
PB-BLAS: A SET OF PARALLEL BLOCK 
BASIC LINEAR ALGEBRA SUBPROGRAMS 

Jaeyoung Choi 

University of Tennessee 
Department of Computer Science 

Knoxville, TN 37996-1301 

Jack Dongma* 

David W. Walker 

Oak Ridge National Laboratory 
Mathematical Sciences Section 

Computer Science and Mathematics Division 
Oak Ridge, TN 37831-6367 

*Also with the Department of Computer Science 
University of Tennessee 

107 Ayres Hall 
Knoxville, TN 37996-1301 

The submmed manuscript has bee0 
authored by a mmor of the U.S. 

Govemment retains a nonexdusive, 

allow othen to do so, for US. Govemment 
Purpowrs.' 

G0-t under mtract NO. DE- 
ACO5-84OR21400. Accordingh/. the US. 

roYehy-free liamse to p u M i  or reprodUc.3 
the PUMished form of this maibution. or 

* Research was supported by the Applied Mathematical Sciences Research Program of the Office 
of Energy Research, U.S. Department of Energy under contract DE-AC05-840R21400 with 
the Martin Marietta Energy Systems, Inc., by the Defense Advanced Research Projects Agency 
under contract DAALO3-91-C-0047, administered by the Army Research Office, and by the 
Center for Research on Parallel Computing. 

D1STRlBUTIQN OF THIS DOCUMENT IS UNL\FIIITEDd~ 





DISCLAIMER 

Portions of this. document may be illegible 
in electronic image products. Images are 
produced from the best available original 
document. 

I 



PB-BLAS : 

A SET OF PARALLEL BLOCK 
BASIC LINEAR ALGEBRA SUBPROGRAMS 

Jaeyoung Choi 
Jack J. Dongarra 

David W. Walker 

Abstract 

We propose a new library of routines for performing dense linear algebra computations 
on block-partitioned matrices. The routines are referred to as the Block Basic Linear 
Algebra Subprograms, and their use is restricted to computations in which one or more 
of the matrices involved consists of a single row or column of blocks, and in which no 
more than one of the matrices consists of an unrestricted two-dimensional array of blocks. 
The functionality of the block BLAS routines can also be provided by Level 2 and 3 
BLAS routines. However, for Non-Uniform Memory Access machines the use of the block 
BLAS permit certain optimizations in memory access to be taken advantage of. This is 
particularly true for distributed memory machines, for which the block BLAS are referred 
to as the Parallel Block Basic Linear Algebra Subprograms (PB-BLAS). The PB-BLAS 
are the main focus of this paper, and for a block-cyclic data distribution, a single row or 
column of blocks lies in a single row or column of the processor template. 

The PB-BLAS consist of calls to the sequential BLAS [13,14,22] for local computations, 
and calls to the BLACS [17] for communication. The PB-BLAS are the building blocks 
for implementing ScaLAPACK [5], the distributed-memory version of LAPACK [3], and 
provide the same ease-of-use and portability for ScaLAPACK that the BLAS provide for 
LAPACK. 

The PB-BLAS consists of all nine Level 3 BLAS routines, four of the Level-2 BLAS 
routines, and 2 auxiliary transpose routines. The PB-BLAS are currently available for all 
numeric data types, Le., single and double precision real and complex. 

This report was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor any agency thereof, nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or responsi- 
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Refer- 
ence herein to any speci!ic commercial product, process, or service by trade name, trademark, 
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom- 
mendation, or favoring by the United States Government or any agency thereof. The views 
and opinions of authors expressed herein do not necessarily state or reflect those of the 
United States Government or any agency thereof. 

~~ 

- v -  



1. Introduction 

In 1973, Hanson. Krogh, and Lawson [21] described the advantages of adopting a set of basic 
routines for problems in linear algebra. The first set of basic linear algebra subprograms (Level 
1 BLAS) [22] defines operations on one or two vectors. LINPACK [12] and EISPACK E241 are 
built on top of the Level 1 BLAS. An extended set of BLAS (Level 2 BLAS) [14] was proposed 
to support the development of software that would be portable and efficient, particularly on 
vector-processing machines. These routines perform computations on a matrix and one or two 
vectors, such as a niatrix-vector product. 

Current advanced architecture computers possess hierarchical memories in which accesses 

to data in the upper levels of the memory hierarchy (registers, cache, and/or local memory) 
are faster than those in lower levels (shared or off-processor memory). One technique to more 
efficiently exploit the power of such machines is to develop algorithms that maximize reuse 

of data held in the upper levels. This can be done by partitioning the matrix or matrices 
into blocks and by performing the computation with matrix-matrix operations on the blocks. 
Another extended set of BLAS (Level 3 BLAS) [13] were proposed for that purpose. The Level 3 
BLAS have been successfully used as the building blocks of a number of applications, including 
LAPACK [2], a software library that uses block-partitioned algorithms for performing dense and 
banded linear algebra computations on vector and shared memory computers. ScaLAPACK, 
the distributed version of the LAPACK library, also makes use of block-partitioned algorithms. 

Higher performance can be attained on distributed memory computers when parallel dense 
matrix algorithms utilize a data distribution that views the computational nodes as a logical 
two dimensional processor template [G,lG].  In distributing matrix data over processors, we 

therefore assume a block cyclic (or scattered) distribution [5,16]. The block cyclic distribution 
can reproduce the most common data distributions used in dense linear algebra as described 
briefly in the next section. 

There has been much interest recently in developing parallel versions of the BLAS for dis- 
tributed memory concurrent computers [1,7,19,20]. Some of this research proposed parallelizing 
the BLAS, or some implemented a few important routines of the BLAS, such as matrix-matrix 
multiplication. There is no complete, general, parallel version of the BLAS currently available 
that can be used as the building blocks for implementing dense linear algebra computations on 
distributed-memory multiprocessors. 

The Basic Linear Algebra Communication Subprograms (BLACS) [4] comprise a package 
that provides the same ease-of-use and portability for message-passing in parallel linear algebra 
programs as the BLAS provide for computation in such programs. The BLACS efficiently 
support not only point-to-point operations between processors on a logical two-dimensional 



- 2 -  

/ ScaLAPACK ScaLAPACK 
\ 

(a) LAPACK with BLAS (b) ScaLApACK with BLAS and BLACS (c) ScaLAPACK with PB-BUS 

Figure 1: Building structure of LAPACK and ScaLAPACK. In the figure, C represents BLACS 
communication. PB-BLAS simplifies the implementation of the ScaLAPACK by providing 
large blocks, which are combined with two small blocks of BLAS and BLACS. 

processor template, but also collective communications on such templates, or within just a 

template row or column. 
We propose a new set of linear algebra routines for implementing ScaLAPACK on top of 

the sequential BLAS and the BLACS. The functionality of these routines, called the Parallel 
Block Basic Linear Algebra Subprograms (PB-BLAS), could be provided by parallel versions 
of the Level 2 and Level 3 BLAS, however, the PB-BLAS can only be used in operations on a 
restricted class of matrices having a block cyclic data distribution. These restrictions permit 
certain memory access and communication optimizations to be made that would not be possible 
(or would be difficult) if general-purpose Level 2 and Level 3 BLAS were used. Consider the 
following types of matrix distributed block cyclically over a two-dimensional array of processors, 

1. a matrix of x h$ blocks, distributed over the whole 2-D processor template, 

2. a vector of Lb blocks, distributed over either a row or a column of the processor template. 
Clearly, this is a special case of a matrix of blocks, with either M b  = 1 or Nb = 1, 

3. a single block lying in a single processor in the processor template. 

The restrictions that the PB-BLAS impose are as follows. No more than one of the matrices 
involved may be a full block matrix, the other matrices involved must be block vectors or single 
blocks. Computations that do not conform to these restrictions must be handled differently, for 
example, by using the PUMMA package [ll] that has been developed for general matrix-matrix 
multiplication. 

The PB-BLAS consist of calls to the sequential BLAS for local computations and calls to the 

BLACS for communication. The PB-BLAS are used as the building blocks for implementing 
the ScaLAPACK library, and provide the same ease-of-use and portability for ScaLAPACK that 
the BLAS provide for LAPACK. Figure 1 shows schematically how the PB-BLAS simplify the 
implementation of ScaLAPACK by combining small blocks of BLAS and BLACS and providing 



- 3 -  

I ,’ I \ 
\ 

\ 

-f i f  

i I 

Figure 2: Hierarchical view of ScaLAPXCIi. The PB-BLAS playd a major role in implementing 
the ScaLAPACK. 

larger building blocks. Figure 2 shows a hierarchical view of ScaLAPACK. Main ScaLAPACK 

routines usually call only the PB-BLAS, but the auxiliary ScaLAPACK routines may need 
to call directly the BLAS for local computations and the BLACS for communication among 
processors. 

The PB-BLAS consist of all nine Level 3 BLAS routines, four Level 2 BLAS routines 
(PB-GEMV, PB-HEMV, PB-SYMV, and PB-TRRIV), and two auxiliary routines to transpose 
a row vector of blocks to a column vector of blocks, or vice versa (PB-TRAN and PB-TRNV). 
Here we use the LAPACK naming convention in which “-” is replaced with ‘‘9 (single preci- 
sion), “D” (double precision), “C” (single precision complex), or “Z” (double precision com- 
plex). The PB-BLAS routines have similar argument lists to the sequential BLAS routines, 
but contain additional parameters to specify positions of matrices in the processor template, to 
select destinations of broadcasting matrices, and to control communication schemes. Software 
developers and application programmers, who are familiar with the BLAS routines, should have 
no difficulty in using the PB-BLAS. 

In Section 4, we will consider a simple numerical linear algebra example, Cholesky factor- 

ization, to compare a LAPACK routine with the corresponding ScaLAPACK routine, and to 
demonstrate the effectiveness of the PB-BLAS. In the text, specifications and explanation of 

the routines are given for the double precision real data type (and double precision complex if 
there is no real case.) To adapt them for the other data types, simply convert the third letter 
of the routine names, PBD- and PBZ- to PBS- and PBC-. 



-4- 

0 1 2 3 4 5 6 7 8 9 1 0 1 1  

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

(a) block distribution over 2 x 3 template 

0 1 2 3 4  5 6 7 8 9 1 0 1 1  

(b) LCM block distribution 

0 3 6 9 1 4 7 1 0 2 5 8 1 1  
0 
2 
4 
6 
8 
10 
1 
3 
5 
7 
9 
11 
(c) data distribution from processor point-of-view 

Figure 3: A matrix with 12 x 12 blocks is distributed over a 2 x 3 processor template. (a) Each 
shaded and unshaded area represents different templates. The numbered squares represent 
blocks of elements, and the number indicates at which location in the processor template the 
block is stored - all blocks labeled with the same number are stored in the same processor. The 
slanted numbers, on the left and on the top of the matrix, represent indices of row of blocks and 
column of blocks, respectively. (b) The matrix has 2 x 2 LCM blocks. Blocks belong to the 
same processor if the relative locations of blocks are the same in each square LCM block. The 
definition of the LCM block is defined in the text. (c) It is easier to see the distribution from 
processor point-of-view in order to implement algorithms. Each processor has 6 x 4 blocks. 



- 5 -  

2. Design Issues 

The way in which a matrix is distributed over the processors of a concurrent computer has a ma- 
jor impact on the load balance and communication characteristics of the concurrent algorithm, 
and hence largely determines its performance and scalability. The block cyclic distribution 
provides a simple, yet general-purpose way of distributing a block-partitioned matrix on dis- 
tributed memory concurrent computers. In the block cyclic distribution, described in detail in 
[6,16], an iM x N matrix is partitioned into blocks of size r x C, and blocks separated by a fixed 
stride in the column and row directions are assigned to the same processor. If the stride in the 
column and row directions is P and Q blocks respectively, then we require that P Q equal the 
number of processors, A$. Thus, it is useful to imagine the processors arranged as a P x Q 

mesh, or template. The processor at position ( p ,  q )  (0 5 p < P ,  0 5 q < Q) in the template is 
assigned the blocks indexed by, 

(P+i .P ,  Q+j .Q) ,  (1) 

where i = 0 , .  . . , [ ( A f b  - 1 - p) /PJ  , j = 0,. . . , [(Na - 1 - q) /QJ,  and &!b x Nb is the size in 
blocks of the matrix (Ma = [ib!/?*1, Arb = [ N / s l ) .  

Blocks are scattered in this way so that good load balance can be maintained in parallel 

algorithms, such as LU factorization [5,16]. The nonscattered decomposition (or pure block 
distribution) is just a special case of the cyclic distribution in which the block size is given by 
r = rM/P] and c = [N/Ql.  A purely scattered decomposition (or two-dimensional wrapped 
distribution) is another special case in which the block size is given by r = c = 1. 

We assume that a matrix is distributed over a two-dimensional processor mesh, or template, 
so that in general each processor has several blocks of the matrix as shown in Figure 3 [a), 
where a matrix with 12 x 12 blocks is distributed over a 2 x 3 template. Denoting the least 

common multiple of P and Q by LCM, we refer to a square of LCh! x LCM blocks as an 
LCM block. Thus, the matrix may be viewed as a 2 x 2 array of LCM blocks, as shown in 
Figure 3 (b). Each processor has 6 x 4 blocks as in Figure 3 (c). 

The LCM block concept was introduced in [8,11], and is very useful for implementing algo- 
rithms that use a block cyclic data distribution. Blocks belong to the same processor if their 
relative locations are the same in each square LCM block. All LCM blocks have the same 
structure and the same data distribution as the first LCM block. That is, when an operation 
is executed on a block of the first LCM block, the same operation can be done simultaneously 
on other blocks, which have the same relative location in each LCM block. The LCM block 

concept was used for transposing a row or a column of blocks (PBDTRAN), transposing a row 
or a column vector (PBDTRNV). 

The LCM block concept is extended further in this paper to deal efficiently with symmetric 



- 6 -  

(a) General case of matrix multiplication Fl= 3 *Kl-Bl+CI 

(b) C is a full block matrix 
N 

(c) A is a full block matrix 

= M I - - - ? i l  * 

(d) B is a full block matrix 

Figure 4: DGEMM: matrix multiplication when A and B are not transposed. Each case should 
be computed differently on distributed memory environments. (a) General case. (b) C is a full 
block matrix and A and B are a column and a row of blocks, respectively. (c) A is a full block 
matrix, (d) B is a full block matrix. 

and Hermitian matrices. Assume that a lower (or upper) triangular matrix A is distributed 
on a two dimensional processor template with the block cyclic decomposition. The locally 
stored matrix in each processor is not a lower (or upper) triangular matrix. The block layout 
of the first LCM block is the same as that the other diagonal LCM blocks. Processors compute 
their own block layout of the first LCM block from their relative position on the processor 
template, then they can determine their own physical data distribution of the matrix A. This 
concept is used for updating the upper or lower triangular part of a symmetric or Hermitian 
matrix (PBDSYRK, PBDSYRPK, PBZHERK, and PBZHER2K), and for multiplying with it 
(PBDTRMM, PBDTRMV, PBZHEMM, and PBZHEMV). For details of the implementation, 
see Section 3.4. 

To illustrate the use of the PB-BLAS consider the matrix multiplication routine, DGEMM. 

for the non-transposed case: C M ~ N  CY . A M ~ K  B K ~ N  + /3 - C M ~ N .  The PB-BLAS version 
handles three distinct cases depending on the sizes of the matrices involved in the computation, 
i.e., on whether A,  B,  or C is a full block matrix rather than a vector of blocks. These three 
cases are shown in Figure 4. If K corresponds to a just one block then A is a column of 
blocks, B is a row of blocks, and C is a full block matrix as shown in Figure 4 (b). If N 



r 
- I -  

(a) General case 

(b) M is limited to its block size. A is a single block 

(c) N is limited to its block size. A is a full block manix 

Figure 5:  DTRSM: solution of triangular systems when the triangular matrix A is located on 
the left of B. (a) General case. (b) When M is limited to its block size, A is a single block 
and it is located in a single processor. (c) When N is limited to its block size, A is a full block 
matrix and it is distributed over 2-D processors. 

corresponds to just a single block then B and C are columns of blocks and A is a full block 
matrix (Figure 4 (c)). Finally, Figure 4 (d) shows the case in which M corresponds to a single 
block, so that A and C are rows of blocks, and B is a full block matrix. If there is no limitation 
as shown in Figure 4 (a), the problem is beyond the scope of the PB-BLAS and such a problem 
needs to be handled with different software, such as the PUMMA package [ll]. 

As a second example, consider the solution of triangular systems (DTRSM in the Level 3 
BLAS) when the triangular matrix A is located on the left of B,  as shown in Figure 5. If M 
corresponds to a single block, then A consists of one block, which is located on one processor, 

and B is a row of blocks, located on a row of the processor template. If N corresponds to a single 
block, then A is a full triangular matrix, distributed over all processors, and B is a column 
of blocks, located on a column of the processor template. The two cases are implemented 
separately. 

In designing the PB-BLAS the following principles were followed, 

1. maximize the size of submatrices multiplied (or computed) in each processor, 

2. maximize the size of submatrices communicated among processors, thereby reducing the 
frequency of communication, 

3. minimize the size of working space required during computation. 

The PB-BLAS are efficiently implemented by maximizing the size of submatrices for local 



- 8 -  

computation and communication, and are implemented with minimum working space. The 
performance of a parallel program implemented by a novice using the PB-BLAS, will generally 
be commensurate with that hand-coded by an experienced programmer, and in this sense the 

PB-BLAS attain near maximum performance. 
In addition to the fundamental restrictions on matrix size stated above, the implementation 

of the PB-BLAS is simplified by making the following assumptions about matrix alignment: 

1. The basic unit of storage in the PB-BLAS is a block of elements, thus matrices are 
assumed to start at the beginning of their first blocks of matrices. However, blocks in the 
last row or column of blocks in a matrix do not have to be full, Le., the size of the matrix 

in elements does not have to be esactly divisible by the block size. 

2. The PB-BLAS also makes assumptions about the alignment of matrices on the processor 
template. If a full block matrix begins at location ( p 0 , q o )  in the template, then any 
column vectors of blocks must also begin in row PO, and any row vectors of blocks must 
begin in column 40 if no transposition of the vector is involved in the computation. Each 
PB-BLAS routine is passed arguments that specify the start position of each matrix in 

the processor template. 

ScaLAPACK makes use of block-partitioned algorithms, so it is natural to use the PB-BLAS 
as "building blocks" for ScaLAPACIC, and to assume that the first element of a matrix is aligned 
with block boundaries. The only exceptions to this alignment constraint in the PB-BLAS are 
lower-level analogs of the Level 2 BLAS routines, PBDGEMV, PBDSYMV, PBDTRMV, and 
PBZHEMV, in which the first elements of vectors and the corresponding matrix can be located 
in the middle of blocks. 

In Figure 4 (b), the first block of the column of blocks A and the row of blocks of B should 

be located at the same row and column processor as the first block of the matrix C, respectively. 
In Figure 4 (c), the column of blocks B needs to be transposed to multiply with the matrix A.  
The first block of B can be located in any processor, but the first block of the column of blocks 
C should be located in the same processor row as the first block of A.  

3. Implementation of the PB-BLAS 

The PB-BLAS routines need more arguments than the corresponding BLAS routine to spec- 
ify the block sizes, positions of matrix, destinations of broadcasting matrices, communication 
schemes, and working space. In general, the arguments to PB-BLAS routines follow the same 
conventions as the BLAS and the BLACS. We shall now illustrate these conventions, as applied 
to the PB-BLAS, with a few examples. 



- 9 -  

Figure 
= IACOL = ICROW = ICCOL = 0) 

PBDTRAN routine: a routine for transposing a column or row o 

3.1. PBDTRAN 

icks, (IAR Y 

PBDTRAN transposes a column (row) of blocks to a row (column) of blocks, so that a vector of 

blocks that was formerly in one column (row) of the processor template becomes redistributed 
to lie along one row (column) of the template. 

SUBROUTINE PBDTRAN( ADIST, TRFMT, M, N, NB, A, LDA, C, LDC, 

CHARACTER*I ADIST, TRFMT 
INTEGER M, N, NB, LDA, LDC 
INTEGER IAROW, IACOL, ICROW, ICCOL 
DOUBLE PRECISION A( LDA, * 1, C( LDC, * >, WORK( * ) 

$ IAROW, IACOL, ICROW, ICCOL, WORK ) 

ADIST gives for the distribution of A: “C” (columnwise) or “R” (rowwise), and TRFMT gives 
the transpose format for complex data type: “T” (transpose) or “C” (conjugate transpose). 
For real data types it is ignored. M and N are number of elements in rows and columns of A ,  
respectively. If A is distributed columnwise (ADIST = “CY), an M xN column of blocks A is 
located on one column of processors, IACOL, beginning from IAROW, with a row block size NB. 
If IACOL = -1, it is assumed that all columns of processors have their own copies of A. The 
resultant NxM row of blocks C will be located on a row of processors, ICROW, beginning from 

ICCOL, with a column block size NB. If ICROW = -1, all rows of processors will have their own 
copies of C. 

Figure 6 shows an example that transposes a column of blocks A to a row of blocks A over 
a 2 x 3 processor template. Assuming that the first blocks of A and C are located in processor 
PO (IAROW = IACOL = ICROW = ICCOL = 0), then processors PO and P3 have a column of blocks 



110 - 

B 

C 

(a) C is a matrix ( M " 0 S  = "C") (b) A is a matrix (MTxpOS = " A )  

Figure '7: Matrix multiplication examples when A and B are multiplied in non-transposed form. 
(a) C is a full block matrix (b) A is a full block matrix. 

A, and Po, 4 ,  and Pz will have a row of blocks C after transposing A.  At first, PO sends A(0) 
and A(6) to itself. At the same time, P3 sends A(1) and A(7) to PI.  Next, PO sends A(2) and 
A(8) to 4, P3 sends A(3) and A(9) to PO, and so on. The sending processors pack the data in 
order to minimize the frequency of communications, and the receiving processors unpack the 
data as soon as they receive them in order to minimize working space. The LCM concept is 
used for packing and unpacking the data. The row block distance of A is 3 (= LCMIP)  for 
packing on PO and Pa, and the column block distance of C is 2 (= LCMIQ) for unpacking on 
PO, P I ,  and P2. 

If each column of processors have their own copies of A (IACOL = -1), they operate inde- 
pendently to transpose A.  Each column of processors send their blocks to their own diagonal 
processors. In the figure, PO, Pd, and P2 are diagonal processors. A diagonal processor of the 
first column, PO, collects A(0) and A(6) from itself, and A(3) and A(9) from P3. If all row 
of processors are to have their own copies of C (ICROW = -l), the resultant C is broadcast 
columnwise from the diagonal blocks. 

3.2. PBDGEMM 

PBDGEMM is a matrix-matrix multiplication routine. 

SUBROUTINE PBDGEMM( MTXPOS, TRANSA, TRANSB, M, N, K, MB, NB, KB, 
$ ALPHA, A, LDA, B, LDB, BETA, C, LDC, IAROW, 
$ IACOL, IBROW; IBCOL, ICROW, ICCOL, BRIST, 
$ ACOMM, SEND2A, BCOMM, SEND2B, WORK ) 
CHARACTER*I MTXPOS, TRANSA, TRANSB, BRIST 
CHARACTER*I ACOMM, SEND2A, BCOMM, SEND2B 
INTEGER M, N, K, MB, NB, KB, LDA, LDB, LDC 



- 11- 

I N T E G E R  IAROW, I A C O L ,  IBROW, I B C O L ,  ICROW, I C C O L  
DOUBLE P R E C I S I O N  ALPHA, BETA 
DOUBLE P R E C I S I O N  A( LDA, * ) , B (  LDB,  * ) , C (  LDC,  * ) 
DOUBLE PRECISION \JORK( * ) 

MTXPOS indicates which matrix is the full block matrix: “A’,, “B”, or “C”. M, N, and K give 
the sizes of matrices in elements, and MB, NB, and KB are the corresponding block sizes. 

Figure 7 (a) shows a simple example of matrix-matrix multiplication where A is a column 
of blocks? B is a row of blocks, and C is a full block matrix. For local computation, A and B 
need to be broadcast rowwise and columnwise? respectively. The following issues need to be 
decided before broadcasting A and B. 

1. Which one is ready to be broadcast first. -4 or B ? 

2. How to send A and/or B ? That is, what communication schemes will be used to broadcast 
them ? 

3. Where will -4 (or B )  be sent to in other processors ? If the same layout of memory is 
assumed in each processor, then A (or B )  could either be broadcast to same memory 
locations as in the root of the broadcast so A (or B )  is overwritten, or it can be broadcast 

to working space. 

The above questions are managed by extra arguments of the PB-BLAS routines. B U S T  

determines the column (or row) block to be broadcast first when MTXPOS = “C”. ACOMM (or 

BCOMM) controls the communication scheme of d (or B) ,  which follows the topology definition 
of the BLACS [4], as discussed in Appendix A. SEND2A (or SEND2B)  specifies the location of 
the blocks that are broadcast (either A or B,  or working space). To better understand the 
need to specify whether working space is to be used in the broadcasting of A or B,  consider 
the case in which A is a column of blocks that is a submatrix of some other matrix. Clearly, 
if A is broadcast to the same memory location in other processors, data in the parent matrix 
will be incorrectly overwritten. In this case we should broadcast to working space (SEND2A = 
“No”). On the other hand, if A is not a submatrix, or if A lies entirely within the working 
space, then it can be broadcast to the same location in each processor, and extra memory and 
a memory-to-memory copy can be avoided (SEND2A = “Yes”). 

The position in the processor template of a column (or row) block must be aligned with the 
position of the full block matrix. Figure 7 (a) shows that the first blocks of A and B are located 
at the same row and column of the processor template as the first block of C, respectively, If 
one of blocks is misaligned, it should be moved to the appropriate position before the routine 
is called. 



- 12 -  

In Figure 7 (b), A is a full block matrix, B and C are columns of blocks. The computation 
proceeds as follows: First, B is transposed, so that the first block of BT is located at the 

same column position as the first block of A. The transposed row of blocks BT is broadcast 

columnwise, and it is multiplied with the local portion of -4 in each processor. Then the local 
products are added along template rows to produce C. The first block of B may be located at 
any position, since the transposition of B is involved in the computation. But the first block 
of C must be located at the same row position as the first block of A. 

3.3. PBDTRSM 

SUBROUTINE PBDTRSM( MTXBLK, SIDE, UPLO, TRANSA, DIAG, M, N, NB, 
$ ALPHA, A, LDA, B, LDB, IAROW, IACOL, IBPOS, 
$ COMMA, SEND2A, GJORK ) 
CHARACTER*I SIDE, UPLO, TRANSA, DIAG 
CHARACTER*I MTXBLK , COMMA, SEND2A 
INTEGER M, N, NB, LDA, LDB, IAROW, IACOL, IBPOS 
DOUBLE PRECISION ALPHA 
DOUBLE PRECISION A( LDA, * ), B( LDB, * ),  WORK( * ) 

PBDTRSM solves a triangular system. If SIDE = “Left”, and M is limited by its block size 
NB (M 5 NB), the triangular matrix A is just a single block (MTXBLK = “Block’), which is located 
on just one processor, (IAROW, IACOL), as in Figure 5 (b). The M x N row of blocks B is located 
on a row of processors, IAROW, starting at IBPOS, 

The routine is executed on one row of processors, IAROW. The triangular block A is broadcast 
rowwise with one of the BLACS communication topologies (COMMA), and the copies are stored 
either in A (SEND2A = ‘Yes“) or working space (SEND2A = “No”). The row of processors 
compute their local portion of B by calling the Level 3 BLAS routine, DTRSM. 

If SIDE = “Left”, and N is limited by its block size NB (N 5 NB), the triangular matrix A is a 

full triangular matrix distributed over the whole two-dimensional processor template (MTXBLK 
= “Matrix”), and its first block is located at (IAROW, IACOL),. The M x N column of blocks B 
is located on a column of processors, IBPOS, starting at IAROW, as shown in Figure 5 (c). 

The implementation of the linear triangular system solver is a two-dimensional block version 
of Li and Coleman’s method [23]. Since A and B are distributed block cyclically, all computa- 
tions in [23] are changed to block computations using the routines DTRSM and DGEMM. If 
SIDE = “Left”, (Q - 1) blocks of B are rotated columnwise (approximately [(Q - 1)/P1 blocks 
in each row of processors). The two arguments COMMA and SEND2A are ignored when MTXBLK = 
“Matrix”. 

3.4. PBDSYRK 
SUBROUTINE PBDSYRK( UPLO, TRANS, N, K, NB, ALPHA, A, LDA, BETA, 



- 13 - 

$ C y  LDC, IAPOS, ICROW, ICCOL, ACOMM, SENDZA, 
$ MULLEN, PRESV, VORK ) 
CHARACTER*I UPLO, TRANS, ACOMM, SENDZA, PRESV 
INTEGER N, K ,  NB, LDA, LDC 
INTEGER IAPOS, ICROW, ICCOL, MULLEN 
DOUBLE PRECISION ALPHA, BETA 
DOUBLE PRECISION A( LDA, * ),  C( LDC, * ), WORK( * ) 

PBDSYRK performs a rank-lt update on an N x N symmetric matrix C with an N x K column 
of blocks A (TRANS = “No”), or with a K x N row of blocks A (TRANS = “Trans’)). That is, 

An overview of the routines is shown in Figure 8. 
ICROW and ICCOL specify the row and column position of the first block of the matrix C, 

respectively. IAPOS specifies the column position of the column of blocks A if TRANS = “No”. 
The row position of the first block of A is assumed to be ICROW. If TRANS = ‘Trans’), IAPOS 
specifies the row position of the row of blocks A and the column position of the first block of 
A is assumed to be ICCOL. 

Figure 9 (a) shows an example of PBDSYRK when TRANS = “NO” and UPLO = “Lower”. It 
is assumed that 24 x 24 blocks of C are distributed over a 2 x 3 processor template, and C has 
4 x 4 LCM blocks. 

The computing procedure of PBDSYRK is as follows. First, the column of blocks A is 
broadcast rowwise from IAPOS, so that each column of processors then has its own copy of A. 
Each column of processors transposes A independently, and the transposed blocks in diagonal 
processors are broadcast columnwise. Each processor updates its own portion of C with its 
own portion of A and AT 

It is often necessary to update the lower triangular matrix C without modifying data in its 
upper triangular part (PRESV = “Yes”). The simplest way to do this is repeatedly to update 
one column of blocks of C, but if the block size (NB) is small, this updating process will not be 
efficient. However, it is possible to modify several columns of blocks of C. Figure 9 (b) shows 
this example from the point-of-view of the processor at Po, where 2 (= LCM/Q)  columns of 
blocks are updated at the same time. First, A(O), A(2), and A(4) are multiplied with AT(0) 
and AT(3),  and only the lower triangular part of 3 x 2 (= LCM/P x LCM/Q)  blocks are added 
to L11. L1 is updated by multiplying the rest of A with AT(0) and AT(3). Then L2l and L2 
are updated in the same way. The above scheme can be extended further. Figure 9 (c) shows 
the same example, where 4 (= 2 .  LCM/Q)  columns of blocks are updated simultaneously. 

It is desirable to update a multiple of LCM/Q blocks at a time from the LCM block 
concept. In the argument list of the PBDSYRK routine, MULLEN specifies an approximate 



- 14 - 

(a) A is not transposed (TRANS = 'N') 

(b) A is transposed (TRANS = 'T') 

Figure 8: Overview of PBDSYRIi routine (a) A is not transposed (b) A is transposed. 

(a) matrix point-of-view 

0 3 6 9 12 15 18 21 0 3 6 9 12 15 521 

(b) processor point-of-view I at P(0) (c) processor point-of-view II at P(0) 
Figure 9: PBDSYRK routine: a routine for rank-k updating 



- 15 - 

length of multiplication to update G efficiently. The multiple factor is computed by rl. = 
rMvL.LEN/((LCn.r/Q).nrg)l, and k-( LCM/Q) columns of blocks are updated simultaneously 
inside of the routine. The optimum number is determined by processor characteristics as well 
as the numbor of processors ( P  and Q ) ,  the size of the matrix, and the block size. The optimum 
number was formed to be about 40 on the Intel i8GO and Delta computers. 

However, if it is permissible to change the data in the upper triangular part of C (PRESV = 
“No”), L11 and L1 can be updated with one multiplication step. This combined computation 
is faster. 

4. Applications of the PB-BLAS 

In this section, we illustra.te how the PB-BLAS routines can be used to implement a simple 

numerical linear algebra algorithm, Cholesky factorization. This is the same example as that 
used to demonstrate the effectiveness of the Level 3 BLAS in [13]. However, we use the right- 
looking version of the algorithm, since it minimizes data communication and distributes the 
computation across all processors [15]. 

Cholesky factorization factors a symmetric, positive-definite matrix A into the product 
of a lower triangular matrix L and its transpose, i.e., A = LLT. It is assumed that the lower 
triangle portion of A is stored in the lower triangle of a. twedimensional array, and the computed 
elements of L overwrite the given elements of A. We partition the n x n matrices A,  L ,  and 

LT,  and write the system A = LLT as 

where the block A11 is a r x r matrix, where r is the block size. 
The block-partitioned form of Cholesky factorization may be inferred inductively as follows. 

If we assume that L11, the lower triangular Cholesky factor of All, is known we can rearrange 
the block equations, 

The factorization can be done by recursively applying the steps outlined above to the (n - r )  x 

(n  - r )  matrix Ai2. 
The computation procedures of the above steps in the LAPACK routine, involve the follow- 



- 16 - 

ing operations: 

1. DPOTFZ: compute Cliolesky factorization of the diagonal block, 

A11 * LllLT, 

2. DTRSM: compute the subdiagonal block of L,  

L21 A21(LT,)-1 

3. DSYRK: update the rest of the matrix, 

Ai2 A22 - L21 LT1 = L2&2 

For the parallel implementation of the block partitioned Cholesky factorization, assume 
that the lower triangler matrix A is distributed over a P x Q processor template with a block 
cyclic distribution and a block size r x r. In the corresponding ScaLAPACK routine. PDPOTRF, 

computation procedures outlined above are as follows: 

1. PDPOTF2: a processor Pi, which has the r x r diagonal block All, performs Cholesky 
factorization of All.  (The computation of PDPOTFZ is the same as that of DPOTF2. In 
PDPOTF2, Pi checks positive definiteness of All, and broadcasts the result to the other 
processors so that the computation can be stopped if A11 is non-positive definite.) 

2. PBDTRSM: L11 is broadcast along the column of the processors, and they compute the 
column of blocks of Lzl. 

3. PBDSYRK: the column of blocks L21 is broadcast rowwise and then transposed. Now, 
processors have their own portions of L21 and LTl. They update their local portions of 
the matrix A2z. 

The Fortran code of the right-looking block Cholesky factorization, which is a variation of 

the LAPACK routine, DPOTRF, is given in Appendix B. The corresponding parallelized code, 
PDPOTRF, is included in Appendix C. PDPOTRF includes declarations to compute local indices, 
but overall it is very similar to the sequential version. 

5. Conclusions 

We have presented the PB-BLAS, a new set of block-oriented basic linear algebra subprograms 
for implementing ScaLAPACK on distributed memory concurrent computers. The PB-BLAS 

consist of calls to the sequential BLAS for local computations and calls to the BLACS for 
communication. 

The PB-BLAS are a very useful tool for developing a parallel linear algebra code relying on 

the block cyclic data distribution, and provide ease-of-use and portability for ScaLAPACK. The 



- 17 - 

PB-BLAS are the building blocks for implementing ScaLAPACK. A set of ScaLAPACK routines 
for performing LU, QR and Cholesky factorizations and for reducing matrices to Hessenberg, 
tridiagonal and bidiagonal form have been implemented with the PB-BLAS [9]. 

The PB-BLAS are currently available for all arithmetic data types, i.e., single and dou- 
ble precision, real and complex. The PB-BLAS routines, along with the PB-BLAS User’s 
Guide [lo] are available through netlib. To obtain them, send the message “send pbblas from 

scalapack” to netlibOorn1. gov. 

6. Future Work 

We are developing a new version of the parallel BLAS routines, called the Parallel BLAS (or 
PBLAS in short), on top of the PB-BLAS. These essentially consist of C-wrappers for the 
PB-BLAS in order to simplify the calling sequence of the PB-BLAS. Since the PBLAS use the 
C language’s ability to dynamically allocate memory, a programmer does not need to worry 
about passing working space of the routines. The PBLAS will hide the PB-BLAS parameters 
for specifying the matrix layout by using globally declared parameters. The calling sequences 
of the PBLAS will be very similar to those of the BLAS. Using the PBLAS instead of the PB- 
BLAS may sacrifice some flexibility, but it will provide greater ease-of-use to the programmer. A 
programmer, even one not very familiar with parallel programming, should be able to parallelize 
a sequential linear algebra quite easily using the PBLAS. 

Appendix A: BLACS Communication Topologies 

Topologies allow the user to optimize communication patterns for particular operations. In the 
BLAS, the TOPOLOGY parameter controls the communication pattern of the operations. It is 
used to  optimize the way that the BLACS performs a given broadcast or global operation to fit 
a user’s requirements. Different topologies spread the work involved in a given operation over 

the nodes in different ways. 

Increasing ring 
decreasing ring 
split ring 
hypercube 
fully connected 
tree broadcast with NBRANCHES = I 
tree broadcast with NBRANCHES = 2 
tree broadcast with NBRANCHES = 3 
tree broadcast with NBRANCHES = 4 
tree broadcast with NBRANCHES = 5 
tree broadcast with NBRANCHES = 6 
tree broadcast with NBRANCHES = 7 
tree broadcast with NBRANCHES = 8 



- 18 - 

= ’9’ : tree broadcast with NBRANCHES = 9 

For global operations, ring topologies, such as ’I’, ID’, and 5’’ are not available. For details, 

see the BLACS User’s Guide [18] 

Appendix B: LAPACK Cholesky Factorization 
SUBROUTINE DPOTRF( UPLO, N, A, LDA, INFO 

A variant of LAPACK of L*L**T factorization. 
This is a right-looking Level-3 BLAS version of the algorithm. 

CHARACTER UPLO 
INTEGER INFO, LDA, N 
DOUBLE PRECISION A( LDA, * ) * 
INTEGER NB 
PARAMETER ( NB = 64 * * * 

* 
* * * 

* 
* * 
* 

* * * 

Use blocked code. 

LOWER = LSAME( UPLO, ’L’ 

IF( LOWER ) THEN 

Compute the Cholesky factorization A = L*L’ 

DO 10 J = I, N, NB 

Factorize the current diagonal block 
and test for non-positive-definiteness. 

JB = MIN( NB, N-Jt1 ) 
CALL DPOTF2( ’Lower’, JB, A( J, J >, LDA, INFO ) 
IF( INFO.NE.0 ) GO TO 20 

IF( J+JB.LE.N ) THEN 

Form the column panel of L using the triangular solver 

CALL DTRSM( ’Right’, ’Lower’, ’Transpose’, ’Non-unit’, 
$ N-J-JB+I, JB, l.ODO, A( J, J ), LDA, 
$ A( J+JB, J ), LDA ) 

Update the trailing matrix, A = A - L*L’ 
CALL DSYRK( ’Lower’, ’No transpose’, N-J-JB+l, JB, 

$ -1.OD0, A( JtJB, J 1, LDA, I.ODO, 
$ A( J+JB, J+JB ), LDA ) 

END IF 
I O  CONTINUE 

END IF 
GO TO 30 

20 CONTINUE 
* 

INFO = INFO t J - 1 * 
30 CONTINUE 



- 19 - 

RETURN 
END 

Appendix C: ScaLAPACK Cholesky Factorization 
SUBROUTINE PDPOTRF( UPLO, N, NB, A, LDA, INFO, VORK ) * * * * 
ScaLAPACK version of L*L**T factorization. 
This is a right-looking PB-BLAS version of the algorithm. 

CHARACTER*I UPLO 
INTEGER N, NB, LDA, INFO 
DOUBLE PRECISION A (  LDA, * 1, WORK( * ) 

INTEGER 
PARAMETER 

MULLEN 
( MULLEN = 40 ) 

CALL GRIDINFO( NPROW, NPCOL, MYROW, MYCOL ) 
LOWER = LSAME( UPLO, 'L' ) 

I1 = I 
JJ = I 
IN = I 
JN = I 
ICURROW = 0 
ICURCOL = 0 * 

* * * 
* 

* * * * 

IF( LOWER ) THEN 

Compute the Cholesky factorization A = L*L' 

$ 

* 
* * * 

* * * 
$ 
$ 

DO 10 J = I, N, NB 

JB = MIN( NB, N-J+l ) 
NXTROW = MOD( ICURROW+I, NPROW 
NXTCOL = MOD( ICURCOL+I, NPCOL ) 
IF( MYROW .EQ. ICURROW ) IN = I1 + JB 
IF( MYCOL .EQ. ICURCOL ) JN = JJ + JB 

Factorize the current diagonal block 
and test for non-positive-definiteness. 

CALL PDPOTF2( 'Loner', JB, A(II,JJ), LDA, ICURROW, ICURCOL, 
INFO 

IF( INFO.NE.0 ) GO T O  20 

IF( J+JB.LE.N ) THEN 

Form the column panel of L using the triangular solver 

CALL PBDTRSM( 'Block', 'Right', 'Lower', 'Transpose', 
'Non-Unit', N-J-JB+I, JB, NB, I.ODO, 

ICURCOL, NXTROW, 'I-Tree', 'No', WORK ) 
A(II, JJ); LDA, A(IN, JJ), LDA, ICURROW, 

Update the trailing matrix, A = A - L*L' 
CALL PBDSYRK( 'Loner', 'No Transpose', N-3-JB+I, JB, NB, 

-1.OD0, A(IN,JJ), LDA, I.OD0, A(IN,JN), 
LDA, ICURCOL, NXTROW, NXTCOL, 'S-Ring', 



- 20 - 

$ 'No', MULLEN, 'Yes', WORK ) * 
ICURROW = NXTROW 
ICURCOL = NXTCOL 
I1 = IN 
JJ = JN 

END IF * 
10 CONTINUE 

END IF 
GO TO 30 

20 CONTINUE 
* 

INFO = INFO -k J - I * 
30 CONTINUE 

RETURN 
END 



- 21 - 

Appendix D: PB-BLAS Routines 

Calling sequences of the PB-BLAS routines are given for the double precision real and complex 
data type. (Argument lists for complex routines are omited if they are same as for the corre- 
sponding real routines.) To adapt them for the single precision, simply convert the initial three 
letters of the routine names, PBD- and PBZ- to PBS- and PBC-. 

(1) PBDGEMM/PBZGEMM 
C -+ alpha. op(A)  e op(B) + beta - C, where op(X)  = X,XT, o r X H  

SUBROUTINE PB-GEMM( MTXPOS, TRANSA, TRANSB, M ,  N,  K ,  MB, NB, K B ,  

$ ALPHA, A,  LDA, B ,  L D B ,  BETA,  C ,  LDC,  IAROW, 

$ I A C O L ,  IBROW, I B C O L ,  ICROW, I C C O L ,  B R I S T ,  

$ ACOMM, SENDZA, BCOMM, SENDZB,  WORK ) 

(a) TRANSA = ’N’, TRANSB = ‘N’ 

(c) TRANSA = ’N’, TRANSB = ’T/C’ 

(b) TRANSA = ‘T/C’, TRANSB = ‘N’ 

(d) TRANSA = ’T/C’, TRANSB = ’T/C’ 



- 22 - 

(2) PBDGEMV/PBZGEMV 

y alpha. op(A) - x + beta y, where op(A) = A? AT, or AH 

SUBROUTINE PB-GEMV( TRANS, XDIST, YDIST, M, N, MB, NB, MZ, NZ, 

$ ALPHA, A, LDA, X, INCX, BETA, Y, INCY, 

$ IAROW, IACOL, IXROW, IXCOL, IYROW, IYCOL, 

$ XCOMM, SENDZX, WORK ) 

(a) TRANS = 'N' 

(b) TRANS = 'T' / 'C' 

A'/ A" 

1 

i 
A - = j  *-+I- 

-= A'/ A" *-+I- 



- 23 - 

(3) PBZHEMM 
C -k a1pha.A . B  +beta- C, or C + alpha-B . A  + beta. C, whereA = AH 

SUBROUTINE PBZHEMM( 

$ 

$ 

(a) SIDE = ‘L’ 

(b) SIDE = ‘R’ 

SIDE, UPLO, M, N, NB, ALPHA, A, LDA, B y  LDB, 

BETA, C, LDC, IAROW, IACOL, IBPOS, ICPOS, 

SENDZB, MULLEN, WORK ) 

(4) PBZHEMV 

y alpha. op(A)  x + beta. y, where op(A) = A, or AT 

SUBROUTINE PBZHEMV( UPLO, XYDIST, N, NB, NZ, ALPHA, A, LDA, 

$ X, INCX, BETA, Y, INCY, IAROW, IACOL, 

$ IXPOS, IYPOS, SENDZX, MULLEN, WORK ) 

(a) XYDIST = ’Column’ 

(b) XYDIST = ‘ROW’ 

n 
+ [  



- 24 - 

(5) PBZHERSK 
C 
C (1 alpha. AH B + alpha. BH . A + beta C, where C = C H  

alpha - A BH + alpha- B . AH + beta C, or 

SUBROUTINE PBZHER2K( UPLO, TRANS, N, K, NB, ALPHA, A, LDA, B, LDB, 

$ BETA, C, LDC, IAPOS, IBPOS, ICROV, ICCOL, 

$ ABCOMM, SEND2A, SENDZB, MULLEN, PRESV, WORK ) 

(a) TRANS = ’N’ 

(b) TRANS = ’C’ 

(6) PBZHERK 
C alpha - A .  AH + beta C, or C + alpha-AH . A +  beta. C, where C = C H  

SUBROUTINE PBZHERK( UPLO, TRANS, N, K, NB, ALPHA, A, LDA, BETA, 

C, LDC, IAPOS, ICROW, ICCOL, ACOMM, SENDZA, 

MULLEN, PRESV, WORK ) 

(a) TRANS = ’N’ 

(b) TRANS = ’C’ 

\c 
\ 



- 25 - 

(7) PBDSYMM/PBZSYMM 
C a1pha.A. B +beta- C, or C + a1pha.B A +beta. C ,  where A = AT 

SUBROUTINE PB-SYMM( S I D E ,  UPLO,  M ,  N ,  NB, ALPHA, A ,  LDA, B ,  LDB,  

$ BETA, C ,  LDC, IAROW, IACOL,  I B P O S ,  I C P O S ,  

$ SEND2B,  MULLEN, VORK ) 

(a) SIDE = ‘L’ 

* + 

(b) SIDE = ‘R’ 

(8) PBDSYMV 

y alpha op(A)  x + beta . y, where op(A) = A, or AT 

SUBROUTINE PBDSYMV( UPLO,  X Y D I S T ,  N ,  NB, NZ,  ALPHA, A, LDA, 

$ X ,  I N C X ,  BETA, Y ,  I N C Y ,  IAROW, I A C O L ,  

$ I X P O S ,  I Y P O S ,  SENDZX, MULLEN, WORK ) 

(a) XYDIST = ’Column’ 

* + 

(b) XYDIST = ’ROW’ 

r - y - = p q  *-+I- 



- 26 - 

(9) PBDSYR2K/PBZSYRBK 
C + alpha - A BT + alpha B . AT + beta. C, or 

C + alpha. AT . B + alpha. BT . A + beta C, where C = CT 

SUBROUTINE PB_SYR2K( UPLO, TRANS, N, K, NB, ALPHA, A ,  LDA, B, UX.3, 

$ 

$ 

BETA, C, LDC, IAPOS, IBPOS, ICROW, ICCOL, 

ABCOMM, SEND2A, SEND2B, MULLEN, PRESV, WORK 

(a) TRANS = ’N’ 

(b) TRANS = ’T’ 

r i  r l  

I I  
L J  

(10) PBDSYRK/PBZSYRK 
C (Z alpha A . AT + beta. C, or C (Z alpha AT A + beta - C, where C = CT 

SUBROUTINE PB-SYRK( UPLO, TRANS, N, K, NB, ALPHA, A, LDA, BETA, 

C, LDC, IAPOS, ICROW, ICCOL, ACOMM, SENDZA, $ 

$ MULLEN, PRESV, WORK ) 

(a) TRANS = ’N’ 

(b) TRANS = ’T’ 



- 27 - 

(11) PBDTRAN/PBZTRAN 
c .e 01' c + A ~  

SUBROUTINE PB-TRAN( ADIST, TRFMT, M, N, NB, A, LDA, c, LDC, 

$ IAROW, IACOL, ICROW, ICCOL, WORK ) 

(a) AFORM = 'C' 

<= 

(b) AFORM = 'R' 

e= 

(12) PBDTRMM/PBZTRMM 
B e alpha op(A) B, or B e alpha. B - op(A), where op(A) = A, AT, or AH 

SUBROUTINE PB-TRMM( MTXBLK, SIDE, UPLO, TRANSA, DIAG, M y  N, NB, 

$ ALPHA, A, LDA, B, LDB, IAROW, IACOL, IBPOS, 

$ COMMAB, SND2AB, MULLEN, WORK ) 

(a) MTXBLK = 'M' (b) MTXBLK = 'B' 

1 = p i  * & I  
A 



- 28 - 

(13) PBDTRMV/PBZTRMV 
x e op(A) - x, where op(A) = A, AT, or AH 

SUBROUTINE PB-TRMV( UPLO, TRANS, DIAG, XDIST, N, NB, NZ, A, LDA, 

$ X, INCX, IAROW, IACOL, IXPOS, SEND2X, MULLEN, 

$ IaJORK ) 

(a) XDIST = ’C’ 

(b) XDIST = ’R’ 

& =  E ‘\ 

(14) PBDTRNV/PBZTRNV 
y e xT or y xH 

SUBROUTINE PB-TRNV( XDIST, TRFMT, N, NB, NZ, X, INCX, Y, INCY, 

$ IXROW, IXCOL, IYROW, IYCOL, # O M  ) 

(a) AFORM = ’Coluiiin’ 

e= 

(b) AFORM = ’ROW’ 

II f e= 

II f 



- 29 - 

(15) PBDTRSM/PBZTRSM 
B alpha.op(A-') -B, orB + alphs-B.op(A-'), where op(A) = A ,  AT, orAH 

SUBROUTINE PB-TRSM( MTXBLK, SIDE, UPLO, TRANSA, DIAG, M, N, NB, 

$ ALPHA, A, LDA, B, LDB, IAROW, IACOL, IBPOS, 

$ COMMA, SEND2A, IJORK ) 

(a) MTXBLK = 'Matrix' (b) MTXBLK = 'Block' 

7. References 

[l] M. Aboelaze, N. P. Chrisochoides, E. N. Houstis, and C. E. Houstis. The Parallelization 
of Level 2 and 3 BLAS Operations on Distributed Memory Machines. Technical Report 
CSD-TR-91-007, Purdue University, West Lafayette, IN, 1991. 

[2] E. Anderson, Z. Bail C. Bischof, J. Demmel. J. Dongarra, J. DuCroz, A. Greenbaum, 
S. Hammarling, A. McKenney, and D. Sorensen. LAPACK: A Portable Linear Algebra 
Library for High-Performance Computers. In Proceedings of Supercomputing '90, pages 
1-10. IEEE Press, 1990. 

[3] E. Anderson, Z. Bail J. Demmel, J. Dongarra, J. DuCroz, A. Greenbaum, S. Hammarling, 
A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK Users' Guide. SIAM Press, 
Philadelphia, PA, 1992. 

[4] E. Anderson, A. Benzoni, J. Dongarra, S. Moulton, S. Ostrouchov, B. Tourancheau, and 
R. van de Geijn. Basic Linear Algebra Communication Subprograms. In Sizth Dis- 
tributed Memory Computing Conference Proceedings, pages 287-290. IEEE Computer So- 
ciety Press, 1991. 

[5] J. Choi, J. J. Dongarra, R. Pozo, and D. W. Walker. ScaLAPACIC A Scalable Linear 
Algebra Library for Distributed Memory Concurrent Computers. In Proceedings of Fourth 



- 30 - 

Symposium on the Frontiers of Massively Parallel Computation (i\lcLean, Virginia). IEEE 
Computer Society Press, Los Alamitos, California, October 19-21, 1992. 

[GI J. Choi, J. J. Dongarra, and D. W. Walker. The Design of Scalable Software Libraries for 
Distributed Memory Concurrent Computers. In Proceedings of Environment and Tools for 
Parallel Scientific Computing Workshop, (Saint Hilaire du Touvet, France), pages 3-15. 
Elsevier Science Publishers, September 7-8, 1992. 

[7] J .  Choi, J. J. Dongarra, and D. W. Walker. Level 3 BLAS for Distributed Memory 
Concurrent Computers. In Proceedings of Environment and Tools for Parallel Scientific 
Computing Workshop, (Saint Hilaire du Touvet, France), pages 17-29. Elsevier Science 
Publishers, September 7-8, 1992. 

[8] J. Choi, J. J. Dongarra, and D. \V. Walker. Parallel Matrix Transpose Algorithms on 
Distributed Memory Concurrent Computers. Technical Report TM-12309, Oak Ridge 
National Laboratory, Mathematical Sciences Section, October 1993. 

[9] J. Choi, J. J. Dongarra, and D. W. Walker. ScaLAPACK Reference Manual I : Parallel 
Factorization Routines (LU, QR, and Cholesky). Technical Report TM-12471, Oak Ridge 
National Laboratory, Mathematical Sciences Section, February 1993. 

[lo] J. Choi, J. J. Dongarra, and D. W. Walker. PB-BLAS Reference Manual. Technical Re- 
port TM-12469, Oak Ridge National Laboratory, Mathematical Sciences Section, February 
1994. 

[ l l]  J. Choi, J. J. Dongarra, and D. W. Walker. PUMMA : Parallel Universal Matrix Multipli- 
cation Algorithms on Distributed Memory Concurrent Computers. Concurency: Practise 
and Experience, 1994. Accepted for publication, Also in Technical Reports of Oak Ridge 
National Laboratory, Mathematical Sciences Section, TM-12252, August, 1993. 

[12] J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. Stewart. LINPACK Users' Guide. 
SIAM Press, Philadelphia, PA, 1979. 

[13] J. J. Dongarra, J. Du Croz, S. Hammarling, and I. Duff. A Set of Level 3 Basic Linear 
Algebra Subprograms. ACM Transactions on Mathematical Software, 18(1):1-17, 1990. 

[14] J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson. An Extended Set of 
Fortran Basic Linear Algebra Subprograms. ACM Transactions on Mathematical Software, 
lG(1):l-17, 1988. 

[15] J. J. Dongarra and S. Ostrouchov. LAPACK Block Factorization Algorithms on the In- 
tel iPSC/860. LAPACK Working Note 24, Technical Report CS-90-115, University of 
Tennessee, October 1990. 



- 31 - 

[l6] J. J. Dongarra, R. van de Geijn, and D. W. Walker. A look at  Scalable Linear Algebra 
Libraries. In Proceedings of the 1992 Scalable High Performance Computing Conference, 
pages 372-379. IEEE Press, 1992. 

[17] J. J. Dongarra and R. A. van de Geijn. Two Dimensional Basic Linear,Algebra Communi- 
cation Subprograms. LAPACK Working Note 37, Technical Report CS-$1-138, University 
of Tennessee, 1991. 

[18] J.  J. Dongarra, R. A. van de Geijn, and R. C. Whaley. BLACS User's Guide. Technical 
report, University of Tennessee, 1993. preprint. 

[19] A. C. Elster. Basic Matrix Subprograms for Distributed Memory Systems. In D. W. 
Walker and Q. F. Stout, editors, Proceedings of the Fifth Distributed Memory Computing 
Conference, pages 311-316. IEEE Press, 1990. 

[20] R. D. Falgout, A. Skjellum, S. G. Smith, and C. H. Still. The Multicomputer Toolbox Ap- 
proach to Concurrent BLAS. A Gill Transactions on Mathematical Software, 1993. preprint 
(submitted to a journal). 

[21] R. J. Hanson, F. T. Krogh, and C. L. Lawson. A Proposal for Standard Linear Algebra 
Subprograms. ACM SIGNUM News/., 8(16), 1973. 

[22] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. Basic Linear Algebra 
Subprograms for Fortran Usage. A CM Transactions on Mathematical Software, 5(3):308- 
323, 1979. 

[23] G. Li and T. F. Coleman. A Parallel Triangular Solver for a Distributed-Memory Multi- 
processor. SIAM J. of Sci. Stat. Computing, 9~485-502, 1986. 

[24] B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow, Y. Ikebe, V. C. Klema, and C. B. 
Moler. Matrix Eignensystem Routines - EISPACK Guide. Springer-Verlag, Berlin, 1976. 
Vo1.6 of Lecture Notes in Computer Science, 2nd Ed. 


