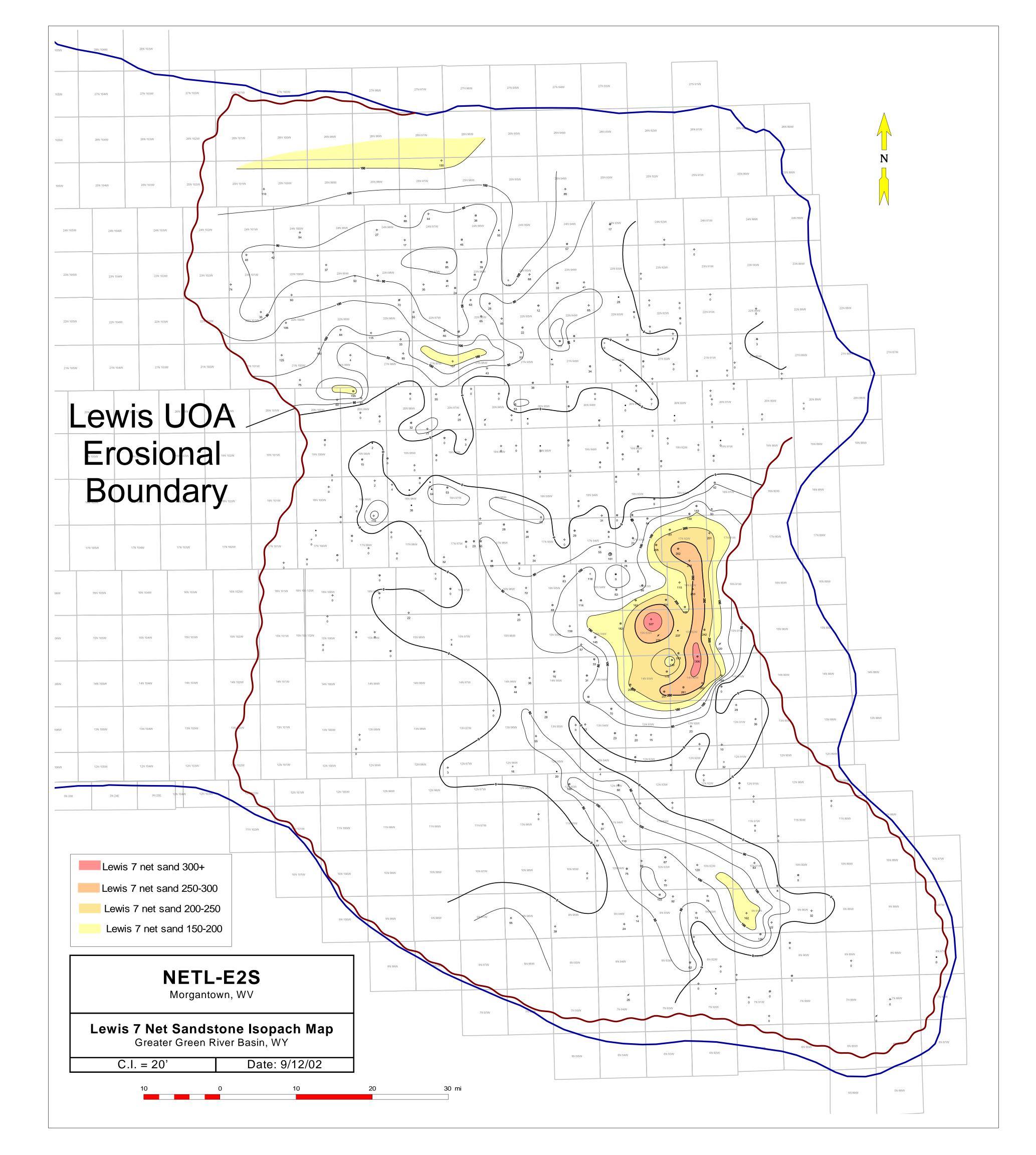



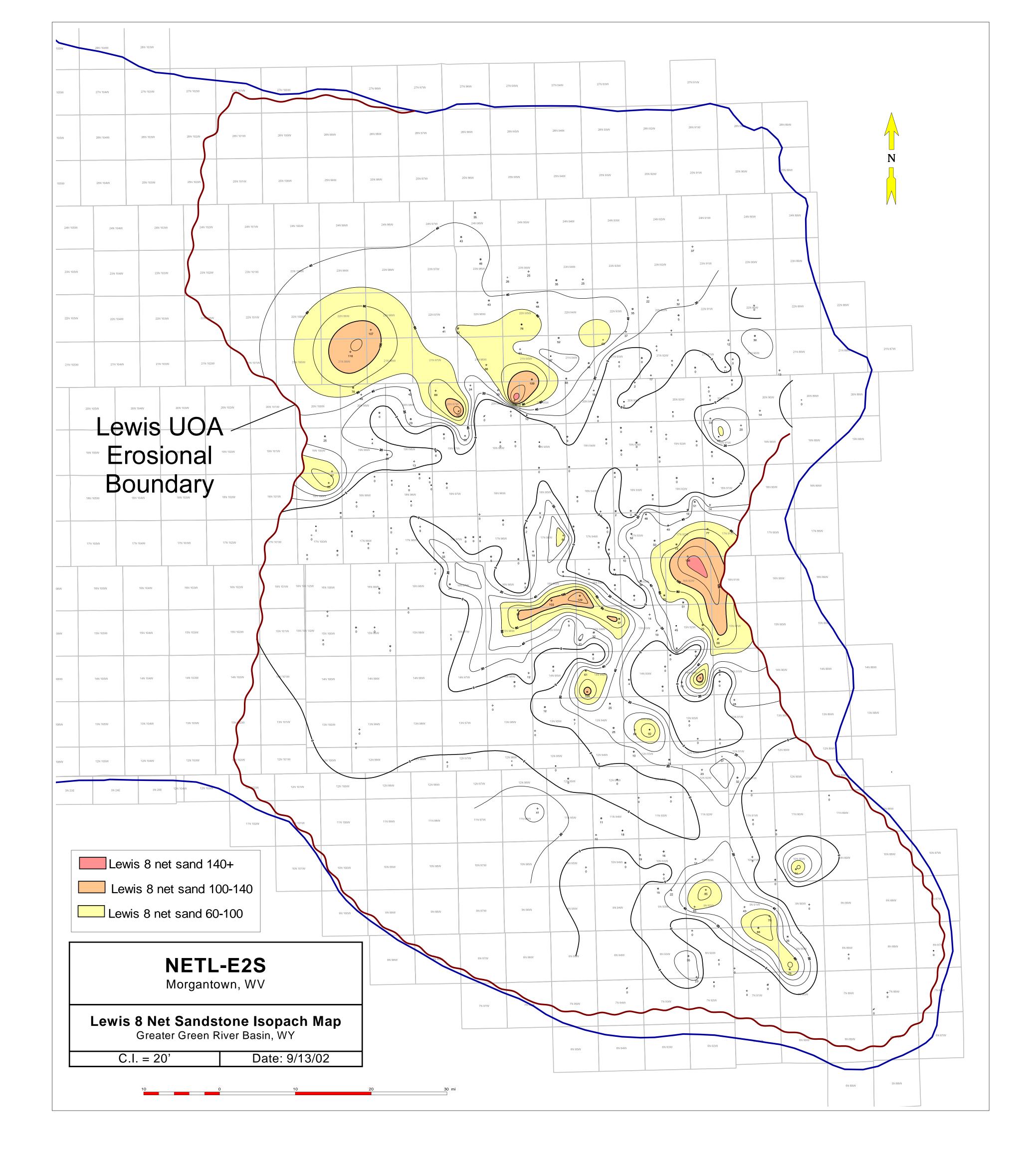


	Correlation Depth		pth Correlation Dep			in which many provide				Depth Correlation	Depth Correlation			Depth Corre		Correlation Depth	
0	GR GAPI 150	GR 0 GAPI 150	GR 0 GAPI 150	GR 0 GAPI 150	GR 0 GAPI 150	GR 0 GAPI 150	GR 0 GAPI 150	GR 0 GAPI 150	GR 0 GAPI 150	GR 0 GAPI 1	GR 150 0 GAPI	GR 150 0 GAPI	GRR 150 0 GAPI	150 0 GA		GR GAPI 150	
	M	Marth 1	A MAR	Z	MM	- Martin	N. M. M.	Mary	M	9600	5	11.400	12200	14200			
	13800	=	400	00	MMM	No.	Montes	Am	hard	3000 Jan		And Marken Marken	S S		24	9000	
	Track	Ma	MM	9800	Maria	76	00	Verm	5	Annaly	11200		A J	14300		M	
	and the	Mon	m	whom		A market	and the	7200	7200	W	Month		43		8600	M	
	-May	1 mil	E NN			1 miles	Mon	Mary		Maran	2	Why Why	12400			M	
	MM	The state of the s	600	N.	5	and the second	N. Man	Marty		9800 MV		11600	12400	25		10 MM 9200	
	14000	-					. W	M. Marry	- more	Married	11400	North No.	hand	>5		3	
	June -	Ame	Prog	ading Lar De	ice/Fox H	IIIs/U Lev	VIS	7400	7400	and have a	and the second	- man	and the			M	
	William	and the		De	Ita Front		Manna	- Maria		MAN	Thursday	and have	- And			13	
	M	man	A A A A A A A A A A A A A A A A A A A	Two and	A.	hund	Mary	MAN	And the	10000	Shurt	11800	12600	14600	1		
	14200	M 11	110	00	And	A.	M	roden		Martin	1	A AND	Minun		the state	3400	
	- Mar	the second	June -	1020	and	ALAN 80	00 mul	the second	7600	Mrsa M	11600	JUW Ma	and and a second	14700	5/3	N.W.	
	man	M	2	Nom	8600	2	Try here	7600	1 de	Marine		Antes I	My My		3000	3	
	A S	-	Sec.	A way	5	-	S N	53	Mar.	Army				14800	13	22	



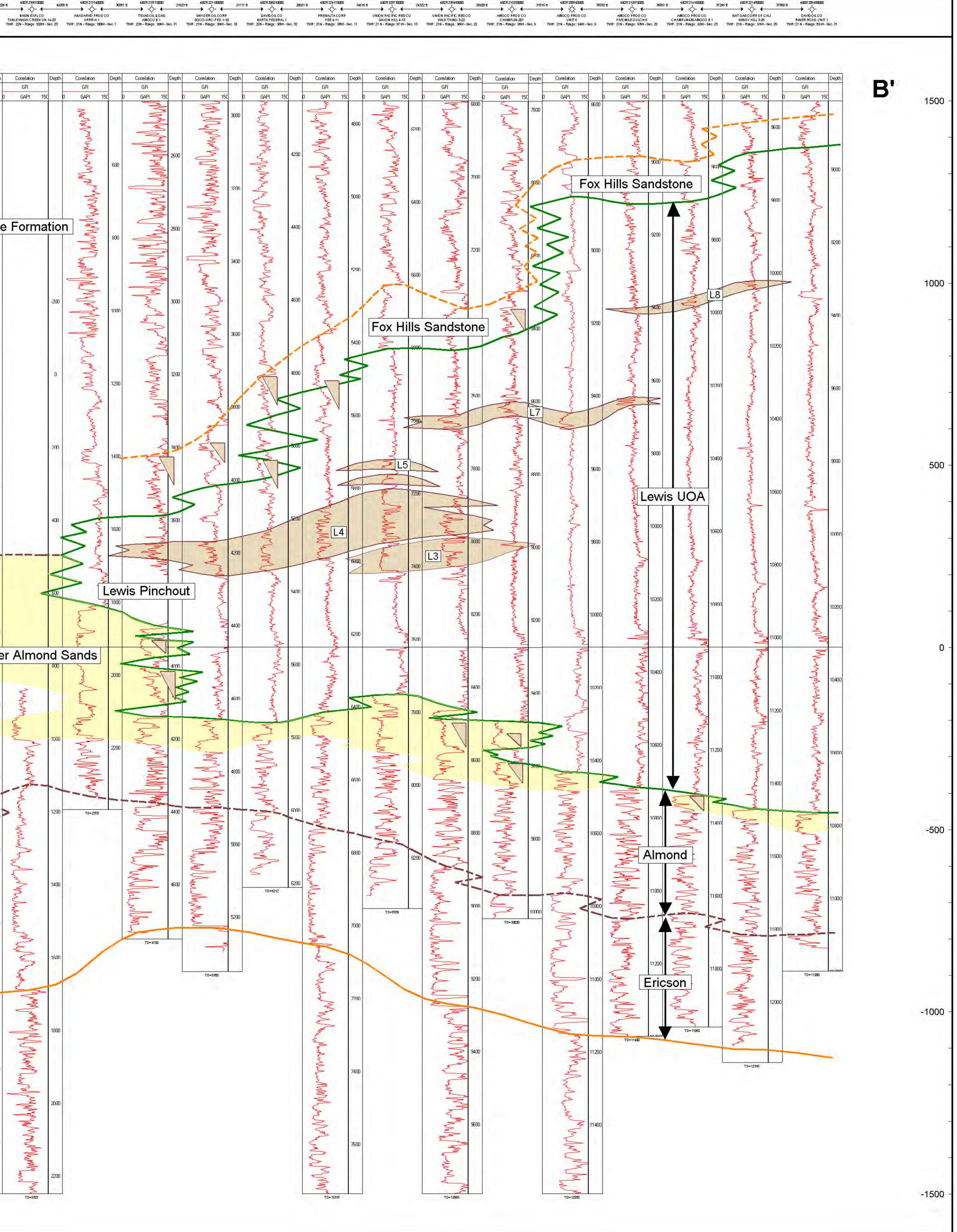



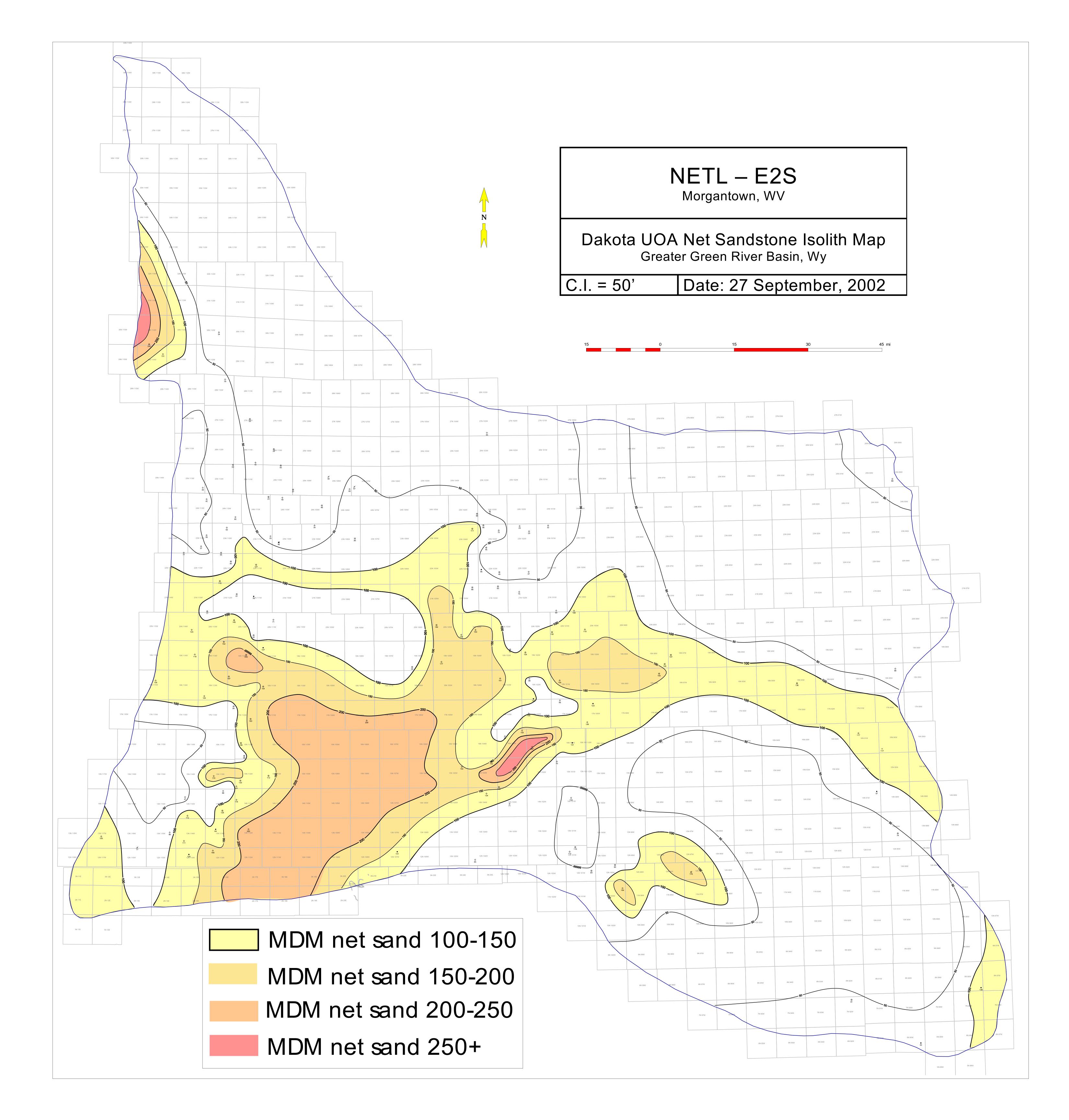



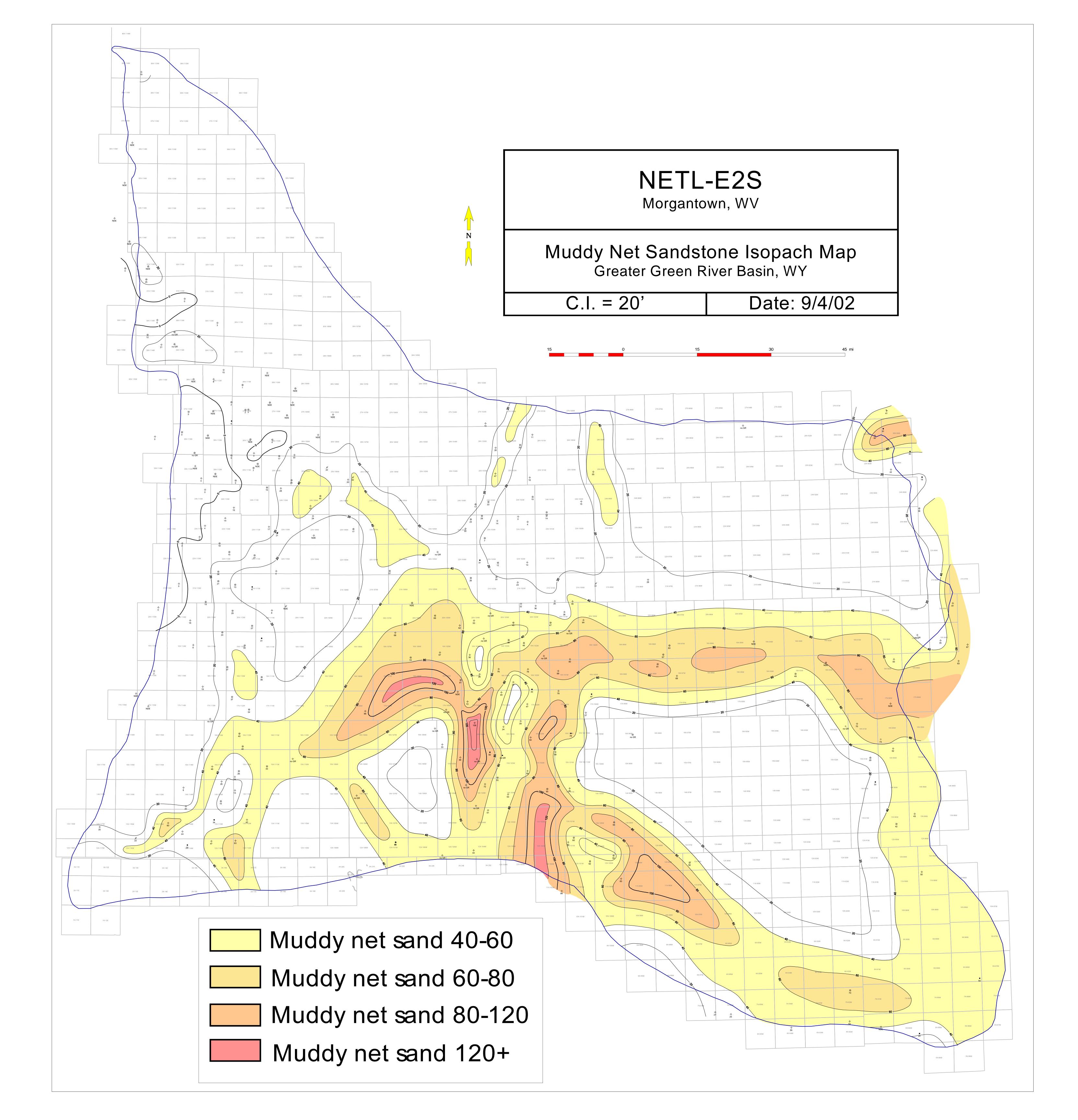


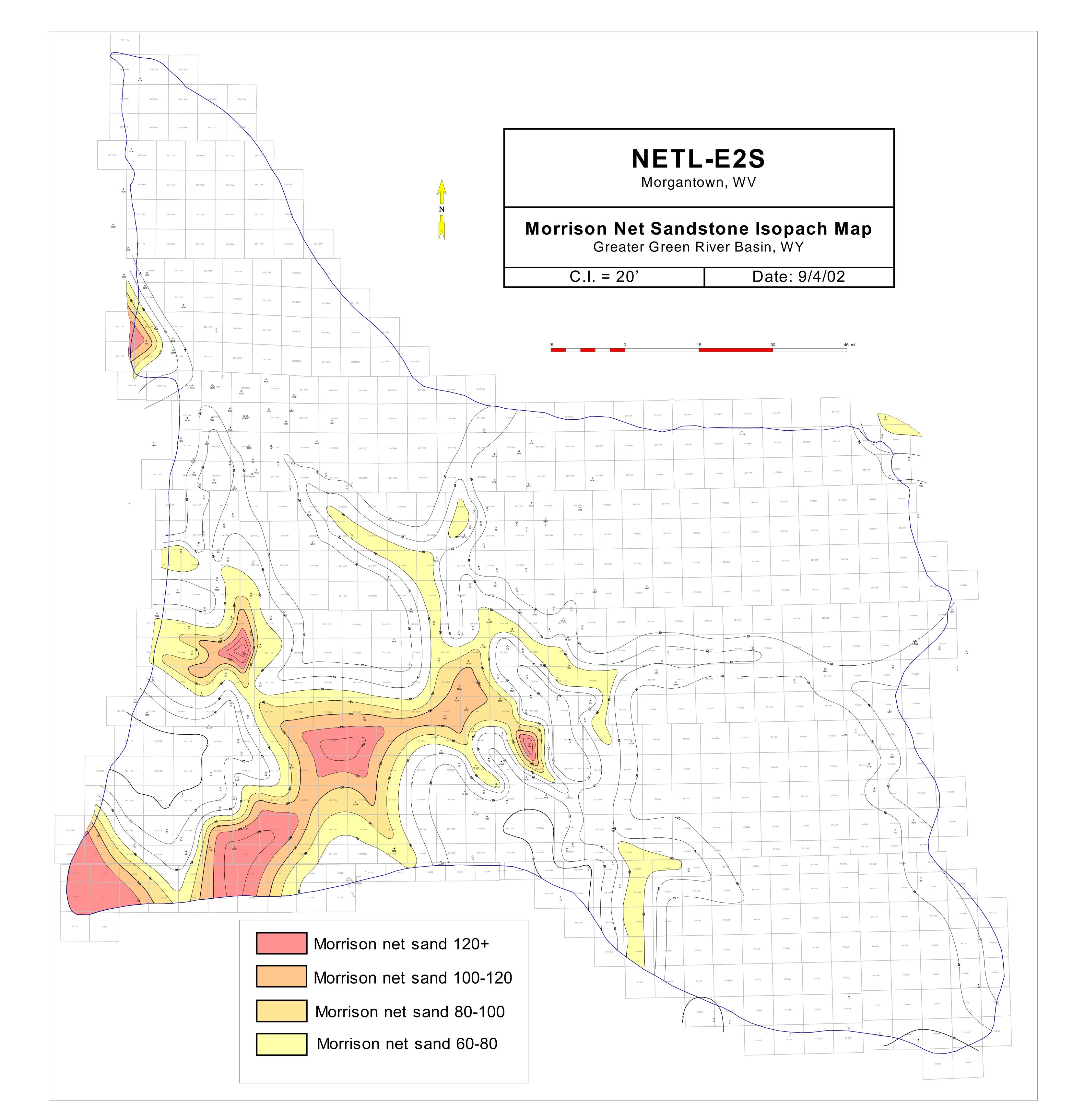




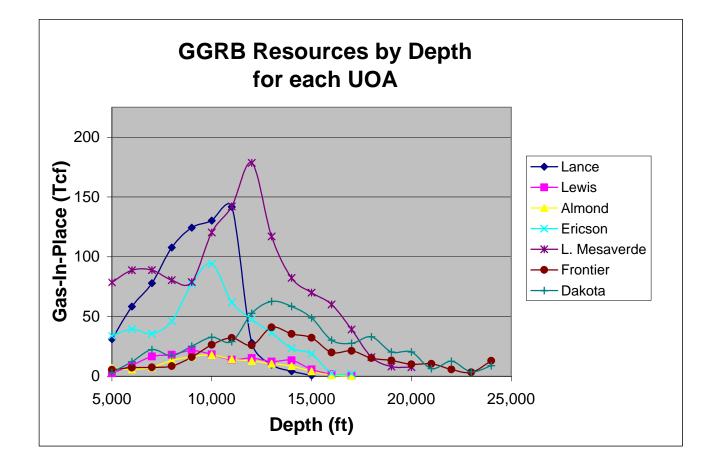





# 


B	Correlation GR	Depth	Correlation GR	Depth	Correlation GR	Depth	GR	Depth	Correlation GR	Depth	Correlation GR	Dep
1500	0 GAPI 15	5C ( 7000	0 GAPI 15	50	0 GAPI 15	90 30 ARAN	GAPI 150	eecco G	GAPI 15	ic	0 GAPI 15	5C
	MM		hurth		UMM		AMA.		1MAL			
	Aller		- M		hanna		M.M.		A MAN	7000		
	M. M.		My Dry Manuar	7800	NUN		Multiple and All	6800	2 m			
	hand	7200	Man Ind		Martin	6800	M		- Aller			0
	Martin		No.		WW		1m		San	7200		
	when we		M.M.M.	8000	MUM		A A		Sold and and and and and and and and and an		La	inc
	APM .	7400	A.		M	7000		7000	mont		Jun	
202	M		MM		to to		S.		MM		Mart	20
000	Multon		M		MM		hand		A A	7400	M	
	Maria		MAN	8200	Man			7200	MM		- And	
	the hours	7600	Martin		MANNA	7200	A.		Martin		the second	40
	M		A AND		1 miles		A WA	-		7600	Martin .	
	And we		MM	8400	S		Marin		an And W	10.00	Martin	
	My h	7800	a man	100	Sold and a second secon	7400	MM	7400	Mary		- Jun	
	MM		Mun		No.		Mapal		had by Mice		AMAN	60
	WWW		MM		Mr.M		Mar and a start		A MA	7800	A May	
00	Mund		ANNI CA	3600	North North		Soul a	7600	my		Man 1	
	-M	ann	Marth Mart		-And	7600	MM		part New		hand	80
	Shin		And And		and the second s		A M		Month	8000	W. W.	
	and the property of the same part of the second of the part of the		Minder Way of Mary Mary Mary Mary Mary Mary Mary Mary	8800	I MANNAN MANANA MANNANA ANA MANANANA MANANANA		M		which have the the many many when he was a set of the property of the property of the property of the		Warman Marken - War Marken - Marken - Marken - Marken	
	MAM	8200	Mary Contract	10.00	N	7800	(MMM/mar	7800	S.	-	MMA	
	- William		- ANN	1-	- A		- Wind		5		M	10
	And Man Man Manual		and the second		M		Man		A MA	8200	Inn	
	Mary Mary		Man	9000	(margaret		A May	8000	A AND		Lang Manual	
		8400	When		M.M.	8000	My		ANN .		maria	12
	and house of the way why when he was were the addition of the second of		March and March and March March March March March March And March March March		white here were Man Winger Manual		MANNAMARANAN VINNA WANNA MANA MANA MANA MANA MANA MANA	_	M	8400	The U	 pp
	MAR		Al Ala	.92m	MAN		A MA	Ļ	MAN MANARAMAN AND A CONTRACT AND A C			
	Manuful	8600	Milling		perfectives	8200	N	8200	M		MM	
	M		MMM		M mary		All All		Mr. A.M.	4	A MIL	14
	mult		And A	Ē	Almond				WW	8600	and which the second of the second of the second se	
	WWW		WWW C	940		8400		84M	May Ann		M	
	Marken Mark	8800	Carry		my Mary and word	8400	MM		WHY		MM	16
	Mary		Month		Murr		A M			8800	Mull .	4-
	Munud		Jun hall	9600	MM		Alland		All A		Why	Ľ
500	MM	9000	Mr.		Anstrady	8600	No.	3600		1		
	M. Marson		M.		When		Mar		MAM		Start Real Provide Start Real Pr	19
	Mun		Month		More want would what			-	MM	9000	5	
	- John -		N.	9900	-	8800	WM	800	- Charles		A A	
	1 may	9200	M		Mult		An		Strong		Mary	20
	WWWWWWWWWWWWWWWWWW				- AN				hand	.92m	- And	
	MM		AND	10000	Ericson	UC	A		the law		M	Ľ
	M	94M	AND IN		MM	9000	M	9000	Man		AMA	
000	w/WW		W.M.		Mund				- MA			22
	5		A.		3				A.	9400	A.	
	Larway Mul Man		And Mar	10200	WWWWWWWW		TD-9150		WAY AND MANNA MANA MANA		ANN ANN	
	Mon	9600	A free		(many	3200					A MAN	74
	1 Alexandre				3 r Mesav	/erc	le UOA		Mult	3600	M.M.	
	July		W	10400	Al and			1				
	When	9800	When		how	9400			how			
	the second		Alman		Ama				mallin		Mary Mary Mary Mary	26
	1 mill		James and Million Million		analyth many -				WWW & Carpendantan	3800	A. M.	
1500	MM		3	10600	3				A.		1	

π	49037235670000	49258 ft	49037217540000	30357 ft	49037218770000	21623 ft	4903722110000	217 17 1	t 49037206010000	20921 ft	4903722417000	34516 ft	4903722873000	24322 ft	19037238450000	2592D ft	490372152500
	BASIN EXPLCO		ANADARIO PROD CO		TEXASOIL&GAS	-	SNYDEROILCORP		DAVISOILCO		PRENALTACORP		UNION PACIFIC RESCO		UNION PACIFIC RESCO		AMOCO PROD
	BLE WASH CREEK UN 14-23		UPRR-A 1		AMOCO B 1	74 770	SOCO-URC-FED 1-10		BARTA FEDERAL 1		FEE 4-11		SAXON HILL 4-13	47 700	WILD THING 3-22	~ ~	CHAMPLIN-2
TOOP	: 22N - Range: 102/0 - Sec. 2	3 100	VP: 21N - Range: 10000 - Se	I	WP: 22N - Range: 99W - Sec.	31 100	P: 21N - Raige: 9900 - S	ec. 10	TWP: 22N - Raige: 98W - Sec.	32 11	WP: 21N - Raige: 98W - Sec	.11 10	/P:21 N - Raige:97 W - Sec	. 13 100	VP: 21N - Range: 9600 - Sec	.22 1	WP: 21N - Range: 96










### **GGRB - Summary**

		Lance	Lewis	Almond	Ericson	Lower Mesaverde	Frontier	Dakota
	Acreage	5,247,060	4,331,520	8,363,520	8,484,480	9,066,240	11,128,320	11,796,480
	Potential Pay (ft)	341	82	27	119	305	46	55
UOA Averages	Porosity (%)	8	7	9	9	8	8	8
ag	Sw (%)	58	61	62	53	58	39	35
er.	Drilling Depth (ft)	8,628	10,104	9,882	9,729	10,778	14,511	14,629
¥	Pressure (psi)	4,322	5,232	5,430	5,322	5,739	8,498	9,592
A	Temperature (oF)	164	181	179	177	189	249	250
S	Assigned Rw	0.1	0.173	0.23	0.7	0.23	0.046	0.046
	GIP (Tcf)	714.4	149	119.5	519.4	1257	350.5	527.7
	GIP > 15,000' (Tcf)	0.7	7.8	5.2	23.5	201.1	144.7	211.9
	No. wells used	209	399	369	301	153	266	192
	No. full log suites	88	370	345	231	118	240	146
					GIP	(Tcf)		
	5,000	31.1	2.5	7.1	33.9	78.6	5.5	3.2
	6,000	58.4	9.2	5.9	39.5	88.8	7.2	12.2
	7,000	77.9	16.6	7.5	35.6	88.9	7.5	22.3
	8,000	107.8	18.1	13.2	46.2	80.4	8.6	17.3
	9,000	124.4	21.6	16.5	77.2	78.9	16.1	25.2
	10,000	130.2	18.3	17.8	94.1	120.3	26.4	32.7
g	11,000	141.8	13.9	14.3	62.0	142.2	32.1	29.0
Range	12,000	28.0	15.3	12.9	47.6	178.5	26.0	52.8
ĸ	13,000	9.8	12.3	10.6	36.4	117.0	40.9	62.6
th	14,000	4.3	13.4	8.5	23.4	82.3	35.5	58.5
ep	15,000	0.7	5.7	4.1	18.7	70.0	32.2	48.8
D D	16,000		1.7	0.9	2.6	60.1	20.0	30.3
5	17,000		0.4	0.2	2.2	39.2	21.3	27.6
8	18,000					16.1	15.3	33.0
1	19,000					8.1	13.2	20.3
þ	20,000					7.6	10.1	20.3
(Tcf) by 1000-ft Depth	21,000						10.4	6.4
F	22,000						5.8	12.6
Resource	23,000						3.4	3.7
n	24,000						13.0	8.9
SSO	25,000							
Re	26,000							
as	27,000							
Ga	28,000							
	29,000							
	30,000							
	31,000							
	32,000							



#### GGRB - Lance

DEPTH RANGE	TOTAL AREA (acres)	GAS-IN-PLACE (Tcf)	AVERAGE POTENTIAL PAY THICKNESS (Ft.)	AVERAGE POROSITY (%)	AVERAGE WATER SATURATION (%)	AVERAGE DRILLING DEPTH (Ft.)	AVERAGE PRESSURE (psi)	AVERAGE TEMPERATURE (oF)
5,000	558720	31.1	216	10.0%	58%	5510	2614	126
6,000	800640	58.3	228	9.4%	60%	3507	3114	138
7,000	869460	77.8	264	8.3%	61%	7536	3695	150
8,000	887040	107.8	331	8.0%	56%	8472	4215	161
9,000	645120	124.4	432	7.6%	54%	9473	4765	173
10,000	696960	130.2	493	7.4%	55%	10518	5391	186
11,000	529920	141.0	508	7.3%	58%	11440	5926	197
12,000	132480	28.0	339	7.4%	59%	12466	6456	209
13,000	69120	9.7	255	7.4%	52%	13409	6980	221
14,000	46080	4.3	137	6.1%	38%	14377	7497	232
15,000	11520	0.7	114	5.2%	30%	15191	7947	242
16,000	0	0	0	0	0	0	0	0
17,000	0	0	0	0	0	0	0	0
18,000	0	0	0	0	0	0	0	0
19,000	0	0	0	0	0	0	0	0
20,000	0	0	0	0	0	0	0	0
21,000	0	0	0	0	0	0	0	0
22,000	0	0	0	0	0	0	0	0
23,000	0	0	0	0	0	0	0	0
24,000	0	0	0	0	0	0	0	0
25,000	0	0	0	0	0	0	0	0
26,000	0	0	0	0	0	0	0	0
27,000	0	0	0	0	0	0	0	0
28,000	0	0	0	0	0	0	0	0
29,000	0	0	0	0	0	0	0	0
30,000	0	0	0	0	0	0	0	0
31,000	0	0	0	0	0	0	0	0
32,000	0	0	0	0	0	0	0	0

#### **GGRB** - Lewis

DEPTH RANGE	TOTAL AREA (acres)	GAS-IN-PLACE (Tcf)	AVERAGE POTENTIAL PAY THICKNESS (Ft.)	AVERAGE POROSITY (%)	AVERAGE WATER SATURATION (%)	AVERAGE DRILLING DEPTH (Ft.)	AVERAGE PRESSURE (psi)	AVERAGE TEMPERATURE (oF)
5,000	357120	2.5	25	7.8%	77%	5421	2502	125
6,000	368640	9.2	72	8.4%	72%	6492	3072	138
7,000	426240	16.6	104	7.5%	67%	7527	3739	150
8,000	552960	18.1	81	7.0%	63%	8521	4302	162
9,000	558720	21.6	94	6.5%	62%	9514	5024	174
10,000	426240	18.3	88	6.0%	59%	10492	5531	186
11,000	380160	13.9	104	5.1%	60%	11458	6024	197
12,000	316800	15.3	91	5.8%	54%	12550	6846	211
13,000	316800	12.3	90	5.8%	53%	13482	7104	222
14,000	432000	13.4	66	5.7%	48%	14510	7319	234
15,000	155520	5.7	69	5.9%	40%	15369	8523	244
16,000	28800	1.7	59	6.9%	25%	16530	10428	258
17,000	11520	0.4	39	6.3%	17%	17050	11270	265
18,000	0	0	0	0	0	0	0	0
19,000	0	0	0	0	0	0	0	0
20,000	0	0	0	0	0	0	0	0
21,000	0	0	0	0	0	0	0	0
22,000	0	0	0	0	0	0	0	0
23,000	0	0	0	0	0	0	0	0
24,000	0	0	0	0	0	0	0	0
25,000	0	0	0	0	0	0	0	0
26,000	0	0	0	0	0	0	0	0
27,000	0	0	0	0	0	0	0	0
28,000	0	0	0	0	0	0	0	0
29,000	0	0	0	0	0	0	0	0
30,000	0	0	0	0	0	0	0	0
31,000	0	0	0	0	0	0	0	0
32,000	0	0	0	0	0	0	0	0

#### **GGRB - Almond**

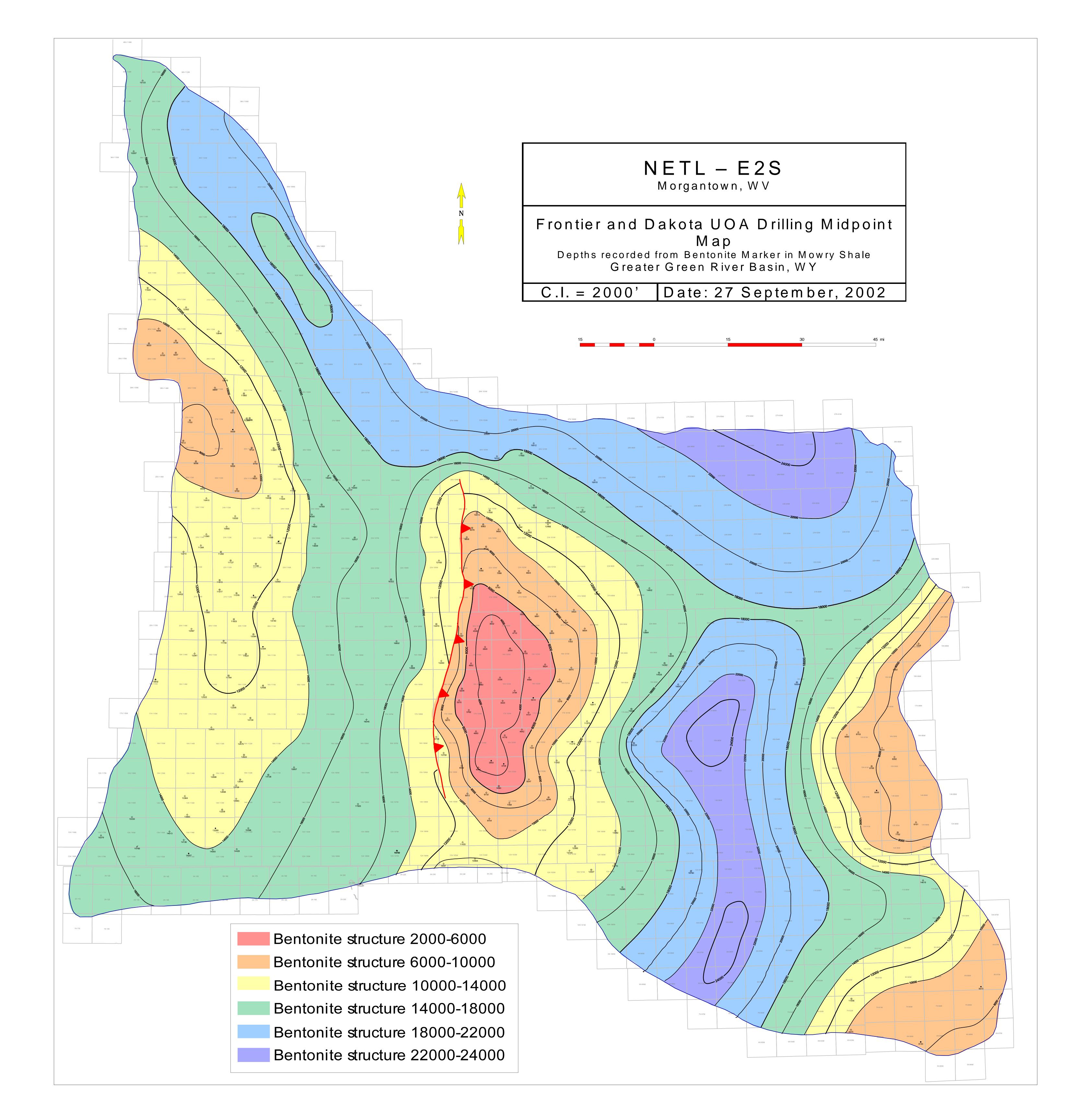
DEPTH RANGE	TOTAL AREA (acres)	GAS-IN-PLACE (Tcf)	AVERAGE POTENTIAL PAY THICKNESS (Ft.)	AVERAGE POROSITY (%)	AVERAGE WATER SATURATION (%)	AVERAGE DRILLING DEPTH (Ft.)	AVERAGE PRESSURE (psi)	AVERAGE TEMPERATURE (oF)
5,000	645120	7.1	31	10.2%	62%	5490	2658	126
6,000	760320	5.9	17	10.0%	64%	6447	3240	137
7,000	852480	7.5	22	9.6%	63%	7513	3851	150
8,000	1203840	13.2	24	8.6%	63%	8509	4261	162
9,000	1198080	16.5	27	8.9%	62%	9456	4958	173
10,000	1198080	17.8	28	8.1%	61%	10483	5911	186
11,000	656640	14.3	33	7.2%	62%	11421	6534	197
12,000	403200	12.9	55	8.2%	57%	12534	7311	210
13,000	432000	10.6	34	7.8%	58%	13527	7894	222
14,000	472320	8.5	27	8.0%	60%	14502	8397	234
15,000	403200	4.1	18	6.5%	59%	15510	9124	246
16,000	103680	0.9	12	6.8%	63%	16327	10860	256
17,000	34560	0.2	18	5.3%	65%	17714	13834	272
18,000	0	0	0	0	0	0	0	0
19,000	0	0	0	0	0	0	0	0
20,000	0	0	0	0	0	0	0	0
21,000	0	0	0	0	0	0	0	0
22,000	0	0	0	0	0	0	0	0
23,000	0	0	0	0	0	0	0	0
24,000	0	0	0	0	0	0	0	0
25,000	0	0	0	0	0	0	0	0
26,000	0	0	0	0	0	0	0	0
27,000	0	0	0	0	0	0	0	0
28,000	0	0	0	0	0	0	0	0
29,000	0	0	0	0	0	0	0	0
30,000	0	0	0	0	0	0	0	0
31,000	0	0	0	0	0	0	0	0
32,000	0	0	0	0	0	0	0	0

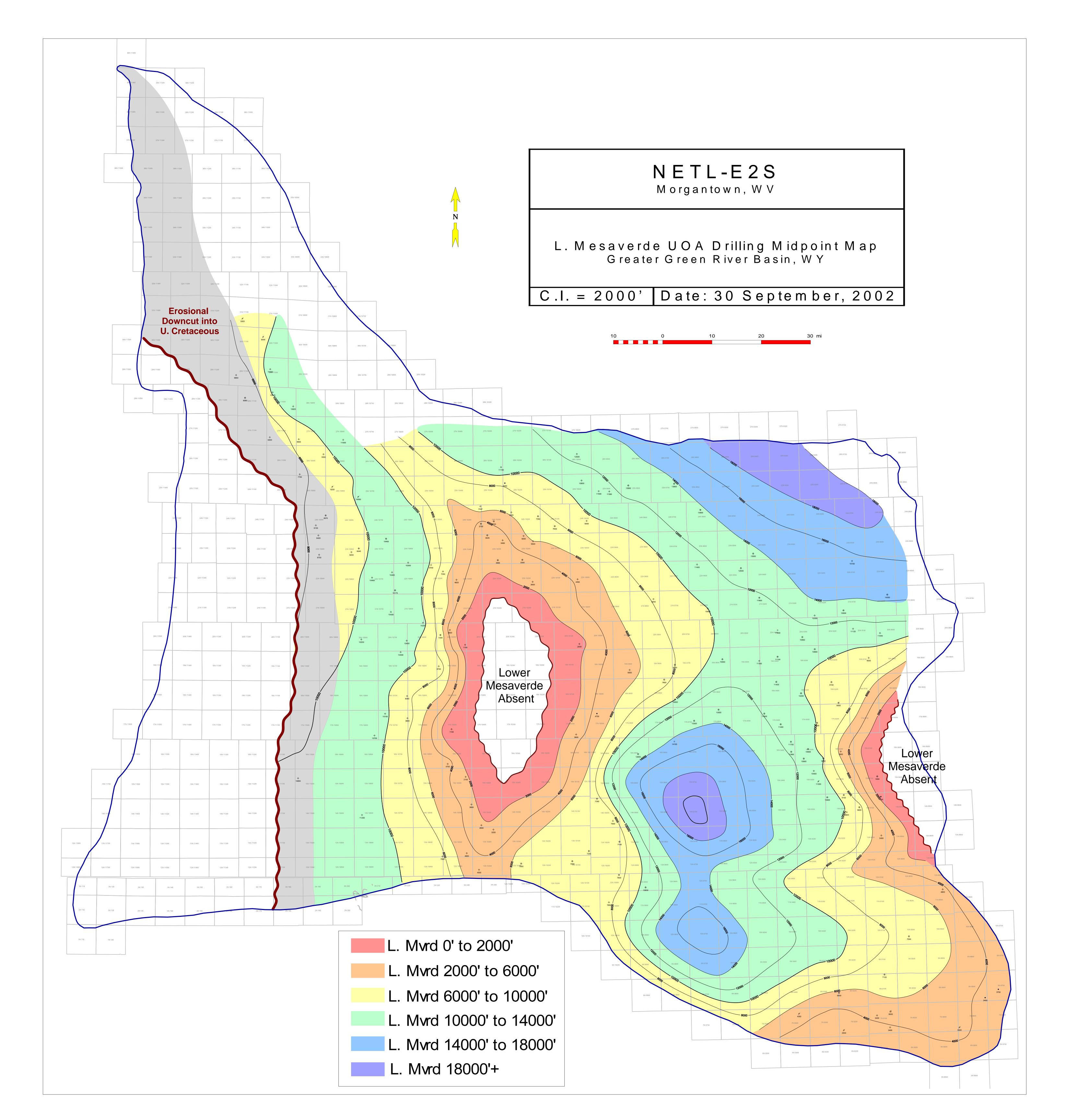
#### **GGRB - Ericson**

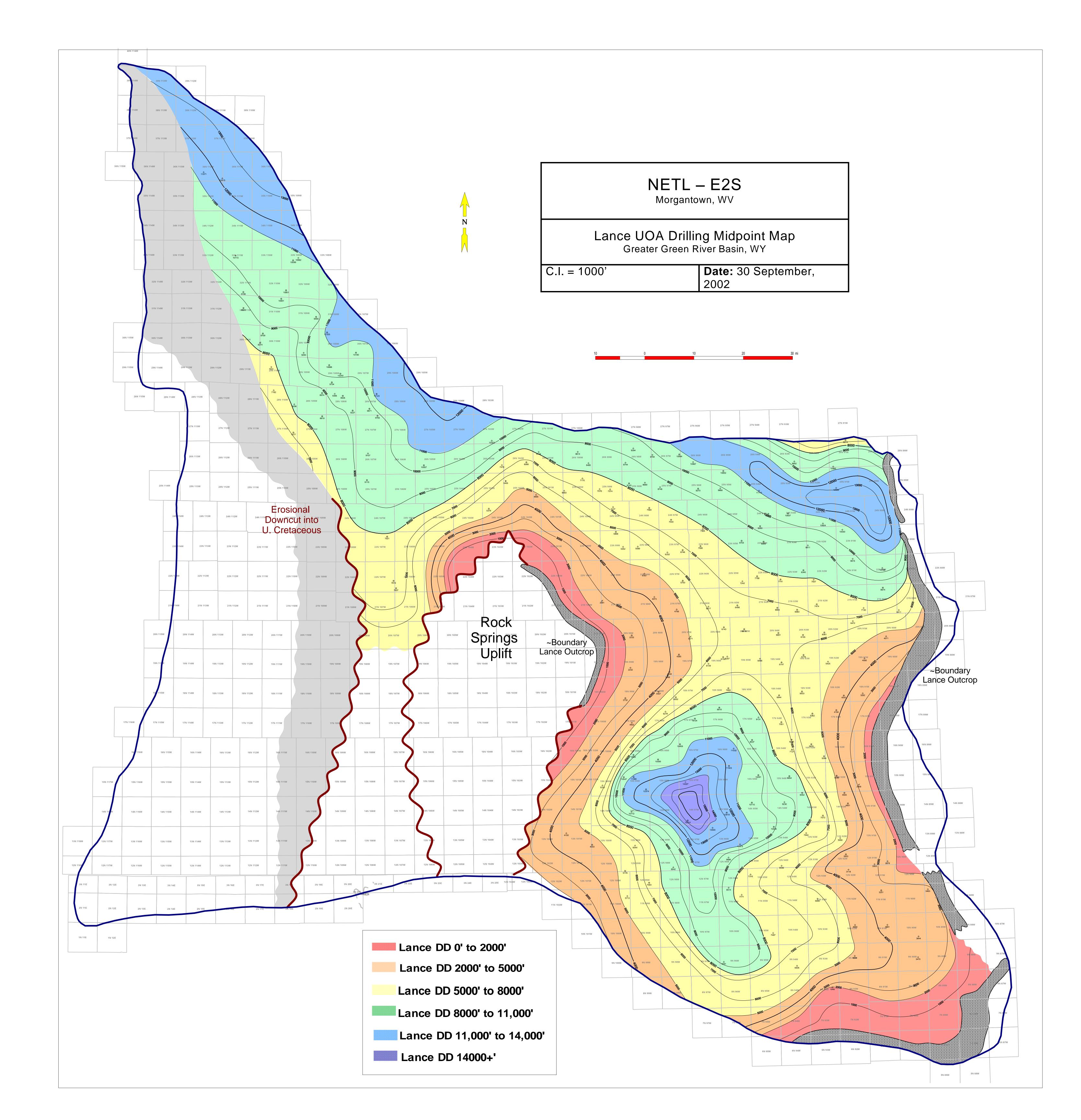
DEPTH RANGE	TOTAL AREA (acres)	GAS-IN-PLACE (Tcf)	AVERAGE POTENTIAL PAY THICKNESS (Ft.)	AVERAGE POROSITY (%)	AVERAGE WATER SATURATION (%)	AVERAGE DRILLING DEPTH (Ft.)	AVERAGE PRESSURE (psi)	AVERAGE TEMPERATURE (oF)
5,000	650880	33.9	136	11.7%	60%	5492	2629	126
6,000	904320	39.5	101	10.2%	62%	6539	3256	138
7,000	875520	35.6	95	9.1%	61%	7543	3793	151
8,000	1054080	46.2	107	8.9%	61%	8541	4340	163
9,000	1267200	77.2	155	8.7%	58%	9524	4835	174
10,000	1388160	94.1	115	7.9%	52%	10508	5771	186
11,000	737280	62.0	125	7.7%	42%	11393	6639	197
12,000	374400	47.6	156	8.0%	33%	12487	7386	210
13,000	311040	36.4	141	7.7%	32%	13516	7918	222
14,000	391680	23.4	86	6.8%	42%	14542	8705	235
15,000	391680	18.7	80	5.8%	39%	15446	9379	245
16,000	80640	2.6	113	4.5%	60%	16498	11669	258
17,000	57600	2.2	121	4.3%	58%	17405	13570	269
18,000	0	0.0	0	0	0	0	0	0
19,000	0	0	0	0	0	0	0	0
20,000	0	0	0	0	0	0	0	0
21,000	0	0	0	0	0	0	0	0
22,000	0	0	0	0	0	0	0	0
23,000	0	0	0	0	0	0	0	0
24,000	0	0	0	0	0	0	0	0
25,000	0	0	0	0	0	0	0	0
26,000	0	0	0	0	0	0	0	0
27,000	0	0	0	0	0	0	0	0
28,000	0	0	0	0	0	0	0	0
29,000	0	0	0	0	0	0	0	0
30,000	0	0	0	0	0	0	0	0
31,000	0	0	0	0	0	0	0	0
32,000	0	0	0	0	0	0	0	0

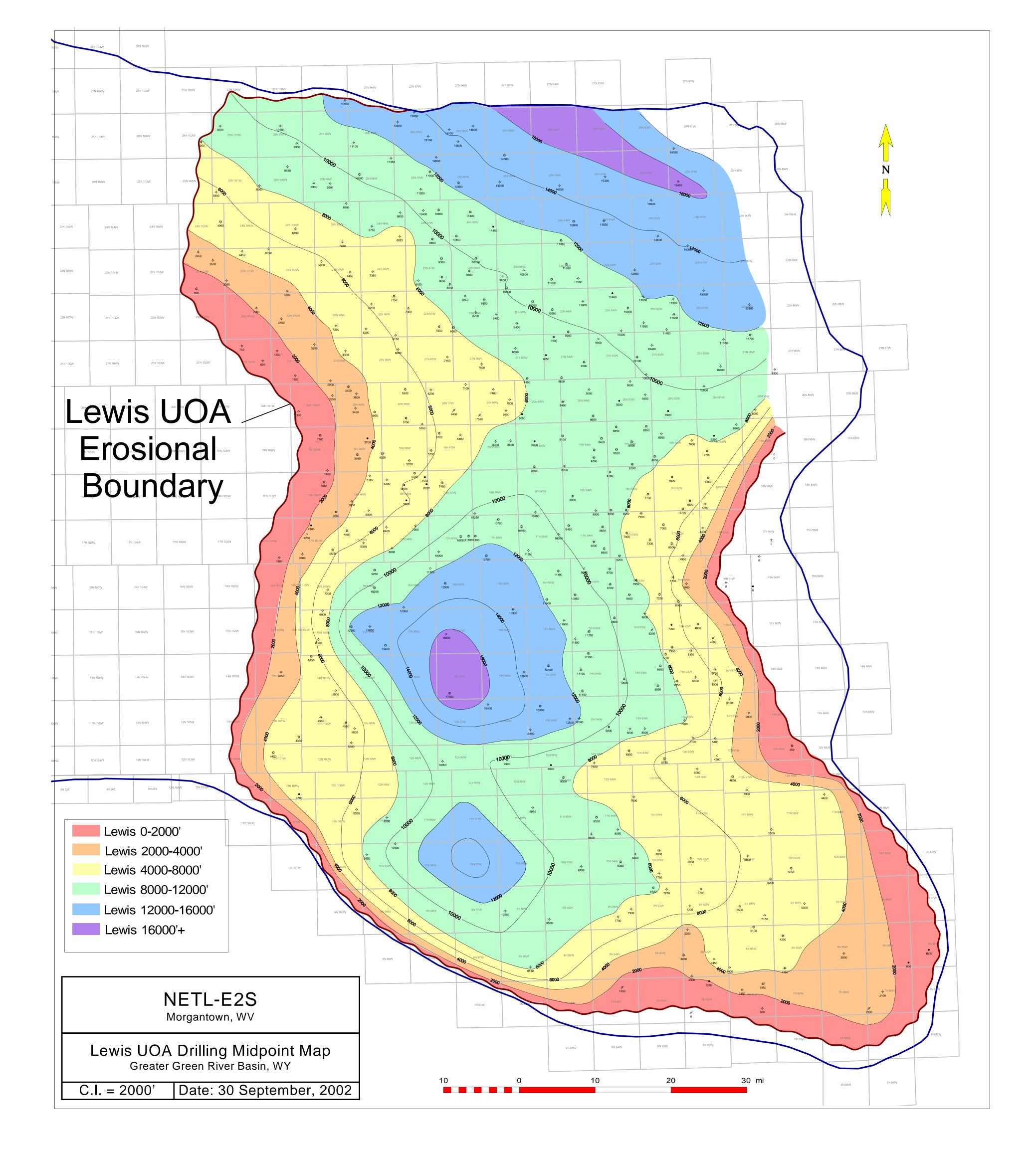
DEPTH RANGE	TOTAL AREA (acres)	GAS-IN-PLACE (Tcf)	AVERAGE POTENTIAL PAY THICKNESS (Ft.)	AVERAGE POROSITY (%)	AVERAGE WATER SATURATION (%)	AVERAGE DRILLING DEPTH (Ft.)	AVERAGE PRESSURE (psi)	AVERAGE TEMPERATURE (oF)
5,000	564480	78.6	306	11.3%	55%	5518	2621	126
6,000	673920	88.8	256	10.8%	56%	6509	3234	138
7,000	685440	88.9	273	9.9%	58%	7482	3715	150
8,000	760320	80.4	244	9.3%	63%	8531	4280	162
9,000	864000	78.9	212	8.7%	66%	9554	4709	175
10,000	1336320	120.3	215	8.3%	66%	10486	5239	186
11,000	1238400	142.2	301	7.8%	60%	11451	6288	197
12,000	794880	178.5	476	7.4%	51%	12463	6817	210
13,000	455040	117.0	454	7.3%	51%	13442	7401	221
14,000	414720	82.3	387	6.4%	53%	14466	8112	234
15,000	432000	70.0	358	5.8%	53%	15490	8856	246
16,000	368640	60.1	377	5.5%	53%	16500	9410	258
17,000	276480	39.2	393	5.2%	53%	17380	9944	269
18,000	97920	16.1	399	5.8%	53%	18415	11003	281
19,000	51840	8.1	410	4.9%	51%	19553	11800	295
20,000	51840	7.6	414	4.4%	50%	20000	12000	300
21,000	0	0	0	0	0	0	0	0
22,000	0	0	0	0	0	0	0	0
23,000	0	0	0	0	0	0	0	0
24,000	0	0	0	0	0	0	0	0
25,000	0	0	0	0	0	0	0	0
26,000	0	0	0	0	0	0	0	0
27,000	0	0	0	0	0	0	0	0
28,000	0	0	0	0	0	0	0	0
29,000	0	0	0	0	0	0	0	0
30,000	0	0	0	0	0	0	0	0
31,000	0	0	0	0	0	0	0	0
32,000	0	0	0	0	0	0	0	0

#### **GGRB - Lower Mesaverde**

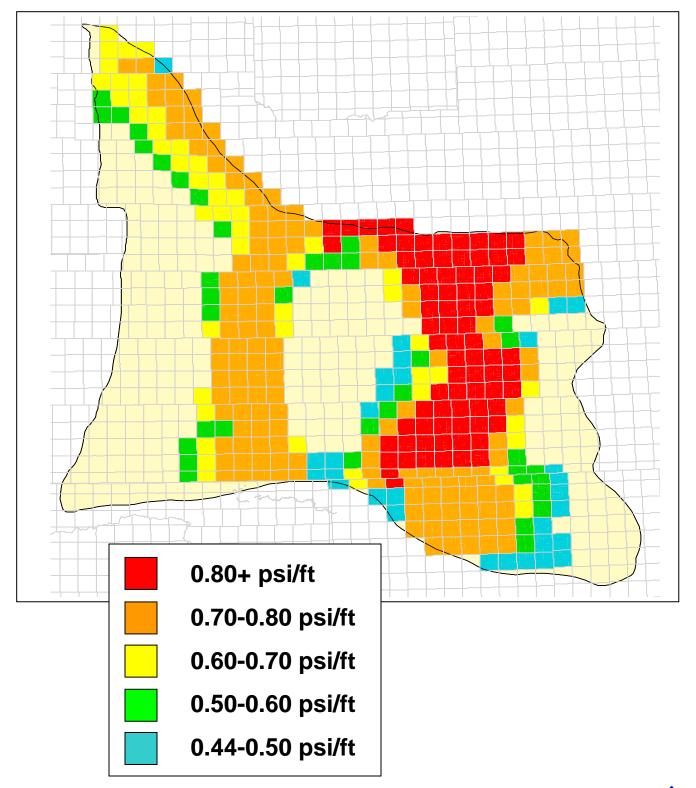

#### **GGRB - Frontier**


DEPTH RANGE	TOTAL AREA (acres)	GAS-IN-PLACE (Tcf)	AVERAGE POTENTIAL PAY THICKNESS (Ft.)	AVERAGE POROSITY (%)	AVERAGE WATER SATURATION (%)	AVERAGE DRILLING DEPTH (Ft.)	AVERAGE PRESSURE (psi)	AVERAGE TEMPERATURE (oF)
5,000	207360	5.5	45	10.4%	42%	5641	3164	133
6,000	276480	7.2	44	10.1%	39%	6437	3573	144
7,000	253440	7.5	47	9.5%	36%	7530	4092	158
8,000	299520	8.6	43	10.1%	34%	8720	4899	173
9,000	414720	16.1	62	9.4%	36%	9533	5321	184
10,000	576000	26.4	64	9.2%	32%	10552	5718	197
11,000	898560	32.1	47	9.5%	36%	11505	6527	210
12,000	967680	26.0	37	9.2%	37%	12463	6959	222
13,000	1221120	40.9	44	8.8%	39%	13498	7762	235
14,000	1175040	35.5	39	8.9%	38%	14449	8549	248
15,000	1036800	32.2	47	7.7%	41%	15520	9143	262
16,000	691200	20.0	44	7.4%	43%	16474	10071	274
17,000	852480	21.3	37	6.6%	42%	17494	10747	287
18,000	622080	15.3	37	6.9%	39%	18547	11587	301
19,000	552960	13.2	38	6.5%	46%	19428	11535	313
20,000	368640	10.1	43	6.5%	44%	20392	12623	325
21,000	253440	10.4	67	6.1%	40%	21522	12139	340
22,000	184320	5.8	49	6.6%	38%	22488	12655	352
23,000	69120	3.4	77	5.9%	33%	23558	13107	366
24,000	207360	13.0	101	5.4%	28%	24462	13845	378
25,000	0	0	0	0	0	0	0	0
26,000	0	0	0	0	0	0	0	0
27,000	0	0	0	0	0	0	0	0
28,000	0	0	0	0	0	0	0	0
29,000	0	0	0	0	0	0	0	0
30,000	0	0	0	0	0	0	0	0
31,000	0	0	0	0	0	0	0	0
32,000	0	0	0	0	0	0	0	0

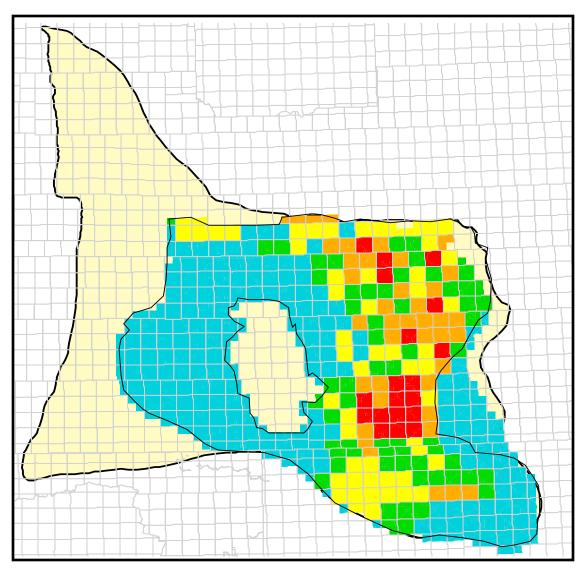

#### **GGRB - Dakota**


DEPTH RANGE	TOTAL AREA (acres)	GAS-IN-PLACE (Tcf)	AVERAGE POTENTIAL PAY THICKNESS (Ft.)	AVERAGE POROSITY (%)	AVERAGE WATER SATURATION (%)	AVERAGE DRILLING DEPTH (Ft.)	AVERAGE PRESSURE (psi)	AVERAGE TEMPERATURE (oF)
5,000	115200	3.2	71	10.2%	33%	5363	2197	130
6,000	345600	12.2	63	9.8%	43%	6624	3539	146
7,000	437760	22.3	67	10.0%	37%	7401	3926	156
8,000	391680	17.3	57	9.2%	36%	8479	4596	170
9,000	506880	25.2	63	9.5%	34%	9521	5468	184
10,000	529920	32.7	62	9.9%	31%	10473	5956	196
11,000	645120	29.0	54	9.2%	32%	11535	6439	210
12,000	990720	52.8	63	9.3%	34%	12487	7289	222
13,000	1128960	62.6	59	9.5%	32%	13495	8124	235
14,000	1082880	58.5	50	9.8%	26%	14504	8560	249
15,000	1267200	48.8	47	7.9%	35%	15447	9700	261
16,000	944640	30.3	41	7.2%	33%	16484	11011	274
17,000	806400	27.6	52	6.9%	37%	17553	12133	288
18,000	852480	33.0	50	7.3%	38%	18472	13567	300
19,000	483840	20.3	56	7.3%	38%	19456	14325	313
20,000	483840	20.3	54	7.9%	44%	20376	15447	325
21,000	138240	6.4	60	7.0%	37%	21518	16817	340
22,000	299520	12.6	60	6.2%	38%	22445	17734	352
23,000	115200	3.7	55	5.5%	42%	23469	18757	365
24,000	230400	8.9	66	5.5%	43%	24797	19995	383
25,000	0	0	0	0	0	0	0	0
26,000	0	0	0	0	0	0	0	0
27,000	0	0	0	0	0	0	0	0
28,000	0	0	0	0	0	0	0	0
29,000	0	0	0	0	0	0	0	0
30,000	0	0	0	0	0	0	0	0
31,000	0	0	0	0	0	0	0	0
32,000	0	0	0	0	0	0	0	0



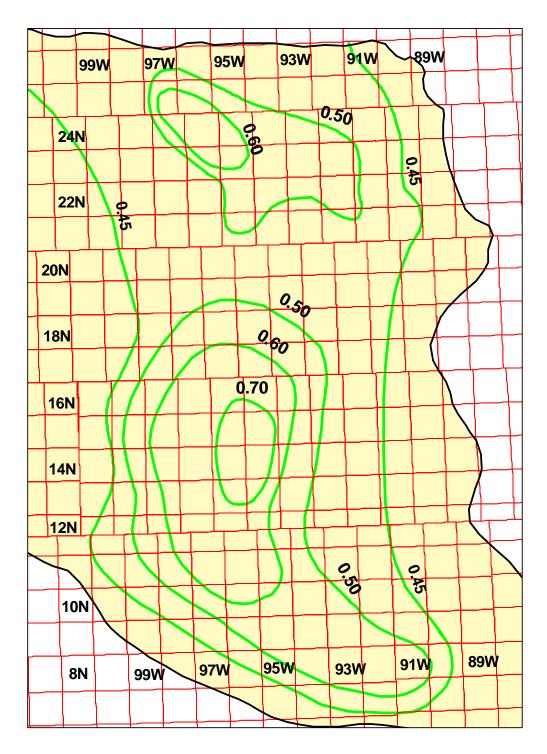




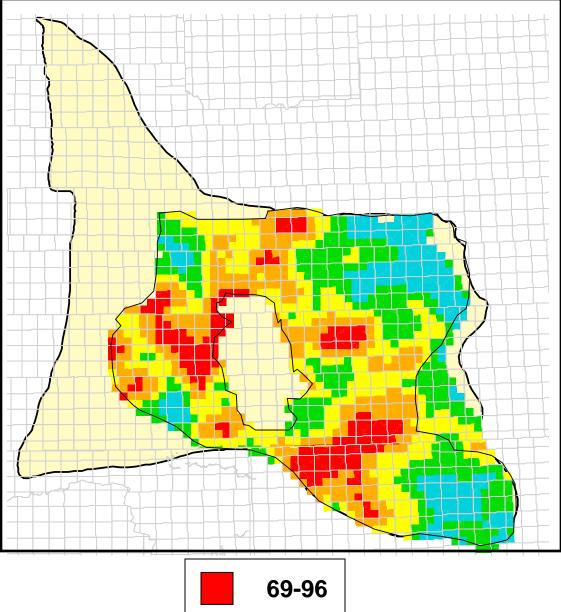






## Reservoir Pressure Gradient, Frontier Fm., GGRB

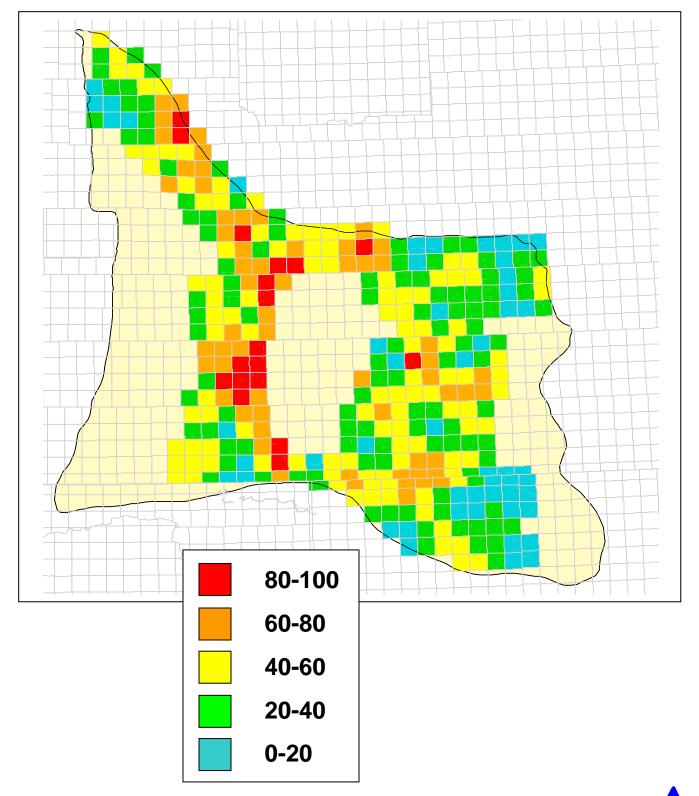



## Reservoir Pressure Gradient, Mesaverde Group, GGRB

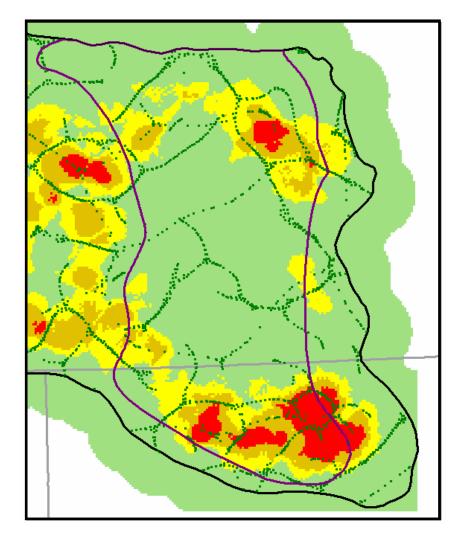


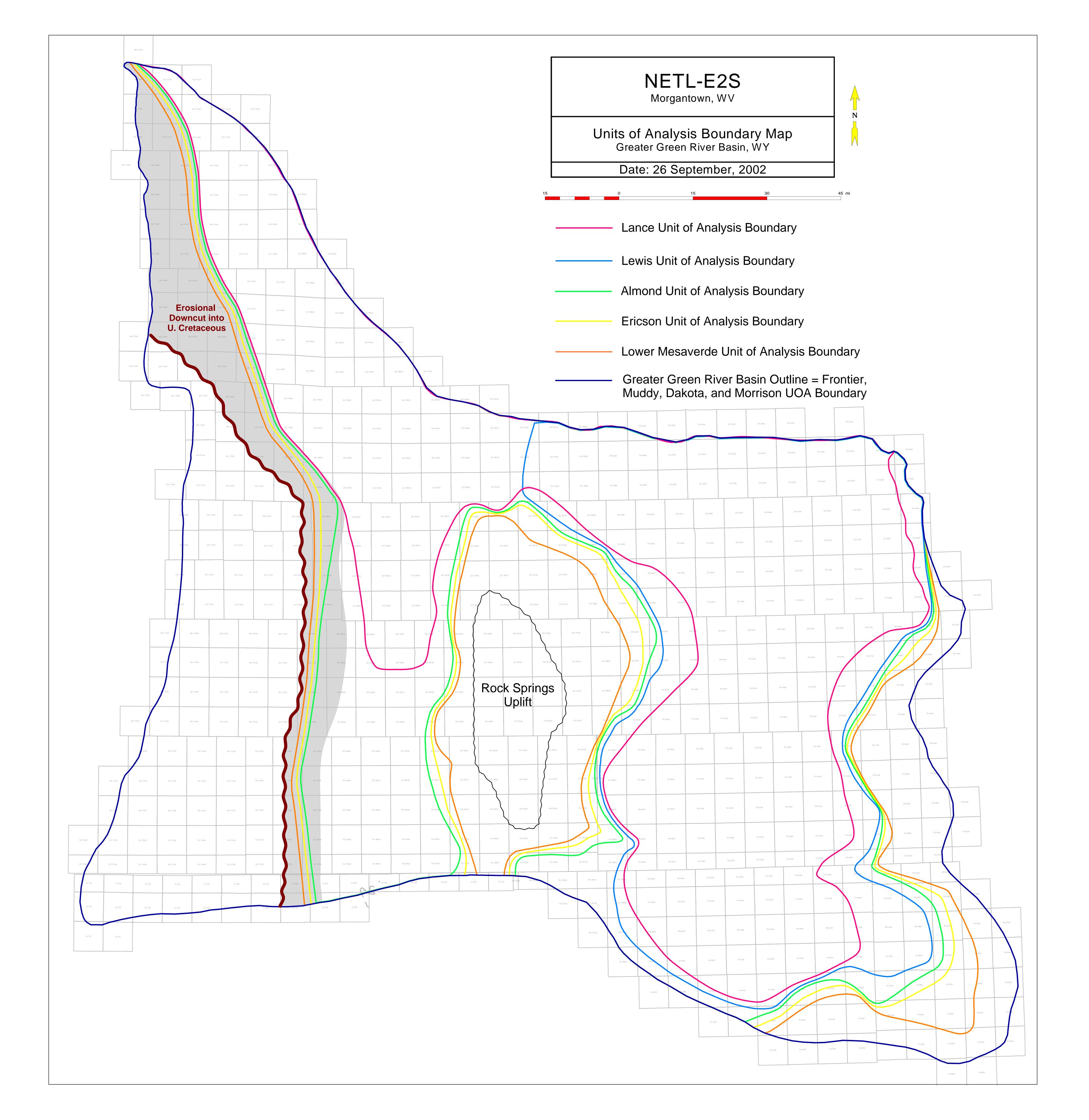

- 0.63-0.82 psi/ft
- 0.56-0.63 psi/ft
- 0.52-0.56 psi/ft
- 0.47-0.52 psi/ft
- 0.44-0.47 psi/ft

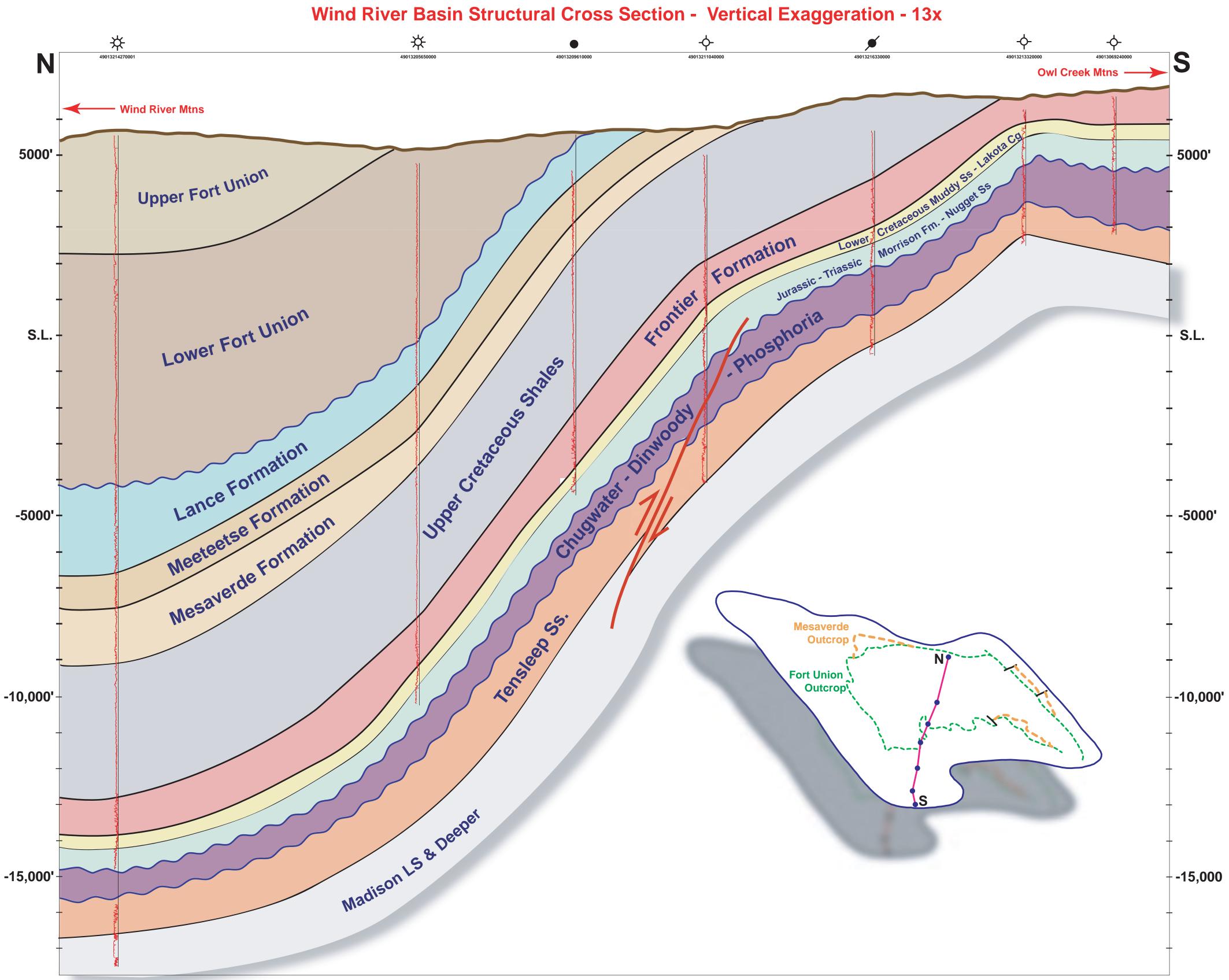
## Reservoir Pressure Gradients, Lewis Shale, GGRB

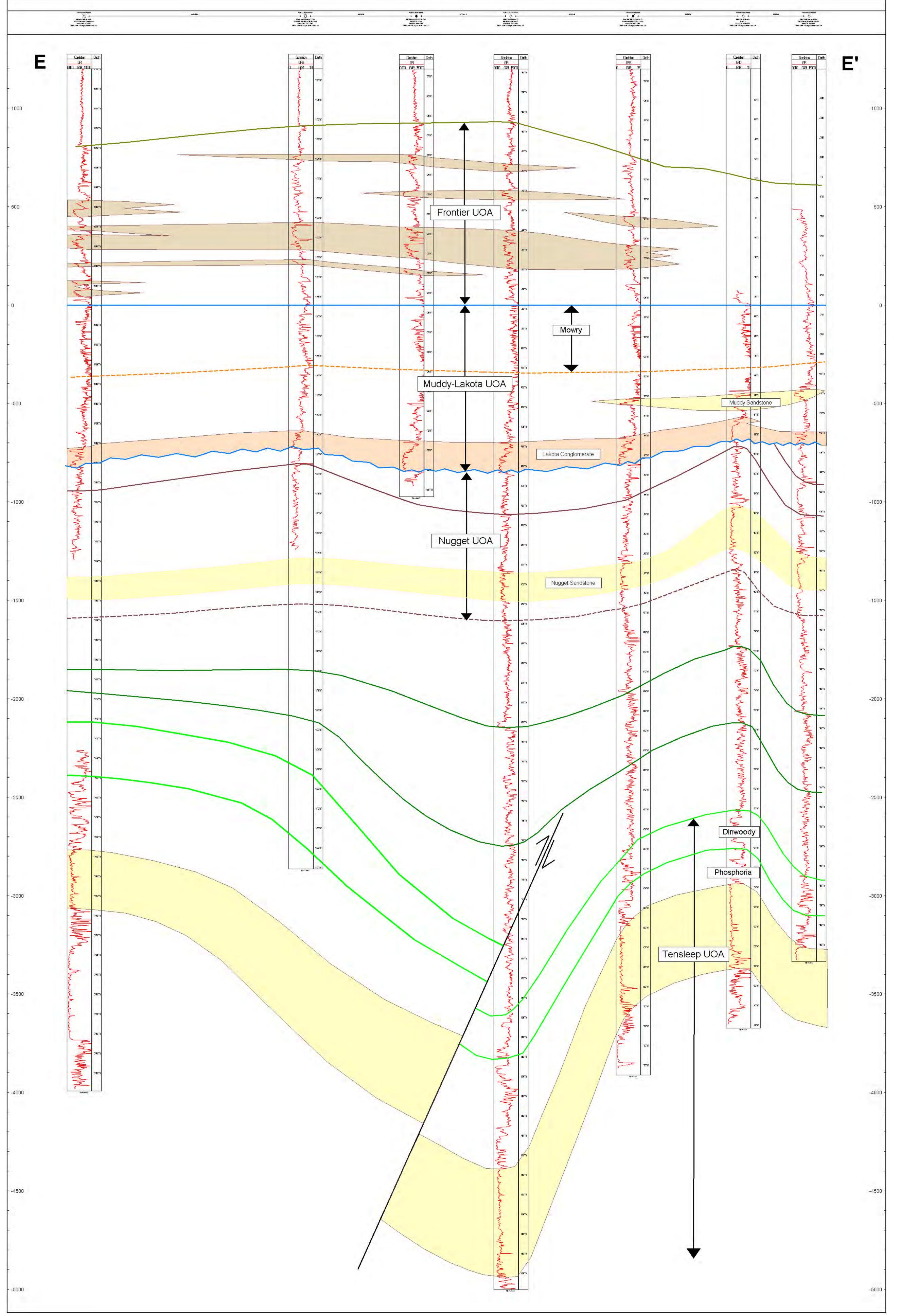


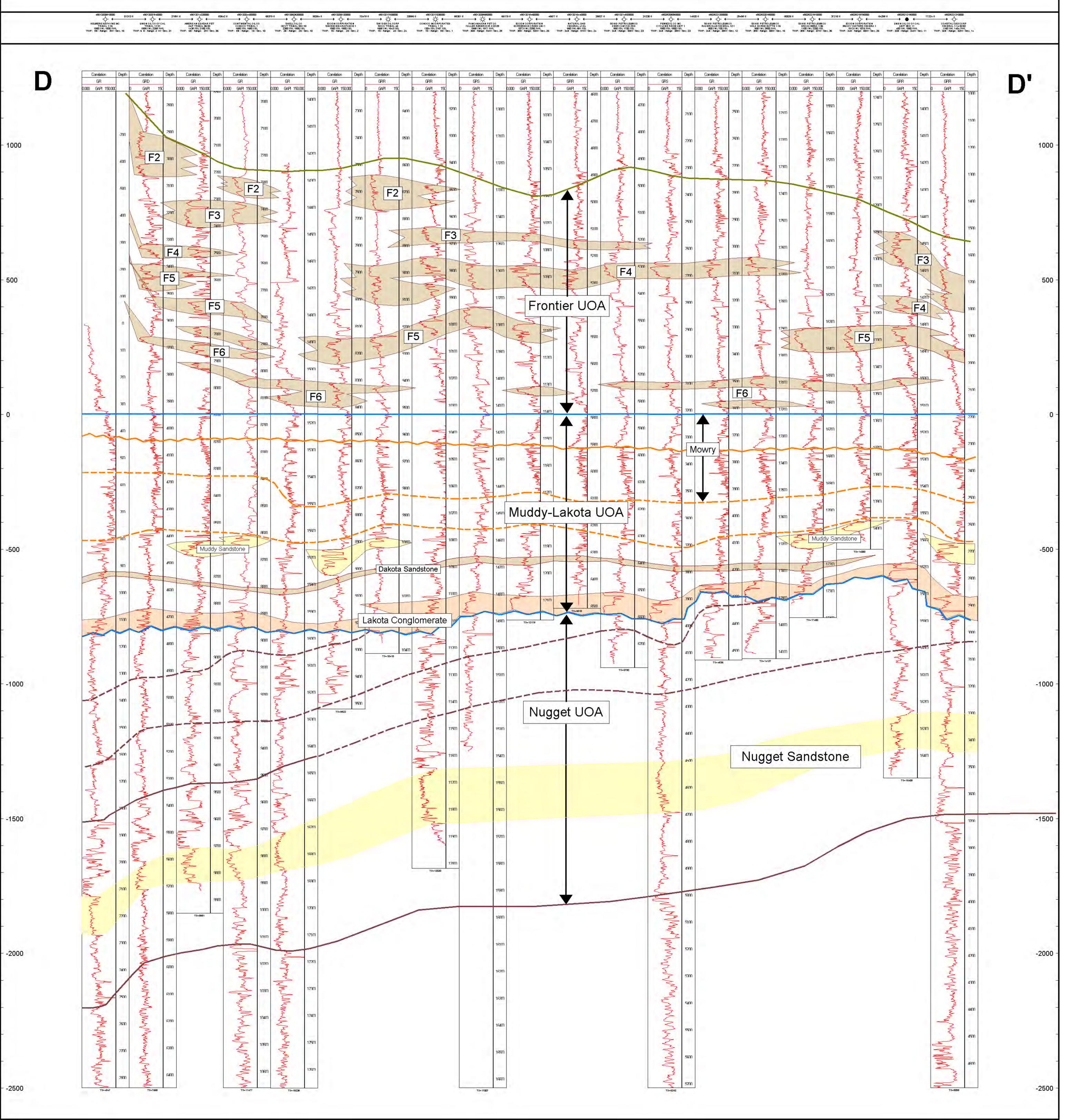

## Structural Complexity, Mesaverde Group, GGRB

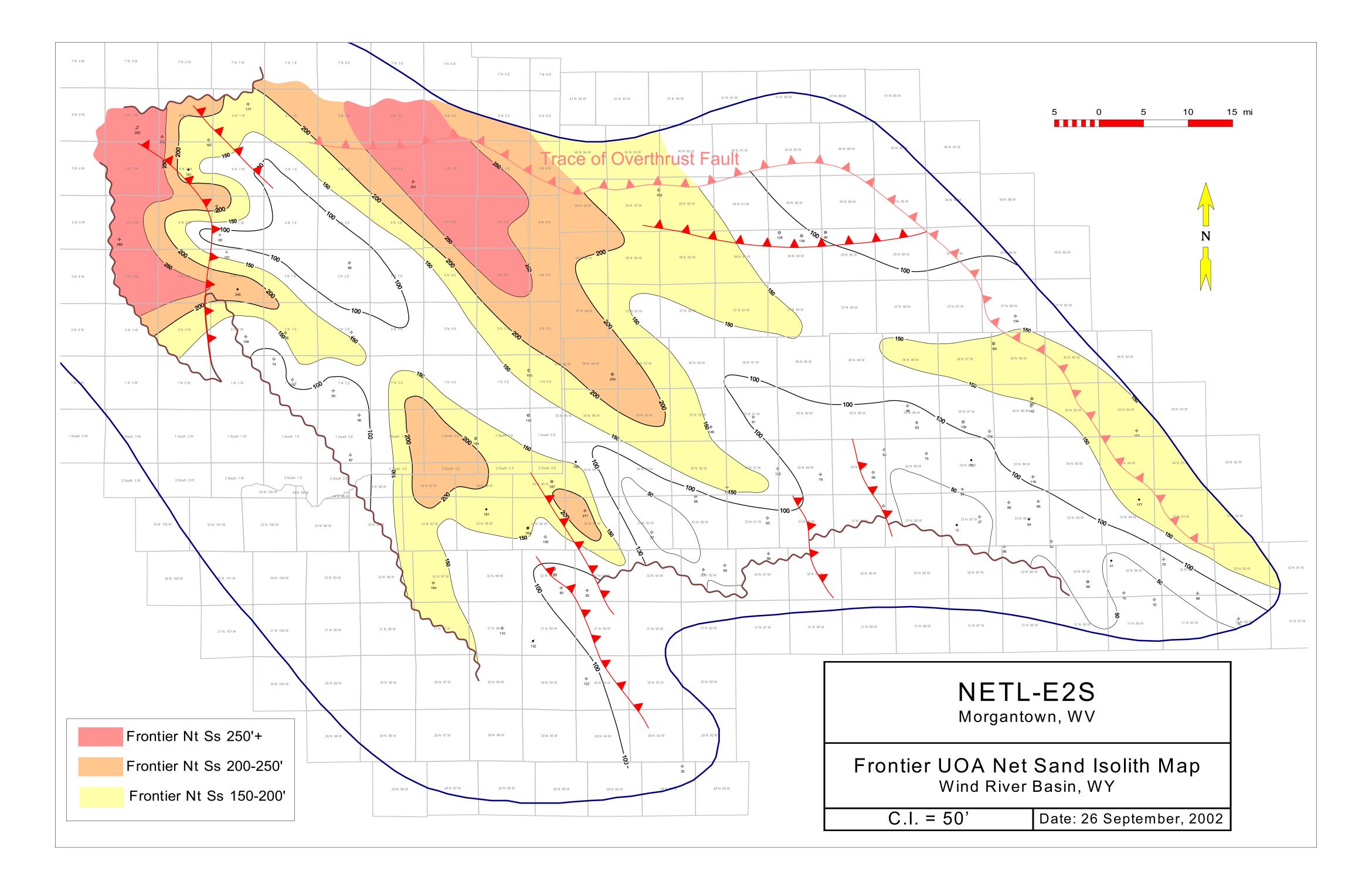


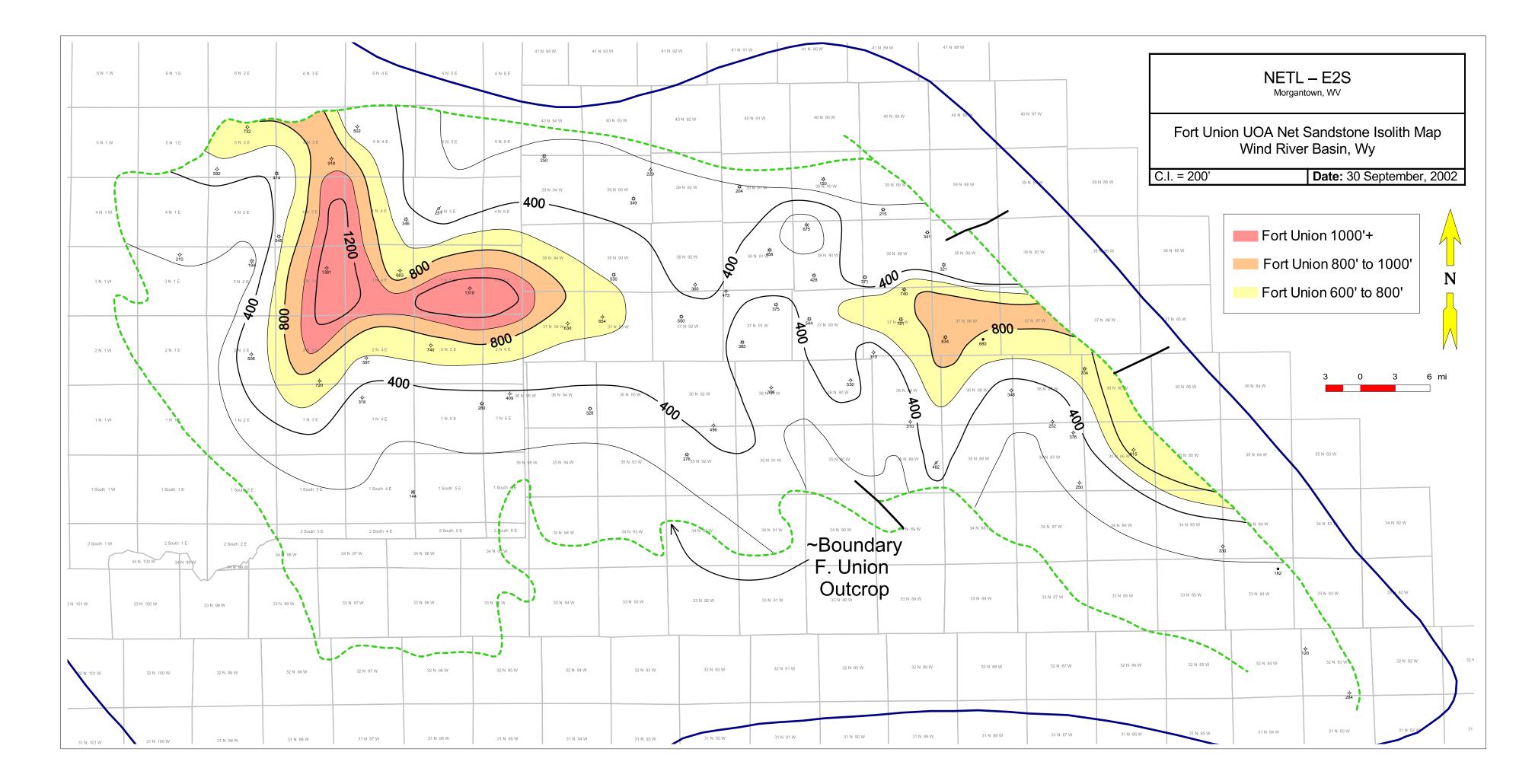


69-96
55-69
42-55
30-42
8-30

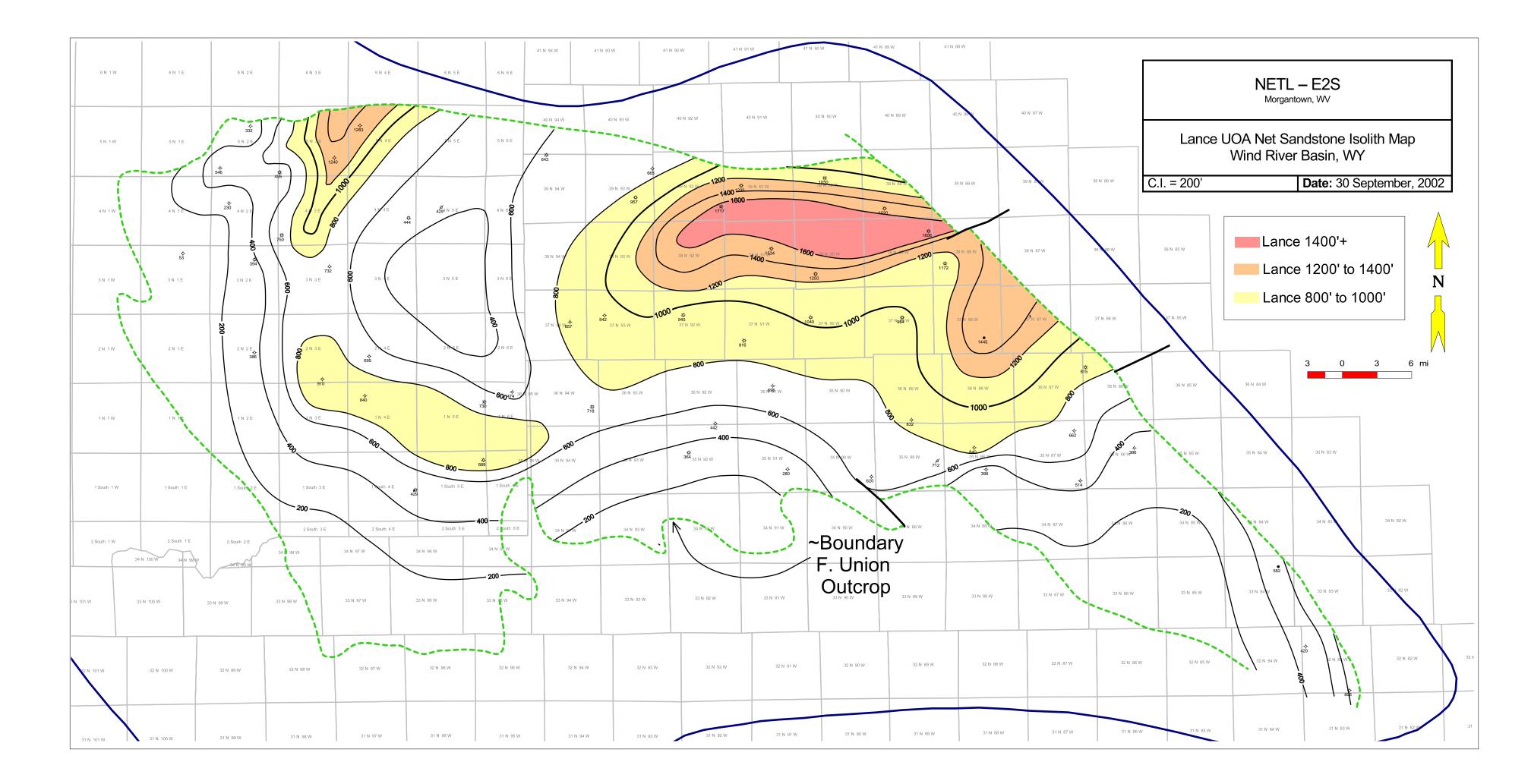

## Structural Complexity, Frontier Fm., GGRB

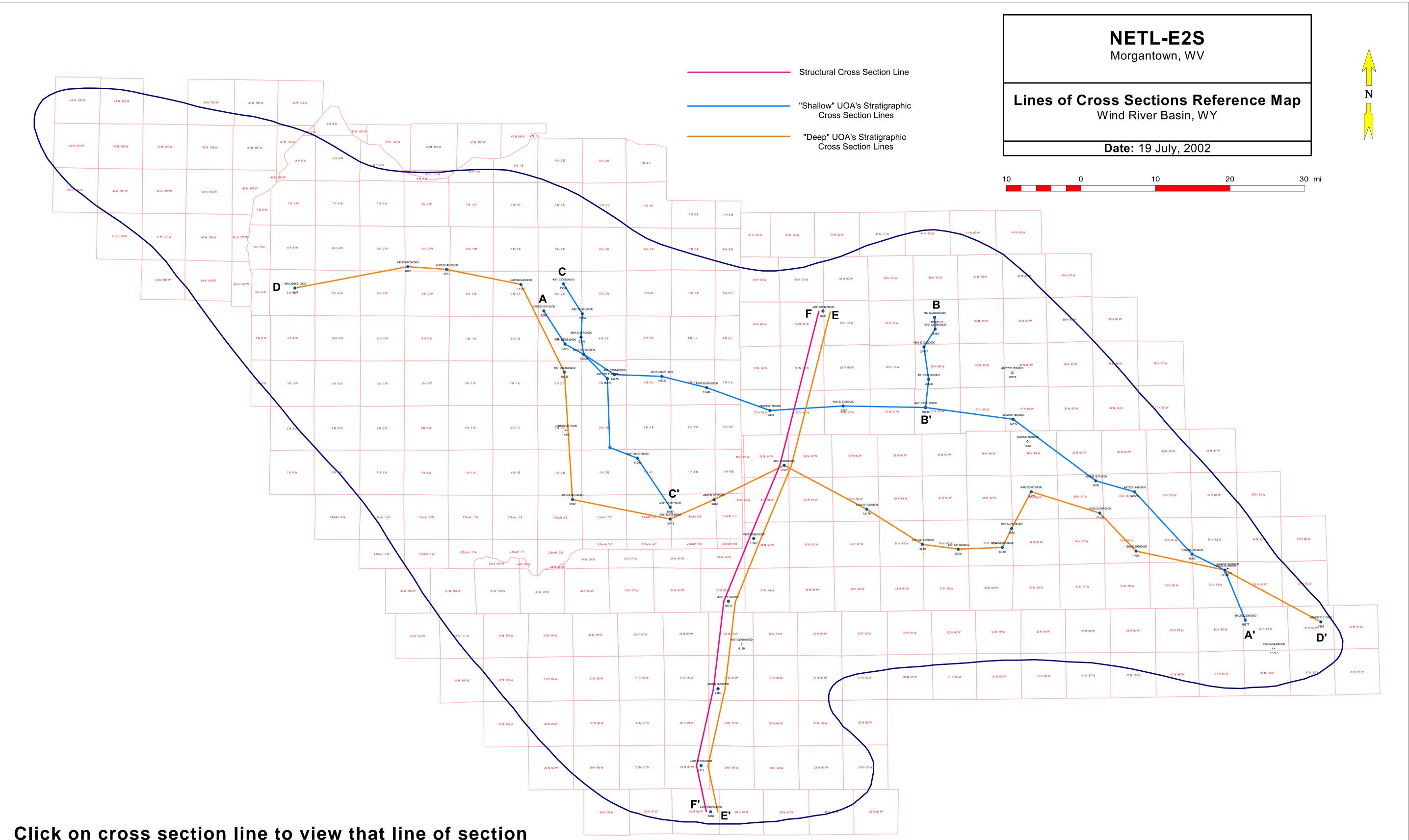




## Structural Complexity, Lewis Shale, GGRB

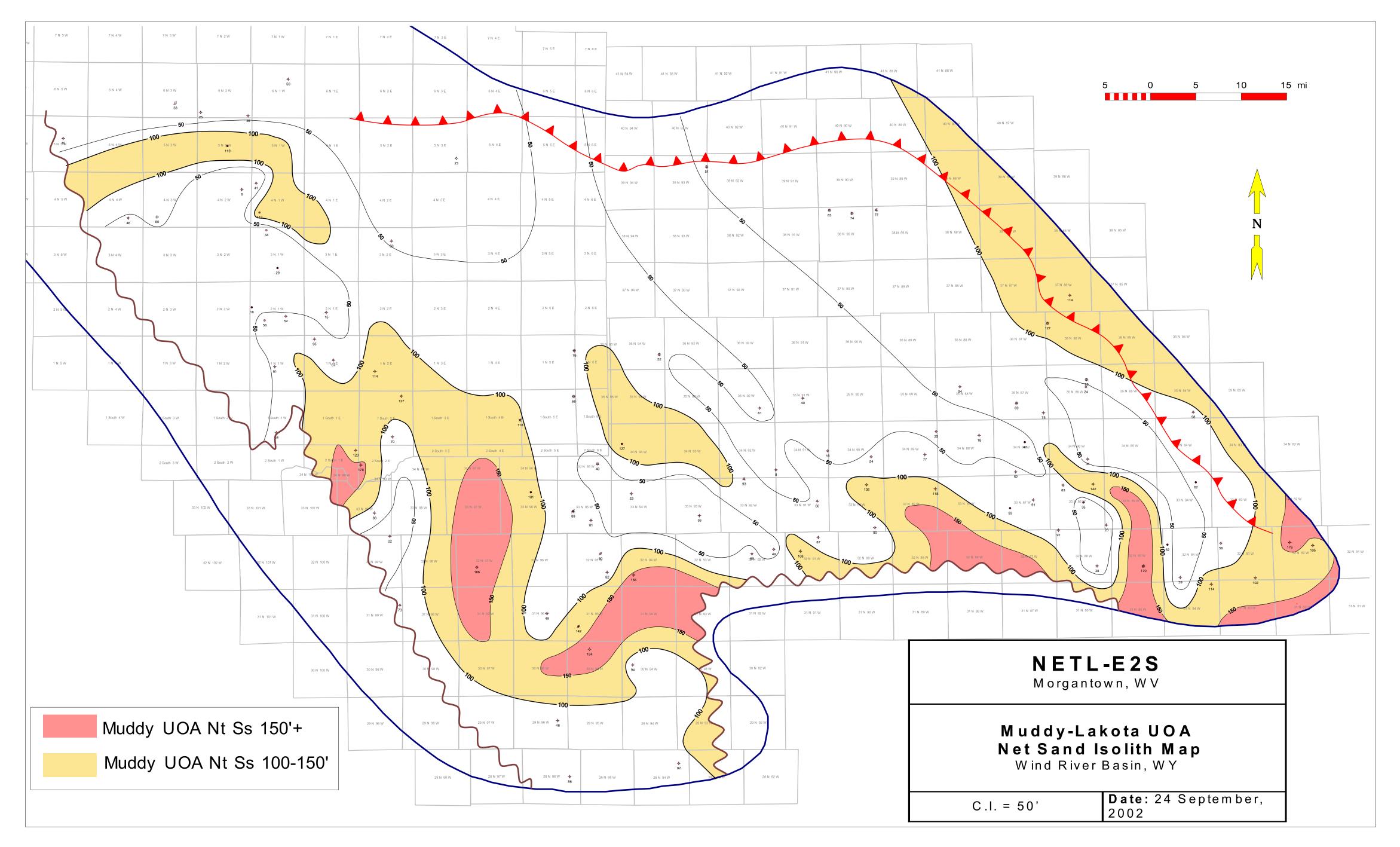


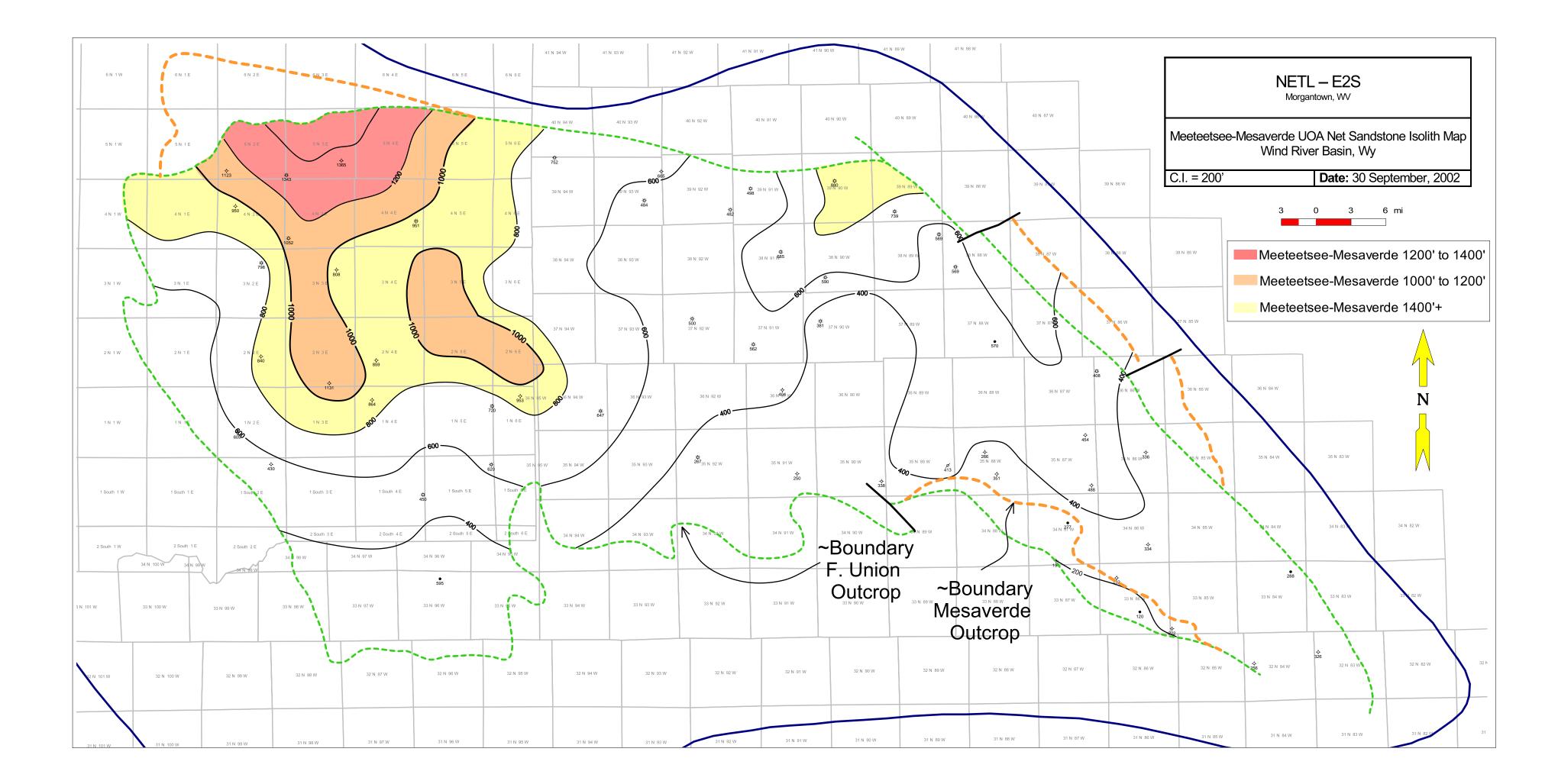



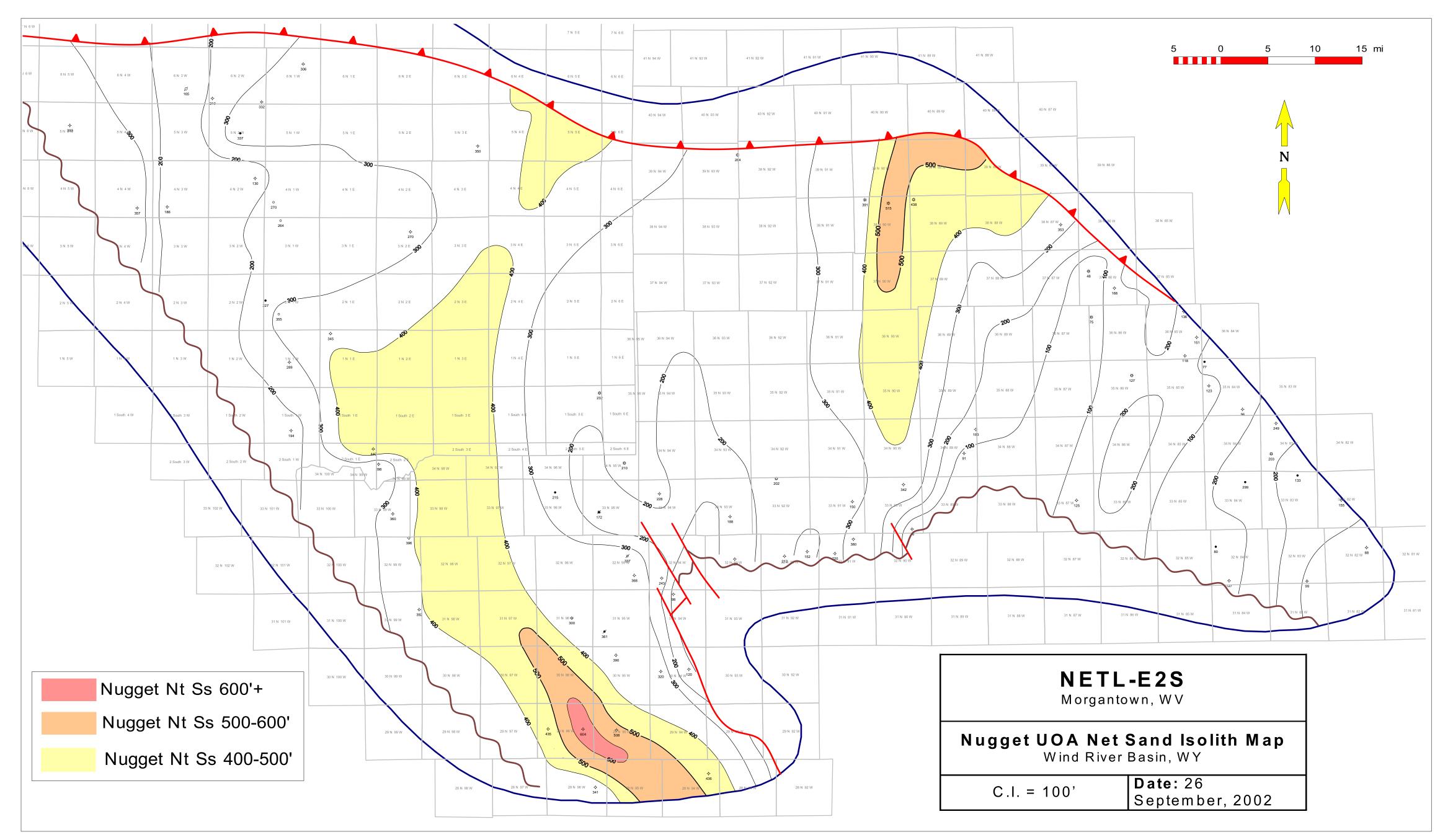



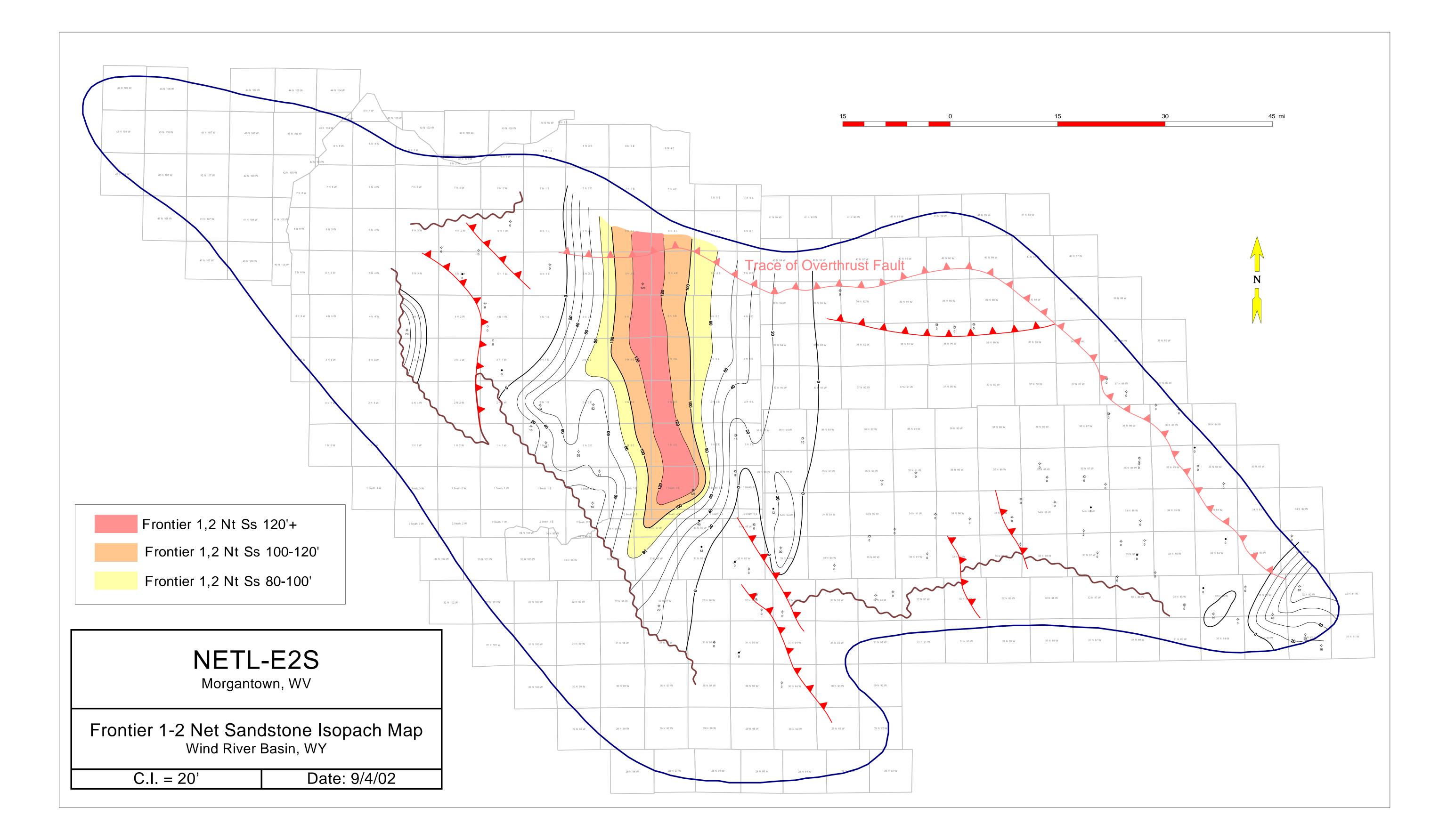



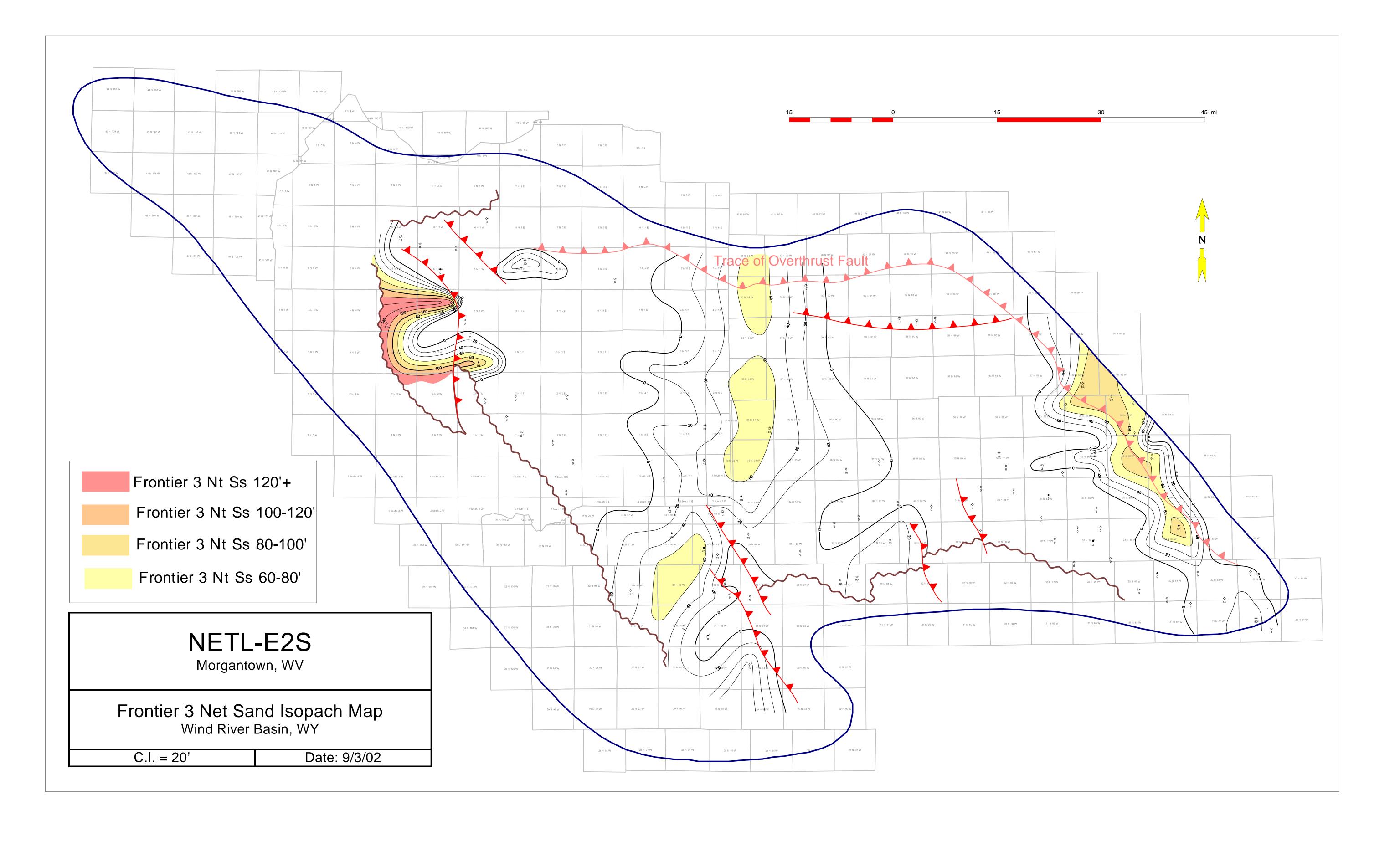


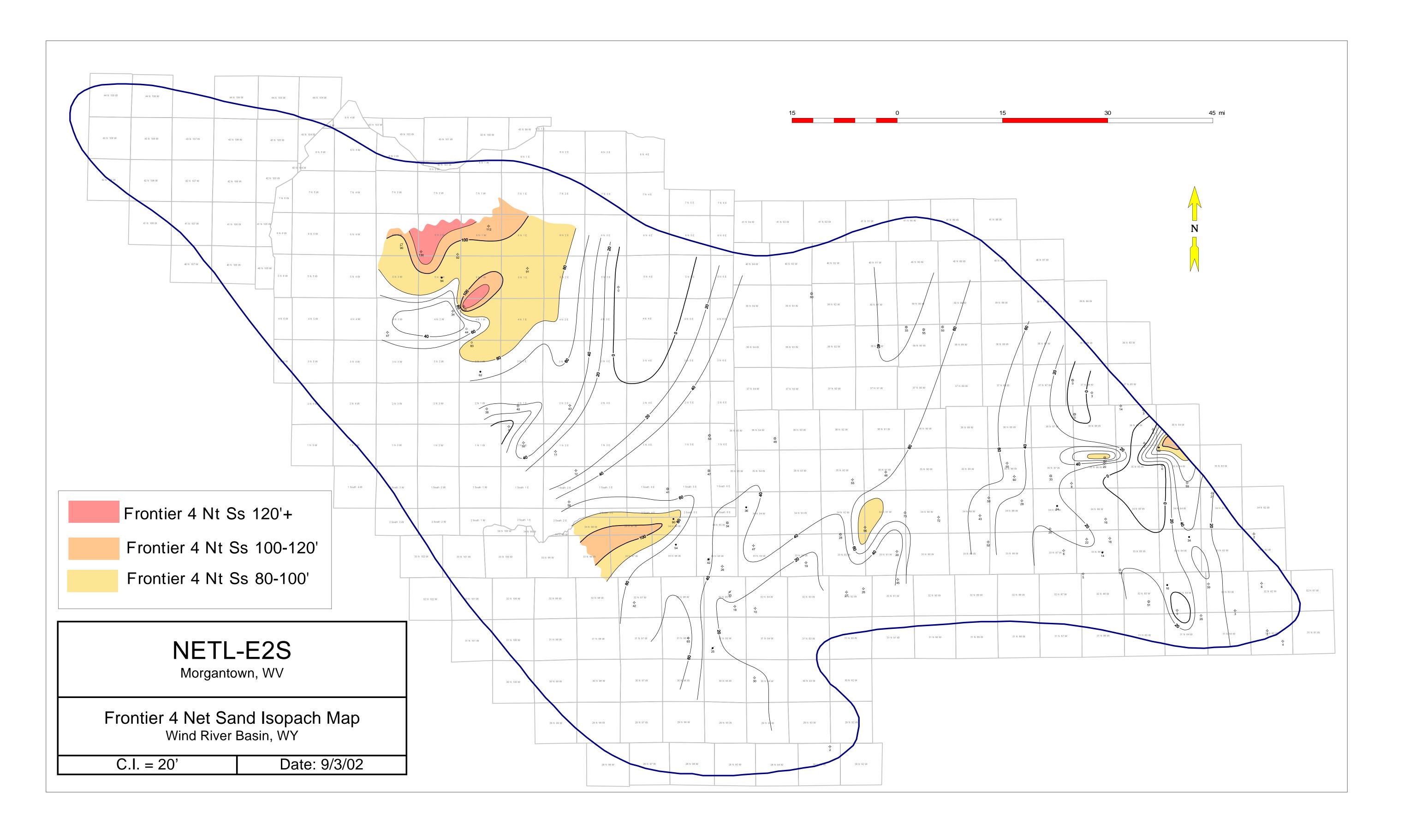



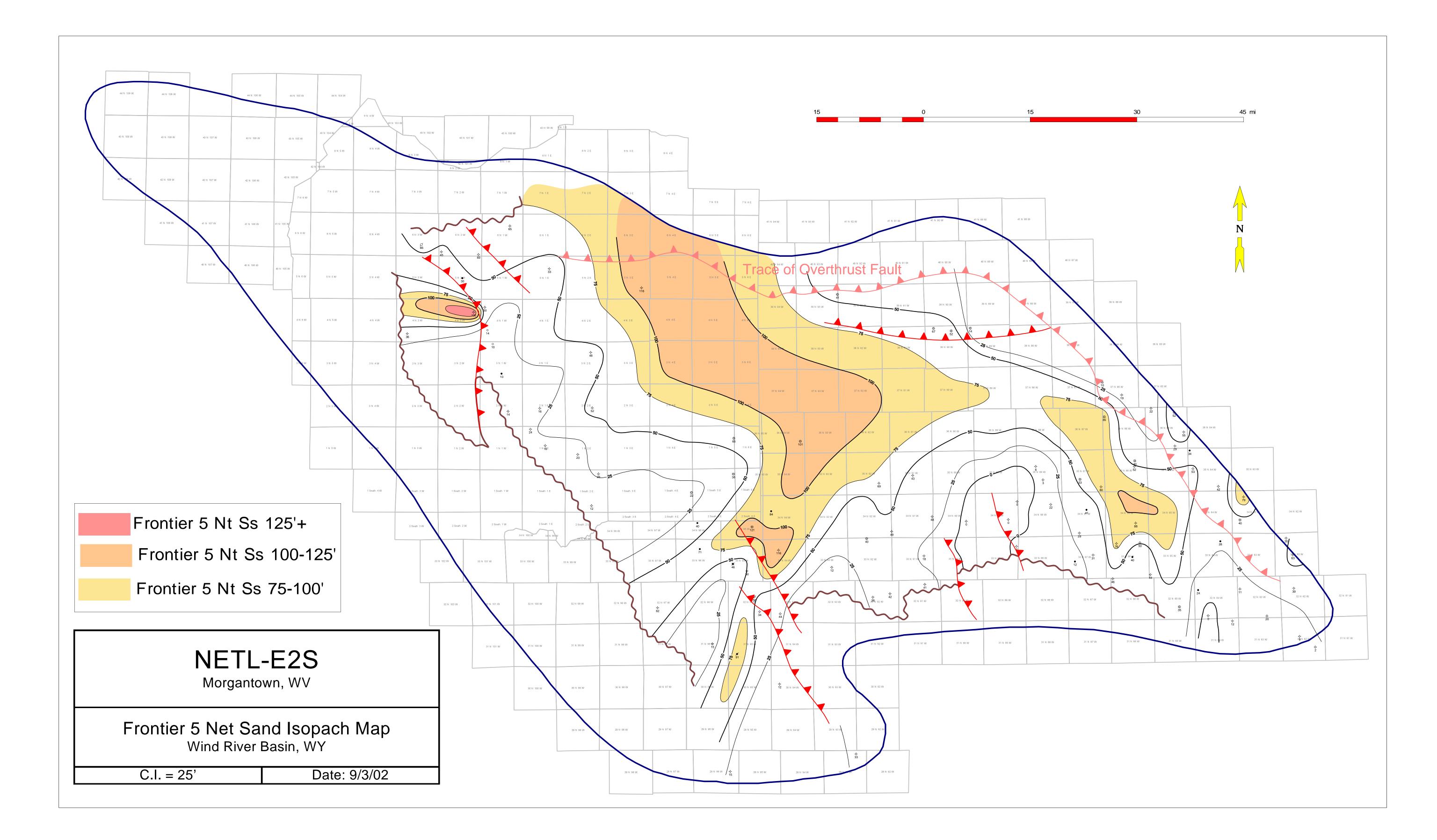



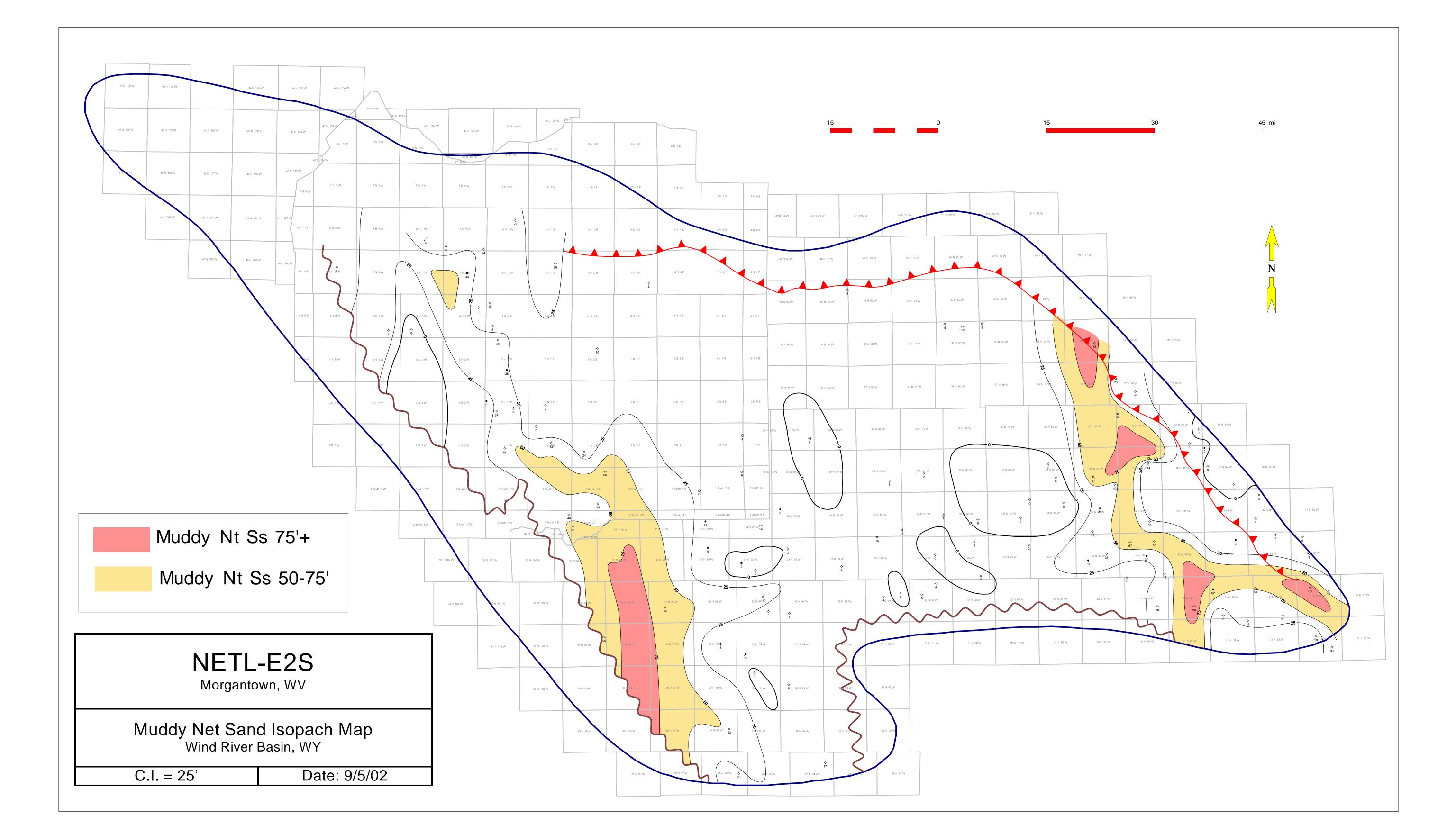



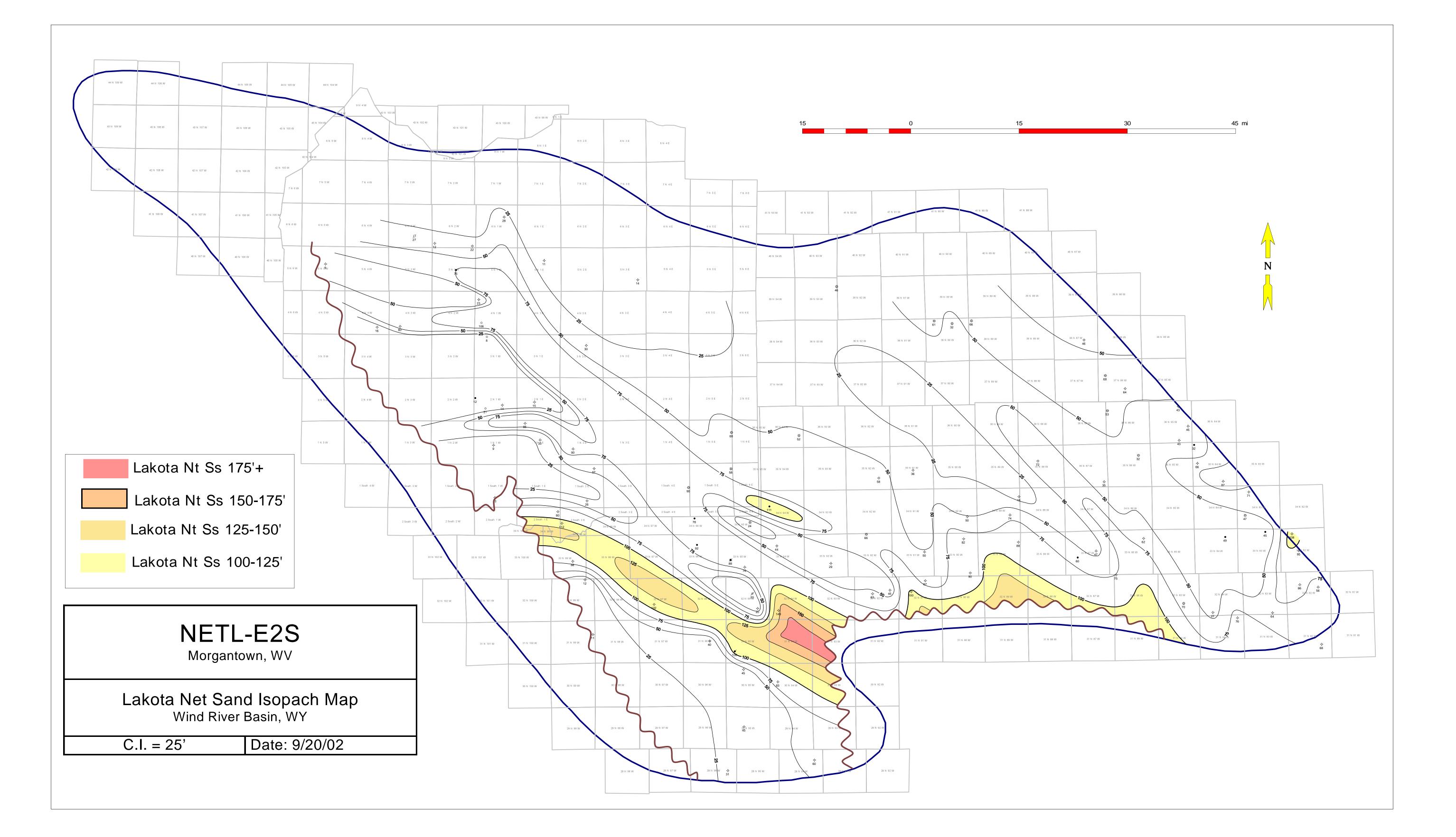



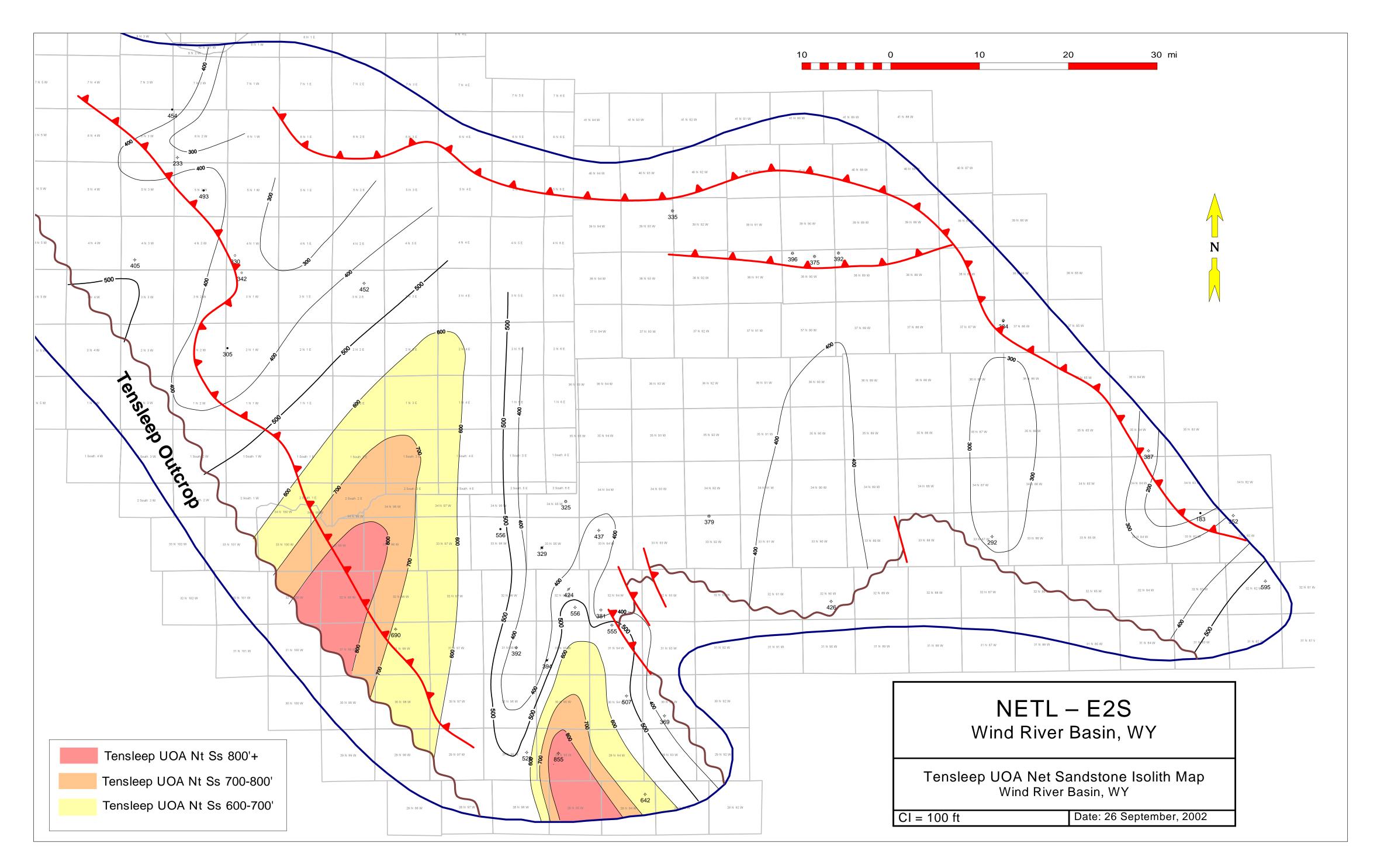


Click on cross section line to view that line of section

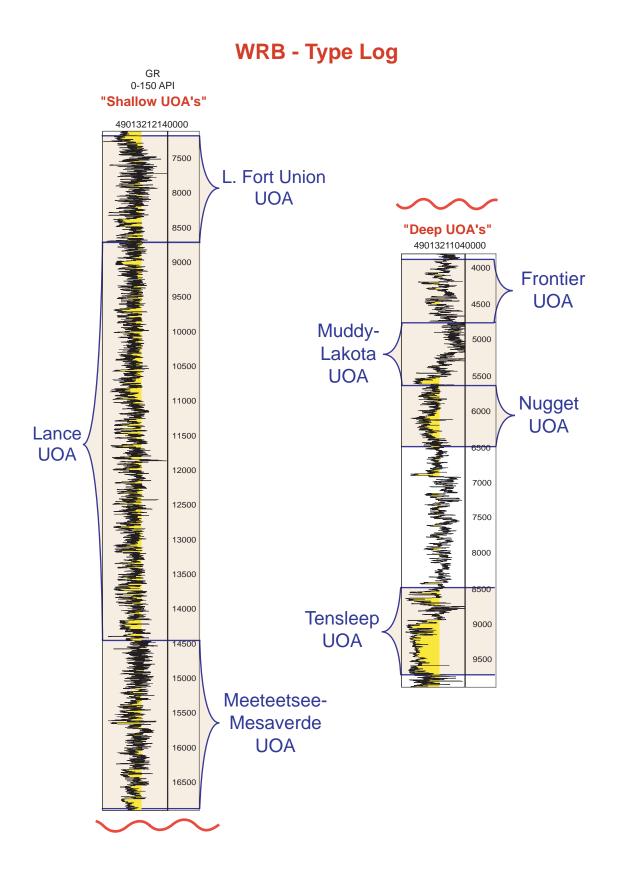


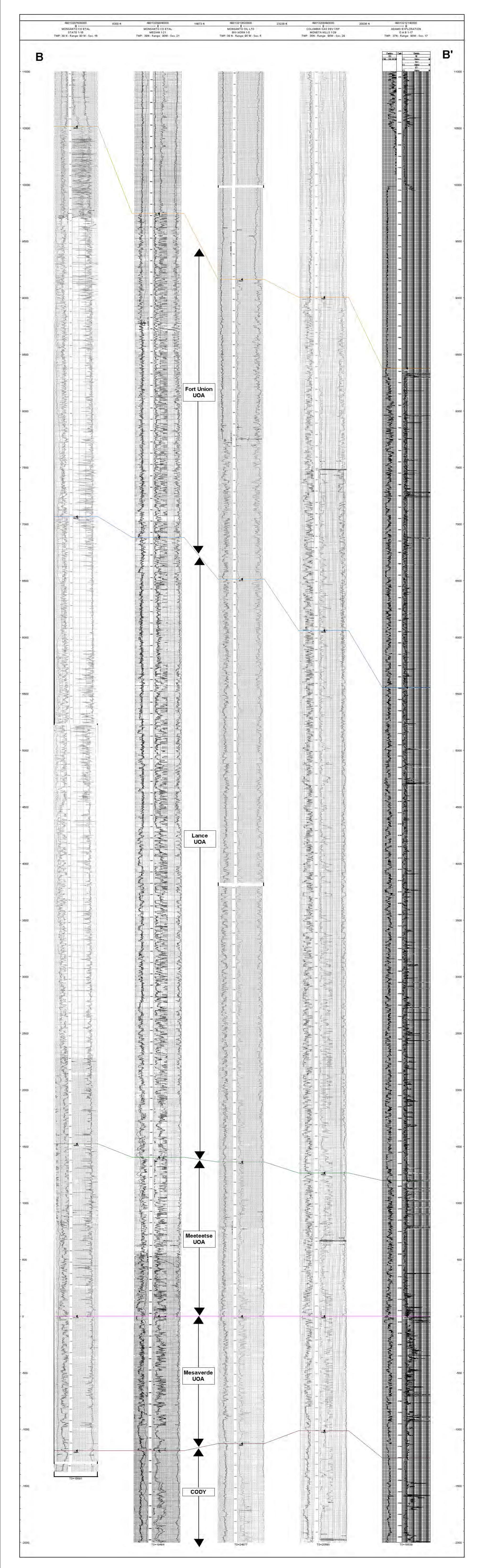



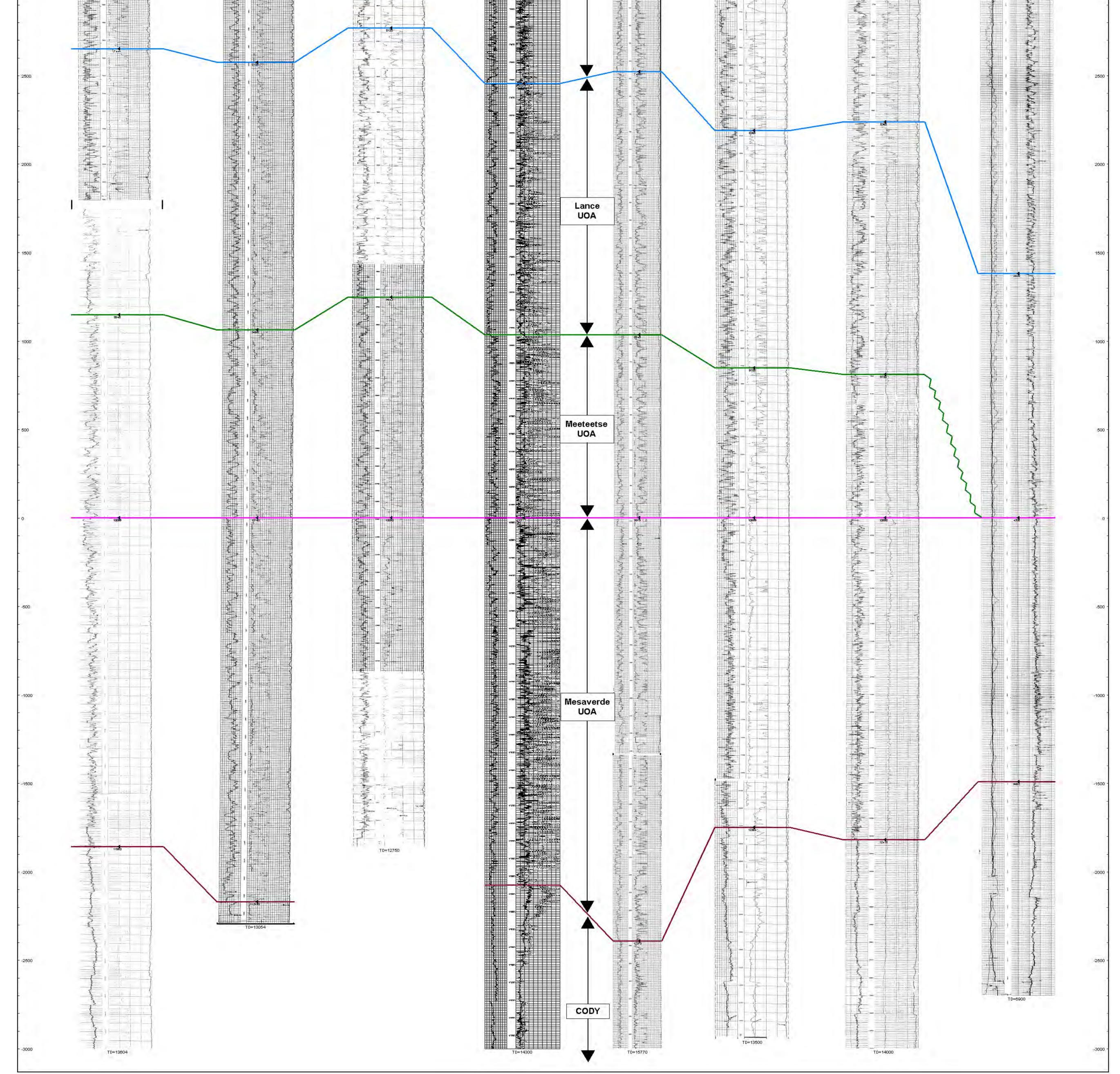



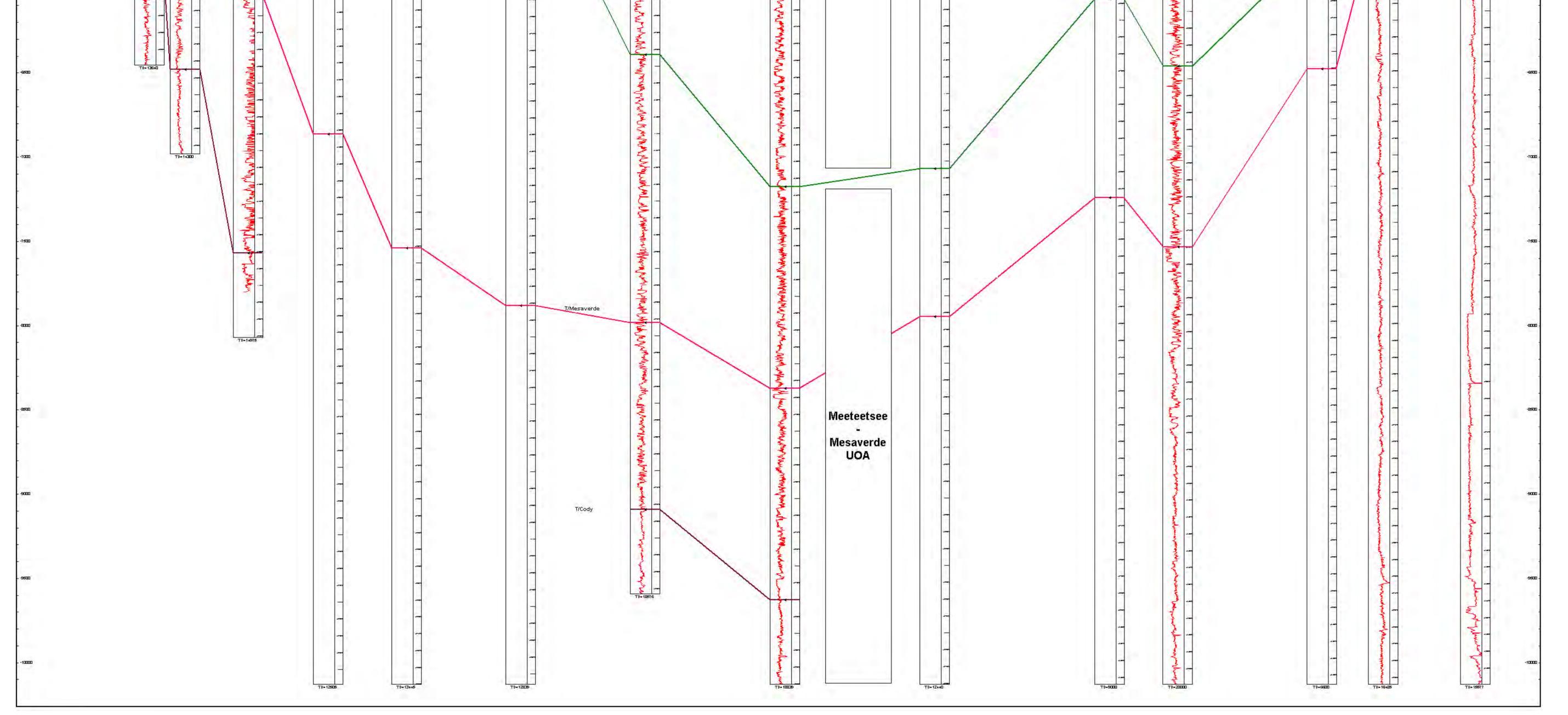



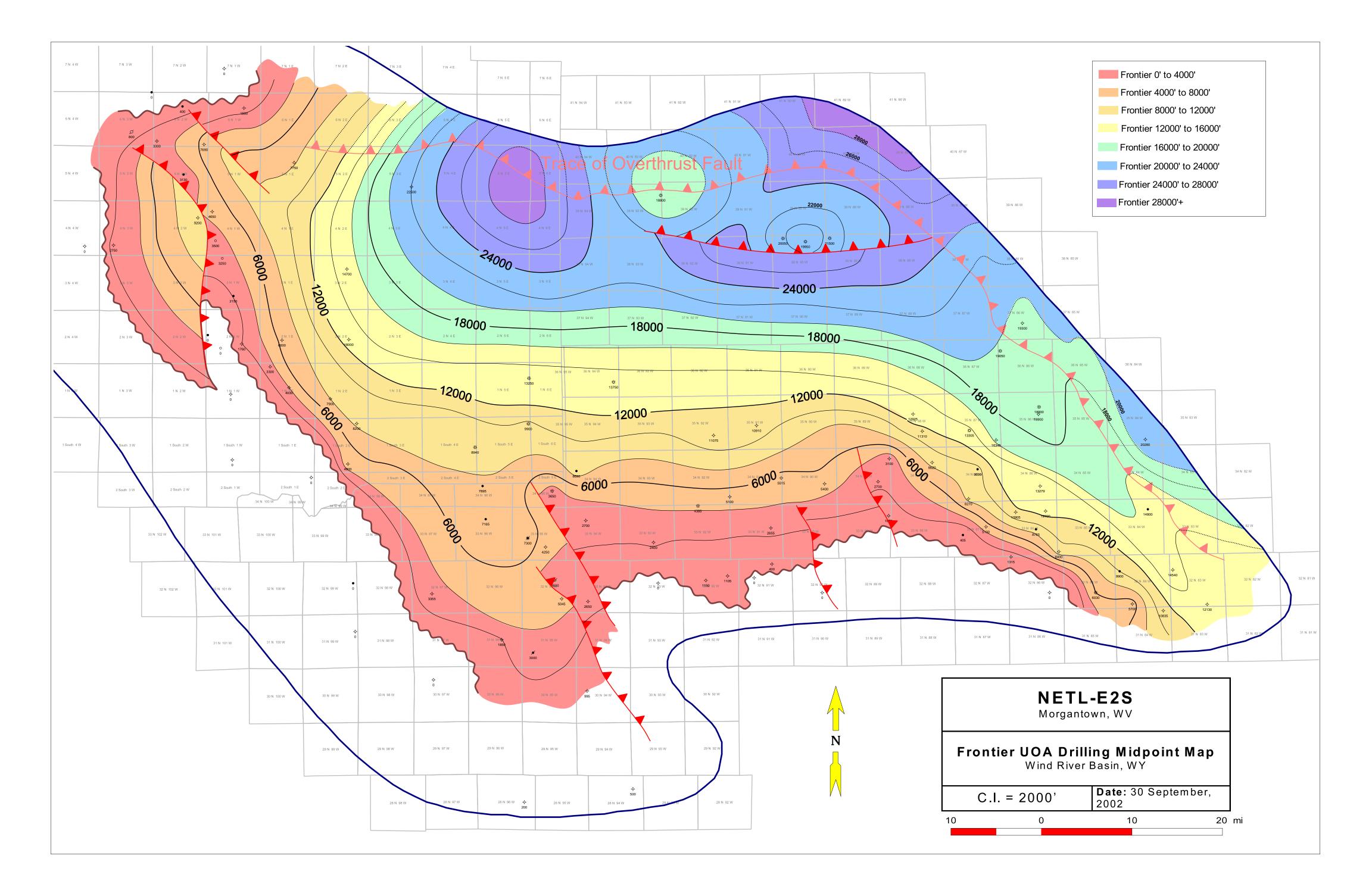


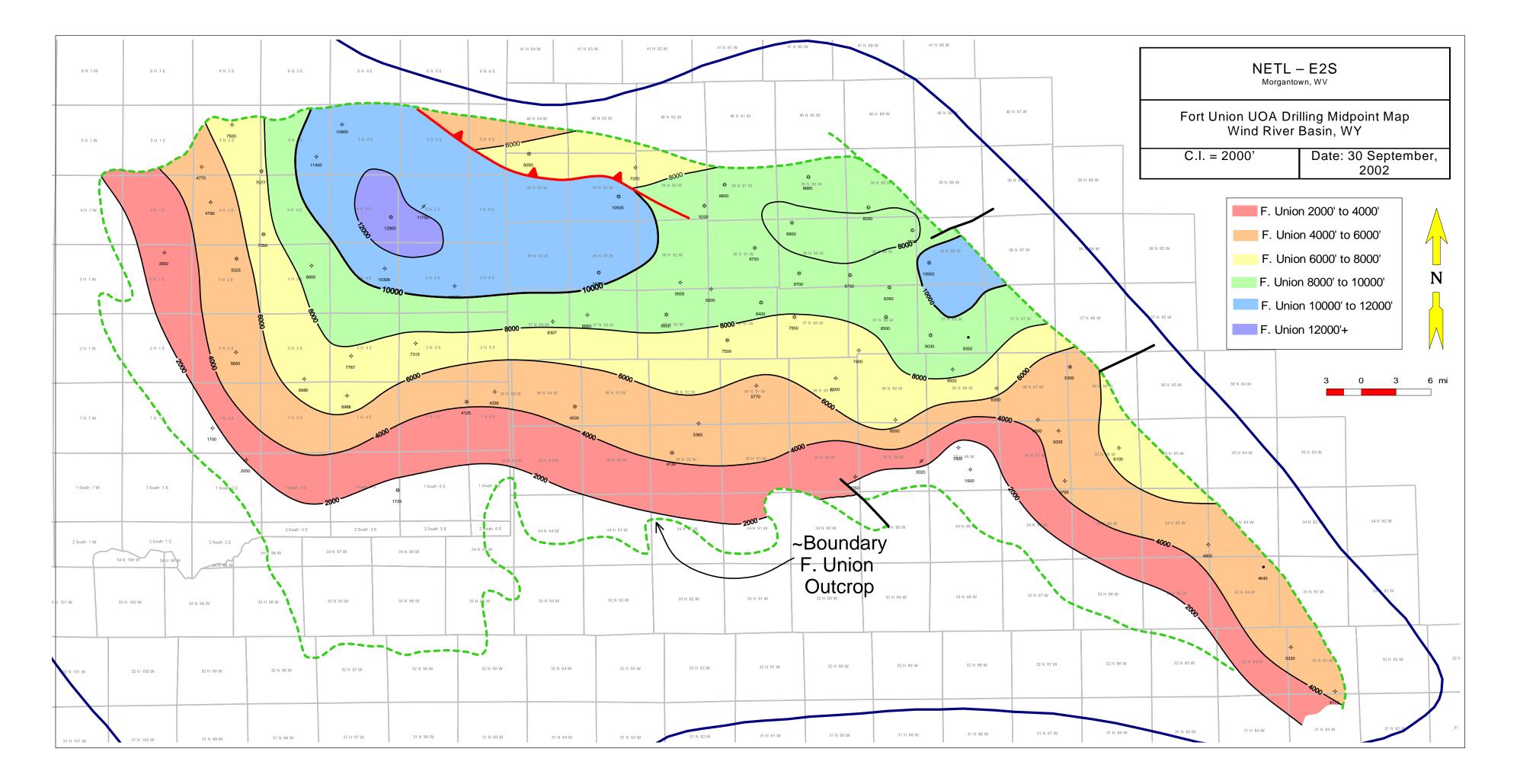



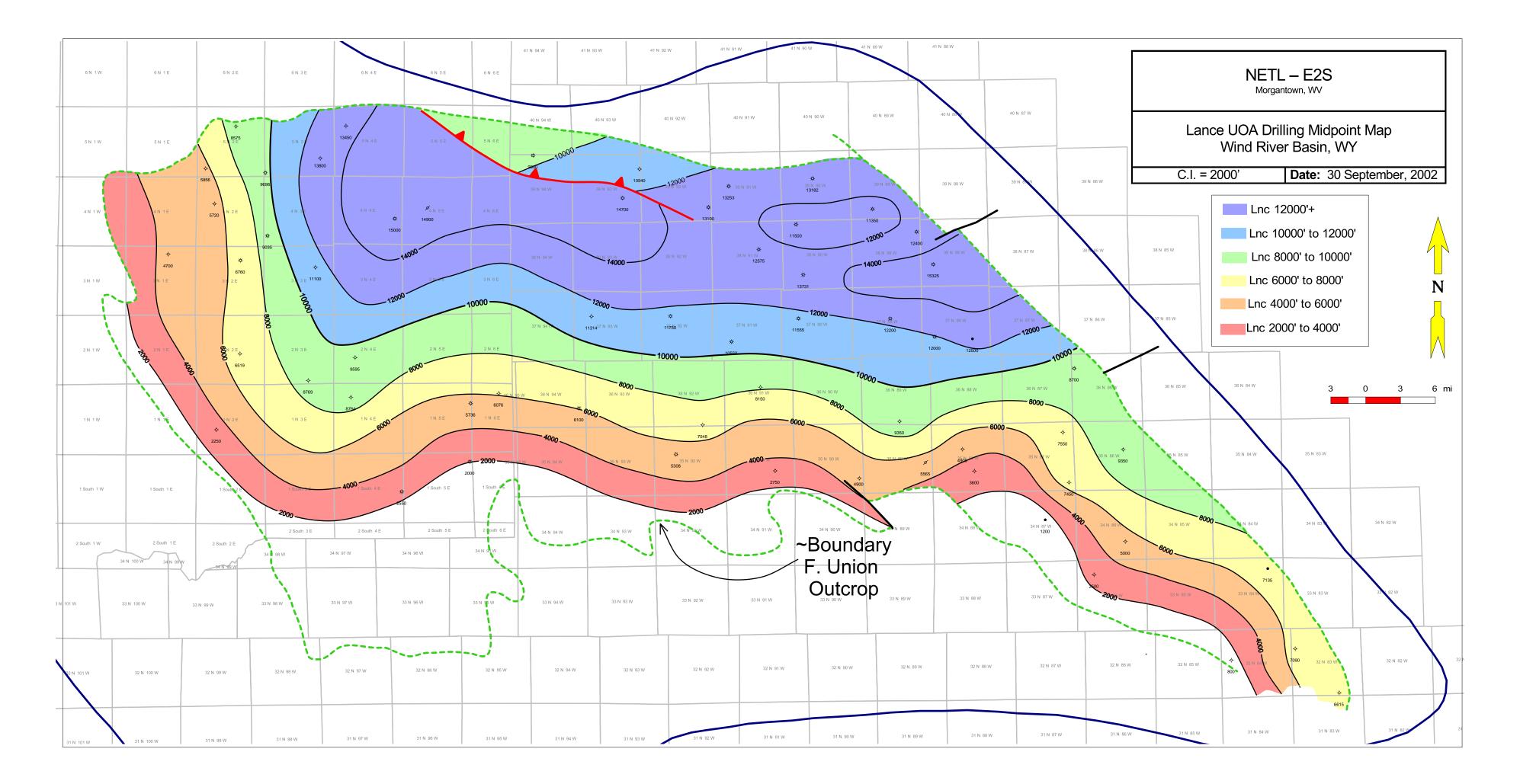


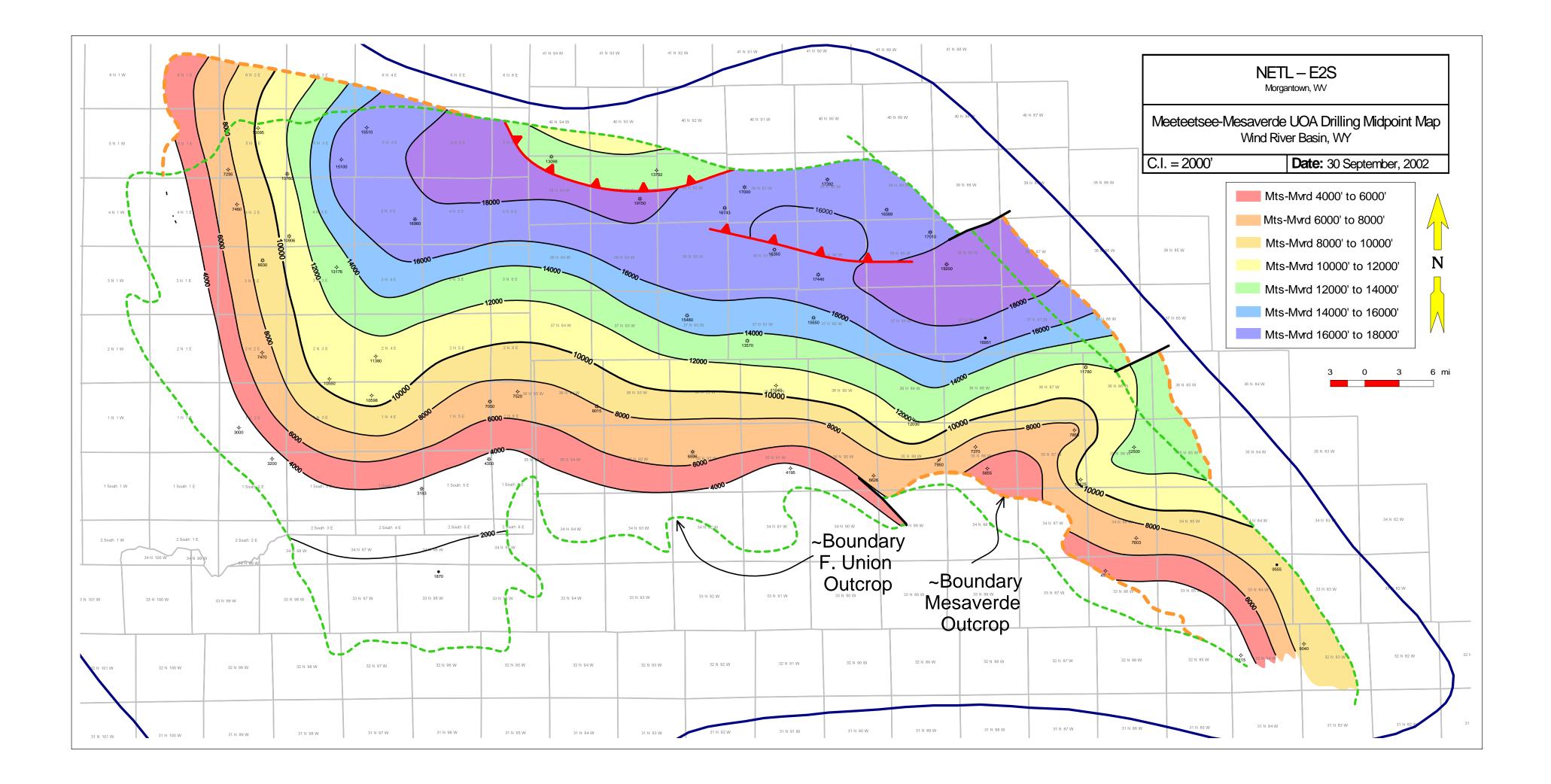


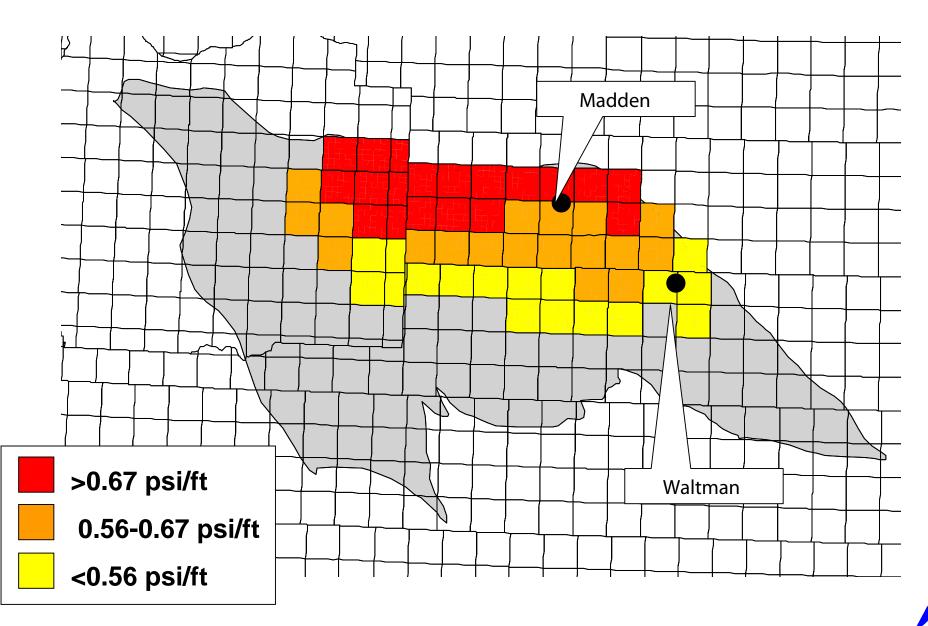


	49013209550000 	25025 ft	49013206320000 ダー BROWN TOM INC TRIBAL-PHILLIPS 36-43 TWP: 5N - Range: 2E - Sec. 36	16614 ft 49013212740000 ☆ GETTY OIL COMPANY GOVT HORNBECK A 13- TWP: 4N - Range: 2E - Se	16	49013218340000 ☆ BROWN TOM INC TRIBAL NP 31-11X TWP: 4N - Range: 3E - Sec. 31	24086 ft 490132131200 \$\$ EXXON CORPOR/ OCEAN LAKE TRI TWP: 3N - Range: 3	TION IAL 1	49013209150000 	20922 ft	49013082780000	41788 <del>ft</del>	49013208170000 → ↔ AMERICAN NAT GAS CO NORTH RIVERTON DOME 1-12 TWP: 1 S - Range: 4 E - Sec. 12	
C						Consisten         Carto         Britikiu           CRE         M82           SATO         CORD           SATO         CORD           SATO         CORD           CORD         CORD <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>C'</th>								C'
			Anna Manda Martin		a martine and				A Marine Ma					
					and the second sec									
			WWWWWWWWWWWW		- The second second				A Contraction of the second se					
				A Martine Company					A Contraction of the second					
							Fort Union UOA		I A A A A A A A A A A A A A A A A A A A					
									A Market Market					
									A Martin Contraction					



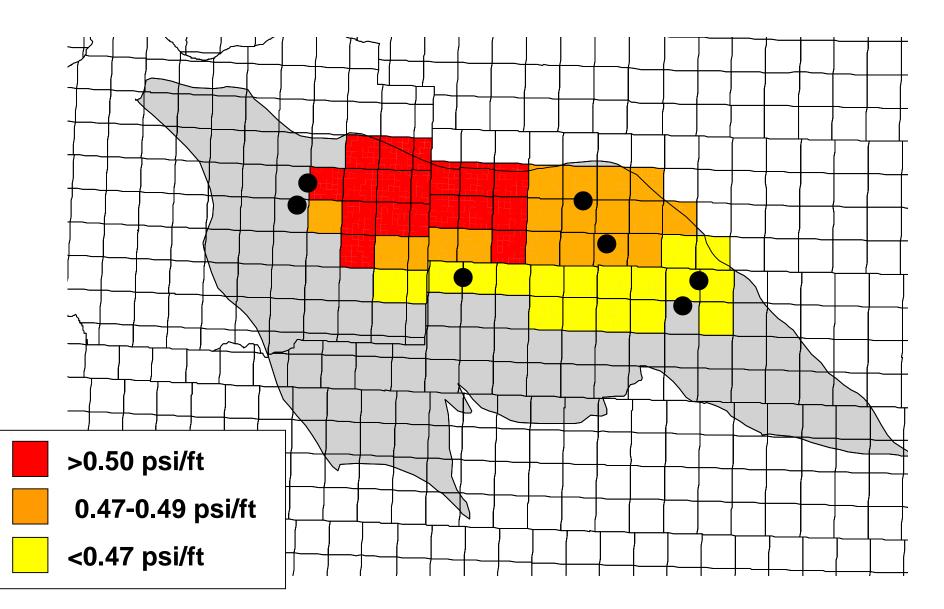


ANDOVER OIL CO BROWN TOM INC TRIBAL 72-1 TRIBAL NP 31-11X 3	11 45013207420000 3346611 45013207010000 DAURSON OLLCOMPANY MPEL ENERGY CORP SNOSHONE-ARAPANOE 24-11 TRIBAL 1-14 650 FSL 1965 FWL 1320 FEL WP: 3 N - Range: 3 E - Sec. 11 TWP: 3 N - Range: 4 E - Sec	OULFOIL CORP	11 45013061700000 512511 MOBILOILCORP UNIT F23-1+6 1256 F3L 1920 FEL TWP(37 N - Parge: 9+W)-Sec. 1+	49013213290000 58357 11 EN ERGETICS INC BUCY STATE 21-16 GOD FML 1950 FWL TWP: 37 N - Range: 52 WJ - Sec. 16	45013212140000 ADAUSE EXPLORATION O A B 1-17 2171 FML 1563 FWU TWP: 37 N - Range: 50 W - Sec. 17	52529 11 45025211(500000 MO HSANTÓ CO ETAL KNOLL-FEDERAL 1-29 1550 FAL 650 FWL TWP: 37 N - Range: 33 W - Sec. 29	♦ NORTHWEST EXPL ASPIRIN CREEK	LCO UNDNOILCOOFCAL	55662 11 45025054500000 25513 11 PAN AMERICAN PETROLE UIS SAMELTING & REF 1 653 FSL 653 FEL TWP: 34 N - Range: 25 W - Sec. 251WP:	UNDROUCOOFCAL SOND PET	ROLEUMCO
			TVFort Uni						All a b b b b b b b b b b b b b b b b b b		
WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW		And the second sec	Mr. W. Maury M. Marsher W. Marsher Marsher Manuf M. Manuf M.		Manual	Fort Union UOA		Mar	Munument Version Manual V Nature Version Manual Ver		
Internet and the second second		A CANANA AND	Mary Mary			All Manual and All All All All All All All All All Al	MM-Annument-Alline				


T/Lance			
T/Meeteetse	Lance UOA	Munuhan I I I I I I I I I I I I I I I I I I I	

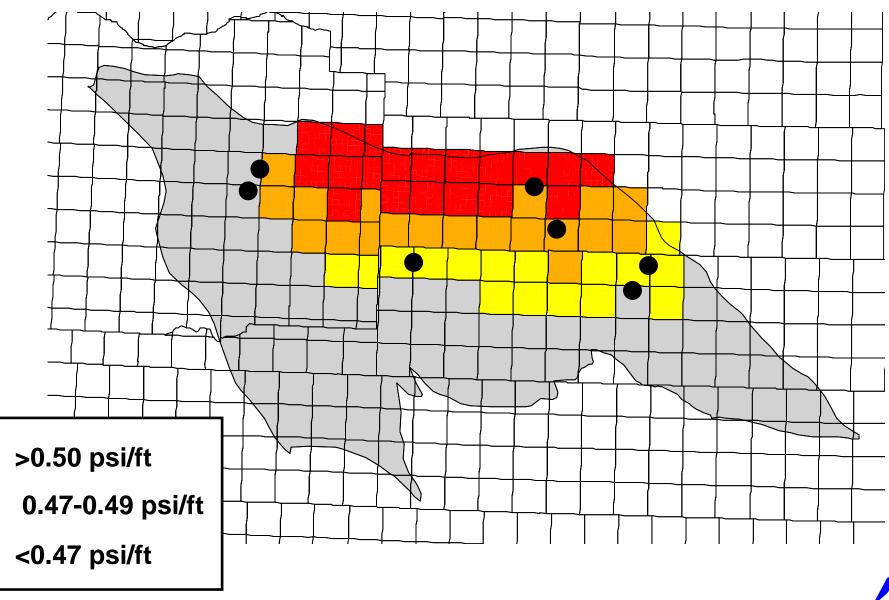




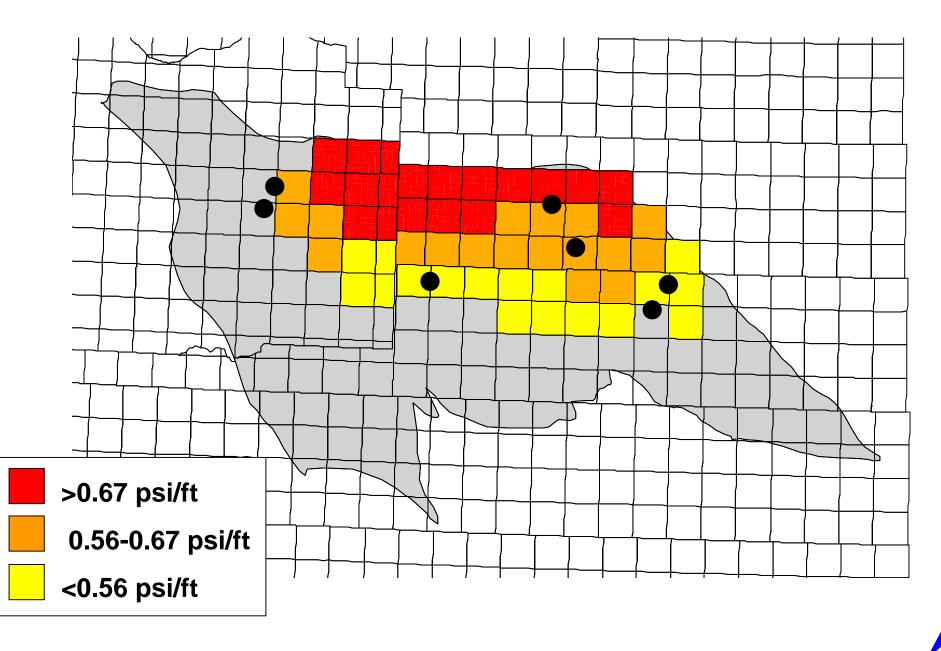


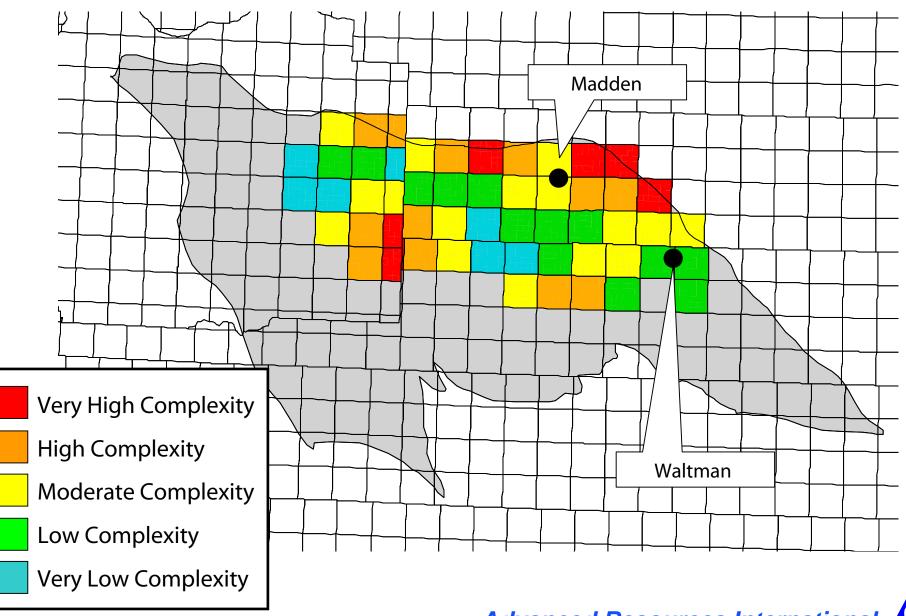




## WRB Frontier Formation – Pressure Gradient Map

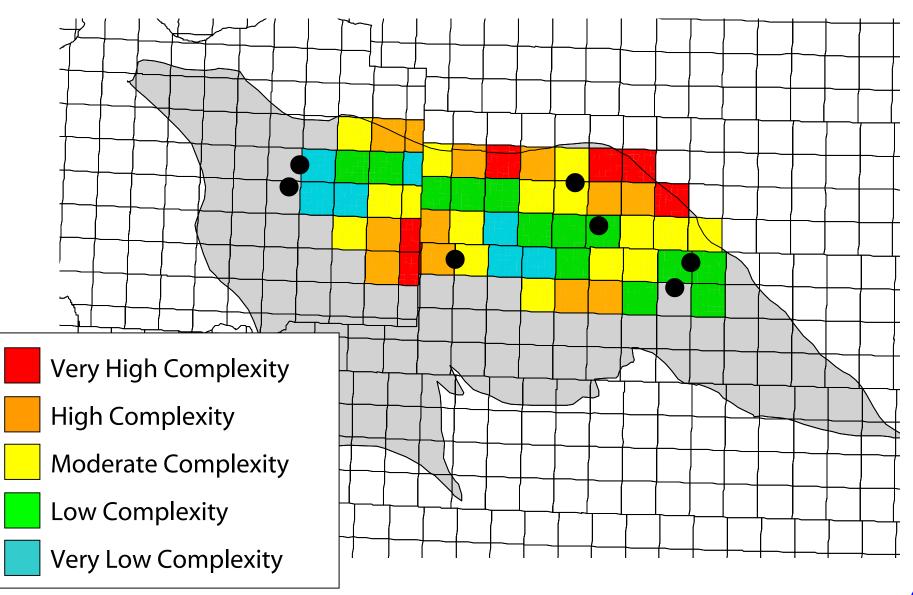



## WRB Fort Union Formation – Pressure Gradient

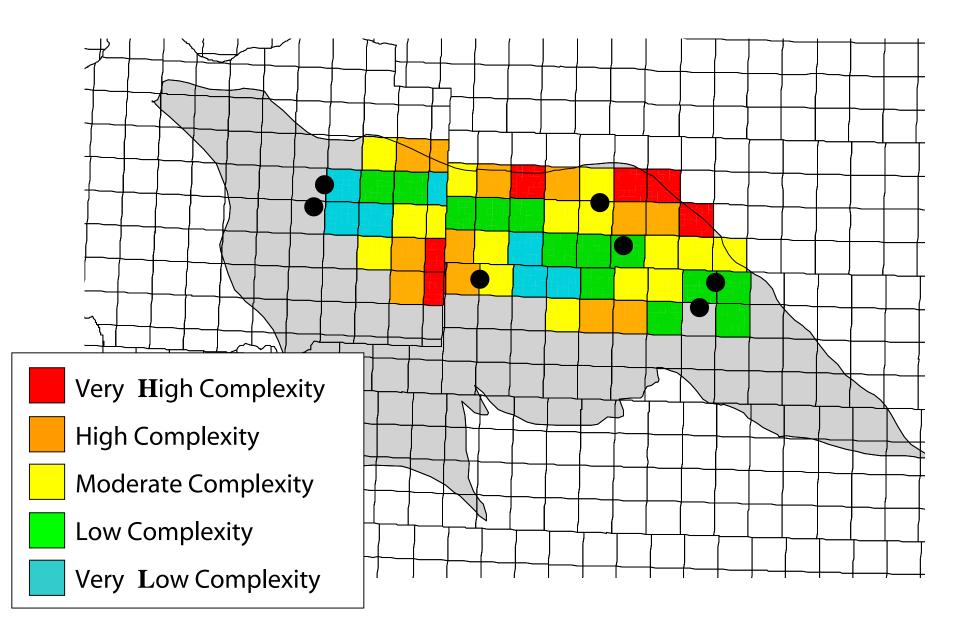



## WRB Lance Formation – Pressure Gradient

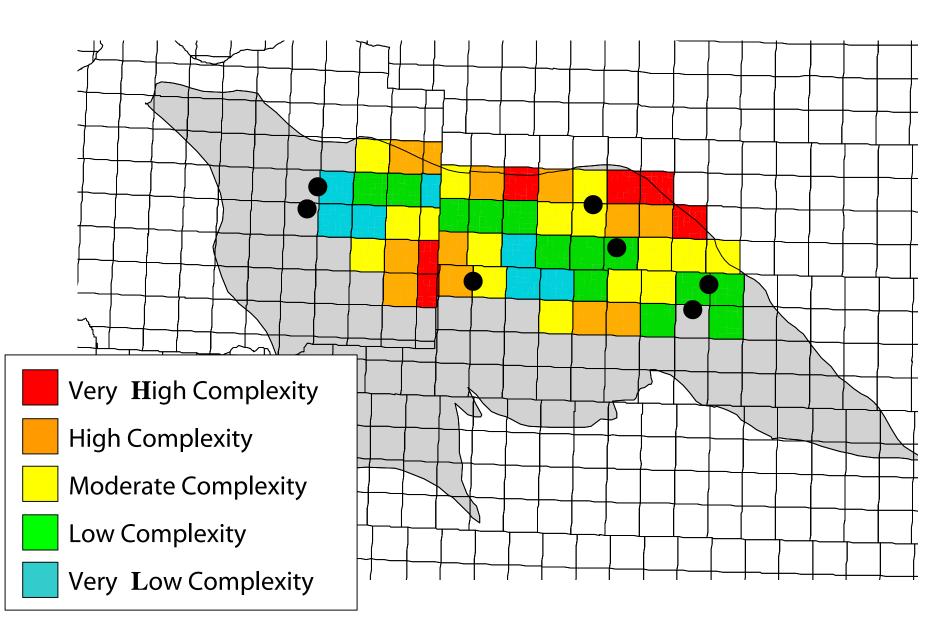



## WRB Mesaverde Formation – Pressure Gradient Map



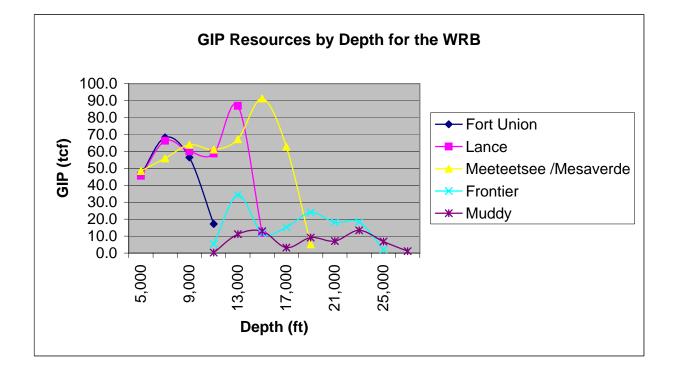

# WRB Frontier Formation – Structural Complexity Map




# WRB Fort Union Formation – Structural Complexity



## WRB Lance Formation – Structural Complexity Map




# WRB Mesaverde Formation -Structural Complexity Map



		Fort Union	Lance	Meeteetsee /Mesaverde	Frontier	Muddy	
	Acreage	1,094,400	1,267,200	1,480,320	1,612,800	1,866,240	1
	Potential Pay (ft)	408	560	524	135	53	
ŝ	Porosity (%)	10	9	8	6	6	
age	Sw (%)	56	50	42	41	35	
UOA Averages	Drilling Depth (ft)	8,240	10,003	12,021	18,931	20,058	
Ă	Pressure (psi)	3,663	4,736	7,410	12,219	13,585	7
<b>∀</b> O	Temperature (oF)	175	200	228	325	340	7
<b>_</b>	Assigned Rw	0.445	0.217	0.16	0.48	0.5	7
	GIP (Tcf)	190.0	329.3	455.7	129.1	64.9	7
	GIP > 15,000' (Tcf)	0	11.8	159.2	89.3	53.8	7
	No. wells used	75	63	60	136	123	
	No. full log suites	67	56	58	106	87	7
ge	5,000	46.2	45.6	48.4			Blue cells indicate depths
anç	7,000	68.3	66.3	55.9			where mostly oil is present
hК	9,000	56.5	60.1	63.9			where mostly on is present
eptl	11,000	17.2	58.7	61.1	5.4	0.3	
Ď	13,000		86.9	67.2	34.3	11.1	
-f-0	15,000		11.8	91.2	11.7	12.9	
200	17,000			62.8	15.2	3.2	7
Ŋ	19,000			5.2	24.0	9.2	7
cf)	21,000				18.2	7.1	
Ĕ	23,000				18.3	13.4	7
rce	25,000				2.0	6.8	7
nos	27,000					1.1	7
Gas Resource (Tcf) by 2000-ft Depth Range	29,000						
as	31,000						
Ü	33,000						
	,	Grey cel	ls indicate dept	th the formation is	not present in t	he WRB	1

### WRB - Summary



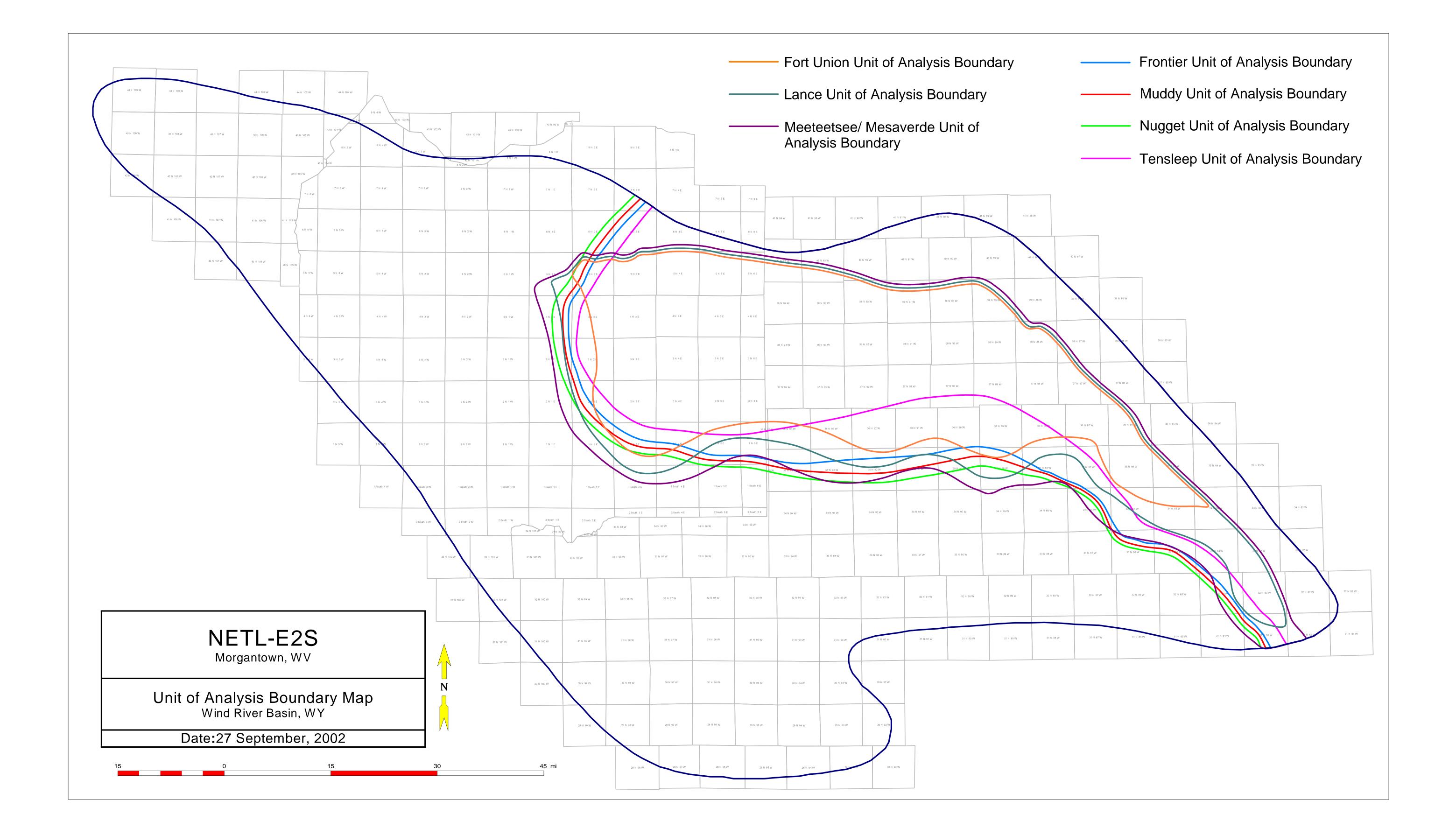
### **WRB - Fort Union**

DEPTH RANGE	TOTAL AREA (acres)	GAS-IN-PLACE (Tcf)	AVERAGE POTENTIAL PAY THICKNESS (Ft.)	AVERAGE POROSITY (%)	AVERAGE WATER SATURATION (%)	AVERAGE DRILLING DEPTH (Ft.)	AVERAGE PRESSURE (psi)	AVERAGE TEMPERATURE (oF)
5,000	276480	46.2	440	10.8%	52%	5934	2519	172
7,000	374400	68.3	382	9.8%	56%	8104	3570	184
9,000	322560	56.5	418	8.8%	59%	9880	4463	172
11,000	12960	17.2	372	7.9%	57%	11449	5390	161
13,000	0	0	0	0	0	0	0	0
15,000	0	0	0	0	0	0	0	0
17,000	0	0	0	0	0	0	0	0
19,000	0	0	0	0	0	0	0	0
21,000	0	0	0	0	0	0	0	0
23,000	0	0	0	0	0	0	0	0
25,000	0	0	0	0	0	0	0	0
27,000	0	0	0	0	0	0	0	0
29,000	0	0	0	0	0	0	0	0
31,000	0	0	0	0	0	0	0	0
33,000	0	0	0	0	0	0	0	0

#### WRB - Lance

DEPTH RANGE	TOTAL AREA (acres)	GAS-IN-PLACE (Tcf)	AVERAGE POTENTIAL PAY THICKNESS (Ft.)	AVERAGE POROSITY (%)	AVERAGE WATER SATURATION (%)	AVERAGE DRILLING DEPTH (Ft.)	AVERAGE PRESSURE (psi)	AVERAGE TEMPERATURE (oF)
5,000	230400	45.6	418	11.1%	47%	5935	2650	143
7,000	253440	66.3	493	9.9%	47%	7968	3645	172
9,000	224640	60.1	526	8.7%	46%	9923	4703	199
11,000	218880	58.7	644	7.8%	53%	12005	5791	228
13,000	293760	86.9	721	7.1%	58%	13674	6649	252
15,000	46080	11.8	578	6.9%	52%	15542	7464	278
17,000	0	0	0	0	0	0	0	0
19,000	0	0	0	0	0	0	0	0
21,000	0	0	0	0	0	0	0	0
23,000	0	0	0	0	0	0	0	0
25,000	0	0	0	0	0	0	0	0
27,000	0	0	0	0	0	0	0	0
29,000	0	0	0	0	0	0	0	0
31,000	0	0	0	0	0	0	0	0
33,000	0	0	0	0	0	0	0	0

### WRB - Meeteetsee-Mesaverde


DEPTH RANGE	TOTAL AREA (acres)	GAS-IN-PLACE (Tcf)	AVERAGE POTENTIAL PAY THICKNESS (Ft.)	AVERAGE POROSITY (%)	AVERAGE WATER SATURATION (%)	AVERAGE DRILLING DEPTH (Ft.)	AVERAGE PRESSURE (psi)	AVERAGE TEMPERATURE (oF)
5,000	213120	48.4	502	10.6%	44%	5968	2600	144
7,000	207360	55.9	486	9.5%	42%	7994	3873	172
9,000	207360	63.9	528	8.3%	40%	10113	5768	202
11,000	178560	61.1	498	7.3%	39%	12182	7569	231
13,000	172800	67.2	602	7.2%	41%	14104	9271	258
15,000	264960	91.2	544	6.8%	41%	16164	10919	285
17,000	224640	62.8	509	6.3%	48%	17604	11822	306
19,000	11520	5.2	510	6.2%	42%	19079	13306	327
21,000	0	0.0	0	0	0	0	0	0
23,000	0	0.0	0	0	0	0	0	0
25,000	0	0.0	0	0	0	0	0	0
27,000	0	0.0	0	0	0	0	0	0
29,000	0	0.0	0	0	0	0	0	0
31,000	0	0.0	0	0	0	0	0	0
33,000	0	0.0	0	0	0	0	0	0

### **WRB - Frontier**

DEPTH RANGE	TOTAL AREA (acres)	GAS-IN-PLACE (Tcf)	AVERAGE POTENTIAL PAY THICKNESS (Ft.)	AVERAGE POROSITY (%)	AVERAGE WATER SATURATION (%)	AVERAGE DRILLING DEPTH (Ft.)	AVERAGE PRESSURE (psi)	AVERAGE TEMPERATURE (oF)	
5,000	0	0	0	0	0	0	0	0	arb ost Oil
7,000	0	0	0	0	0	0	0	0	
9,000	0	0	0	0	0	0	0	0	Jydroc ons Mo Likely
11,000	0	0	0	0	0	0	0	0	τοι
12,000	69120	5.4	128	8.1%	46%	12736	6774	238	
13,000	345600	34.3	127	9.0%	41%	14143	8224	258	
15,000	161280	11.7	119	7.0%	42%	15156	8959	272	
17,000	184320	15.2	140	6.4%	41%	18238	11795	314	
19,000	345600	24.0	112	5.7%	40%	19970	13018	338	
21,000	230400	18.2	170	4.6%	39%	22061	15009	369	
23,000	299520	18.3	151	4.0%	41%	23927	16382	395	
25,000	46080	2.0	121	3.7%	41%	25082	17058	411	
27,000	0	0	0	0	0	0	0	0	
29,000	0	0	0	0	0	0	0	0	
31,000	0	0	0	0	0	0	0	0	
33,000	0	0	0	0	0	0	0	0	

### WRB - Muddy

DEPTH RANGE	TOTAL AREA (acres)	GAS-IN-PLACE (Tcf)	AVERAGE POTENTIAL PAY THICKNESS (Ft.)	AVERAGE POROSITY (%)	AVERAGE WATER SATURATION (%)	AVERAGE DRILLING DEPTH (Ft.)	AVERAGE PRESSURE (psi)	AVERAGE TEMPERATURE (oF)	
5,000	0	0	0	0	0	0	0	0	Hydrocarb ons Most Likely Oil
7,000	0	0	0	0	0	0	0	0	1ydrocark ons Most Likely Oil
9,000	0	0	0	0	0	0	0	0	Hydroc ons M¢ Likely
11,000	0	0	0	0	0	0	0	0	£ 0 I
12,000	23040	0.3	24	7.5%	52%	12283	6456	232	
13,000	207360	11.1	68	8.4%	33%	14234	8420	259	
15,000	368640	12.9	45	6.9%	39%	15663	9698	280	
17,000	69120	3.2	59	7.2%	32%	18409	12876	318	
19,000	345600	9.2	43	5.8%	37%	19978	13993	339	
21,000	230400	7.1	53	5.0%	32%	22330	15552	372	
23,000	414720	13.4	57	5.3%	34%	24151	16994	397	
25,000	161280	6.8	58	4.0%	32%	25389	17801	415	
27,000	46080	1.1	54	4.0%	34%	28036	19617	453	
29,000	0	0	0	0	0	0	0	0	
31,000	0	0	0	0	0	0	0	0	
33,000	0	0	0	0	0	0	0	0	



### **Assessing the Technology Needs** of Unconventional and Marginal Resources

Phase I: The Greater Green and Wind River basins

Prepared by

Ray Boswell, Ashley Douds, Kelly Rose, Skip Pratt, Jim Pancake, and Jim Dean EG&G Services, Inc.,

and

Vello Kuuskraa, Randy Billingsley, and Greg Bank Advanced Resources International

Under US DOE Contract DE-AM26-99FT40575 Task No. 01NT20205

**Prepared** for

Jim Ammer The Strategic Center for Natural Gas National Energy Technology Laboratory U.S. Department of Energy

October 31, 2002

#### **Executive Summary**

One of the most difficult challenges in designing a natural gas exploration and production research and development (R&D) program is quantifying the potential benefits associated with a particular suite of research projects. Understanding and estimating how the development of a new technology will affect the recovery of a particular segment of the nation's gas resource requires sophisticated computer models accessing a highly-detailed characterization of the resource. The better our models and characterizations become, the better our ability to relate specific technology advancements to specific quantities of new resources, increases in productivity, or reductions in operating costs. This ability is important when making decisions about how to spend research dollars, whether public or private.

The goal of the Department of Energy's natural gas program is to assure the long-term sustainability of affordable domestic natural gas supply through a steady expansion of the nation's economically-recoverable gas resource base. To do this, the National Energy Technology Laboratory's Strategic Center for Natural Gas implements a portfolio of R&D projects designed to enable and accelerate the transition of unconventional and marginal resources into recoverable resources, and ultimately, into reserves.

In response to recommendations presented by the National Petroleum Council in their 1999 report, "*Meeting the Challenges of the Nation's Growing Natural Gas Demand*" the National Energy Technology Laboratory has undertaken a coordinated program combining resource assessment, industry tracking, and technology modeling. The assessment work is unique in that it is focused primarily on resources that are currently sub-economic and unrecoverable and uses a log-based, gas-in-place approach with an unprecedented level of geographic and stratigraphic detail. Over ten thousand uniquely characterized cells that reflect the natural variety of key geologic and engineering parameters have been established.

The first phase of this effort has focused on the Greater Green River and Wind River basins of the Rocky Mountains. These basins contain the vast majority of the total low-permeability sandstone resource for the Rocky Mountain region based on a series of past gas-in-place resource assessments conducted for the Department of Energy by the United States Geological Survey (USGS).

Results from this current effort confirm past accounts of vast volumes of natural gas existing in these two basins. In the Greater Green River and Wind River basins, over 3,600 Trillion cubic feet (Tcf) and 1,100 Tcf of gas, respectively, was determined to be remaining in place. In light of these huge volumes, exploitation of these resources will require the development and application of advanced exploration, drilling, completion, stimulation, and production technologies in order to produce gas economically and at reasonable prices.

Using the nation's most sophisticated tool for modeling the impacts of technology on a national scale, the Gas Systems Analysis Model, analyses were conducted to estimate the amount of gas in place that is technically and economically recoverable with current technologies. Roughly 10% of the gas in place in the Greater Green River and Wind River basins (360 Tcf and 120 Tcf, respectively), was determined to be recoverable. GSAM's estimates significantly exceed those

of the USGS (2002) and other organizations, with the difference a result of alternative methodologies, assumptions, and geologic models designed to serve different purposes. USGS estimates are based on extrapolation of current conditions and serve as a basis for predicting the productivity that can expected from select resource elements. In contrast, GSAM estimates what could happen if the entire resource was fully developed using the most current technology as a baseline for identifying the most promising R&D avenues. When calculating a quantity as uncertain as undiscovered recoverable natural gas resource, such differences are to be expected and even encouraged, as they lead to further scientific investigation and interagency cooperation that increases the state of knowledge about our Nation's energy resources.

A key finding of this work is a documentation of the sensitivity of resource recoverability to both technology and price. Our preliminary findings indicate that roughly 11% of the technically recoverable resource is economically recoverable at \$2.00/Mcf well head gas price; expanding to 28% economically recoverable at \$3.50/Mcf price. Technology sensitivity analyses show that modest reductions in drilling costs or gains in recovery efficiency, which should be obtainable with continued advances in technology, lead to appreciable gains in the recoverable resource. With major technological advances, which could be obtained with an aggressive R&D program, significant amounts of gas in place could be added to the economically recoverable resource base.

This report's findings are also highly relevant to the issue of federal land use policy. Using information available from the Energy Policy and Conservation Act Interagency Team for the Greater Green River Basin, our analysis indicates that roughly 10 percent of the total gas-in-place is off limits for development due to federal land access restrictions. Timing restrictions that reduce the drilling window and could therefore increase drilling costs impact 45 percent of the total gas-in-place resource. Less than half (45%) of the gas in place in these basins is subject to standard lease terms.

This report provides critical data that will be used internally by Department of Energy planners to support project selection and other programmatic activities. History shows that Federal R&D has significant benefit in developing oil and gas in the U.S., especially those resources that are marginally economic. It is imperative that all stakeholders come together to formulate and implement environmentally sound and economically feasible development of this most important supply of clean burning, domestic energy. Phase 2 of this effort, which focuses on the Anadarko Basin in Oklahoma and the Uinta Basin in Utah, began in October, 2002.

#### 1. Background

In 2001, the National Energy Technology Laboratory (NETL) launched a comprehensive program to assess the long-term sustainability of domestic natural gas supply in the United States. This effort has integrated pre-existing NETL activities of resource characterization and national modeling of natural gas exploration and production technologies to provide a better understanding of three key issues impacting long-term gas supply:

- The size and nature of underutilized gas resources that will be critical to future supply,
- The potential of technology to accelerate the conversion of "unrecoverable" and subeconomic resources into economically-recoverable resources, and
- The volume and nature of resources present on Federal Lands.

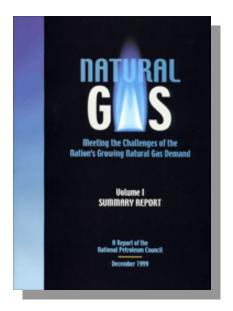



Figure 1: The NPC's 1999 report is a major inspiration for this study

This effort is largely in response to recommendations presented by the National Petroleum Council (NPC) in their 1999 report, "Meeting the Challenges of the Nation's Growing Natural Gas Demand". The NPC's recommendations concerning gas supply include the following: 1) "Establish a balanced, long-term approach to responsibly developing the nation's natural gas resource base", and, 2) "Drive research and technology at a rapid pace". These recommendations specifically noted the benefits of 1) improved knowledge of the size and nature of the resource base, 2) an accurate inventory of resources in the Rocky Mountain region and the impact of federal land access restrictions on them, and 3) efforts to define and prioritize R&D opportunities that will expand the resource potential of both producing and unexplored areas. The NPC stated, "Particular consideration should be given to longterm technology needs for ultra-deep water, low permeability, and non-conventional reservoirs that will contribute more of the nation's gas supply in the future."

The U.S. Department of Energy shares NPC's view. Over the coming decades, the nation is counting on the expanded use of domestic natural gas to meet critical economic, environmental, and national security goals. Clearly, technology-driven resource expansion will be the key to ensuring adequate supplies of gas. This expansion will occur through both 1) incremental technology advance that steadily increases the recoverability of the known resource base, and 2) technological leaps forward that result in the addition of vast resources that were previously unknown, overlooked, or undervalued. For more information on the background for this effort, please visit our website at <a href="http://www.netl.doe.gov/scng/explore/resource/green-river.html">http://www.netl.doe.gov/scng/explore/resource/green-river.html</a>.

#### Natural Gas Technology Modeling

In 1990, NETL commissioned the creation of the Gas Systems Analysis Model (GSAM – see separate GSAM Fact Sheet included on this CD). GSAM serves as a quick-turnaround tool for scoping the national gas production, transmission, and utilization system. Analyses conducted with GSAM provide high-level insight into the relative benefit of a large variety of alternative R&D and policy scenarios. Improvements in GSAM for this purpose are ongoing, including an effort to fully integrate GSAM with the DOE's similar model for oil, *TORIS*.

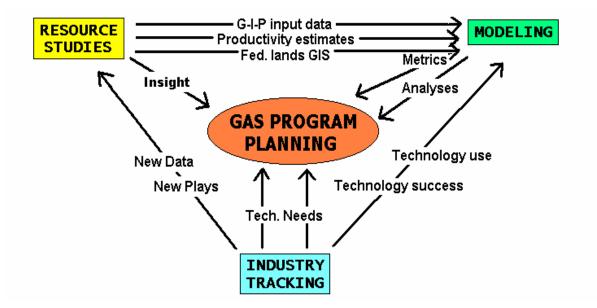


**Figure 2:** NETL's Gas Systems Analysis Model (GSAM) models the supply and use of natural gas throughout North America. It is the nation's most sophisticated tool for modeling the impacts of technology.

In assessing the priorities for its specific program in upstream natural gas exploration and production R&D, NETL is requiring GSAM to provide meaningful results at scales below the national level. Specific analyses of key regions and resource segments are increasingly needed. To meet this goal, the following capabilities are required:

- Appropriate Modeling Logic and Algorithms: Detailed analyses with GSAM require enhancements to the code to appropriately account for the circumstances particular to specific regions and resources; for example, the significant differences between conventional and unconventional accumulations or intra-regional variations in drilling costs
- Appropriate Input Assumptions. GSAM assesses resource productivity and economics relative to baseline assumptions on a variety of parameters, including drilling, completion, stimulation, and operating/maintenance costs,

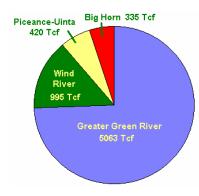
drilling and other infrastructure capacities, tax and royalty structures, current technical capacity, and others. These data need to capture a true picture of the current state of the industry.


- Appropriate Resource Characterization: The model must work with the best possible description of the nation's resources. Specifically, and in relation to the scale of the analysis being attempted, the database must...
  - ✓ Be detailed. Increased disaggregation of the resource into a larger number of uniquely-defined segments will allow GSAM to more sensitively probe the "response" of the resource to alternative, individual R&D cases. In addition, detailed geographic disaggregation of the resource will provide an improved means to assess the impact of various federal land access stipulations, pipeline availability, and

environmental policies on future supplies.

- ✓ Be comprehensive. The dataset must include as much of the total resource as possible. It is not appropriate to model the role of technology using datasets that already assume a certain level of technological progress. For example, a dataset for unconventional resources built around estimates of the present technically-recoverable portion will dismiss the vast bulk of the total resource out-of-hand and in particular, the very resources that aggressive R&D programs will target.
- ✓ Address Reservoir Producibility. To estimate the recoverability and economics of resources under a variety of future cost/technology scenarios, the model's dataset must contain estimates of permeability.

#### An Integrated Approach


Based upon review of its modeling needs and current modeling capacity, NETL has determined that significant improvements in both the models and the data feeding the models are warranted and could best be accomplished through the full integration of two long-standing NETL activities: resource-reserve assessment and national modeling of E&P technologies. Integration of these efforts will ensure that data is collected with the needs of the models in mind and that the models are configured to appropriately treat resource elements of particular interest. The remainder of this report describes NETL's efforts to improve its modeling databases through the direct analyses of geologic data in high-priority regions. In addition, a new activity in industry technology tracking has been initiated as a means of providing ground truth to many of the assumptions on technology utilization and impact that are incorporated into modeling base cases.



**Figure 3**: Schematic of SCNG's integrated approach for planning natural gas R&D to meet the challenge of sustaining long-term domestic gas supply. This new integrated program is designed to assure that NETLs models have appropriate input datasets and logic to allow confident modeling of the role and impact of advanced technologies.

#### Selection of Study Areas

The initial studies in this effort focus on deep, unconventional resources in the Rocky Mountain region. This focus is based on the understanding that gas resources in the Rockies are 1) enormous and 2) located almost exclusively on federal lands, and is responsive to the NPC's specific recommendation that the federal government work to assess the long-term natural gas supply potential of the Rocky Mountain region.



**Figure 4:** Overview of the results of USGS gas-in-place assessments in four key Rocky Mountain basins.

Within the Rockies, the Greater Green River and Wind River basins are selected as the targets for Phase I of this effort. This decision is based on several factors. First, based on a series of gas-in-place assessments conducted by the United States Geological Survey (USGS), these basins are expected to contain the vast majority of the total low-permeability gas resource for the Rocky Mountain region (Figure 4). Second, 15 years have passed since the USGS's landmark 1987 Greater Green River Basin gas-in-place study, providing ample new data. Third, the vast majority of the gas resources in these basins are currently not expected to be technicallyrecoverable given business-as-usual technology advances (Table 1). For example, as part of their 1995 National Assessment of the nation's technically-recoverable gas resources, the USGS assigned only 119 Tcf of resource to the

low-permeability plays of the Greater Green River Basin. Low-permeability gas resources in the Wind River basin were not included in the National Assessment. Comparison of the National Assessment estimates to the separate gas-in-place estimates suggests that 98% of the gas believed to exist within these two basins, roughly 6,000 Tcf of gas, is either unassessed or deemed not "technically recoverable". This enormous untapped potential is one of the key targets of DOE R&D programs. If only 10% of this resource can be accessed, the resulting 600 Tcf of domestic gas supply would provide enormous benefits to the nation's economy, environment, and national security. However, to assess the nature and potential of new technological breakthroughs to expand access to this resource, we need to know as much as possible about the nature and conditions of *all* the resource present.

Greater (	Green Riv	rer Basin	Wind River Basin			
Play	GIP ('89)	Tech. Rec. ('95)	Play	GIP ('96)	Tech. Rec. ('95)	
Ft. Union	96	1	Ft. Union	101	Not Assessed	
Fox Hills/Lance	707	10	Lance	365	Not Assessed	
Lewis	610	19	Meeteetsee	124	Not Assessed	
Mesaverde	3,347	52	Mesaverde/Fales Ss.	203	Not Assessed	
Frontier-Cloverly	304	37	Cody Sh.	51	Not Assessed	
			Frontier	151	Not Assessed	
Total	5,064	119	Total	995	Not Assessed	

**Table 1:** Overview of the results of USGS gas-in-place assessments in the Greater Green River and Wind River basins illustrating the vast resource currently deemed unrecoverable.

# 2. Project Methodology

The geologic analysis differs fundamentally from previous resource assessment work supported by NETL that were designed to quantify either 1) the gas-in-place with no regard to recoverability, or 2) the recoverable resource present under a single, given set of conditions. In contrast, this work attempts to produce a dataset from which recoverable resources can be reasonably appraised under a wide variety of as-yet-undefined future conditions. Consequently, this effort uses a log-based, gas-in-place approach with an unprecedented level of geographic and stratigraphic detail. Detailed disaggregation of the resource into thousands of uniquely characterized segments that reflect the natural variety in key geologic and engineering parameters is achieved through the analysis of hundreds of well log suites. Further specifics of methodology are provided in Figure 5 and below. A full archive of maps and cross-sections are available elsewhere on this CD.

# The Units of Analysis

The assessment of two basins,

particularly two of the size of the GGRB

and WRB, presented a significant challenge. Because these basins are large and contain thick, gas-charged, sedimentary sequences, the initial step was to determine which particular sections to study.

Based on the USGS's previous work, our study began with a review of the Cretaceous and older geologic section in both basins with the goal of identifying plays that 1) encompass the majority of each basin's underutilized resources, 2) are dominated by deep and/or unconventional accumulations that are the targets of DOE R&D programs, and 3) could be accomplished using a log-based methodology. This initial review settled on the following intervals of interest (Figure 6):

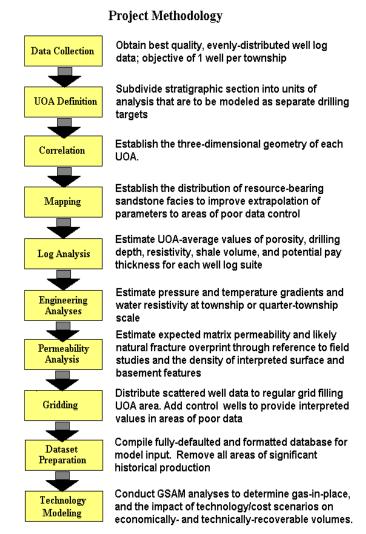
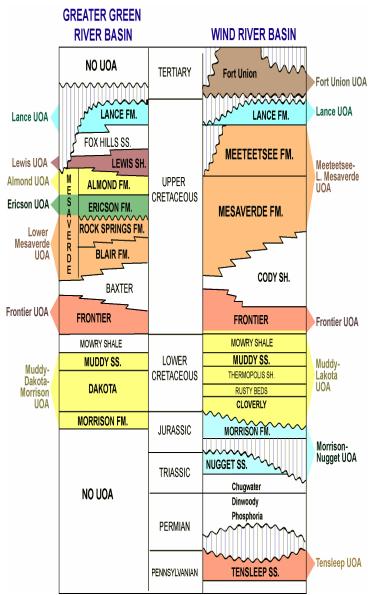
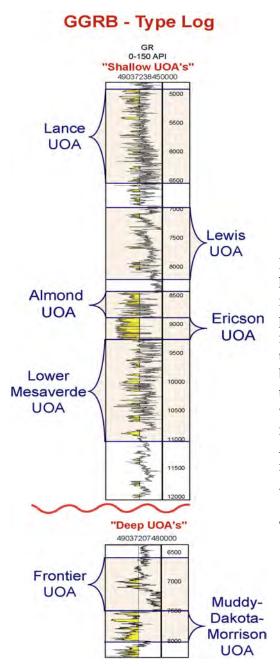




Figure 5: Overview of project methodology.



**Figure 6:** *Stratigraphic chart showing the subject intervals of the GGRB and WRB.* 

- *Greater Green River Basin:* The entirety of the section from the top of the Lance formation to the base of sandstones within the Morrison Formation, excluding the Fox Hills sandstone and various stray sandstones within the Cody-Baxter-Hilliard-Steele shale.
- *Wind River Basin:* The entirety of the section from the top of the Lower Ft. Union formation to the Tensleep Sandstone, excluding sandstones within the Cody Shale and the interval from the base of the Nugget Sandstone to the top of the Tensleep.


With target sections established, the next step was to subdivide these intervals into "units of analysis" (UOAs); packets of resource, similar to the concept of a play, that exist in a common geologic condition. More specifically, each UOA is a package of resource that is most appropriate to characterize within the model as the target of individual wells. For example, we could not split apart units that are most likely to be ultimately completed together - doing so would require GSAM to burden each resource with the cost of individual wells. Similarly, we needed to avoid the lumping together

of resources that will most likely be produced from separate boreholes. Otherwise, GSAM will calculate overoptimistic economics by assuming that the entire resource can be accessed for the cost of drilling a single well. The final Units of Analyses for the project are outlined in Figures 7 and 8 and described below.

• The *Lance UOA* is comprised of individual and amalgamated fluvial sandstones, and interbedded siltstones, shales and coals of the Lance formation. In the western GGRB where the Fox Hills-Lewis Shale sequences do not occur, the base of the Lance UOA coincides with the horizon equivalent to the point of maximum eastward transgression of the Lewis shale lithology (the top of the Almond UOA). In the central and eastern GGRB, the base of the

Lance UOA is picked at the top of the last coarsening upwards sandstone of the Fox Hills. Top of the Lance UOA was picked at the Cretaceous-Tertiary unconformity between the Lance Formation and Fort Union Formation throughout the GGRB. Given the similar depositional nature of these two continental-fluvial formations, published tops for the Lance formation were used as type sections, and for correlating throughout the GGRB.

• The *Lewis UOA* includes sandstones of two distinct types: 1) clean, coarsening-upwards sandstones interpreted as shallow-water delta-front deposits and 2) thick, vertically-stacked sequences of thinly-bedded and shale-rich sandstones interpreted to represent toe-of-slope



**Figure 7:** Type log for the Greater Green River Basin showing UOAs

turbidites. The shallower-water sandstones occur primarily in the Red Desert basin, but also elsewhere on the periphery of the Lewis Shale lithosome. These units represent extensions of the Fox Hills lithology that have been isolated within the Lewis Shale by significant subsequent transgression. Similar sandstones that are closely overlain by the lenticular sandstone and coal sequences of the Lance Formation are assigned to the Fox Hills Sandstone. Deep water Lewis sandstones are most common in the area between the Wamsutter and Cherokee arches.

In the past, the entirety of the Mesaverde interval has commonly been assessed together. This practice is not suitable because industry has not, and probably will not, target this entire interval with individual wells due to its large stratigraphic thickness. A review of industry practice in the basins east of the Rock Springs uplift indicated that the vast majority of Almond completions are from wells that drill no deeper than the Ericson, with the most of these terminating within the "Main" Almond section. As a result, the Mesaverde interval is divided into three UOAs that we designate as Almond, Ericson, and Lower Mesaverde.

• The Almond UOA includes sandstones of two distinct facies. First are the clean, blocky and coarsening-upwards sandstones (commonly referred to as "Upper Almond") marking the transgressive migration of shorelines westward at the top of the Mesaverde Group. Second are the subjacent thinly bedded and highly lenticular lower delta plain sandstones that are interbedded with coals and shales ("Main Almond"). The base of the Almond UOA is marked at the level where sandstones transition into the cleaner and more amalgamated sandstone facies typical of the Ericson UOA. The top of the Almond is clearly marked by the appearance of the Lewis Shale to the east of the Rock Springs Uplift. To the west of the Rock Springs Uplift, the top of the Almond is placed at the interpreted time-equivalent horizon with the maxima of eastward Lewis Shale migration.

- The *Ericson UOA* includes massive, quartz-rich (low radioactivity), and amalgamated fluvial sandstones (Ericson Formation) that commonly occur at the stratigraphic level of the maxima of Mesaverde progradation. The base of the Ericson UOA is clearly marked by the abrupt, commonly disconformable transition to the "dirty" sandstones, coals, and shales of the Lower Mesaverde UOA.
- The *Lower Mesaverde UOA* encompasses two distinct lithofacies. At the base are thick, coarsening-upwards sequences of sandstone (Blair Formation, etc.) associated with the eastward regression of Mesaverde environments into the Cretaceous Interior Seaway. Above is a thick section of highly-lenticular fluvial sandstones and shales of various formations (most notably the Rock Springs) within the sub-Ericson Mesaverde.

Similar to the Mesaverde units, the Frontier through Dakota interval has commonly been assessed previously as one unit. However, based on an analysis of industry drilling and completion practices in the 5 most heavily-drilled GGRB townships, operators have tended to complete either the Frontier or the Dakota individually. Multiple completions are relatively rare (Table 2). Consequently, separate UOAs for the Frontier sands and the deeper Muddy, Dakota, and Morrison sands were analyzed.

	Single	Recompletions	Recompletions	Total number of
	Completions	within 6 mos.	at least 6 mos. apart	wells
T27 R113	140 (77%)	28 (16%)	13 (7%)	181
T21 R112	92 (94%)	6 (6%)	0	98
T20 R112	80 (65%)	18 (15%)	24 (20%)	122
T18 R112	65 (48%)	36 (26%)	35 (26%)	136
T23 R103	31 (57%)	17 (32%)	6 (11%)	54
AVERAGE	68%	19%	16%	

**Table 2:** Historical drilling completion practices, per well, for the Frontier, Muddy, Dakota, and Morrison

 formations in the Greater Green River Basin. Townships selected based on number of wells drilled and completed.

- The *Frontier UOA* includes all five benches of the Lower Cretaceous Frontier sandstones as well as any sands that appear within the Mowry shale interval. The top of the Frontier UOA is extended upward to include all sub-Cody Shale sandstones. The majority of the sandstones in the Frontier UOA exhibit very distinctive coarsening-upwards log signatures that are interpreted to reflect progradation of near shore environments such as river/distributary mouth bars. However, the uppermost Frontier sandstone exhibits a fining-upward signature suggestive of fluvial sedimentation.
- The *Dakota UOA* includes the Muddy sandstone, the Dakota sandstone, and sands within the Morrison Formation (Figure 1-type log). These sandstones are interpreted to represent deposition during fluvial-dominated sedimentation. In the Muddy interval, some thick, clean

sandstones suggestive of incised valleyfill are noted. The base of the UOA is marked at the lowest significant sandstone in the Morrison sequence.

## Wind River basin UOAs

The uppermost intervals in the target section of the Wind River basin contain thick sequences of fluvial and lacustrine clastics of the Fort Union, Lance and Meeteetsee formations. On well logs, particularly on gamma-ray logs, these units are not easily distinguishable. Published interpretations, as well as subtle variations in sandstoneshale ratio, the abundance and clustering of coals, and trends in formation conductivity, are the primary tools for correlation.

The Fort Union UOA and Lance UOA are thick, monotonous sequences of interbedded fluvial sandstones, shales, and coals. Although the two units are lithologically very similar, combined they represent too thick a sequence to include within a single UOA. Therefore they are broken into two UOAs based on their interpreted formational contacts. The top of the Fort Union UOA is marked in large areas of the basin by the base of the Waltman Shale. The Fort Union/Lance transition was commonly traced based on previous interpretations (primarily the work of the USGS) conditioned by an attempt to place the contact at the top of a relatively sandstone-poor zone at the top of the Lance.

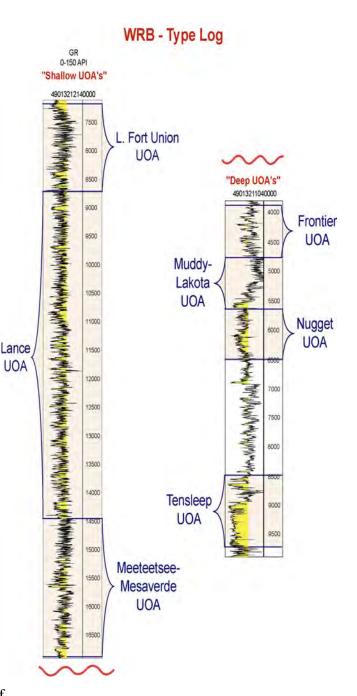
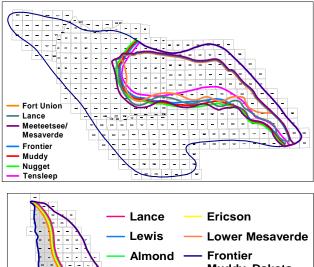
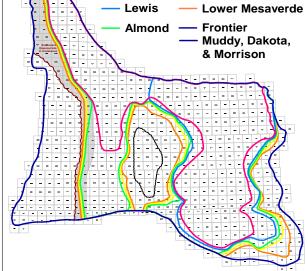





Figure 8: Wind River basin type log showing UOAs

• The *Meeteetsee/Mesaverde UOA* includes an array of fluvial-deltaic environments within the Meeteetsee and Mesaverde Formations. The relatively clean and thick Teapot sandstone lies at approximately the middle of the UOA. The upper contact of the unit is placed at the base of the initial sequence of thick fluvial sandstones thought to mark the base of the Lance Formation. The UOA extends down section to the top of the first significant shale within the Cody Shale. Sandstones within the Cody, such as the Shannon and Sussex, are not included.

- The *Frontier UOA* includes the distinctive coarsening-upwards parallic sandstones of the Frontier Formation. The uppermost boundary of the UOA climbs stratigraphically upsection as traced to the east. The lower limit of the UOA is placed at conspicuous and highly radioactive shale marking the top the Mowry shale. This shale most likely represents a sealevel highstand (maximum flooding surface) that proceeded progradation of the Frontier units.
- The *Muddy-Lakota UOA* includes sandstones within the Mowry Shale, as well as the subjacent Muddy, Dakota, and Lakota-Cloverly sandstones. The Mowry is predominantly a marine unit that contains no significant sandstones within the basin. The Muddy is locally





**Figure 9:** Areal boundaries for UOAs in the Wind River basin.(top) and Greater Green River basin (bottom)

very thick and clean, and occurs as highly-lenticular channelized sandstones. The Dakota sandstone is reported as productive in several parts of the basin, however, in this study, the unit identified as Dakota is consistently less than 5 feet in thickness. At the base of the UOA, the Lakota (Cloverly) sandstone is a highly continuous channelized conglomeratic sandstone. The base of the UOA is

marked by a low-angle unconformity at the base of the Lakota unit.

- The *Nugget UOA* includes sandstones within the Morrison Formation as well as the Nugget Sandstone. On logs, the Nugget is typified by a highly-serrated and shaley character suggestive of vertical amalgamation of numerous thin sandstone beds. The base of the Nugget UOA is placed at the base of a consistent shaley zone approximately 300 feet above the Alcova limestone marker bed.
- The *Tensleep UOA* includes the thick and massive Tensleep Sandstone only. The unit produces oil almost exclusively in the

basin. Only a handful of wells have penetrated the Tensleep Sandstone at depths below 15,000 feet, where gas is expected to dominate.

# Appraised Areas

Each UOA was appraised over the entire area in which it occurred. Ultimate location of the aerial boundaries of each UOA (Figure 9) was later restricted to include only 1) areas with

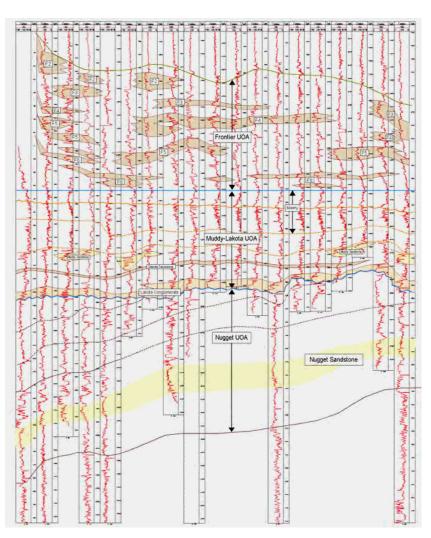
drilling depths of at least 5,000 feet (to exclude shallow high-porosity sandstones that may be considered conventional); and 2) areas deemed to be gas-prone. In the Greater Green River basin, oil production is very uncommon below 5,000. However, in the Frontier and deeper UOAs in the Wind River basin, oil production is common to depths exceeding 10,000'. Consequently, the aerial limits of the Frontier, Muddy-Lakota and Nugget UOAs in the Wind River basin were set at 12,000' drilling depth. The limit for the Tensleep UOA is set at 15,000'. These depth cut-offs are based primarily on a review of data from I.H.S. Energy Data (see Table 3). Finally, note that in many prior assessments, the appraised area has been limited to overpressured areas. However, because this study subdivides each UOA into a large number of geographic cells each with a unique mid-point pressure, no such limitation was necessary.

	GGRB		WRB				
Depth	Frontier	Dakota	Frontier	MudLak. *	Nugget	Tensleep	
6000-7999	1%	19%	86%	35%	100%	100%	
8000-9999	3%	6%	8%	89%	100%	100%	
10000-11999	3%	20%	33%	52%	0%	100%	
12000-13999	0%	5%	0%	100%	0%	100%	
14000+	0%	0%	0%	0%			

 Table 3:
 % of total completions as oil well completions for Deep UOAs (data from I.H.S. Energy Data)

* includes only completions of the Muddy and Lakota sandstones

## Data Collection


For both basins, well logs were collected with the goal of obtaining quality log suites from one or more of the deepest wells in each township. Well productivity was not considered to ensure the dataset was not biased to higher quality reservoirs. Well data were collected separately for each UOA (although many wells are used for more than one UOA), with the following guidelines:

**Table 4:** Well log data density used in the study. Number of wells = total wells used in the study to support correlation and mapping. Full log suites = total wells used in determination of volumetric parameters.

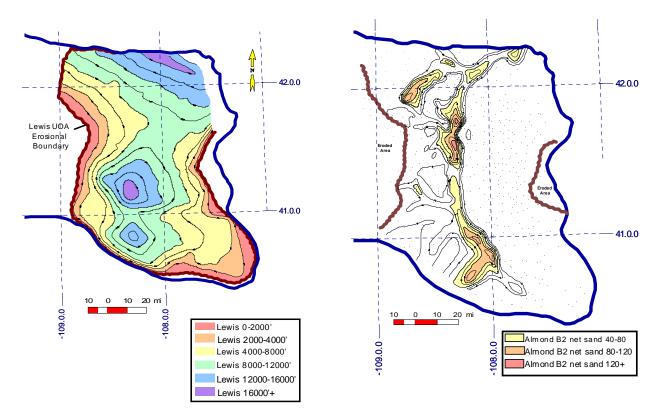
Unit of Analysis	Number	Number of full Log	Townships in	Full Log Suites					
	Of wells	Suites in appraised area	Appraised Area	per Township					
Greater Green River Basin									
Lance	209	88	297	0.30					
Lewis	399	297	169	1.76					
Almond	369	293	265	1.11					
Ericson	301	242	338	0.72					
Lower Mesaverde	153	136	353	0.39					
Frontier	266	158	489	0.32					
Dakota-Morrison	192	131	467	0.28					
Wind River Basin									
Fort Union	75	44	49.8	0.92					
Lance	63	28	58.8	0.48					
Meeteetsee-Mesaverde	60	27	67.1	0.40					
Frontier	136	19	56.2	0.34					
Muddy-Lakota	123	16	56.6	0.28					
Nugget	95	8	55.0	0.15					
Tensleep	82	4	24.8	0.06					

- Fullest possible penetration of UOA
- Even geographic distribution of data points
- Full and quality log suite, including:
  - Caliper Log (for determination of reliability of porosity data)
  - Gamma-ray well log (for determination of Vsh)
  - Compensated Density Porosity Log (for determination of porosity and potential pay)
  - Induction Log (for determination of shale and formation resistivity)

As expected, the density of quality log data is best for the shallower target intervals. Exceptions include the Lance in the GGRB, which contains many penetrations, but because the targets of these wells were typically deeper formations, full logging suites are relatively rare. In all UOAs, a large number of additional well logs (either lacking full suites or occurring in shallow or oil-prone areas), were used to support correlation and mapping. The poor data density obtained for the Nugget and Tensleep formations in the Wind River basin (particularly at the target depths) precluded further analysis of resources using this methodology. Maps prepared for these intervals using the total well log database are provided.



## **Correlation**


With log data in hand, each UOA was correlated in loop fashion to establish the occurrence and distribution of lithofacies (Figure 10). Correlation was generally lithostratigraphic, and focused on establishing the UOA boundaries. Such correlations establish intervals of consistent lithology, and commonly produce unit boundaries that cross time-lines.

Where appropriate and possible (primarily in marine and marginal-marine intervals), detailed chronostratigraphic correlation was accomplished. These correlations identify rock sequences of equivalent age without reference to lithology and are necessary for

**Figure 10:** *W-E cross-section* showing the correlation of the Frontier, Muddy-Lakota, and Nugget UOAs in the Wind River basin. the reconstruction of trends and geometries of depositional environments. A few key marker beds such as the highly radioactive shale ("Asquith marker") present in the lower Lewis Shale, other similar "hot" shales, as well as limestones, and bentonites closely approximate time-lines and are critical in allowing chronostratigraphic correlation. Because such key beds are generally lacking in fluvial and lacustrine facies, no detailed chronostratigraphic correlations were accomplished for the Lance, Fort Union, Lower Mesaverde or Mesaverde-Meeteetsee UOAs. In either lithostratigraphic or chronostratigraphic correlation, the methods used were tailored to the specific needs of each UOA. For example, in the Lewis and Mesaverde UOAs in the GGRB, correlation was achieved almost exclusively through comparison of gamma-ray well log signatures. Other UOAs, such as the Frontier and Dakota in the GGRB and the Fort Union and Lance in the WRB, required that gamma-ray signatures be supplemented with information from resistivity/conductivity curves and other data.

## Mapping

The purpose of mapping is to provide a graphical view of the distribution of a geologic parameter. Maps were contoured by hand to allow geologic intuition gained through years of analysis of similar deposits to guide the sound extrapolation of information from areas of good data control to areas where data is lacking.



**Figure 11:** *Example Geologic Maps: Left - Drilling depth to mid-point of the Lewis UOA, GGRB, Sandstone isochore map for marginal-marine Almond "B2" sandstones, GGRB. A complete archive of maps and cross-sections created during this study is presented elsewhere on this CD.* 

This effort has produced two basic sets of hand-contoured geologic maps. Drilling depth maps show the distance from surface to the stratigraphic mid-point of the UOA. Sandstone isopach maps (most properly – isochore maps) show the composite vertical thickness of all sandstone present within an interval. The sandstone isopach maps are based on sandstone thickness as determined through the gamma-ray base-lining method with a 50% clean-sand cut-off. The following sandstone isopach maps were created and are available elsewhere on this CD.

# Greater Green River Basin

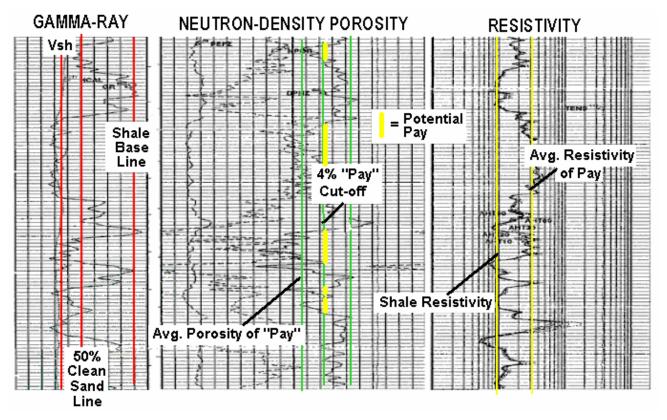
- GGRB: Lance UOA Total sandstone thickness
- GGRB: Lewis UOA Total sandstone thickness plus 6 interval isopachs (Lewis 8 (youngest); Lewis 7, Lewis 6, Lewis 5, Lewis 4, and Lewis 3 (oldest))
- GGRB: Almond UOA Total sandstone thickness plus 6 interval isopachs (representing various horizons of the "Upper Almond" sandstone Almond A (youngest and westernmost), Almond B1, Almond B2, Almond B3, Almond B4, and Almond C (oldest and easternmost)
- GGRB: Ericson UOA Total sandstone thickness
- GGRB: Lower Mesaverde UOA Total sandstone thickness
- GGRB: Frontier UOA Total sandstone thickness plus 6 sandstone isopachs (Frontier 0 (youngest), Frontier 1, Frontier 2a, Frontier 2b, Frontier 3-4, Frontier 5 (oldest)).
- GGRB: Dakota UOA Total sandstone thickness plus 3 sandstone isopachs (Muddy (youngest), Dakota, and Morrison (oldest)).

# Wind River Basin

- WRB: Fort Union UOA Total sandstone thickness
- WRB: Lance UOA Total sandstone thickness
- WRB: Meeteetsee-Mesaverde UOA Total sandstone thickness
- WRB: Frontier UOA Total sandstone thickness plus 4 sandstone isopachs (Frontier 1-2 (youngest), Frontier 3, Frontier 4 and Frontier 5 (oldest))
- WRB: Muddy-Lakota UOA Total sandstone thickness plus 2 interval isopachs (Muddy and Lakota)
- WRB: Nugget UOA Total sandstone thickness plus 1 interval isopach (Nugget)
- WRB: Tensleep UOA Total sandstone thickness

# Log Analysis

Given a logs with UOA boundaries marked, the procedure for log analysis was as follows:


- Record drilling depth at mid point.
- Determine thickness of sandstone lithology for the purpose of mapping through baseline analysis of the gamma-ray log.
- Mark the potential pay zones through collective reference to the gamma-ray, densityneutron, resistivity, and caliper logs.

- Determine the composite average shale-volume across all the potential pay zones through analysis of the gamma-ray well log.
- Determine the average porosity in the potential pay zone through analysis of the compensated density porosity log.
- Determine the average resistivity in the potential pay zones through analysis of the resistivity log.
- Determine the shale resistivity throughout the UOA from the resistivity log.

The following, supplemented by Figure 12, describes these steps in further detail:

*Drilling depth mid-point* was calculated for every UOA in each well analyzed. This depth is used in the model to estimate drilling, completion, stimulation, and operating/maintenance costs.

*Sandstone Thickness*: To determine net sandstone thickness, sand and shale baselines were drawn for every gamma ray (GR) log analyzed. The "100% sand" baseline is a vertical line on the log indicating the reading expected for totally-shale free sandstone. Such sandstones are rare, and in many instances, the 100% sand line is drawn based on the reading exhibited by limestones where present or by assuming that the very cleanest sandstones in the section contained only a



**Figure 12:** Sample well log showing the key elements of the well log analysis procedure. "Potential Pay" is the thickness of interval characterized for each UOA. The average values for Vsh,, Porosity, and Resistivity are all relative to the potential pay intervals only

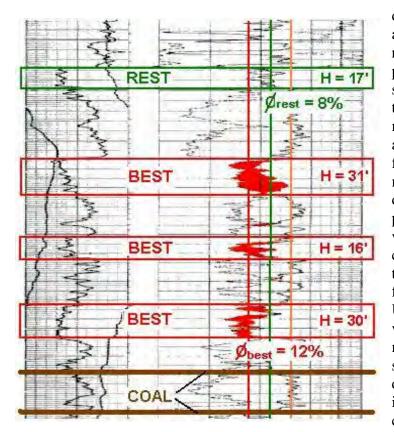
minimal amount of shale (5 - 10%). The "100% shale" baseline indicates the expected GR reading for shale. The location of the shale baseline is allowed to change with depth to reflect changing hole conditions and shale lithology. (The goal is to construct baselines that reflect the contribution to total unit radioactivity of the shale likely to be incorporated into each sandstone). These two lines are bisected by the 50%-sand line. To determine total sandstone thickness, all readings to the left of the 50%-line are interpreted as sandstone. All readings to the right are siltstone or shale. GR-log baselining, like many aspects of regional resource appraisal, is not an exact science. Once a geologist has looked at several hundred logs in a region, trends can be identified that allow the baselines to be used to standardize all of the GR logs and correct the interpretations of logs that may not have been recorded optimally.

*Potential Pay Thickness:* A pivotal determination in the log-analysis procedure is the determination of "potential pay thickness". In general, the term "pay" is usually equated with an interval that is expected to produce under current circumstances. Geologists are accustomed to establishing practical reservoir or field-specific porosity (for example 6 or 8%) and gas saturation (commonly 60%) cut-offs in determining pay. However, the goal of this effort is to create resource descriptions that will allow a computer model to determine what segment of the total resource *might be pay* as much as 20 years into the future under cost/technology scenarios that may be very different from what currently exists. Therefore, aggressive cut-offs have been used in defining "potential pay" with the understanding that under most technology/cost conditions, the models may not consider much of this low-quality "potential pay" to be viable. Once zones are identified as "potential pay", estimates for all remaining parameters (shale volume, porosity, resistivity) were determined for these zones only.

The criteria for potential pay is as follows (note; all these conditions must be met before the unit is included as potential pay):

- Less than 75% shale volume that is; units not counted as sandstones in the lithofacies mapping (Vsh between 50% and 75%) can still be counted as potential pay given appropriate porosity.
- Greater than 4% porosity in practice, this criteria amounts to including all noticeable deflections from the expected porosity reading for shale.
- Greater than a set minimum thickness isolated thin beds are not included, however, the composite thickness of a series of thin beds that form a larger unit (such as a turbidite deposit) was included.
- Less than 70% water saturation (Sw), based on our current best understanding of water resistivities.
- Adequate caliper indicating no large washouts or severe rugosity in the wellbore that would make porosity log readings unreliable.

Average Shale Volume of Potential Pay: The average shale volume (Vsh) is determined though visual inspection of the gamma-ray reading of potential pay zones relative to the gamma-ray base line. In UOAs with highly variable Vsh, weight averaging through the UOA was used.


Average Porosity of Potential Pay: An average porosity for the potential pay in each UOA was determined almost exclusively from recent vintage, full-scale (the "5-inch log"), compensated density-porosity logs. In many instances, the average porosity was taken through visual inspection of the log. Where density-neutron "cross-over" occurred, porosity is taken by the average of the two readings. Where there was no "cross-over" the density porosity log reading was used. Also, similar to gamma-ray baselining, the determination of porosity provides the geologist with the opportunity to normalize porosity data gathered from a variety of decades, tools and operators. A basic assumption is that the density porosity log should read consistently low (0-4%) in shale. Where log data were more erratic, a baseline was drawn through the average density porosity value in shales, and the average porosity reading was then determined by counting the deflection to the left of the baseline. Furthermore, in UOAs known to consist primarily of thin-bedded units (for example, the Lewis Shale turbidites), the porosity recorded was at the common maximum reading, and not at the visual average. This approach (which is also applied to determination of resistivity) helps to counteract the misleading log readings obtained for intervals containing numerous individual units that are thinner than the logging-tool resolution.

Average Resistivity of Potential Pay is approximated using the detailed 5" resistivity log. When large differences in resistivity occurred within one interval (e.g. 20 ohms readings for 100 feet of potential pay mixed with 200-ohm reading for another 50 feet of potential pay), resistivity was weight-averaged over the interval. However, in most instances, the value is determined by visual averaging.

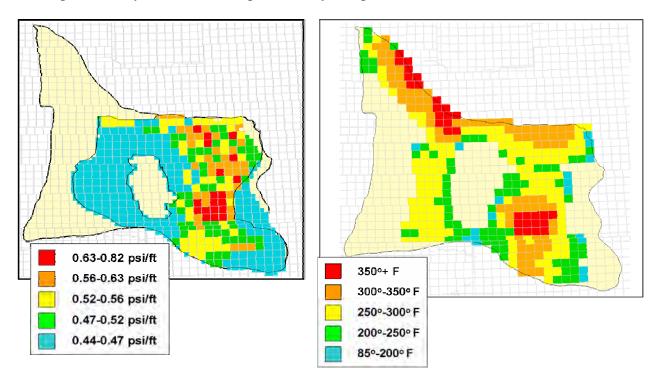
Average Shale Resistivity (Rsh) across the UOA is approximated from the detailed ("5-inch") resistivity log. Shale resistivity is allowed to vary from one UOA to another in a given well. Such variation is common due to changes in formation pressure and shale lithology (for example, marine shales versus non-marine shales).

*Note on Estimation of Water Saturation:* Water saturation can be estimated using shaley-sand formulations (we have used the Simondoux equation) that correct total measured resistivity for water resistivity (Rw), shale volume (Vsh), and shale resistivity (Rsh). Unfortunately, the water resistivity parameter is very difficult to determine. It can only be estimated from well logs given the presence of 100% water-wet sandstones. However, due to the ubiquity of gas in basin-centered accumulations, such wet sandstones, particularly ones in close proximity to the units being analyzed, are not common. As a result, to calculate Sw, Rw must be determined from other data. For the Lewis UOA, sufficient water chemistry data was available to allow estimation of Rw. For the other UOAs, Rw's were based on experience and trial and error. We intend to revisit these calculations once ongoing NETL studies to sample and analyze Rocky Mountain region formation waters and other industry data provide better information.

*Note on Parameter Averaging:* The GSAM model requires that each resource package to be analyzed (each grid cell in each UOA) be given a single value for each parameter. Therefore,



**Figure 13:** *Example of the use of separate 'best' and 'rest' categories in the Almond UOA.* 


despite our efforts to create detailed and disaggregated datasets, it remained necessary to average parameters across large vertical sections. For many units of analysis, this averaging did not create any major difficulties, as parameters such as porosity and saturation were often fairly consistent within a unit. In many instances, the "averaging" was done visually; in others (where the parameter displayed greater variability), detailed counts were conducted and averages obtained through weight-averaging. However, for the upper Mesaverde "Almond" UOA in the GGRB, averaging of values across the high-quality marginal-marine "Upper Almond" sandstones and the numerous lowerquality "Main Almond" units was not ideal. Such averaging produces a characterization that may not appropriately describe any part of the interval. Therefore, the solution was to prepare separate characterizations of the "best" and "rest" potential pay

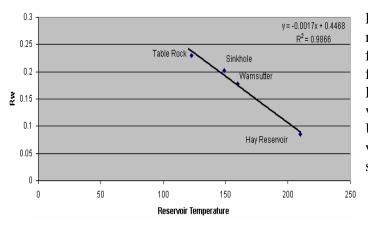
zones within that unit (Figure 13). Included within the "best" category are zones that would be most likely to be completed (commonly those marked by density-neutron cross-over). All lower-quality potential pay is assigned to "rest".

The intention of differentiating best and rest zones in the GGRB Mesaverde (including Almond, Ericson, and Lower Mesaverde UOAs) is to provide for more precise modeling of current industry behavior, and allow the analyses of technological advances that might allow more of the potential pay to be completed. GSAM does not currently have the capacity to utilize the "best vs. rest" distinction; however modifications to the model to better handle thick sequences of stacked reservoirs of varying quality are currently in planning.

# 4. Engineering Analysis Methodology

The engineering analysis was designed to provide data that could not be obtained directly from well log analysis. Data obtained or estimated for each UOA at either the township or quarter-township level include 1) pressure gradient; 2) temperature gradient; 3) water resistivity; 4) matrix permeability; and 5) fracture permeability overprint.




**Figure 14:** *Example maps of engineering parameters: Left – Reservoir pressure gradients per township for the Lower Mesaverde UOA, GGRB. Right - Reservoir temperature for the Frontier UOA, GGRB.* 

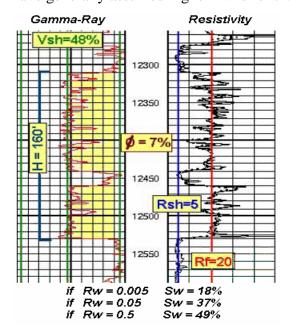
# **Reservoir Pressure**

Average reservoir pressure gradient for each UOA is based on information from previous work by Advanced Resources International in the GGRB as supplemented by new work. The data on reservoir pressure was assembled from a combination of individual pressure build-up tests on key wells supplemented by drilling mud-weight data. The mud-weight data was calibrated to actual well test data where possible. Where calibration was lacking, the conversion from mudweight to pressure gradient was accomplished by the following:  $P_{gradient} =$  Mud Weight X 0.0552. The resultant pressure gradient was then gridded throughout the study area to provide gradients at either a quarter- township or township scale. Pressure for each cell is then determined by multiplying gradient by mid-point drilling depth. This methodology provides accurate pressure estimations assuming that drilling is commonly in balance; overestimation of formation pressure may occur where drilling is typically accomplished overbalanced.

#### **Reservoir Temperature**

Temperature gradients for each UOA are based on an existing ARI databases supplemented by bottom-hole temperatures recorded on well logs. Temperature gradients were then gridded throughout each play area to provide estimates at the quarter-township or township scale. Reservoir temperature was determined for each grid cell by assuming a near surface temperature of 60 °F as follows:  $T_{reservoir} = 60 + (T_{gradient} * Depth)$ .




#### Formation Water Resistivity

**Figure 15:** A plot of four Rw values for published Lewis water analyses versus reservoir temperature

Formation water resistivity (Rw) data are needed to determine water saturation (Sw) from well log data. Unfortunately, Rw data for both the Greater Green River and Wind River basins are highly variable and not widely available. However, for the Lewis UOA, measured Rw's from four Lewis fields were available, and were converted to subsurface conditions using Arp's equation:

 $Rw_{reservoir conditions} = Rw_{surface} X$  $(T_{surface}+6.77)/T_{reservoir}+6.77)$ 

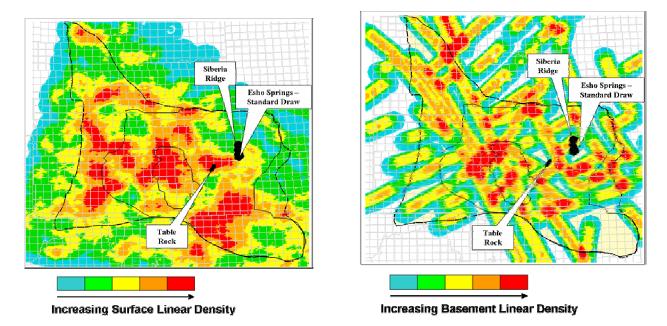
These data were plotted (Figure 15) and the resultant relationship (Rw = -0.0017T + 0.4468) was used to estimate Rw for all cells in the Lewis UOA. Unfortunately, reliable water chemistry data was not available for the remainder of the UOAs to allow similar determination of Rw. Therefore, the data used are primarily assumptions based on limited information (Table 5). We have generally assumed higher Rw's for those UOAs that are dominantly non-marine and lower



values for marine and near-shore UOAs. We have also generally assumed decreasing Rw with depth. For example, in the Frontier and Dakota UOAs in the GGRB, Rw was set to range from 0.04 for cells with the greatest drilling depths to 0.09 for those with the shallowest drilling depths.

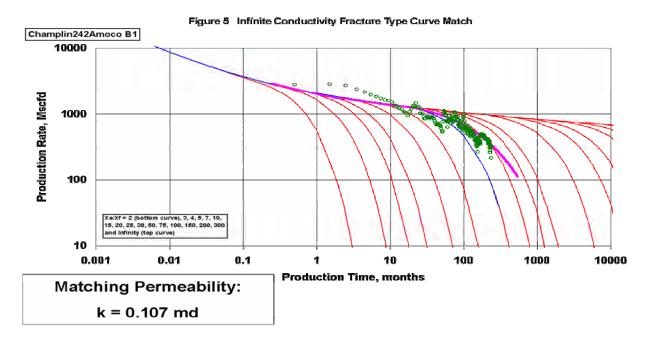
Figure 16 illustrates the dependence of calculated Sw on Rw. This observation underscores the potential error inherent in calculating Sw from log data without reliable Rw data. However, it unlikely that this practice produces greater error than the direct assumption of Sw. Therefore, we have elected to assume Rw, note the difficulties, and calculate Sw.

**Figure 16:** A typical log from the Lewis UOA showing the impact of various Rw assumptions on calculated Sw.


This allows us to use the observed variations in shale volume, shale resistivity, and formation resistivity to produce datasets with reasonable estimates of the regional variation in Sw. As noted above, final Sw estimates will be revised as new Rw data becomes available.

Greater Green Rive	er Basin	Wind River Basin		
Lance	0.10	Fort Union	0.40	
Lewis	Variable	Lance	0.35	
Almond	0.23	Meeteetsee-Mesaverde	0.25	
Ericson	0.70	Frontier	0.05	
Lower Mesaverde	0.23	Muddy-Lakota	0.05	
Frontier	0.04-0.09	Nugget	0.05	
Dakota	0.04-0.09	Tensleep	0.05	

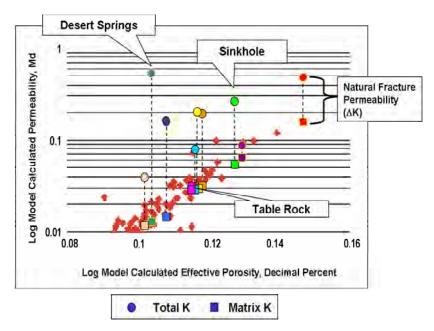
 Table 5:
 Water Resistivity Assumptions (Ohm-m)


# Effective Permeability

The pivotal element in providing datasets to model the future economics and productivity of these resources is an estimation of effective permeability. Although it is well known that matrix permeability in tight sandstones is commonly less than 0.01 millidarcies (md), to assume this value as the pervasive permeability for these formations would ignore the contribution of natural fracturing. Unfortunately, fracture permeability (or the overall effective permeability) is typically not reported or measured in the field. Therefore, finding a reasonable methodology to approximate the magnitude and aerial variability in effective permeability in areas that are largely unexplored is a significant challenge. Our solution for Phase I of this effort is to estimate structural complexity from remote sensing data, correlate that information to permeability in areas where data is present, and then estimate permeability in each grid cell of each UOA through the extrapolation of these data.



**Figure 17:** Two components in the calculation of structural complexity. Right: Basement component as determined from remote sensing data (magnetic and gravity): Left: Surface component based on density of mapped surface lineaments.

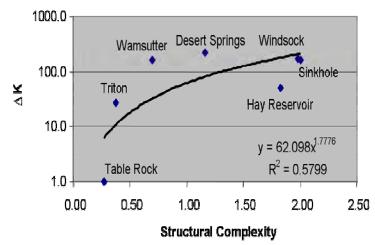

*Structural Complexity:* The structural complexity for each township was based on a combination of two sets of information. Mapped surface lineaments are used to determine density of surface features. Gravity and aeromagnetic data are used to interpret the location of basement features. The combination of these two, with unique corrections for the average relative location of each UOA with regard to surface and basement, is then used to derive a structural complexity score for each cell in each UOA. For example, the basement component is given more weight for the Frontier UOA than for the Lewis. The composite structural complexity score is assumed to correlate directly to the density of natural fractures. Figure 17 provides examples of these data for the Greater Green River basin.



**Figure 18:** Type curve match for the control well for Mesaverde UOAs in the Echo Springs field, eastern GGRB. Permeability assigned to this well (0.107 md) is assumed to be typical of the grid cell.

*Permeability Estimation in Control Data Sets:* The general basis for estimation of permeability is the detailed analysis of productivity and log character for a typical well extracted from as many as 10 sample fields per UOA. For each type well, logs were analyzed to establish net completed pay, porosity, gas saturation, pressure and temperature. Production profiles were then matched to type curves to establish an estimate of effective permeability (Figure 18) that represents the sum of both matrix and fracture contributions

*Permeability Estimation beyond Control Data Sets:* As no production profiles exist in much of the appraised area, our approach to extending the prediction of effective permeability beyond the vicinity of the control wells was to separately estimate both the matrix and natural fracture components in each grid cell of each UOA. Determination of matrix permeability was determined by simply applying the best available correlation with estimated porosity. This correlation is one established for the Almond sands in the eastern GGRB by Cluff (2000).

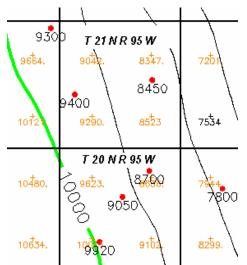



**Figure 19:** *Method for partitioning effective permeability into matrix and natural fracture overprint components. Example from the analysis of the Lewis UOA, GGRB.* 

Establishing the natural fracture contribution to permeability for each cell was accomplished through correlation with observed structural complexity as follows. For each control well, expected matrix permeability (based on control well porosity and water saturation) was subtracted from the effective permeability estimate derived from type curve matching to determine the natural fracture contribution. In the example provided as Figure 19, type curve matching returned an estimated effective permeability of approximately 0.27 md for the Lewis UOA at Sinkhole Field. Based on

analysis of logs from Sinkhole, 0.053 md of this total is interpreted to reflect matrix permeability. The remaining 0.217 md is therefore attributed to natural fracture overprint

*Correlation of Fracture Permeability to Structural Complexity:* Our methodology only has value if the estimates of structural complexity for the cells with control wells show a reasonable correlation to interpreted natural fracture permeability overprint. This test was conducted for the




**Figure 20:** Correlation of structural complexity and estimated natural fracture contribution to permeability (K) for 7 control fields in the analysis of the Lewis UOA. A similar comparison for the Fort Union UOA, WRB, found a similar correlation.

Lewis UOA (GGRB) and the Fort Union UOA (WRB). As shown in Figure 20, the correlation is respectable, and indicates the general utility of the methodology for the purposes of this study. That is, our method provides a reasonable approach to providing NETL's analytical models with realistic and areally-varying estimates of total effective permeability that recognize the contribution of natural fracturing. Clearly, however, this method does not have the resolution or accuracy to support the estimation of permeability at any given location, and is therefore not compatible with well siting.

## Dataset Preparation

The purpose of this effort is to produce a dataset for input into NETL's Gas Systems Analysis Model that reflects, as much as practical, the natural variety present in key reservoir parameters. To do this, it is necessary to divide the resource into a large number of separate packets, with each packet having unique information on pay thickness, porosity, drilling depth, permeability, and other key factors. Therefore, a critical step in the creation of the model input datasets is the merger of the geologic data (collected relative to specific well locations) and the engineering data (collected relative to full or quarter townships) into a regular, cell-based, database.

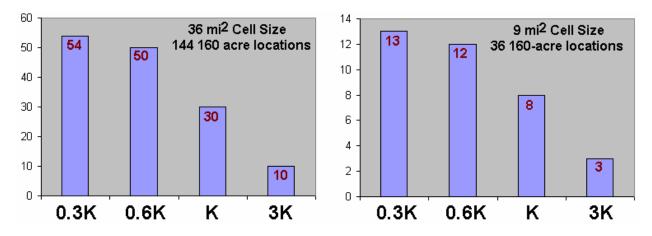


**Figure 21:** An example of a gridded dataset – in this case drilling depths. Red dots are well locations. Orange values mark the centers of grid cells - in this example, cells are 9 mi² in size. Each cell is assigned a unique depth based on computer extrapolation of scattered well data.

Figure 21 illustrates this process. The dataset of well-logbased values (red dots) is entered into computer software (EarthVision) and gridded (a typical first step in computer contouring programs in which values are interpolated at regular intervals from scattered data). To ensure that the program grids appropriately in areas of poor well control (and fills the entire play outline with data), roughly 20-40 "control" wells are created and added to the database for each UOA. These imaginary wells are placed along play boundaries, at the centers of interpreted structures, and in areas of poor well control in an effort to persuade the computer contours to match the geologic model.

The size of the grid cells used was 5,760 acres (equivalent to a quarter-township) for UOAs above the Cody Shale and 23,040 acres (full township size) for sub-Cody UOAs. Each volumetric parameter is gridded in this manner, producing a dataset that divides the entire resource into a large number of separate, and square, segments of equal size.

Finally, grid-cell level data were then converted into the

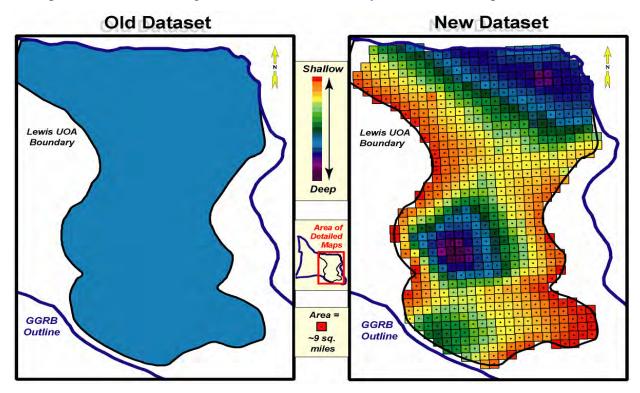

specific format required for model input. Model input files were edited to remove grid cells that fall outside the play area and to ensure that the entire play area was gridded. In addition, all cells within the play area that have been drained by previous production were removed. In accounting for past production, our convention was to remove all cells from which existing wells had produced from the subject UOA in more than 25% of the available well locations. We believe this approach should provide a conservative estimate of remaining resources.

# Distribution of Permeability within Grid Cells

The methodology described above was used to create a database characterizing roughly 8,000 unique resource packets, each with a unique combination of estimates for volumetric parameters, drilling depth, and matrix and effective permeability. Within each packet, therefore, a single characterization applies to all available drilling locations (equal to 36 160-acre locations per gird cell for UOAs above the Cody shale and 144 160-acre locations for those above – note that the.

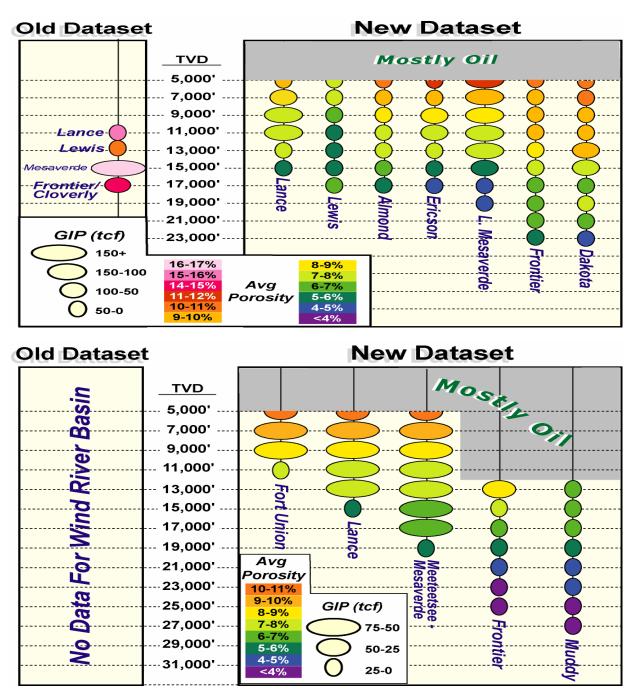
current spacing assumption (160-acres) can easily be modified as later analyses require). Given the large number of cells, using a single average to represent these small numbers of locations clearly provides more than enough detail for our modeling purposes. However, with regard to permeability, further data manipulation was warranted for two reasons.

First, the permeability methodology is likely to have provided numbers that are not truly typical of the grid cell. They are typical of the control fields they represent, however, it is likely that those fields represent slightly better productivity than the remainder of the cell in which they reside. Also, the data quality necessary for type curve matching was found to be more common in better-producing wells. Second, and more importantly, permeability is not likely to be uniform across a grid cell. Although this is likewise true of the volumetric parameters, permeability is expected to deviate over a much larger range, and these deviations (small numbers of very good wells and large numbers of poorer wells) will have a much greater impact on modeled productivity and recoverability. Therefore, for the estimation of permeability, each cell was further divided into four unequal segments, with a modified effective permeability assigned to varying number of available well locations. For example, assume a cell in the Frontier UOA (a 36-mi² cell holding 144 possible 160-acre well locations) is assigned a permeability of 0.1 from the structural complexity analysis. For modeling purposes, this cell is broken into four cells of unequal size. Permeability is then assigned as illustrated in Figure 22, with the largest of sub-cell (holding 54 of the 160 available well locations) assigned a permeability equal to 30% of the original cell estimate and the smallest cell (holding 10 of the 144 well locations) assigned a permeability 3 times the original estimate.




**Figure 22:** *Procedure for distributing a range of permeability within grid cells based on estimated average cell permeability.* 

# 5. Results


The primary result of this work is the construction of detailed and disaggregated resource characterizations for major gas accumulations in the GGRB and WRB. These datasets, and the methodology that produced them, are specifically tailored to allow meaningful analyses of the relative impact of alternative future technology, cost, and policy scenarios using NETL's Gas Systems Analysis Model (GSAM). By compartmentalizing the resource both geographically and vertically into thousands of discreet packets, these datasets capture the natural variation in drilling depth, porosity, water saturation, pressure, temperature, and permeability that are necessary for meaningful modeling of specific technologies.

Figures 23 and 24 illustrate the improved detail of the new resource characterizations relative to those previously existing in NETLs models. Figure 23 shows the extent of improved aerial detail for the Lewis UOA, eastern GGRB. Whereas pre-existing datasets described the entire area of the Lewis gas resource relative to a single estimate for many parameters (such as drilling depth, pressure, temperature, and others), the new datasets divide the area into hundreds of uniquely-described segments. Figure 24 further illustrates this point of increased resolution with regard to the distribution of resource within each UOA. For example, whereas previous datasets for the GGRB placed all 159 Tcf assigned to the "Mesaverde Play" at a common depth of 15,000 feet,



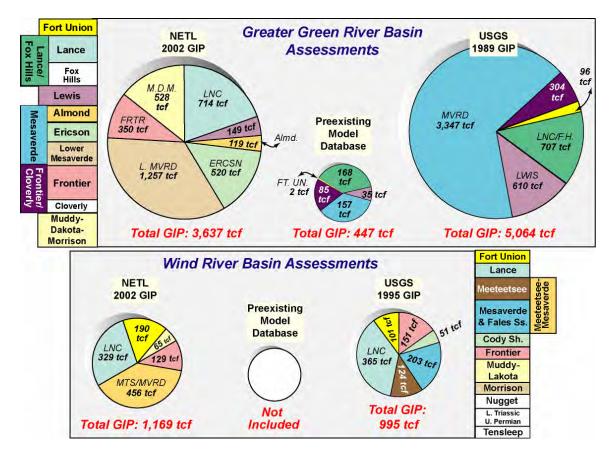
**Figure 23:** Comparison of previously-existing NETL model characterization (left) with dataset prepared in this study (right) with regard to description of drilling depth. Example is from the Lewis UOA, GGRB.

our new datasets divide more than 1,800 Tcf of in-place "Mesaverde" resource into three UOAs (Almond, Ericson, Lower Mesaverde), each with resources distributed in accordance with the true structure of the basin.



**Figure 24:** Schematic comparisons of previous and new datasets relative to the distribution of resource with depth in 12 UOAs; Top – GGRB, Bottom – WRB. Previous datasets had less stratigraphic detail and placed all resources in each unit at a single depth. New datasets distribute depth among more units and across the full natural range of depth. Similar improvement is found relative to other parameters, including pressure, porosity, permeability, and water saturation. Note that previous datasets contained no Wind River basin resource.

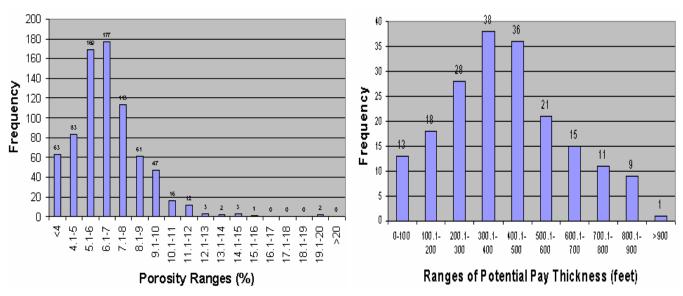
# **Volumetrics**


The results of the volumetric analysis are summarized in Table 6 and Figure 25.

identified as potential pay over all	Greater Green River Basin UOAs						
	Lance	Lewis	Almond	Ericson	L. Msvd	Frontier	Dakota
Area (thousands of acres)	5,247	4,332	8,363	8,484	9,066	11,128	11,796
Avg. Thickness (ft.)	341	82	27	119	305	46	55
Avg. Porosity (%)	8	7	9	9	8	8	8
Avg. Water Saturation (%)	58	61	62	53	58	39	35
Avg. Drilling Depth (Ft.)	8,628	10,104	9,882	9,729	10,778	14,511	14,629
Avg. Pressure (psi)	4,322	5,232	5,430	5,322	5,739	8,498	9,592
Avg. Temperature (°F)	164	181	179	177	189	249	250
Avg. Z-Factor	0.99	1.05	1.03	1.06	1.06	1.39	1.40
In-place Resource (Tcf)	714	149	120	519	1,257	351	528
Resource below 15,000' (Tcf)	0.7	8	5	24	201	145	212
			Wind 1	River Basin	UOAs	L	L
	F Union	Lance	M-Mvd	Frontier	M-Lak	Nugget	Tensleep
Area (thousands of acres)	1,094	1,267	1,480	1,613	1,866	1,682	4.045
	1,021	1,207	1,400	1,015	1,000	1,062	1,247
Avg. Thickness (ft.)	408	560	524	135	53	76	1,247 285
Avg. Thickness (ft.)Avg. Porosity (%)	,	·	· ·	,	,	,	-
<b>2</b>	408	560	524	135	53	76	285
Avg. Porosity (%)	408 10	560 9	524 8	135 6	53 6	76 5	285 6
Avg. Porosity (%)Avg. Water Saturation (%)	408 10 56	560 9 50	524 8 42	135 6 41	53 6 35	76 5 *	285 6 *
Avg. Porosity (%)Avg. Water Saturation (%)Avg. Drilling Depth (Ft.)	408 10 56 8,240	560 9 50 10,003	524 8 42 12,021	135 6 41 18,931	53 6 35 20,058	76 5 * 19,485	285 6 * 20,458
Avg. Porosity (%)Avg. Water Saturation (%)Avg. Drilling Depth (Ft.)Avg. Pressure (psi)	408 10 56 8,240 3,663	560 9 50 10,003 4,736	524 8 42 12,021 7,410	135           6           41           18,931           12,219	53 6 35 20,058 13,585	76 5 * 19,485 13,444	285 6 * 20,458 14,184
Avg. Porosity (%)Avg. Water Saturation (%)Avg. Drilling Depth (Ft.)Avg. Pressure (psi)Avg. Temperature (°F)	408 10 56 8,240 3,663 175	560 9 50 10,003 4,736 200	524 8 42 12,021 7,410 228	135         6         41         18,931         12,219         325	53 6 35 20,058 13,585 340	76 5 * 19,485 13,444 372	285 6 * 20,458 14,184 387

**Table 6:** Gas-in-place and average volumetric parameters for GGRB and WRB UOAs. Average values refer only to the potential pay in each grid cell. For example, 7% porosity means that the average porosity of the zones identified as potential pay over all grid cells is 7%. Total values are the aggregate values for all grid cells.

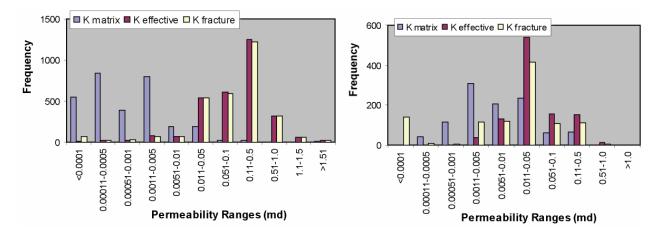
*not estimated due to insufficient data


The volume of gas present within each UOA was calculated on a per grid-cell basis. Average Z-factors were determined for each cell assuming 0.65 gravity pure methane gas using a modified form of Drunchak's equation coded into a Microsoft Excel function. In general, this study confirms past accounts of vast volumes of natural gas existing in these two basins (see Figure 25 for comparison to previous estimates). Specifically, we estimate approximately 4,800 Tcf of gas exists in-place within the appraised formations and areas of the Greater Green River (3,635 Tcf) and Wind River (1,169 Tcf) basins. The majority of this resource lies within the thick, dominantly fluvial sections of the Lance, Ericson, and Mesaverde UOAs of the GGRB and the Fort Union, Lance, Mesaverde-Meeteetsee UOAs of the WRB. Of this total, approximately 900 Tcf lies at depths below 15,000 feet. Figure 25 also compares the total gas-in-place estimates for



**Figure 25:** Summary of the gas-in-place results of this study ("NETL 2002 GIP") with in-place resource characterizations previously available to NETL's analytical models databases and the findings of previous USGS gas-in-place studies (GGRB, 1989; WRB, 1995). Top: Results for the Greater Green River basin; Bottom: Results for the Wind River basin. Color keys to pies are provided. Pie size is proportional to total in-place resource.

each UOA with the estimates previously utilized by NETL's analytical models for technology modeling. These previous estimates were based primarily on United States Geological Survey (USGS) estimates of technically-recoverable volumes from the 1995 National Assessment.


The volumetric results presented above present the sum total resource present in more than 8,000 separately-characterized resource segments, allowing the construction of histograms of the distribution of key volumetric parameters for representative UOA. Figure 26 provides some examples of these data - additional data are provided in charts and figures found separately on this CD. These distributions reveal the natural range and variety that exists for each of the critical parameters. For example, the left chart on Figure 26 shows the number of grid cells in the Lewis UOA, GGRB, that are assigned porosities in 1%-increments ranging from 4% to 20%. The plot shows a feature typical of many UOAs; values are not normally distributed around the average, but are instead slightly skewed to the lower values. The chart to the right, showing the distribution in potential pay thickness for the Fort Union UOA, Wind River basin, shows a similar skewing, as well as the common distribution of pay thickness across a large range (here nearly an order of magnitude).



**Figure 26:** *Example histograms of volumetric parameters. Left – Histogram of potential pay thickness, Fort Union UOA, WRB. Right -Histogram of Porosity distribution in the Lewis UOA, GGRB.* 

#### **Resource Recoverability**

Key to determining resource recoverability are our estimates of effective permeability. The distribution of estimated permeability shown in Figure 27 for the Lewis and Meeteetsee-Mesaverde UOAs are typical of those for all analyzed UOAs. Matrix permeability is commonly very low, less than 0.01 md, and often less than 0.001 md. However, total effective permeability spans a wide range. Values ranging upwards to 1 md (relatively rare) are present, with many cells assigned values in the range of 0.05 md.



**Figure 27:** Distribution of matrix, natural fracture, and total effective permeability in two representative UOAs. Frequency refers to the number of ¹/₄-township grid cells. Left – data from the Lewis UOA, GGRB; Right – data for the Meeteetsee-Mesaverde UOA, WRB.

Given the improved resource description and various input assumptions describing E&P technologies and costs, NETL's Gas Systems Analysis Model is used to estimate resource recoverability. GSAM's "technically-recoverable" resource is that portion of the in-place resource that can be extracted given current technologies and drilling practices without regard to price. GSAM also allows estimation of "economically-recoverable" resources through its assignment of a unique Minimum Acceptable Supply Price (MASP) to each resource segment (each grid cell in each UOA). The MASP is that price at which net present value for production of that resource equals zero (when long range production income balances costs at the assumed hurdle rate). Therefore, the economically-recoverable resource can be calculated for any given price, and will equal the sum of the technically-recoverable resources in all cells with MASP at or below that price. It should be noted, however, that the primary goal of GSAM is to estimate the *relative* merits of various alternative R&D approaches. Consequently, the absolute values for outputs such as recoverable resource for any particular case are not necessarily as meaningful as the magnitude and direction of change in these numbers between cases.

Parameter	Marginal	Basinal UOAs	Fluvial UOAs	Thick Fluvial		
	Marine UOAs			UOAs		
Drilling Cost	Set at JAS 2000 regional cost per foot relative to UOA drilling depth					
Stimulation Efficiency	60%: As thi	s number increase	s, the cost of obtai	ining induced		
		fractures of a give	n length decrease	•		
<b>Operating/Maintenance</b> Costs		\$8,963/well	+ \$1.04/foot			
Discount Rate	25%: Repres	ents the hurdle rai	te imposed on all p	projects by the		
		oper	ator.			
Dry Hole Rate	0%: As every cell presented to the model contains some gas, there					
		y holes, however -	0 0 0	•		
		e will be "dry" as				
	to supp	ort drilling, comp	letion, or operatin	g costs.		
Productivity* (% of AOF)	25% 20% 20% 15%					
Skin Factor		/ 4	2			
Induced Fracture Half-length		300	feet			
Induced Fracture Conductivity		100 m	nd-feet			
Minimum System Pressure	150 psi					
Well Spacing	160 acres					
Recovery Factor	50%	50%	20%	20%		

**Table 7**: Selected base case components for GSAM analyses of the new GGRB and WRB datasets

Explanation: Marginal-marine UOAs = Almond, Frontier-GGRB, Frontier- WRB; Basinal UOA = Lewis; Fluvial UOAs = Dakota-GGRB, Ericson-GGRB, Muddy-WRB; Thick Fluvial UOAs = Lance-GGRB, Lower Mesaverde, Fort Union, Lance-WRB, Meeteetsee-Mesaverde.

The results from GSAM, as from any model, are tied fully to the modeling assumptions incorporated into the "base case". In this study, the base case used reflects our attempt to represent current technology and costs. For the initial analyses of the GGRB and WRB datasets, we have produced a base case (Table 7) designed to capture the distinction between the expected drainage and productivity of 1) exceptionally thick fluvial UOAs (Lance, Lower Mesaverde, Fort Union, and Meeteetsee-Mesaverde), 2) thinner fluvial sections (Ericson, Dakota, Muddy), 3) marginal marine UOAs (Almond, Frontier) and 4) basinal UOAs (Lewis). Two model levers were used in creating this distinction. The first lever is a "productivity" parameter in GSAM that controls the percentage of calculated absolute open flow that will be produced. This lever is

intended to account for various factors, including well flow restriction and less than full completion of the total available pay. The lever is set at lower values for thicker units to recognize the fact that lesser portions of the total available pay are likely to be completed. The second lever accounts for variations in recovery efficiency (the % of the spacing area to be drained) and recognizes the inherently higher lenticularity of fluvial units.

Table 8 provides GSAMs estimates of base case technically-recoverable resources for each UOA as calculated by GSAM. Note that the Nugget and Tensleep UOAs in the Wind River basin were not analyzed due to lack of sufficient data. The estimates for base case economically-recoverable resources at \$2.00/mcf and \$3.50/mcf gas prices are also presented.

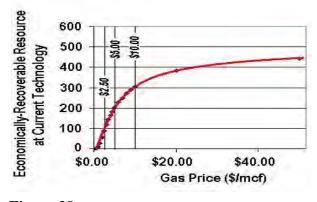
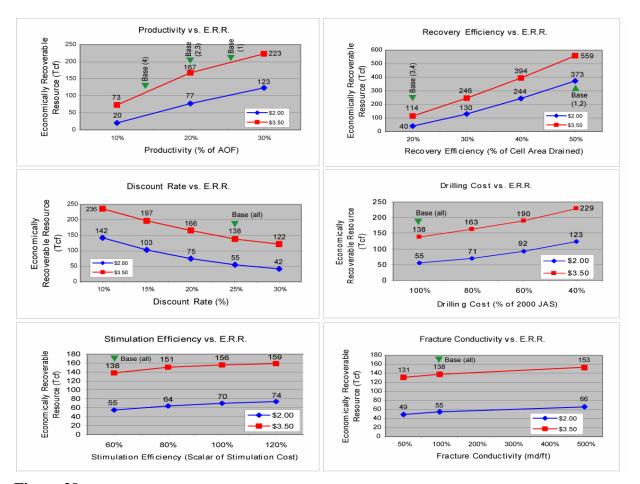

Greater Green River Basin				Wind River Basin			
UOA	Technically-	Economic	Economic	UOA	Technically-	Economic	Economic
	Recoverable	@ \$3.50	@ \$2.00		Recoverable	@ \$3.50	@ \$2.00
Lance	68	46	18	Fort Union	18	10	4
Lewis	33	18	12	Lance	29	11	5
Almond	27	8	3	MeetMvrd.	37	9	2
Ericson	44	11	4	Frontier	32	3	<1
L.Mesaverde	95	21	6	Muddy	6	<1	<1
Frontier	59	<1	<1				
Dakota	37	1	<1				
TOTAL	363	105	43	TOTAL	122	33	12

 Table 8: GSAM estimates of technically and economically-recoverable resources in each UOA. Values in Tcf.

GSAM's estimates of 363 Tcf technically-recoverable and 105 Tcf economically-recoverable (at \$3.50/mcf price) for the Greater Green River basin significantly exceed the estimates of the USGS in association with the 1995 National Assessment (119 technically-recoverable and 3.3 Tcf economically-recoverable at \$3.34/mcf gas price). A 2002 update by the USGS has further reduced the GGRB estimate to 82 Tcf of technically recoverable resource. The differences stem from employing alternative methodologies, different geologic models, and different assumptions. The fact that USGS produces a more conservative answer than our methodology is to be expected when the methodologies are compared. USGS estimates for continuous-type plays are based on the extrapolation of past production history to that play's remaining untested regions and therefore, is influenced by the past economic decisions of operators. These decisions include what technologies to use, whether to complete the well and in what zones, and when to shut-in. In contrast, GSAM's estimate of technically recoverable resource is based on the fundamental reservoir geology modeled under current technology conditions and assuming full resource development. Nonetheless, the GSAM estimate does recognize the practical limits of technical recoverability by including factors that limit recovery factor and productivity (see Table 7.)

# **Technology Sensitivities**


These new characterizations of marginal and sub-economic gas resources were completed primarily to help assess the relative potential of alternative R&D approaches to improve the resource's technical and economic recoverability. Consequently, the most significant outcome of these GSAM analyses is the indication that the resource recoverability is not fixed, but is instead very highly sensitive to changes in both technology and economic conditions. Figure 28

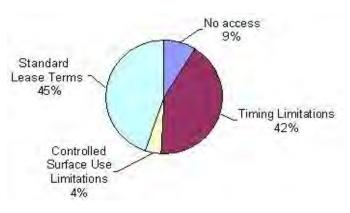


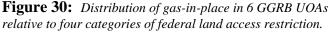
**Figure 28:** Economically-recoverable resource versus gas price for the GGRB and WRB datasets

shows how economically-recoverable resource varies with gas-price. For example, at a wellhead gas price of \$2.50/mcf, 89 Tcf of the assessed resource in the GGRB and WRB is economic; however, this volume more than doubles to nearly 200 Tcf at a price of \$5.00/mcf. This sensitivity to price clearly translates directly into sensitivity to technology advance. Figure 29 details the sensitivity of the economically-recoverable resource to potential changes in six representative GSAM technology/cost parameters. For example, GSAM predicts the addition of roughly 15 Tcf

to the economically-recoverable resource (at \$3.50/mcf price) for every 10% reduction in drilling costs. Similarly, each 10% improvement in stimulation cost efficiency adds approximately 8 Tcf to economically-recoverable volumes. These findings indicate that realistic technology advance can have a profound impact on the future recoverability of these resources.




**Figure 29:** Sensitivity of GSAM estimates of economically-recoverable resources to incremental changes in key model parameters that are used to represent technology advance. The green triangles indicate the settings for these values for unique portions of the base case ("1" = marginal marine UOAs, "2" = basinal UOAs, "3" = fluvial UOAs, and "4" = thick fluvial UOAs.


# Distribution of Gas-in-Place Resource Relative to Federal Land Access Stipulations in the GGRB.

This study provides a detailed geographic depiction of natural gas resources in the Greater Green River and Wind River basins. In addition to supporting the modeling of technologies, this detail provides an opportunity to assess fully the distribution of resources relative to various classes of Federal land access.

To accomplish this, NETL's work on resources has taken advantage of the results of an ongoing inventory of Greater Green River basin federal land access stipulations being conducted pursuant to the Energy Policy and Conservation Act (EPCA) Amendments of 2000. The study is being performed by Advanced Resources International (ARI) for the EPCA Interagency Team that which includes the

Department of Interior (Bureau of Land Management, U.S. Geological Survey), Department of Agriculture (Forest





Service), and Department of Energy (Energy Information Agency and Office of Fossil Energy). For each grid cell in each UOA of the GGRB, we have determined the percentage of gas-in-place resource that falls within four Federal leasing and land use categories, as follows (Figure 30):

• *No Access to Resources* includes four EPCA access categories: (1) no leasing due to statutory or executive order restrictions; (2) no leasing, due to land pending use planning actions; (3) no leasing, due to local (administrative) restrictions; and (4) leasing allowed, but surface occupancy restrictions make access impractical

Under current legislation or land use plans, these Federal Land areas are "off limits" to oil and gas development. Changes to portions of these land use categories may occur over time, but no reliable means exists on how to forecast this on a township/play level basis.

Future updates of EPCA would provide new information that would be incorporated to update the NETL database on Federal land use and access. Sensitivity runs with GSAM could be used to examine policies or technology that would relax the no leasing or access constraint.

- *Leasing, with Drilling/Development Timing Limitations* also contains four EPCA access categories:
  - Drilling limitations of 9 months, an extremely small category.
  - Drilling limitations of 6 to 9 months, a moderate size category.
  - Drilling limitations of 3 to 6 months, the largest and dominant category.

- Drilling limitations of less than 3 months, a very small category.

Assessing the impact of this category of restrictions is complicated by the fact that, about 40% of the time, drilling limitations can be waived to expand the drilling time window. However, on average, lands falling within these categories are available for drilling only 8 months of the year. This restriction has significant implications for reducing the pace of development and adds costs for extra rig-move or stand-by time.

- *Leasing, with Controlled Surface Use Restrictions* is an EPCA Federal land use category that represents stipulations that add significant costs in addition to those existing under standard leasing terms.
- *Leasing, Standard Lease Terms.* These Federal lands contain standard lease terms which impose significant costs for environmental compliance.

The gas resources in each Federal land use category were summed to determine the total gas-inplace resource present by stipulation category. The results (Figure 26) show about half (45%) of the total gas-in-place in the GGRB is available under standard lease stipulations. Of the 55% of resource carrying restrictions, 42% are timing restrictions, 4% are controlled surface usage stipulations, and 9% are resources that are restricted from leasing.

UOA	No Access	TimingControlledLimitationsSurface Use		Standard Lease Terms
			Limitations	
Lewis	7% (10 Tcf)	36% (54 Tcf)	5% (7 Tcf)	52% (77 Tcf)
Almond	11% (12 Tcf)	38% (42 Tcf)	7% (8 Tcf)	44% (49 Tcf)
Ericson	9% (45 Tcf)	45% (233 Tcf)	3% (16 Tcf)	43% (221 Tcf)
Lower Mesaverde	11% (134 Tcf)	40% (494 Tcf)	4% (45 Tcf)	46% (570 Tcf)
Frontier	7% (22 Tcf)	49% (164 Tcf)	3% (9 Tcf)	41% (138 Tcf)
Dakota	8% (37 Tcf)	45% (217 Tcf)	4% (19 Tcf)	43% (209 Tcf)

Table 9: Gas resources relative to four categories of land access for six GGRB UOAs.

Table 9 provides this information at the UOA scale, showing the variation in percentages that reflect the differences in the distribution of resource among various geologic units. For example, resources in the Lewis UOA, located exclusively in the eastern half of the basin, show significantly less restriction that those of other plays with wider geographic distribution.

## Next Steps

Our analyses indicate that approximately 4,800 Tcf of natural gas exists in-place in the subject intervals of the Greater Green River and Wind River basins. Going forward, this resource characterization will be subjected to numerous analyses using NETL's analytical models to determine how recoverability of this resource relates to various scenarios of future technological progress. In addition, NETL will continue to support efforts that analyze the impact of federal land access stipulations, recognizing the potential of future technology/cost/policy scenarios to significantly expand the technical and economic recoverability of this resource.

In October, 2002, NETL kicked off Phase II of this effort, consisting of similar resource characterization studies of the marginal and sub-economic resources of the Anadarko (Oklahoma-Texas) and Uinta (Utah) basins.