
UCR L-JC-120490
PREPRINT

Using Distributed OLTP Technology in a
High Performance Storage System

D.S. Fisher
T.W. Tyler

This paper was prepared for submittal to the
Fourteenth IEEE Symposium on Mass Storage Systems

Monterey, CA
September 11-14,1995

March 1995

Thisisa preprintofapaperintendedforpublication ina jwrnaiorproceedings. Since
changes may be made before publication, this preprint is made available with the
understanding that it will not be cited or reproduced without the permission of the
author.

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government nor the
University of California nor any of their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States
Government or the University of California, and shall not be used for advertising
or product endorsement purposes.

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

Using Distributed OLTP Technology
in a High Performance Storage System

Abstract

Tenill W. Tyler
IBM Government Systems

Houston, Texas

David S. Fisher
Lawrence Livermore National Laboratory

Livermore, California

The design of scaleable mass storage systems requires
various system components to be distributed across
multiple processors. Most of these processes maintain
persistent database-type information (i.e., metadata) on the
resources they are responsible for managing (e.g., bitfiles,
bitfile segments, physical volumes, virtual volumes,
cartridges, etc.). These processes all participate in
fulfilling end-user requests and updating metadata
information.
A number of challenges arise when distributed processes
attempt to maintain separate metadata resources with
production-level integrity and consistency. For example,
when requests fail, metadata changes made by the various
processes must be aborted or rolled back. When requests
are successful, all metadata changes must be committed
together. If ail memdata changes Cannot be committed
together for some reason, then all metadata changes must
be rolled back to the previous consistent state. Lack of
metadata consistency obviously jeopardizes starage system
integrity.
Distributed on-line transaction processing (OLTP)
technology can be applied to distributed mass storage
systems as tbe mechanism for managing the consistency
of distributed metadata. OLTP concepts are familiar to
many industries such as banking and financial services but
are less well known and understood in others such as
scientific and technical computing. However, as mass
storage systems and other products are designed using
distributed processing and data-management strategies for
performance, scalability, and/or availability reasons,
distributed OLTP technology can be applied to solve the
inherent challenges raised by such environments.
This paper briefly discusses the general benefits in using
distributed transaction processing products. Design and
implementation experiences using the Encina OLTP
product from Transarc in the High Performance Storage
System are presented in more detail as a m e study for
how this technology can be applied to mass storage
systems designed for distributed environments.

Introduction

For several decades, on-line transaction processing (OLTP)
has been a key element of commercial computing. This
technology has enabled applications in industries such as
banking, financial services, and reservation systems to
operate properly when many users attempt to manipulate
shared data. This technology enables access to and the
manipulation of shared data among thousands of
concurrent users. PIE931
OLTP systems provide mechanisms that ensure related,
yet physically or logically separate, data operations either
all complete successfully together as a single unit or none
complete at all. We define a committed transaction as
one in which all data operations associated with the
transaction were successful and are guaranteed to be
permanent. An aborted transaction is one in which any
partial changes made associated with the transaction are
rolled back to their original state.
The classic example of the utility of basic transactional
concepts is a fund transfer between two bank accounts.
The fund transfer transaction involves two separate data
operations, the debit of one account and the credit of
another. Either both operations must succeed together or
neither must succeed. If, for example, the debit operation
was successful but a hardware failure prevented the credit
operation, the debit operation must be rolled back such
that the bank account maintains its original balance.
The need for robust distributed OLTP services is
increasingly being driven by the rise of distributed
corporate computing environments that augment
centralized legacy systems with distributed computing
power [CER93] as well as the need to coordinate
operations between distributed databases. Use of
distributed OLTP is being driven by the creation of new
distributed-system architectures.
ACID Transactional Properties
Transactional systems possess A CID properties:
atomicity, consistency, isolarion, and durability [GRA93 I.
Atumiciry describes the property that all operations which

1

take place under a transaction form a single indivisible
unit of work. The transaction either succeeds as a single
unit or fails as a single unit IORF941. Consistency is
the characteristic that all drtta operations within the .same
transaction either commit together or they are aborted.
Aborted data operations cause modified data to be restored
to its original state. The isolation property states that the
data operations associated with separate transactions do not
interfere with one another. Thus, data modifications made
by one transaction which have not yet been committed are
not visible to other transactions. Data updates are
therefore not visible to other transactions until the data
modification has been guaranteed to be permanent. This
guarantee that committed data is permanently stored is
referred to as the property of durability. Even in the
event of a typical system failure at an inopportune time
(i.e., before committed data is actually written to the
database), once data is committed, it is guaranteed to be
permanent (e.g., it will be applied when the database is
restarted).

Need for ACID properties in Distributed
Mass Storage Systems
A distributed mass storage system is another example of
an application that requires ACID properties in managing
shared persistent information. While the implementation
of a distributed mass storage system does not blaze new
trails in the application of OLTP concepts, it does
introduce certain distinguished traits in contrast to existing
commercial OLTP applications.
Distributed mass storage systems must maintain
persistent distributed database information, referred to in
this paper as metadata, describing the files it manages as
well as for lower-level storage elements such as cartridges,
disks, storage segments, physical volumes, virtual
volumes, file segments, etc. Regardless of whether this
metadata is physically distributed among numerous nodes
or is centralized, the fact that multiple processes andor
threads are independently updating and contending for this
metadata on behalf of multiple, concurrent end-user
requests dictate that ACID properties be provided.
An even more basic need for these ACID properties can be
seen when analyzing a single end-user request. For
.example, consider an application that creates a new file,
writes a single block of data, and closes the file. A
generic distributed mass storage system modeled after the
IEEE Reference Model for Open Storage Systems
Interconnection, would likely involve the following types
of general metadata operations:

Client application communicates with the Name
Server to open the file. The Name Server creates
(or reserves) a new filename metadata entry.
Client application communicates with the Bitfile
Server to continue the process of creating the
file. The Bitfile Server reads various metadata

and creates and/or updates metadata entries
representing the new tile.
Client application communications with the
Bitfile Server to write a block of data. The
Bitfile Server communicates with the Storage
Server, which in turn reads, creates, and updates
various metadata entries. The Bitfile Server
again may create and/or update metadata based on
Storage Server responses.
The Storage Server communicates with the
Physical Volume Library (PVL) to request the
mounting of a physical volume. The PVL
communicates with a Physical Volume
Repository (PVR) in order to cause a robotic
device to mount the corresponding cartridge(s).
Both the PVL and PVR update metadata as part
of these operations.
Client application communicates with both the
Name Server and Bitfile Server in order to close
the file. Both servers update metadata.

The frrst two operations associated with creating the file
involve the Name Server and Bitfile Server. To maintain
the integrity of the mass storage system database, these
operations should be transactional - either both succeed
together or neither take place. A situation in which the
Name Server’s file creation operation succeeds, but the
Bitfile Server’s file creation operation fails without
undoing the Name Server’s operation should not be
permitted to happen. This would cause file entries to
build up in the Name Server which had no corresponding
file entry in the Bitfile Server.
This is just one example from the above scenario where
multiple metadata operations between different
serverdprocesses must be treated as a single, aggregate,
transactional operation. If ACID properties are not
enabled in the system, individual servers may be able to
keep their respective databases correct, but, as a whole, the
system metadata eventually will become inconsistent.

*

d ’

Use of Commercially Available OLTP
Products
Developing the underlying services that provide ACID
properties for metadata updates, customized for a
distributed mass storage system, would be costly. Not
only must the initial development of this software be
considered but the additional maintenance costs throughout
the product’s full life-cycle must be factored in as well.
Significant cost avoidance can be realized by building
storage systems around commercially available OLTP
products. It is the assertion of this paper that these
commercial off-the-shelf products can be used successfully
in these applications.

-

.

2

Case study - The High Performance
Storage System

The remainder of this paper presents a case study in the
design and implementation of a mass storage system
employing an OLTP. The mass storage system discussed
is HPSS, the High Performance Storage System
ICOY931, which uses Encina, a distributed OLTP system
provided by Transarc Corporation rTRA921.
3 ackground

HPSS is a major development project within the National
Storage Laboratory (NSL). The primary development
partners for HPSS are Lawrence Livermore, Los Alamos,
Oak Ridge and Sandia National Laboratories and IBM
Government Systems. Other partners include Comell,
NASA Lewis, and NASA Langley Research Centers.
HPSS provides a scaleable, parallel, high performance
hierarchical storage system for highly parallel computers
as well as traditional supercomputers and workstation
clusters. A key architectural requirement is the scalability
of data transfer rates, storage capacity, and the number and
size of file objects. HPSS is a general purpose storage
system that has been developed to scale for order of
magnitude performance improvements.
To meet the high-end storage system and data management
requirements, HPSS is designed to use both network-
connected and directly connected storage devices and to
employ parallel I/O techniques, including software
striping, to achieve high transfer rates. The design is based
on the IEFE Reference Model for Open Storage Systems
Interconnection (Project 1244) ISSS941.
Encina provides the distributed OLTP services used by
HPSS as described below. The OSF Distributed
Computing Environment @CE) is employed by Encina,
and to a lesser extent directly by the HPSS servers, to
provide supporting distributed computing services. Of the
wide variety of services offered by DCE, HPSS and
Encina make use of server multithreading, remote
procedure calls (RPC), server interface registration and
identification, global unique object naming, clientkerver
authentication and authorization and other security
services.
Use of Encina in HPSS
The Encina distributed OLTP system is used in HPSS to
provide several essential support services:

Distributed transaction services across multiple

Nested transactions across and within servers
A transactional record-oriented file system (the
Structured File Server) for the storage of system
metadata

servers

T m ~ a c t i ~ n call-ba~ks

Distributed transaction services across multiple
servers
Encina provides, as its basic service, a distributed OLTP
system which is used by HPSS servers to coordinate
changes to metadata across multiple, independently-
executing, multithreaded servers. Each server provides one
or more application programming interfaces (APIst
defining functions that may be invoked through remote
procedure calls (RPCs) from the client to the server.
Many of these functions are transactional, meaning that
they must be performed in the scope of a transaction
created by the client before it invokes the function.
Programs that initiate transactions in HPSS include the
HPSS user API library and several of the servers. Encina
extends and coordinates transactions across remote
procedure calls (RPCs) so that the server boundaries
become transparent with respect to the transactions.
In these transactional remote procedure calls (TRPCs).
changes that are made to HPSS metadata as the procedure
executes fake on transactional characteristics. Records are
locked prior to modification so that they may not be
accessed or modified by other transactions until the
locking transaction completes (isolation property). Log
files are used to record the state of modified records before
and after modification (durability property). If the
transaction commits, the metadata changes made by the
procedure become permanent. If the transaction aborts.
the metadata changes are reversed as if they never occurred.
The consistency property of transactions guarantees that
all of the metadata changes made in the transaction either
commit together or abort together. While the transaction
is in progress, the new values of changed metadata records
are not available outside of the transaction. This propem
of transactions, the isolation property, allows HPSS
servers to make changes to system metadata records inside
a transaction family without having to protect the changes
from examination by other threads in the servers.
Using Encina allows HPSS to be partitioned into
logically defined servers and allows the extension of
transactional semantics to metadata changes that take place
while performing functions in one or more of these
servers. Functions such as file creation, fde cataloging,
f i e reading and writing, and file deletion t y p i d y cause a
transaction to be extended across two or three servers.
Transaction boundaries are chosen so that all of the
metadata changes associated with one of these functions
are contained in a single transaction, regardless of the
number of servers involved and the number of metadata
records changed. When the transaction commits, all of the
records appear to change simultaneously (atomicity
property). If the transaction aborts all of the original
values of the records appear to be restored at once.
Transactions protect the integrity of system metadata
during a failure of the system. At the time of failure, each
transaction extant will have either committed or not.
There is no “half-way’’ point in committing a transaction.
If the transaction commits and the system then

3

immediately fails. the committed metadata changes will be
restored during the process of restarting the system
(durability property). If the transaction has not
committed at the time of failure, it is aborted during
system restart and all changes made to metadata are
reversed. In either case, the integrity of the system
metadata is ensured.
Encina provides a C language interface to the transaction
system, Tran-C, which is used extensively in HPSS
servers. Tran-C, which is implemented as a family of C
macros and functions, provides easily used language
constructs for creating, defining and controlling
transactions [IBM94]. HPSS also makes use of a number
of Encina library functions to set up transaction call-backs
and control certain transaction derails. Using Tran-C and
the TRPC mechanism, a thread of control can create a
transaction and pass it to one or more remote servers as if
the remote servers were unified in a single process.
Nested transactions in HPSS
Encina provides a nested transaction facility that is used
extensively in HPSS servers. In any given thread of
control (which via TRPC may extend across servers) the
first invocation of a Tran-C transaction statement causes
a “top-level” transaction to be created. This transaction
becomes the “top ancestor” transaction of a possible
family of nested transactions. Any subsequent
rransaction statement nested in the top ancestor
transaction, either in the server that created the top
ancestor, or in a called server, creates a sub-transaction
which becomes part of the transaction family. Sub-
transactions, in turn, may create their own sub-
transactions. If a sub-transaction aborts, all of its
descendant transactions are also aborted, but not its
ancestors. When a sub-transaction commits, any metadata
changes it makes become permanent if and when all of its
ancestors, up to and including the top ancestor transaction,
commit.
In HPSS we isolate groups of system metadata changes
from one another by creating sub-transactions in the server
procedures that make the changes. If an error occurs while
making a metadata change, the sub-transaction is aborted,
reversing the change, and an error is returned for the
procedure outcome. Other rnetadata changes made in other
procedures as part of the HPSS operation Wing performed
are not affected. The decision to abort these changes can
be made by the caller of the failing procedure.
Without sub-transactions, an abort after an error in a called
server procedure would abort the caller’s transaction. All
metadata changes accumulated in the transaction would be
tost. This is undesirable because the caller may be able to
recover from the called procedure’s error by calling a
different procedure or server, or taking some other
corrective action. However, if the called procedure creates
a sub-transaction in which it performs its metadata
changes, it can abort the sub-transaction restoring the
metadata to its original state and return an error code to the
caller via the TRPC. The metadata changes made in the

called procedure abort but the changes made in the client
remain intact. The client may then recover from the error
or may abort its own operation as required.
As an example of the use of sub-transactions in HPSS.
consider the case of writing an HPSS file (Figure 1). The
bitfile server creates a top ancestor transaction and calls a
storage server, via a TRPC, to create storage space for the
tile. The storage server allocates space and changes its
metadata in a sub-uansacuon. When the TRPC returns

4

Bitfile server Storage server

CreateFile(1
c

Createspace(1;
i f(error)

'

recover(1;
if(errot-1

abort().
CreateFileRec(1;
i f(error)

abort():

return(error),
>

to the bitfile server, the bitfile server links the new
storage space into the file in the top ancestor uansaction.
If an error occurs in the storage server, it aborts its sub-
transaction, reversing its metadata changes, if any, and
returns an error code to the bitfile server. The bitfile
server may then either recover from the error by allocating
space in another storage server, or may abort its own
metadata changes, and any committed sub-transactions,
and return an error to the d e r of the file create operation.
In each of these outcomes, the integrity of the HPSS
metadata database is maintained.
Structured File Server

HPSS stores its system metadata, the information needed
by each server to describe the storage objects it provides,
in SFS, the Encina Structured File Server. SFS provides
a record-oriented storage facility for managing large
numbers of records and accessing those records using one
or more keys. Access to information stored in SFS
records can be either transactional or non-transactional.
Transactional access exhibits the ACID properties
described earlier.
SFS can associate loch with the records in its files and
binds these iocks to transactions. The locks segregate
access to the records to transactions, providing the
isofazion property of transactional access to HPSS
metadata files. SFS records changes made to records in

transactions in a log which is used to record committed
changes.
Each transactional HPSS server maintains one or more
system metadata files in SFS. Records in HPSS metadata
files are indexed using a primary key and, in many cases,
one or more secondary keys. In general, primary keys are
unique within HPSS metadata files, whereas secondary
keys may or may not be unique.
The objects defined by HPSS servers are usually connected
to one another within a server, and across servers, via
primary and secondary keys embedded in the metadata
records. Keys are placed in records so that the HPSS
database taken as a whole may be mversed from either the
top down or the bottom up. The system metadata
architecture is optimized for top-down traversal. For
example, each storage segment record maintained by a
storage server is keyed by a storage segment key. The
record has embedded in it the key of the virtual volume
from which the storage segment is allocated. This key is
a secondary key for the storage segment record, while the
storage segment key is the primary key. Several storage
segments may be allocated in the same virtual volume, so
the secondary virtual volume keys will be shared by
several storage segment records and will not be unique in
the storage segment metadata file. Given a storage
segment key, the associated virtual volume can be located
immediately by searching the storage segment metadata
file with the unique key. Only one record will be returned

5

and it will contain the virtual volume key. This is top-
down traversal of the database.
Given a virtual volume key, the storage segments located
on the volume can be found by indexing the storage
segment metadata file by the virtual volume secondary
key. Zero or more records will be returned, each a storage
segment allocated in the virtual volume. This is bottom-
up traversal of the database.
In a similar fashion, bitfile metadata records are linked to
storage segments (top-down), and storage segment are
linked to bitfiles (bottom-up). Name server entries are
forward-linked to bitfiles and bitfiles are reverse-linked to
name server entries. Top-down traversal of the database is
used to locate file metadata information to carry out
ordinary client requests (create / read / write / delete).
Bottom-up traversal of the database is used to carry out
certain maintenance activities, for example, locating all of
the files stored entirely or partially on a failed physical
volume.
Transaction call-backs
Encina provides a facility in which a process may arrange
for a procedure to be called when a selected event occurs
during the processing of a transaction. These events
include transaction preparation, transaction resolution,
transaction abort, and others, and can be established for
top-level or nested transactions. The procedure call-back
is made by an Encina library routine, in a thread managed
by Encina, when the requested event occurs. From the
point of the view of the process, the procedure call
happens asynchronously.
HPSS uses the call-back mechanism extensively to
coordinate transactions with various maintenance activities
in the servers. For example, several servers use call-backs
to maintain a pool of open file descriptors (Oms) for the
SFS metadata files. An OFD is a file access handle
provided by SFS. When an OFD for a metadata file is
needed by the server, it is taken from a free pool and used
in a transaction, which causes the O!?D to be associated
with the transaction. A call-back is set up by an HPSS
library routine when the OFD is taken from the pool to
call a server procedure that returns the OFD to the free
pool. In this case, the call-back occurs when the top
ancestor transaction resolves (either commits or aborts).
In the HPSS disk storage server, call-backs are used to
implement an in-memory cache of active metadata records.
In many cases, this cache allows the server to reference
metadata without taking the time to read it from the
metadata file. Records are locked when they are referenced
using the identifier of the top ancestor transaction as the
key. The cache entry remains locked to the transaction
until the transaction resolves. Sub-transactions may refer
to the cache entry once it is locked by using the same top
ancestor transaction ID. Other transactions and sub-
transactions are blocked from using the entry until the
locking transaction resolves.

Cache lock management and consistency is maintained
through transaction call-backs. A call-back is set up when
the cache entry is first locked by a transaction, to unlock
the cache enuy and make it consistent with the metadata
file. The call-back occurs after the top ancestor
transaction finishes, when the resolution of the transaction
(commit or abort) is known. The disposition of the cache
enuy depends on the operation that was done and the
outcome of the transaction. If the entry was simply read,
it is unlocked. If the entry was created during the
operation and the transaction committed, the entry is left
in the cache. If the transaction aborted, the entry is deleted
from the cache. If the cache entry was deleted during the
operation and the transaction was aborted, it is restored to
the cache (and refreshed from the metadata file). If the
transaction committed, the entry is permanently deleted
from the cache.
If the cache entry is modified during the transaction, the
entry remains in the cache but is refreshed from the
metadata file each time it is referenced until the transaction
resolves. This is done because tracking the outcomes of
sub-transactions as they change the entry becomes too
difficult and would require that we reproduce a significant
part of the SFS transaction management algorithm. If a
sequence of modifications are made to a cache entry we
simply refresh the cache entry before each modification
and let SFS handle the

,

,

6

Transaction
Commit Abort

Unlocked unlocked

Write Retieshed Refreshed

Create UIIlded Deleted

Detete Deleted Refreshed
Figure 2: Actions taken on metadata cache objects by

‘ operation and transaction outcome.

‘ complexities of keeping track of which sub-transactions
have committed and which have aborted. Once the top
ancestor resolves, the call-back routine refreshes the cache
entry once more from the metadata file and then unlocks
it. Voiding the cache entry during metadata updates does
not represent a serious degradation of the cache
performance because most top-level transactions perform
only one modification to a cache entry before committing,
so the cache entry is usually refreshed only once, when the
transaction finishes.
Implementation Issues
The balance of this paper describes Encina related issues
that arose during the design and implementation of HPSS .
These issues include:

Interaction of transactions and storage media

Choosing transaction boundaries
Dealing with transaction sideeffects

Interaction of transactions and storage media
End user read and write operations made to HPSS files are
done transactionally. Changes made to the HPSS
metadata records for a file being read or written are made
within a transaction created by the bitfide server so that
they may be reversed in case of certain rare errors. An
error writing a bitftle server metadata file is an example of
the sort of error that will abort a read or write operation.
In this case, if the associated metadata changes made by
the supporting storage secver are not also reversed, the
HPSS database would quickly become inconsistent. Note
that storage media errors, including unexpected End-Of-
Media errors do not cause the I/O operation to abort. An
error is returned for the operation, but the appropriate
metadata changes are committed.
Many storage media have the property that they may be
positioned, written, repositioned to some point that was
previously written, and written again. Other media may
only be written from the point where writing last ended.
When writing user data, HPSS retains a record of the
starting point, a tape or disk address, in system metadata

Dealing with long duration- transactions

that was committed some time in the past. At the end of
the write operation, the updated Next-Address-To-Write is
written into the system metadata in a transaction. If the
transaction later commits, the Next-Address-To-Write
information becomes permanent and the user data become\
committed to the system.
However, if the transaction is subsequently aborted, for
some reason noted above, the previous Next-Address-To-
Write is restored to the system metadata and the user data
is forgotten. If the storage media is repositionable, the
next write operation to the media will simply start in the
same place as the aborted operation and overwrite the
aborted user data. Thus. the transactional semantics of the
write operation lead to the automatic recovery of storage
media that might otherwise have been wasted.
If the storage media is not repositionable, an attempt to
write the media at the restored starting point will fail
because the write operation that aborted earlier moved the
actual Next-Address-To-Write forward on the media, then
forgot it. In this case. the HPSS metadata and the storage
media are not synchronized with one another because the
storage media cannot reverse a write operation.
To resolve this situation, HPSS win recover from the
write error by moving the write operation to a different
volume and retrying, and by marking the volume that is
out of step with the system metadata as temporarily un-
writable. Later, a system utility will find this volume,
locate its actual next write address and update the HPSS
system metadata accordingly. The steps of marking the
volume un-writable and correcting the volume’s Next-
Address-To-Write are done in top-level transactions.
isolated from any other transaction that may be in effect.
Note that this “transactions vs. storage media” problem is
not a serious one for HPSS because of two factors:

Aborts in user data write operations are rare - metadata
changes will usually commit even if the write
operation ends in error
Storage media maintenance activities such as tape
repacking and reclaiming are always going on

Dealing with long duration transactions
In order to make transactiond changes to the HPSS
metadata, the HPSS servers use SFS to create locks on
records that are being changed. The locks implement the
isolation property of Encina transactions and are
maintained on a per metadata record basis by SFS. If a
transaction locks a metadata record with the intent of
writing the record (write-lock), all other transactions are
blocked from reading or writing the record. They may not
read the record unless they are willing to read the current
committed data (reading without a lock).
In many typical OLTP applications transactions are of
short duration. In a mass storage system some
transactions may be very short while others may be very
long in duration. Short transactions include operations

7

that simply perform changes to the system metadata (e.g.
set attributes functions) while long duration transactions

Holding locks on HPSS metadata for long periods of time
while long duration UO transactions are in effect, creates
two potential problems for HPSS. The first is blocking
other transactions’ access to metadata records. While the
isolation property of transactions is vital to maintaining
the consistency of the HPSS database, locks held on
rnetadata records by long duration I/O transactions could
cause other transactions to block for long periods of time
while trying to perform non I/O operations such as
allocating storage space.
HPSS resolves +is problem by imposing restrictions in
the way storage objects are used and reserving objects to
active UO operations. For example, files must be opened
through the bitfile server prior to requesting a read or write
operation. When I/O begins on the file, the file is
reserved to the client until the I/O completes. If another
client attempts an I/O operation, it is blocked until the
fmt client’s operation finishes and the transactions created
during the VO operation have resolved.

those that perform UO to the archive.

In the storage server, the session construct is used to
group I/O operations together and reserve system
resources. The bitfile server opens a session with the
storage server each time it performs a file open operation.
Initially, the session has no system resources assigned to
it. When the first I/O operation on the file is processed
by the bitfile server, the associated storage server assigns
the corresponding storage segments, virtual volumes and
physical volumes to the session, if they are not already
assigned to other sessions. Locks can then be taken on
these objects during the UO operation without a blocking
hazard because the objects have frrst been reserved to the
session. If any of the resources needed by an f10
operation are already reserved in another session, the f10
operation is blocked until the session holding the
resources completes. This prevents UO transactions fmm
blocking on metadata locks and prevents deadlocks that
would occur if two or more transactions competed for
shared mehdata records.
The second problem in dealing with long duration I/O
transactions is the issue of dealing with failed transactions
after server crashes, host system failures, power failures,
etc. For reasons such as these, a transaction will
occasionally fail to complete. The Structured File Server,
which acts as the transaction coordinator in HPSS,
maintains the integrity of the HPSS database by aborting
the transaction. This is done by recording a time of last
use in each of the Open File Descriptors open on HPSS
metadata files. If the time since an OFD was last used
exceeds a configurable limit set in SFS (the SFS OFD
idle time-out), and another transaction attempts to rake a
lock on a record locked by the expired OFD, the expired
transaction is aborted and the expired OFD is closed. This
feature protects the HPSS database from the failures noted

above and is an important reason for using an OLTP in a
mass storage system.
If the transactions in the HPSS database could be
characterized as not exceeding some uppcr bound in
duration, the SFS idle time-out value could be set to that
upper bound. However, when doing I/O operations on
files of arbitrary length, as HPSS is designed to do, an
upper bound cannot be established. Small values of the
SFS idle time-out would effectively limit the size of files
that could be written into HPSS. Large values would
have an undesirable effect on recovering HPSS after a
failure. One would either have to wait a long time for the
SFS idle time-outs to expire on the transactions in effect
at the time of the failure, or re-initialize SFS which
increases the time to re-initialize the system.
Furthermore, for whatever practical value the SFS idle
time-out is set to, an YO operation that takes longer can
be imagined. Note that time spent waiting for storage
volumes to be mounted in a busy system may be spent
inside the context of a transaction, further increasing the
likelihood of an aborted transaction.
HPSS resolves this situation by employing a technique
suggested by developers at Transarc. When OFDs are
assigned to a transaction a background thread in the server
periodically performs a benign SFS operation using the
OFD. These operations take very little time and don’t
change the state of locks on metadata records, but do
update the time of last reference in the OFD. The period
of this “keep-alive” operation is set to a value that is most
of the OFD idle time-out, but allows a margin of safety.
As long as the server is functioning, its transactions and
OFDs stay valid and UO operations can rake as much time
as they need to complete. Locks on system metadata
remain valid, competing accesses to the locked records
remain blocked, and the long duration YO operations will
complete nonnally.

.

.

Choosing transaction boundaries
In a few instances during the implementation of HPSS we
located the boundaries of transactions in places different
from those described in the system design. Top-level
transactions were used in some places that were originally
implemented as sub-transactions. In other cases,
operations that seem logically to be a single transaction
were implemented in two transactions.
A good example of this appears in the bitfile servex.
There are two steps in the loop that processes user write
functions. In the fmt step storage space is allocated; in
the second step the space is written with the user data.
However, there are a few rare errors that can occur in the
second step that make it desirable to discard the space
allocated in the first step. The two steps logically form a
single transaction, but in the implementation of the
function, two transactions are used. If the function could
be performed in one transaction, space allocated in the fmt
step Gould be deallocated by simply aborting the
transaction.

8

However, since the second step is sometimes a long
duration operation, a single transaction that includes the
storage allocation step will hold a storage map locked
during the entire write operation. In the HPSS tape
storage server this is a tolerable situation because storage
maps are kept in a busy state during tape writes. When a
tape is being written, no other storage space can be
allocated on the tape until the write operation completes.
In the HPSS disk storage server, however, holding the
storage map busy during a long disk write is undesirable
because storage space for disk segments is allocated in
finite sized blocks, rather than in an open-ended fashion as
for tape. Disk storage maps are therefore not kept in a
busy state while the segment is being written. We want
to allocate the disk space, modify the disk storage map,
and commit those modifications as soon as possible so
that other storage segments may be allocated from the
map.
To resolve this problem, the HPSS bitfiie server allocates
storage segments in top-level a transaction, writes a log
with the segment identification information, and commits
the transaction. Then it starts a second top-level
transaction, writes the user data, links the storage segment
to the file metadaq and deletes the log entry. In the same
transaction, the storage server updates its metadata with
information about the written length of the segment. The
first transaction creates the storage segment and releases
the storage map, the second writes the user data, updates
the storage segment metadata and attaches the storage
segment to the file metadata. If an error occurs during the
file write operation, we delete the storage segment in a
separate transaction. We use two transactions where we
originally expected to use one so that locks on metadata
objects are not held for long periods of time, blocking the
use of the objects by other users.
In another case, a deadlock that occurred when two or more
HPSS clients were reading files located on the same
virtual volume was broken by changing a sub-transaction
into top-level transaction.
To cany out a file read operation, the bitfile server creates
a top-level transaction in which the file statistics changes
are made. When two clients accessed two files, located on
a shared virtual volume, a deadlock occurred. One client
would mount and read one volume, and in so doing would
cause sub-transactions to be started that made minor
metadata changes asswiated with mounting the volume
(time last mounted, number of mounts). The other client
would do likewise with a second volume. Then each
client would attempt to mount and read the volume
previously read by the other. Since each client is holding
a lock on the volume metadata needed by the other, in an
uncommitted sub-transaction, neither could proceed.
One solution to this deadlock is not to make the metadata
changes associated with mounting the volumes. Another
is to make the changes in a top-level transaction. We
chose the second route recognizing that it is appropriate to

record the metadata changes associated with mounting the
volume regardless of the outcome of the read operation.
The physical act of mounting the volume cannot be
undone-done therefore the records should be kept. The
volume mount statistics are updated i n a top-level
transaction embedded in the bitfile server’s data reading
transaction.
Dealing with transaction side-effects

In a distributed OLTP system, transactions take a certain
amount of time to become completely finished after they
commit In SFS, locks on records may be held for a short
time until the server finishes the transaction. During this
period of time searching a system metadata file with a
non-unique secondary key can yield unexpected results.
In the HPSS storage server, we index storage maps by a
primary key, which is unique for each map, and a
secondary key, which may be shared by many maps. The
state of the map (free. busy, full, etc.) is part of the
secondary key. When the server creates a storage segment,
it searches the map metadata file by secondary key,
searching for free maps.
While testing the segment creation logic in the tape
storage server, we discovered that a rapid serial sequence of
storage segment creation requests were resolved on a series
of volumes, not on a single volume as expected. If only
one volume was available in the system, the sequence
failed with a “no space” error when in fact space was
available.
The key to understanding this effect is to recognize that
distributed transactions take time to resolve. When the
storage server changed a storage map’s state from busy to
free in one transaction, then searched the metadata file for
free maps in a new transaction very shortly thereafter, it
failed to find the map modified in the first transaction. It
then either allocated space on a different volume, or if no
other volume was available, returned the “no space” error.
This situation is resolved in HPSS in two ways. First,
the problem resolves itself if requests to create tape
storage segments are separated by enough time for the
transactions to finish in SFS. Second, if a storage server
client wishes to create a string of segments on the same
volume, an option is provided in the segment creation
function that causes the storage server to read the desired
storage map directly, by primary key, rather than
indirectly searching for a free volume by secondary key.
The direct read operation blocks until any transactional
activity on the desired record is resolved. The delay is
minimal and the system maintains transactional integrity
in its metadata changes.

Conclusions
Commercial OLTP technology can provide the ACID
properties required for new distributed mass storage
systems in managing distributed metadata information.
HPSS is an example of a new storage system designed to

9

take advantage of an existing OLTP product. In doing so,
development and maintenance costs have been greatly
reduced while overall system reliability has been enhanced.
We have shown examples of the use of OLTP systems in
the implementation of a high performance mass storage
system, and shown how those algorithms can be modified
to meet the requirements of both the mass storage system
and the OLTP system.
Distributed mass storage systems present unique issues
and challenges in the application of OLTP technology.
However, given sufficient capability from the OLTP
product, these issues and challenges can be successfully
managed and overcome.

This work was performed, in part, by the Lawrence
Livermore National Laboratory under the auspices of the
U.S. Department of Energy under contract No. W-7405-
Eng-48, Los Alamos National Laboratory, Oak Ridge
National Laboratory and Sandia National Laboratories,
under auspices of the U.S. Department of Energy
Cooperative Research and Development Agreements, by
Cornell, Lewis Research Center and Langley Research
Center under auspices of the National Aeronautics and
Space Administration and by IBM Government Systems
under Independent Research and Development and other
internal funding.

References
[COY931 Coyne, R. A., H. Hulen and R. W.
Watson, “The High Performance Storage System”, hoc.
Supercomputing 93, Portland OR, IEEE Computer
Society Press, Nov 1993.
[s s s941 IEEE Storage Systems
Standards Working Group (SSSWG) (Project 1244),
“Reference Model for Open Storage Systems
Interconnection, Mass Storage Reference Model Version
5”, Sept 1994. Available from the IEEE SSSWG
Technical Editor, Richard Garrison, Martin Marietta (215)
5 3 2-6746.
[GRA93] Jim Gray and Adreas Reuter,
Transaction Processing: Concepts and Techniques,
Morgan Kaufmann, 1993.
DE931 Scott Dietzen and Alfred
Spector. Distributed Transaction Systems, Distributed
Computing Environments, McGraw-Hill, pp. 223-257,
1993.
[CER93] Dan Cerutti, The Rise of Distributed
Computing, Distributed Computing Environments,
McGraw-Hill, pp. 3-8, 1993.
[O M 4 1 Robert Orfali, Dan Harkey, Jeri
Edwards, The Essential CliedServer Survival Guide,
Van Nostrand Reinhold, p. 242, 1994.

ITRA92 1
Overview and Encina Product Documentation, 1992.

Transarc Corporation, Encina Product

[EM941 IBM Corporation. En c i n a
Transuctionul-C Yrogrummr’s Guide unci Refirence f i r
AIX, 36123-2465-02, 1994.

.

10

