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The design of scaleable mass storage systems requires 
various system components to be distributed across 
multiple processors. Most of these processes maintain 
persistent database-type information (i.e., metadata) on the 
resources they are responsible for managing (e.g., bitfiles, 
bitfile segments, physical volumes, virtual volumes, 
cartridges, etc.). These processes all participate in 
fulfilling end-user requests and updating metadata 
information. 
A number of challenges arise when distributed processes 
attempt to maintain separate metadata resources with 
production-level integrity and consistency. For example, 
when requests fail, metadata changes made by the various 
processes must be aborted or rolled back. When requests 
are successful, all metadata changes must be committed 
together. If ail memdata changes Cannot be committed 
together for some reason, then all metadata changes must 
be rolled back to the previous consistent state. Lack of 
metadata consistency obviously jeopardizes starage system 
integrity. 
Distributed on-line transaction processing (OLTP) 
technology can be applied to distributed mass storage 
systems as tbe mechanism for managing the consistency 
of distributed metadata. OLTP concepts are familiar to 
many industries such as banking and financial services but 
are less well known and understood in others such as 
scientific and technical computing. However, as mass 
storage systems and other products are designed using 
distributed processing and data-management strategies for 
performance, scalability, and/or availability reasons, 
distributed OLTP technology can be applied to solve the 
inherent challenges raised by such environments. 
This paper briefly discusses the general benefits in using 
distributed transaction processing products. Design and 
implementation experiences using the Encina OLTP 
product from Transarc in the High Performance Storage 
System are presented in more detail as a m e  study for 
how this technology can be applied to mass storage 
systems designed for distributed environments. 

Introduction 

For several decades, on-line transaction processing (OLTP) 
has been a key element of commercial computing. This 
technology has enabled applications in industries such as 
banking, financial services, and reservation systems to 
operate properly when many users attempt to manipulate 
shared data. This technology enables access to and the 
manipulation of shared data among thousands of 
concurrent users. PIE931 
OLTP systems provide mechanisms that ensure related, 
yet physically or logically separate, data operations either 
all complete successfully together as a single unit or none 
complete at all. We define a committed transaction as 
one in which all data operations associated with the 
transaction were successful and are guaranteed to be 
permanent. An aborted transaction is one in which any 
partial changes made associated with the transaction are 
rolled back to their original state. 
The classic example of the utility of basic transactional 
concepts is a fund transfer between two bank accounts. 
The fund transfer transaction involves two separate data 
operations, the debit of one account and the credit of 
another. Either both operations must succeed together or 
neither must succeed. If, for example, the debit operation 
was successful but a hardware failure prevented the credit 
operation, the debit operation must be rolled back such 
that the bank account maintains its original balance. 
The need for robust distributed OLTP services is 
increasingly being driven by the rise of distributed 
corporate computing environments that augment 
centralized legacy systems with distributed computing 
power [CER93] as well as the need to coordinate 
operations between distributed databases. Use of 
distributed OLTP is being driven by the creation of new 
distributed-system architectures. 
ACID Transactional Properties 
Transactional systems possess A CID properties: 
atomicity, consistency, isolarion, and durability [GRA93 I. 
Atumiciry describes the property that all operations which 
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take place under a transaction form a single indivisible 
unit of work. The transaction either succeeds as a single 
unit or fails as a single unit IORF941. Consistency is 
the characteristic that all drtta operations within the .same 
transaction either commit together or they are aborted. 
Aborted data operations cause modified data to be restored 
to its original state. The isolation property states that the 
data operations associated with separate transactions do not 
interfere with one another. Thus, data modifications made 
by one transaction which have not yet been committed are 
not visible to other transactions. Data updates are 
therefore not visible to other transactions until the data 
modification has been guaranteed to be permanent. This 
guarantee that committed data is permanently stored is 
referred to as the property of durability. Even in the 
event of a typical system failure at an inopportune time 
(i.e., before committed data is actually written to the 
database), once data is committed, it is guaranteed to be 
permanent (e.g., it will be applied when the database is 
restarted). 

Need for ACID properties in Distributed 
Mass Storage Systems 
A distributed mass storage system is another example of 
an application that requires ACID properties in managing 
shared persistent information. While the implementation 
of a distributed mass storage system does not blaze new 
trails in the application of OLTP concepts, it does 
introduce certain distinguished traits in contrast to existing 
commercial OLTP applications. 
Distributed mass storage systems must maintain 
persistent distributed database information, referred to in 
this paper as metadata, describing the files it manages as 
well as for lower-level storage elements such as cartridges, 
disks, storage segments, physical volumes, virtual 
volumes, file segments, etc. Regardless of whether this 
metadata is physically distributed among numerous nodes 
or is centralized, the fact that multiple processes andor 
threads are independently updating and contending for this 
metadata on behalf of multiple, concurrent end-user 
requests dictate that ACID properties be provided. 
An even more basic need for these ACID properties can be 
seen when analyzing a single end-user request. For 
.example, consider an application that creates a new file, 
writes a single block of data, and closes the file. A 
generic distributed mass storage system modeled after the 
IEEE Reference Model for Open Storage Systems 
Interconnection, would likely involve the following types 
of general metadata operations: 

Client application communicates with the Name 
Server to open the file. The Name Server creates 
(or reserves) a new filename metadata entry. 
Client application communicates with the Bitfile 
Server to continue the process of creating the 
file. The Bitfile Server reads various metadata 

and creates and/or updates metadata entries 
representing the new tile. 
Client application communications with the 
Bitfile Server to write a block of data. The 
Bitfile Server communicates with the Storage 
Server, which in turn reads, creates, and updates 
various metadata entries. The Bitfile Server 
again may create and/or update metadata based on 
Storage Server responses. 
The Storage Server communicates with the 
Physical Volume Library (PVL) to request the 
mounting of a physical volume. The PVL 
communicates with a Physical Volume 
Repository (PVR) in order to cause a robotic 
device to mount the corresponding cartridge(s). 
Both the PVL and PVR update metadata as part 
of these operations. 
Client application communicates with both the 
Name Server and Bitfile Server in order to close 
the file. Both servers update metadata. 

The frrst two operations associated with creating the file 
involve the Name Server and Bitfile Server. To maintain 
the integrity of the mass storage system database, these 
operations should be transactional - either both succeed 
together or neither take place. A situation in which the 
Name Server’s file creation operation succeeds, but the 
Bitfile Server’s file creation operation fails without 
undoing the Name Server’s operation should not be 
permitted to happen. This would cause file entries to 
build up in the Name Server which had no corresponding 
file entry in the Bitfile Server. 
This is just one example from the above scenario where 
multiple metadata operations between different 
serverdprocesses must be treated as a single, aggregate, 
transactional operation. If ACID properties are not 
enabled in the system, individual servers may be able to 
keep their respective databases correct, but, as a whole, the 
system metadata eventually will become inconsistent. 

* 

d ’ 

Use of Commercially Available OLTP 
Products 
Developing the underlying services that provide ACID 
properties for metadata updates, customized for a 
distributed mass storage system, would be costly. Not 
only must the initial development of this software be 
considered but the additional maintenance costs throughout 
the product’s full life-cycle must be factored in as well. 
Significant cost avoidance can be realized by building 
storage systems around commercially available OLTP 
products. It is the assertion of this paper that these 
commercial off-the-shelf products can be used successfully 
in these applications. 

- 

. 
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Case study - The High Performance 
Storage System 

The remainder of this paper presents a case study in the 
design and implementation of a mass storage system 
employing an OLTP. The mass storage system discussed 
is HPSS, the High Performance Storage System 
ICOY931, which uses Encina, a distributed OLTP system 
provided by Transarc Corporation rTRA921. 
3 ackground 

HPSS is a major development project within the National 
Storage Laboratory (NSL). The primary development 
partners for HPSS are Lawrence Livermore, Los Alamos, 
Oak Ridge and Sandia National Laboratories and IBM 
Government Systems. Other partners include Comell, 
NASA Lewis, and NASA Langley Research Centers. 
HPSS provides a scaleable, parallel, high performance 
hierarchical storage system for highly parallel computers 
as well as traditional supercomputers and workstation 
clusters. A key architectural requirement is the scalability 
of data transfer rates, storage capacity, and the number and 
size of file objects. HPSS is a general purpose storage 
system that has been developed to scale for order of 
magnitude performance improvements. 
To meet the high-end storage system and data management 
requirements, HPSS is designed to use both network- 
connected and directly connected storage devices and to 
employ parallel I/O techniques, including software 
striping, to achieve high transfer rates. The design is based 
on the IEFE Reference Model for Open Storage Systems 
Interconnection (Project 1244) ISSS941. 
Encina provides the distributed OLTP services used by 
HPSS as described below. The OSF Distributed 
Computing Environment @CE) is employed by Encina, 
and to a lesser extent directly by the HPSS servers, to 
provide supporting distributed computing services. Of the 
wide variety of services offered by DCE, HPSS and 
Encina make use of server multithreading, remote 
procedure calls (RPC), server interface registration and 
identification, global unique object naming, clientkerver 
authentication and authorization and other security 
services. 
Use of Encina in HPSS 
The Encina distributed OLTP system is used in HPSS to 
provide several essential support services: 

Distributed transaction services across multiple 

Nested transactions across and within servers 
A transactional record-oriented file system (the 
Structured File Server) for the storage of system 
metadata 

servers 

T m ~ a c t i ~ n  call-ba~ks 

Distributed transaction services across multiple 
servers 
Encina provides, as its basic service, a distributed OLTP 
system which is used by HPSS servers to coordinate 
changes to metadata across multiple, independently- 
executing, multithreaded servers. Each server provides one 
or more application programming interfaces ( APIst 
defining functions that may be invoked through remote 
procedure calls (RPCs) from the client to the server. 
Many of these functions are transactional, meaning that 
they must be performed in the scope of a transaction 
created by the client before it invokes the function. 
Programs that initiate transactions in HPSS include the 
HPSS user API library and several of the servers. Encina 
extends and coordinates transactions across remote 
procedure calls (RPCs) so that the server boundaries 
become transparent with respect to the transactions. 
In these transactional remote procedure calls (TRPCs). 
changes that are made to HPSS metadata as the procedure 
executes fake on transactional characteristics. Records are 
locked prior to modification so that they may not be 
accessed or modified by other transactions until the 
locking transaction completes (isolation property). Log 
files are used to record the state of modified records before 
and after modification (durability property). If the 
transaction commits, the metadata changes made by the 
procedure become permanent. If the transaction aborts. 
the metadata changes are reversed as if they never occurred. 
The consistency property of transactions guarantees that 
all of the metadata changes made in the transaction either 
commit together or abort together. While the transaction 
is in progress, the new values of changed metadata records 
are not available outside of the transaction. This propem 
of transactions, the isolation property, allows HPSS 
servers to make changes to system metadata records inside 
a transaction family without having to protect the changes 
from examination by other threads in the servers. 
Using Encina allows HPSS to be partitioned into 
logically defined servers and allows the extension of 
transactional semantics to metadata changes that take place 
while performing functions in one or more of these 
servers. Functions such as file creation, fde cataloging, 
f i e  reading and writing, and file deletion t y p i d y  cause a 
transaction to be extended across two or three servers. 
Transaction boundaries are chosen so that all of the 
metadata changes associated with one of these functions 
are contained in a single transaction, regardless of the 
number of servers involved and the number of metadata 
records changed. When the transaction commits, all of the 
records appear to change simultaneously (atomicity 
property). If the transaction aborts all of the original 
values of the records appear to be restored at once. 
Transactions protect the integrity of system metadata 
during a failure of the system. At the time of failure, each 
transaction extant will have either committed or not. 
There is no “half-way’’ point in committing a transaction. 
If the transaction commits and the system then 
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immediately fails. the committed metadata changes will be 
restored during the process of restarting the system 
(durability property). If the transaction has not 
committed at the time of failure, it is aborted during 
system restart and all changes made to metadata are 
reversed. In either case, the integrity of the system 
metadata is ensured. 
Encina provides a C language interface to the transaction 
system, Tran-C, which is used extensively in HPSS 
servers. Tran-C, which is implemented as a family of C 
macros and functions, provides easily used language 
constructs for creating, defining and controlling 
transactions [IBM94]. HPSS also makes use of a number 
of Encina library functions to set up transaction call-backs 
and control certain transaction derails. Using Tran-C and 
the TRPC mechanism, a thread of control can create a 
transaction and pass it to one or more remote servers as if 
the remote servers were unified in a single process. 
Nested transactions in HPSS 
Encina provides a nested transaction facility that is used 
extensively in HPSS servers. In any given thread of 
control (which via TRPC may extend across servers) the 
first invocation of a Tran-C transaction statement causes 
a “top-level” transaction to be created. This transaction 
becomes the “top ancestor” transaction of a possible 
family of nested transactions. Any subsequent 
rransaction statement nested in the top ancestor 
transaction, either in the server that created the top 
ancestor, or in a called server, creates a sub-transaction 
which becomes part of the transaction family. Sub- 
transactions, in turn, may create their own sub- 
transactions. If a sub-transaction aborts, all of its 
descendant transactions are also aborted, but not its 
ancestors. When a sub-transaction commits, any metadata 
changes it makes become permanent if and when all of its 
ancestors, up to and including the top ancestor transaction, 
commit. 
In HPSS we isolate groups of system metadata changes 
from one another by creating sub-transactions in the server 
procedures that make the changes. If an error occurs while 
making a metadata change, the sub-transaction is aborted, 
reversing the change, and an error is returned for the 
procedure outcome. Other rnetadata changes made in other 
procedures as part of the HPSS operation Wing performed 
are not affected. The decision to abort these changes can 
be made by the caller of the failing procedure. 
Without sub-transactions, an abort after an error in a called 
server procedure would abort the caller’s transaction. All 
metadata changes accumulated in the transaction would be 
tost. This is undesirable because the caller may be able to 
recover from the called procedure’s error by calling a 
different procedure or server, or taking some other 
corrective action. However, if the called procedure creates 
a sub-transaction in which it performs its metadata 
changes, it can abort the sub-transaction restoring the 
metadata to its original state and return an error code to the 
caller via the TRPC. The metadata changes made in the 

called procedure abort but the changes made in the client 
remain intact. The client may then recover from the error 
or may abort its own operation as required. 
As an example of the use of sub-transactions in HPSS. 
consider the case of writing an HPSS file (Figure 1). The 
bitfile server creates a top ancestor transaction and calls a 
storage server, via a TRPC, to create storage space for the 
tile. The storage server allocates space and changes its 
metadata in a sub-uansacuon. When the TRPC returns 
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Bitfile server Storage server 

CreateFile( 1 
c 

Createspace( 1; 
i f( error) 

' 

recover( 1; 
if(errot-1 

abort( ). 
CreateFileRec( 1; 
i f( error ) 

abort( ): 

return(error), 
> 

to the bitfile server, the bitfile server links the new 
storage space into the file in the top ancestor uansaction. 
If an error occurs in the storage server, it aborts its sub- 
transaction, reversing its metadata changes, if any, and 
returns an error code to the bitfile server. The bitfile 
server may then either recover from the error by allocating 
space in another storage server, or may abort its own 
metadata changes, and any committed sub-transactions, 
and return an error to the d e r  of the file create operation. 
In each of these outcomes, the integrity of the HPSS 
metadata database is maintained. 
Structured File Server 

HPSS stores its system metadata, the information needed 
by each server to describe the storage objects it provides, 
in SFS, the Encina Structured File Server. SFS provides 
a record-oriented storage facility for managing large 
numbers of records and accessing those records using one 
or more keys. Access to information stored in SFS 
records can be either transactional or non-transactional. 
Transactional access exhibits the ACID properties 
described earlier. 
SFS can associate loch with the records in its files and 
binds these iocks to transactions. The locks segregate 
access to the records to transactions, providing the 
isofazion property of transactional access to HPSS 
metadata files. SFS records changes made to records in 

transactions in a log which is used to record committed 
changes. 
Each transactional HPSS server maintains one or more 
system metadata files in SFS. Records in HPSS metadata 
files are indexed using a primary key and, in many cases, 
one or more secondary keys. In general, primary keys are 
unique within HPSS metadata files, whereas secondary 
keys may or may not be unique. 
The objects defined by HPSS servers are usually connected 
to one another within a server, and across servers, via 
primary and secondary keys embedded in the metadata 
records. Keys are placed in records so that the HPSS 
database taken as a whole may be mversed from either the 
top down or the bottom up. The system metadata 
architecture is optimized for top-down traversal. For 
example, each storage segment record maintained by a 
storage server is keyed by a storage segment key. The 
record has embedded in it the key of the virtual volume 
from which the storage segment is allocated. This key is 
a secondary key for the storage segment record, while the 
storage segment key is the primary key. Several storage 
segments may be allocated in the same virtual volume, so 
the secondary virtual volume keys will be shared by 
several storage segment records and will not be unique in 
the storage segment metadata file. Given a storage 
segment key, the associated virtual volume can be located 
immediately by searching the storage segment metadata 
file with the unique key. Only one record will be returned 
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and it will contain the virtual volume key. This is top- 
down traversal of the database. 
Given a virtual volume key, the storage segments located 
on the volume can be found by indexing the storage 
segment metadata file by the virtual volume secondary 
key. Zero or more records will be returned, each a storage 
segment allocated in the virtual volume. This is bottom- 
up traversal of the database. 
In a similar fashion, bitfile metadata records are linked to 
storage segments (top-down), and storage segment are 
linked to bitfiles (bottom-up). Name server entries are 
forward-linked to bitfiles and bitfiles are reverse-linked to 
name server entries. Top-down traversal of the database is 
used to locate file metadata information to carry out 
ordinary client requests (create / read / write / delete). 
Bottom-up traversal of the database is used to carry out 
certain maintenance activities, for example, locating all of 
the files stored entirely or partially on a failed physical 
volume. 
Transaction call-backs 
Encina provides a facility in which a process may arrange 
for a procedure to be called when a selected event occurs 
during the processing of a transaction. These events 
include transaction preparation, transaction resolution, 
transaction abort, and others, and can be established for 
top-level or nested transactions. The procedure call-back 
is made by an Encina library routine, in a thread managed 
by Encina, when the requested event occurs. From the 
point of the view of the process, the procedure call 
happens asynchronously. 
HPSS uses the call-back mechanism extensively to 
coordinate transactions with various maintenance activities 
in the servers. For example, several servers use call-backs 
to maintain a pool of open file descriptors (Oms) for the 
SFS metadata files. An OFD is a file access handle 
provided by SFS. When an OFD for a metadata file is 
needed by the server, it is taken from a free pool and used 
in a transaction, which causes the O!?D to be associated 
with the transaction. A call-back is set up by an HPSS 
library routine when the OFD is taken from the pool to 
call a server procedure that returns the OFD to the free 
pool. In this case, the call-back occurs when the top 
ancestor transaction resolves (either commits or aborts). 
In the HPSS disk storage server, call-backs are used to 
implement an in-memory cache of active metadata records. 
In many cases, this cache allows the server to reference 
metadata without taking the time to read it from the 
metadata file. Records are locked when they are referenced 
using the identifier of the top ancestor transaction as the 
key. The cache entry remains locked to the transaction 
until the transaction resolves. Sub-transactions may refer 
to the cache entry once it is locked by using the same top 
ancestor transaction ID. Other transactions and sub- 
transactions are blocked from using the entry until the 
locking transaction resolves. 

Cache lock management and consistency is maintained 
through transaction call-backs. A call-back is set up when 
the cache entry is first locked by a transaction, to unlock 
the cache enuy and make it consistent with the metadata 
file. The call-back occurs after the top ancestor 
transaction finishes, when the resolution of the transaction 
(commit or abort) is known. The disposition of the cache 
enuy depends on the operation that was done and the 
outcome of the transaction. If the entry was simply read, 
it is unlocked. If the entry was created during the 
operation and the transaction committed, the entry is left 
in the cache. If the transaction aborted, the entry is deleted 
from the cache. If the cache entry was deleted during the 
operation and the transaction was aborted, it is restored to 
the cache (and refreshed from the metadata file). If the 
transaction committed, the entry is permanently deleted 
from the cache. 
If the cache entry is modified during the transaction, the 
entry remains in the cache but is refreshed from the 
metadata file each time it is referenced until the transaction 
resolves. This is done because tracking the outcomes of 
sub-transactions as they change the entry becomes too 
difficult and would require that we reproduce a significant 
part of the SFS transaction management algorithm. If a 
sequence of modifications are made to a cache entry we 
simply refresh the cache entry before each modification 
and let SFS handle the 

, 

, 
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Transaction 
Commit Abort 

Unlocked unlocked 

Write Retieshed Refreshed 

Create UIIlded Deleted 

Detete Deleted Refreshed 
Figure 2: Actions taken on metadata cache objects by 

‘ operation and transaction outcome. 

‘ complexities of keeping track of which sub-transactions 
have committed and which have aborted. Once the top 
ancestor resolves, the call-back routine refreshes the cache 
entry once more from the metadata file and then unlocks 
it. Voiding the cache entry during metadata updates does 
not represent a serious degradation of the cache 
performance because most top-level transactions perform 
only one modification to a cache entry before committing, 
so the cache entry is usually refreshed only once, when the 
transaction finishes. 
Implementation Issues 
The balance of this paper describes Encina related issues 
that arose during the design and implementation of HPSS . 
These issues include: 

Interaction of transactions and storage media 

Choosing transaction boundaries 
Dealing with transaction sideeffects 

Interaction of transactions and storage media 
End user read and write operations made to HPSS files are 
done transactionally. Changes made to the HPSS 
metadata records for a file being read or written are made 
within a transaction created by the bitfide server so that 
they may be reversed in case of certain rare errors. An 
error writing a bitftle server metadata file is an example of 
the sort of error that will abort a read or write operation. 
In this case, if the associated metadata changes made by 
the supporting storage secver are not also reversed, the 
HPSS database would quickly become inconsistent. Note 
that storage media errors, including unexpected End-Of- 
Media errors do not cause the I/O operation to abort. An 
error is returned for the operation, but the appropriate 
metadata changes are committed. 
Many storage media have the property that they may be 
positioned, written, repositioned to some point that was 
previously written, and written again. Other media may 
only be written from the point where writing last ended. 
When writing user data, HPSS retains a record of the 
starting point, a tape or disk address, in system metadata 

Dealing with long duration- transactions 

that was committed some time in the past. At the end of 
the write operation, the updated Next-Address-To-Write is 
written into the system metadata in a transaction. If the 
transaction later commits, the Next-Address-To-Write 
information becomes permanent and the user data become\ 
committed to the system. 
However, if the transaction is subsequently aborted, for 
some reason noted above, the previous Next-Address-To- 
Write is restored to the system metadata and the user data 
is forgotten. If the storage media is repositionable, the 
next write operation to the media will simply start in the 
same place as the aborted operation and overwrite the 
aborted user data. Thus. the transactional semantics of the 
write operation lead to the automatic recovery of storage 
media that might otherwise have been wasted. 
If the storage media is not repositionable, an attempt to 
write the media at the restored starting point will fail 
because the write operation that aborted earlier moved the 
actual Next-Address-To-Write forward on the media, then 
forgot it. In this case. the HPSS metadata and the storage 
media are not synchronized with one another because the 
storage media cannot reverse a write operation. 
To resolve this situation, HPSS win recover from the 
write error by moving the write operation to a different 
volume and retrying, and by marking the volume that is 
out of step with the system metadata as temporarily un- 
writable. Later, a system utility will find this volume, 
locate its actual next write address and update the HPSS 
system metadata accordingly. The steps of marking the 
volume un-writable and correcting the volume’s Next- 
Address-To-Write are done in top-level transactions. 
isolated from any other transaction that may be in effect. 
Note that this “transactions vs. storage media” problem is 
not a serious one for HPSS because of two factors: 

Aborts in user data write operations are rare - metadata 
changes will usually commit even if the write 
operation ends in error 
Storage media maintenance activities such as tape 
repacking and reclaiming are always going on 

Dealing with long duration transactions 
In order to make transactiond changes to the HPSS 
metadata, the HPSS servers use SFS to create locks on 
records that are being changed. The locks implement the 
isolation property of Encina transactions and are 
maintained on a per metadata record basis by SFS. If a 
transaction locks a metadata record with the intent of 
writing the record (write-lock), all other transactions are 
blocked from reading or writing the record. They may not 
read the record unless they are willing to read the current 
committed data (reading without a lock). 
In many typical OLTP applications transactions are of 
short duration. In a mass storage system some 
transactions may be very short while others may be very 
long in duration. Short transactions include operations 
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that simply perform changes to the system metadata (e.g. 
set attributes functions) while long duration transactions 

Holding locks on HPSS metadata for long periods of time 
while long duration UO transactions are in effect, creates 
two potential problems for HPSS. The first is blocking 
other transactions’ access to metadata records. While the 
isolation property of transactions is vital to maintaining 
the consistency of the HPSS database, locks held on 
rnetadata records by long duration I/O transactions could 
cause other transactions to block for long periods of time 
while trying to perform non I/O operations such as 
allocating storage space. 
HPSS resolves +is problem by imposing restrictions in 
the way storage objects are used and reserving objects to 
active UO operations. For example, files must be opened 
through the bitfile server prior to requesting a read or write 
operation. When I/O begins on the file, the file is 
reserved to the client until the I/O completes. If another 
client attempts an I/O operation, it is blocked until the 
fmt client’s operation finishes and the transactions created 
during the VO operation have resolved. 

those that perform UO to the archive. 

In the storage server, the session construct is used to 
group I/O operations together and reserve system 
resources. The bitfile server opens a session with the 
storage server each time it performs a file open operation. 
Initially, the session has no system resources assigned to 
it. When the first I/O operation on the file is processed 
by the bitfile server, the associated storage server assigns 
the corresponding storage segments, virtual volumes and 
physical volumes to the session, if they are not already 
assigned to other sessions. Locks can then be taken on 
these objects during the UO operation without a blocking 
hazard because the objects have frrst been reserved to the 
session. If any of the resources needed by an f10 
operation are already reserved in another session, the f10 
operation is blocked until the session holding the 
resources completes. This prevents UO transactions fmm 
blocking on metadata locks and prevents deadlocks that 
would occur if two or more transactions competed for 
shared mehdata records. 
The second problem in dealing with long duration I/O 
transactions is the issue of dealing with failed transactions 
after server crashes, host system failures, power failures, 
etc. For reasons such as these, a transaction will 
occasionally fail to complete. The Structured File Server, 
which acts as the transaction coordinator in HPSS, 
maintains the integrity of the HPSS database by aborting 
the transaction. This is done by recording a time of last 
use in each of the Open File Descriptors open on HPSS 
metadata files. If the time since an OFD was last used 
exceeds a configurable limit set in SFS (the SFS OFD 
idle time-out), and another transaction attempts to rake a 
lock on a record locked by the expired OFD, the expired 
transaction is aborted and the expired OFD is closed. This 
feature protects the HPSS database from the failures noted 

above and is an important reason for using an OLTP in a 
mass storage system. 
If the transactions in the HPSS database could be 
characterized as not exceeding some uppcr bound in 
duration, the SFS idle time-out value could be set to that 
upper bound. However, when doing I/O operations on 
files of arbitrary length, as HPSS is designed to do, an 
upper bound cannot be established. Small values of the 
SFS idle time-out would effectively limit the size of files 
that could be written into HPSS. Large values would 
have an undesirable effect on recovering HPSS after a 
failure. One would either have to wait a long time for the 
SFS idle time-outs to expire on the transactions in effect 
at the time of the failure, or re-initialize SFS which 
increases the time to re-initialize the system. 
Furthermore, for whatever practical value the SFS idle 
time-out is set to, an YO operation that takes longer can 
be imagined. Note that time spent waiting for storage 
volumes to be mounted in a busy system may be spent 
inside the context of a transaction, further increasing the 
likelihood of an aborted transaction. 
HPSS resolves this situation by employing a technique 
suggested by developers at Transarc. When OFDs are 
assigned to a transaction a background thread in the server 
periodically performs a benign SFS operation using the 
OFD. These operations take very little time and don’t 
change the state of locks on metadata records, but do 
update the time of last reference in the OFD. The period 
of this “keep-alive” operation is set to a value that is most 
of the OFD idle time-out, but allows a margin of safety. 
As long as the server is functioning, its transactions and 
OFDs stay valid and UO operations can rake as much time 
as they need to complete. Locks on system metadata 
remain valid, competing accesses to the locked records 
remain blocked, and the long duration YO operations will 
complete nonnally. 

. 

. 

Choosing transaction boundaries 
In a few instances during the implementation of HPSS we 
located the boundaries of transactions in places different 
from those described in the system design. Top-level 
transactions were used in some places that were originally 
implemented as sub-transactions. In other cases, 
operations that seem logically to be a single transaction 
were implemented in two transactions. 
A good example of this appears in the bitfile servex. 
There are two steps in the loop that processes user write 
functions. In the fmt step storage space is allocated; in 
the second step the space is written with the user data. 
However, there are a few rare errors that can occur in the 
second step that make it desirable to discard the space 
allocated in the first step. The two steps logically form a 
single transaction, but in the implementation of the 
function, two transactions are used. If the function could 
be performed in one transaction, space allocated in the fmt 
step Gould be deallocated by simply aborting the 
transaction. 

8 



However, since the second step is sometimes a long 
duration operation, a single transaction that includes the 
storage allocation step will hold a storage map locked 
during the entire write operation. In the HPSS tape 
storage server this is a tolerable situation because storage 
maps are kept in a busy state during tape writes. When a 
tape is being written, no other storage space can be 
allocated on the tape until the write operation completes. 
In the HPSS disk storage server, however, holding the 
storage map busy during a long disk write is undesirable 
because storage space for disk segments is allocated in 
finite sized blocks, rather than in an open-ended fashion as 
for tape. Disk storage maps are therefore not kept in a 
busy state while the segment is being written. We want 
to allocate the disk space, modify the disk storage map, 
and commit those modifications as soon as possible so 
that other storage segments may be allocated from the 
map. 
To resolve this problem, the HPSS bitfiie server allocates 
storage segments in top-level a transaction, writes a log 
with the segment identification information, and commits 
the transaction. Then it starts a second top-level 
transaction, writes the user data, links the storage segment 
to the file metadaq and deletes the log entry. In the same 
transaction, the storage server updates its metadata with 
information about the written length of the segment. The 
first transaction creates the storage segment and releases 
the storage map, the second writes the user data, updates 
the storage segment metadata and attaches the storage 
segment to the file metadata. If an error occurs during the 
file write operation, we delete the storage segment in a 
separate transaction. We use two transactions where we 
originally expected to use one so that locks on metadata 
objects are not held for long periods of time, blocking the 
use of the objects by other users. 
In another case, a deadlock that occurred when two or more 
HPSS clients were reading files located on the same 
virtual volume was broken by changing a sub-transaction 
into top-level transaction. 
To cany out a file read operation, the bitfile server creates 
a top-level transaction in which the file statistics changes 
are made. When two clients accessed two files, located on 
a shared virtual volume, a deadlock occurred. One client 
would mount and read one volume, and in so doing would 
cause sub-transactions to be started that made minor 
metadata changes asswiated with mounting the volume 
(time last mounted, number of mounts). The other client 
would do likewise with a second volume. Then each 
client would attempt to mount and read the volume 
previously read by the other. Since each client is holding 
a lock on the volume metadata needed by the other, in an 
uncommitted sub-transaction, neither could proceed. 
One solution to this deadlock is not to make the metadata 
changes associated with mounting the volumes. Another 
is to make the changes in a top-level transaction. We 
chose the second route recognizing that it is appropriate to 

record the metadata changes associated with mounting the 
volume regardless of the outcome of the read operation. 
The physical act of mounting the volume cannot be 
undone-done therefore the records should be kept. The 
volume mount statistics are updated i n  a top-level 
transaction embedded in the bitfile server’s data reading 
transaction. 
Dealing with transaction side-effects 

In a distributed OLTP system, transactions take a certain 
amount of time to become completely finished after they 
commit In SFS, locks on records may be held for a short 
time until the server finishes the transaction. During this 
period of time searching a system metadata file with a 
non-unique secondary key can yield unexpected results. 
In the HPSS storage server, we index storage maps by a 
primary key, which is unique for each map, and a 
secondary key, which may be shared by many maps. The 
state of the map (free. busy, full, etc.) is part of the 
secondary key. When the server creates a storage segment, 
it searches the map metadata file by secondary key, 
searching for free maps. 
While testing the segment creation logic in the tape 
storage server, we discovered that a rapid serial sequence of 
storage segment creation requests were resolved on a series 
of volumes, not on a single volume as expected. If only 
one volume was available in the system, the sequence 
failed with a “no space” error when in fact space was 
available. 
The key to understanding this effect is to recognize that 
distributed transactions take time to resolve. When the 
storage server changed a storage map’s state from busy to 
free in one transaction, then searched the metadata file for 
free maps in a new transaction very shortly thereafter, it 
failed to find the map modified in the first transaction. It 
then either allocated space on a different volume, or if no 
other volume was available, returned the “no space” error. 
This situation is resolved in HPSS in two ways. First, 
the problem resolves itself if requests to create tape 
storage segments are separated by enough time for the 
transactions to finish in SFS. Second, if a storage server 
client wishes to create a string of segments on the same 
volume, an option is provided in the segment creation 
function that causes the storage server to read the desired 
storage map directly, by primary key, rather than 
indirectly searching for a free volume by secondary key. 
The direct read operation blocks until any transactional 
activity on the desired record is resolved. The delay is 
minimal and the system maintains transactional integrity 
in its metadata changes. 

Conclusions 
Commercial OLTP technology can provide the ACID 
properties required for new distributed mass storage 
systems in managing distributed metadata information. 
HPSS is an example of a new storage system designed to 

9 



take advantage of an existing OLTP product. In doing so, 
development and maintenance costs have been greatly 
reduced while overall system reliability has been enhanced. 
We have shown examples of the use of OLTP systems in 
the implementation of a high performance mass storage 
system, and shown how those algorithms can be modified 
to meet the requirements of both the mass storage system 
and the OLTP system. 
Distributed mass storage systems present unique issues 
and challenges in the application of OLTP technology. 
However, given sufficient capability from the OLTP 
product, these issues and challenges can be successfully 
managed and overcome. 
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