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Abstract. Using 3D test particle simulations, the characteristics and essential conditions

under which an electron, in a vacuum laser beam, can undergo a capture and

acceleration scenario (CAS). When 0a �100 the electron can be captured and violently

accelerated to energies �1 GeV, with an acceleration gradient �10 GeV/cm, where

cmeEa eω/00 =  is the normalized laser field amplitude. The physical mechanism behind

the CAS is that diffraction of the focused laser beam leads to a slowing down of the

effective wave phase velocity along the captured electron trajectory, such that the

electron can be trapped in the acceleration phase of the wave for a longer time and thus

gain significant energy from the field.

PACS number(s): 41.75.Jv, 42.50.Vk, 42.65.Sf



The rapid development of intense laser technology in recent years has stimulated

many frontier research areas in both applied and fundamental physics [1,2]. Among

them, the far-field laser acceleration of free electrons in vacuum has received wide

attention [3]. Along this line, we study a laser-electron interaction model with a realistic

laser beam and electrons injected upon the laser beam. The electron energy change due

to the interaction is investigated by utilizing a 3D-computer simulation code to solve the

relativistic Newton-Lorentz equation of motion [4]. As previously noted in simulations,

although not fully understood, the most surprising and meaningful result is that when

0a � 100, the electron can be captured and violently accelerated to energies �1 GeV,

with an acceleration gradient �10 GeV/cm, where cmeEa eω/00 =  is a dimensionless

parameter specifying the magnitude of the field, e− , me are the electron charge and

mass, respectively, c is the speed of light in vacuum, and ω is the angular frequency of

the electromagnetic wave [4,5]. We call this process CAS (Capture & Acceleration

Scenario). In the CAS regime, the energy gain is found to scale as a0
2. In this Letter, a

physical understanding and a comprehensive numerical study of the CAS process is

presented.

The numerical simulation methods used here are similar to those we have used

previously [4,5]. The laser beam we adopted is the lowest-order Hermite-Gaussian (0,0)

mode with analytical expressions in the paraxial approximation, and is polarized in the

x-direction and propagates along the z-axis. It should be pointed out that the results

given in this paper are found to be correct even if the high-order corrections to the

paraxial expressions for continuous Gaussian beams [6,7] are taken into account.

For the case of a laser with a finite pulse duration τ, the paraxial field components

can be multiplied by a time envelope profile )( zctf − , assumed to be Gaussian  [8]
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where additional corrections to the fields of order 1/ωτ have been neglected. Obviously,

τ→∞ in the time envelope factor )( zctf −  corresponds to the case of continuous laser

beams. Esarey et al. [9] have derived solutions to the wave equation valid for laser

pulses of ultra-short duration. They find, for example, that the field envelope travels

with a group velocity gv , i.e., )( ztvf g − , where 2
0

2/21/ wkcvg −=  near the laser

focus, k =ω /c, and w0 is the laser spot size at focus. This effect can be neglected,

however, provided that the envelope slippage )/1( cvzL g−=∆  is small compared to the

pulse length τcL =  over the interaction distance z . This implies RZzkL />>  (or

kL >>1 since z ZR≈ ), where 2/2
0kwZR =  is the Rayleigh length.

We use a four-dimensional energy-momentum configuration to specify the

electron state ( zyx PPP ,,,γ ), where the Lorentz factor γ  and the momentum iP  are

normalized in the units of 2cme  and cme , respectively. Also, throughout the paper, time

and length are normalized by ω/1  and 1/k , 0φ  is the wave initial phase,

)(tan 1
zixi PP−=θ  is the electron injection angle with respect to the z-axis and 

0b  the

impact parameter. The electron dynamics are governed by the following relativistic

Newton-Lorentz equations.
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where V is the electron velocity in the unit of c. Without losing generality, we assume

that the pulsed beam center reaches the point x=y=z=0 at t=0, and 
dt∆  specifies the

relative delay between the laser pulse and the electron [6]. The incoming and outgoing

energy and momentum of the electron are denoted by ),,,( ziyixii PPPγ and

),,,( zfyfxff PPPγ , respectively.

Our study shows that the CAS electron dynamic regime emerges only when the

laser intensity is strong enough, 
0a �100, and when the electron injection angle



)/(tan 1
zixi PP−=θ  is sufficiently small. The phase space of the electron incoming

momenta required by CAS is not small and readily achievable in experiments.

Especially, the optimum incident momentum is not very sensitive to the laser intensity,

and can be in the range 12.5-17.5 MeV. Fig.1 shows two typical cases of electron

dynamics, i. e., CAS trajectory and the electron inelastic scattering (IS). A stationary

laser field (continuous laser beam) with intensity 0a =100 was used. Other parameters

are 0w =150, xiP =3.5, yiP =0, ziP =35, 0b =0. Fig.1(a) shows electron trajectories in the x-

z plane. It clearly indicates whether the electron is captured or scattered by the laser

beam. In Fig.1(b), we present the electron energy γ as a function of time. Fig.1(c) shows

the variation of the laser phase ϕ experienced by an electron during the interaction. For

the CAS, the electrons can be captured into the intense field region rather than expelled

from it and the captured electrons can be accelerated to GeV energies with acceleration

gradients of tens of GeV/cm.

Fig.2 shows that the electron outgoing energy fγ  as a function of the relative delay

time dt∆ . Without losing generality, we chose 0φ =0, τ=500 and other parameters are

the same as those in Fig.1. Fig.2 corresponds to the case of an incident electron bunch,

but only those electrons moving in the x-z plane ( 0b =0) in the bunch are taken into

account. Obviously, the output of the acceleration mechanism is a GeV electron macro-

pulse that consists of many micro-pulses. Each of the micro-pulses has the same shape-

factor which can be seen from the insets of Fig.2. The macro-pulse corresponds to the

duration of the laser pulse, and the micro-pulse to the periodicity of the laser wave.

Those output features are analogous to that of conventional linacs.

For a realistic incident electron bunch with a certain width (spot size), we have to

study the dependence of the acceleration effect on the impact parameter 
0b . Fig.3 shows

that the electron maximum outgoing energy 
maxfγ  (

maxfγ  is the maximum fγ  in the

whole phase range φ π0 0 2∈ [ , ]) as functions of the impact parameter 
0b  and the relative

delay time 
dt∆ . Other parameters are the same as those in Fig.2. From Fig.3, we see

that the output electron bunch has a large (100%) energy spread with energies in excess

of a GeV. Furthermore, the bunch can have a physical size comparable to that of the

laser pulse.  Provided the incident electron bunch is formed with a size comparable to,



or less than, that of the laser pulse, the total fraction of electrons captured and

accelerated to GeV energy by the CAS mechanism can reach more than 20%. Thus we

see that the CAS accelerator mechanism is fairly efficient. Combined with an extra-high

acceleration gradient and stable output, the CAS mechanism is an attractive alternate to

plasma-based laser acceleration schemes [2].

Although the energy gain in the CAS regime scales as a0
2, it cannot be described by

a time-averaged ponderomotive model [10] or by a simple linear acceleration model

[11]. Simulations [12] comparing the solution of a time-averaged ponderomotive model

to the full (not time averaged) Lorentz equations of motion indicate that the

ponderomotive model is fairly accurate in the regime a0 <10. However, in the CAS

regime (a0 >50), the ponderomotive model is found to be highly inaccurate and predicts

low energy gains (< 50 MeV).

To explain the mechanism leading to large energy gains in CAS, it is instructive to

observe the phase variation experienced by the electron in the wave field. The most

prominent feature of Fig.1(c) is that the phase experienced by the CAS electron varies

extremely slowly even in the early acceleration stage. As we know, the phase slippage

velocity of an electron in a vacuum electromagnetic plane wave field can be

approximately estimated by )2/( 2
//γω c , where 2

//// 1/1 V−=γ  and //V  is the velocity

along the wave propagation direction. Thus it would be expected that when //γ  is not

large, as in the early acceleration stage, there should be noticeable phase slippage. To

study the physical basis of this phenomenon, we note that the laser field concerned is

not a plane wave, but a Gaussian beam field where the radius of the curvature varies due

to the diffraction effect of the optical beam. The phase of a Gaussian beam field is [10]
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where φ( ) tan ( / )z z ZR= −1  is the Gouy phase shift, and the radius of the curvature

R z z Z zR( ) ( / )= +1 2 2  first decreases from z=0 to RZ , and then increases from RZ  to

infinity. The wave phase velocity along a particle trajectory can be calculated via

∂
∂
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where JV )( ϕ  is the phase velocity of the wave along the trajectory and ( )∇ ϕ J
 the

gradient of the phase field along the trajectory.

Fig.4(a) denotes the effective phase velocity along the electron dynamic trajectory

JV )( ϕ  for the cases of CAS (solid line) and IS (dotted line). Fig.4(b) and Fig.4(c)

compare the wave phase velocity along the electron trajectory with the electron velocity

for CAS and IS, respectively. From Fig.4(c) we can see the wave phase velocity for the

IS trajectory is much faster than the electron dynamic velocity. Thus the electron phase

slippage in the wave will be very fast as shown in Fig.1(c). As a consequence, the

electron cannot get considerable net energy gain from the laser field. In contrast to that,

from Fig4(b), we see that in the path between 0 and RZ , the wave phase velocity of the

CAS trajectory is even less than the electron velocity, and in the following path, the

effective phase velocity is kept very close to the electron velocity. This is the reason that

the phase slippage of the electron in the wave field remains extremely low.

Consequently, the electron can be trapped in the acceleration phase for long times to

gain considerable energy from the laser field.

In summary, use is made of 3D test particle simulations to study the motion of

free electrons in an intense laser field. The most prominent feature of those dynamic

trajectories is that the incident electron can be captured into the intense field region,

rather than expelled from it as predicted by the conventional ponderomotive potential

model. Violent acceleration to energies in excess of a GeV in few centimeters results.

The output of the CAS acceleration mechanism is a relativistic electron macro-pulse

(the duration of the laser pulse) composed of many micro-pulses (the periodicity of the

laser wave). The physical mechanism underlying the CAS is that when an electron is

captured, due to laser diffraction near the focus, the effective wave phase velocity along

the dynamic trajectory of the captured particle can be less than c, or even less than the

speed of the particle. Thus the captured electron can be kept in the acceleration phase of

the wave for long times, and gain considerable energy from the laser field. It is also

found that the emergence of CAS trajectories is sensitive to the laser wave phase

experienced by the incident electron when it reaches the laser intense region. Provided

the incident electron bunch is formed with a size comparable to, or less than, that of the

laser pulse, the total fraction of electrons captured and accelerated to GeV energy by the

CAS mechanism can reach more than 20%. For some applications, the large spread in



energies in the bunch is not acceptable and will require an electron spectrometer or

tailoring the input electron beam, i.e., restricting its initial position, angle, and pulse

structure.
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FIG. 1. Two typical cases of electron dynamics. Capture and acceleration scenario

(CAS) is given by the solid line and inelastic scattering (IS) is given by the dotted line.

A continuous laser beam with field intensity 0a =100 is used. Other parameters are

k 0w =150, kZR=11,250, xiP =3.5, yiP =0, and ziP =35. In the electron capture case, we

terminate the calculation at ωt = ×3 105. (a) Electron trajectories in the x-z plane. The

dot-dashed lines show the space profile of focused laser beam. (b) Electron energy γ as

a function of time. The inset is the enlargement of the region denoted by the arrow

shown in Fig.1(b). (c) The laser wave phase experienced by the electron as a function of

time.
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FIG. 2. Dependence of the electron final energy fγ  on the relative delay time dt∆

when 0φ =0. A pulsed laser beam with ωτ =500 is used. Other parameters are the same

as those in Fig.1. The insets are the enlargement of the parts denoted by the arrows

shown in Fig.2.



FIG. 3. The electron maximum outgoing energy maxfγ  as a function of dt∆  and the

impact parameter 0b . Other parameters chosen are the same as those in Fig.2
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FIG. 4. (a) Variation of effective phase velocities of Gaussian laser waves along

electron trajectories of CAS (solid line) and IS (dotted line) respectively. (b) Wave

phase velocity along the CAS trajectory (solid line) compared with the electron’s

velocity (dotted line). (c) Same as Fig4(b) but for IS. The parameters chosen are the

same as those in Fig.1


