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MESH METHODOLOGY FOR
DEVICE-SCALE COMBUSTION
CALCULATIONS
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M. S. SAHOTA

Group T-3, MS B216
Los Alamos National Lab
Los Alamos, NM 87545

ABSTRACT

At Los Alamos we are developing a parallel,
unstructured-mesh, finite-volume CFD
methodology for the simulation of chemically
reactive flows in complex geometries. The
methodology is embodied in the CHAD
(Computational Hydrodynamics for Advanced
Design) code. In this report we give an overview
of the CHAD numerical methodology and present
parallel scaling results for calculations of flows in a
four-valve diesel engine.

INTRODUCTION

Computer simulation of flows in practical
combustion devices, such as internal combustion
engines, is one of the most difilcuk problems
facing modem computational fluid dynamics
because of the number of challenging issues that
must be addressed before accurate simulations can
be performed. These flows typically involve
geometric complexity (complicated internal flow
passages; moving boundaries, possibly with flow
domain topology changes; and small features, such
as crevices and gaps, whose inclusion can be vital

to correct flow field predictions), physical
complexity (turbulence, combustion,
multiphase flow, and radiative heat transfer),
and numerical challenges (deforming meshes,
large density and fluid property variations, thin
boundary layers and narrow jets, and coupled
Eulerian/Lagrangian algorithms). To help meet
these challenges, we at Los Alamos are
developing the CHAD code for device-scale
combustion applications.

CHAD improves ‘ upon previous
combustion codes developed by Los Alamos
(e.g., RICE, APACHE, CONCHAS, and
KIVA) in three important respects. First,
CHAD uses hybrid unstructured grids in
which cells in the mesh can be hexahedra or
any solid figures-such as prisms, pyramids,
or tetrahedra-that can be obtained by
collapsing faces or edges of hexahedra to lines
or points. This unstructured mesh capability
will enable faster mesh generation in complex
geometries and also improve mesh quality.
Second, for computational efficiency CHAD
uses a variable explicitiimplicit method for
calculating advection [ORourke and Sahota,
1998], in addition to implicit treatment of
diffixion and pressure wave propagation
terms. When the computational timestep is
small, a time-accurate explicit advection
scheme is used; when the timestep is large, a
variable amount of implicitness is added to
maintiin stability and monotonicity. This
methodology improves computational
efficiency in calculations of flows with
embedded regions, such as boundary layers
and jets, with advective time scales that are
much smaller than problem time scales of
interest.

Perhaps the largest difference between
CHAD and its predecessors, however, is that it
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is written to take full advantage of parallel
computers. Calculations of flotis in p;actical
combustors are very demanding of computational
resources - requiring high resolution and complex
physical submodels. Current calculations are often
under-resolved and use physical submodels that
have known inaccuracies in many applications.
Overcoming these deficiencies will require more
computer power than is available with scalar and
vector computers. Parallel and massively parallel
platforms offer the promise of the large increase in
computer power necessary for three-dimensional
calculations of combustor flows. Because of the
variety of today’s, and undoubtedly tomorrow’s,
parallel computer architectures, CHAD is written to
be highly portable on computers having FORTRAN
90 compilers. Portability is realized, in part, by
placing all data communication in a small number of
gather/scatter routines in which all machine-
dependent coding is isolated. For distributed
memory platforms automatic domain decomposition
using spectral graph partitioning is used to balance
processor work load and minimize the cost of
global data communication. In this case the
gather/scatter routines utilize a message-passing
library, written in standard MPI, for global data
communication.

In this paper we first give an overview of the
CHAD numerical methodology. We describe the
median mesh control volumes used by the ftite-
volume method and illustrate the differencing of a
generic transport equation. Then we present an
example calculation of cold flow in a 4-valve,
small-bore diesel engine. Parallel scaling results
are given for calculations on a multi-processor
distributed-memory computer.

L CHAD NUMERICAL
METHODOLOGY

The CHAD computer code uses a node-centered
finite volume method to solve the Navier-Stokes
equations for a multicomponent mixture of ideal
gases. When calculating turbulent flows, the
equations are supplemented by those of a standard
K/&turbulence model. For applications with fuel
sprays, these equations can be coupled to equations
for a vaporizing liquid spray. With minor
exceptions, the CHAD equations are those solved
by the KIVA-11code and will not be given here.
We also do not describe here the numerical particle

method for solving the spray equations. Our
intent in this paper is to give an overview of
the solution method for the gas-phase
equations.

A. The Median Mesh

In CHAD, conserved variables are
fundamentally located at the nodes, or vertices,
of a computational mesh that is composed of
logical hexahedra, called elements, whose
faces and edges may degenerate to lines or
points. The control volumes used to
approximate the integral conservation
equations are the so-called “median mesh”
control volumes. These are the union of a sub-
volume of each of the elements touching the
node. Each element is subdivided into eight
hexahedral sub-volumes, one for each node.
The sub-volume associated with a node, as
illustrated in Fig. 1, has as its vertices the
node itself, the three mid-points of the edges
touching the node, three mid-points of the
faces touching the node, and the centroid of the
element. Figure 2 gives a schematic picture of
the median mesh control volume surrounding a
node in a two-dimensional mesh. We denote
this volume by Vv, where v is a nodal index.
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Fig. 1. The subvolume of an element that lies in a
median mesh control volume of node 4. The shaded
surfaces are surfaces of the median mesh control
volume
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Fig. 2. Median mesh control volume (dashed lines)
surrounding node v in a two-dimensional mesh.

Fluxes are computed for each face of a median
mesh control volume, and we define one face for
each edge in the mesh. A median-mesh face is the
union of all sub-volume faces that touch the
associated edge. Figure 2 illustrates a median-
mesh face in a two-dimensional mesh. Quantities
associated with an edge will be denoted by
subscript a. The area projection vector for face a
will be denoted by Aa and will be directed outward
from the node-v control volume. Note that
although Aa is associated with both an edge and a
node, we drop the node subscript for brevity. Each
edge is shared by two control volumes, and we
denote by Va the node on the opposite side of face
cxfrom the node v under consideration.

An edge-based computational procedure is used
in which a list is kept of the edges of all elements
and of the two nodes that bound each edge. A
typical computational sequence involves performing
three DO-loops over the edge list in which we f~st
gather necessary information from nodal arrays to
edge arrays, second perform calculations using the
gathered information (e.g.. calculate fluxes), and
third scatter the calculated information back to nodal
arrays while performing an operation (e.g.. adding
fluxes).

Others have used the control volumes and edge-
based data structure described above in conjunction
with tetrahedral- ~avriplis, 1995] and hybrid-
grids [Sehnin, 1993]. Our numerical method
differs from previous methods in the means by
which artificial dissipation is introduced, as
described in the next section.

B Transport Equation
Differencing

Co-located variable schemes, such as that in
CHAD, rely on either upwinding, or the
introduction of explicit node coupling, to
control alternate node uncoupling problems.
CHAD uses a combination of both streamline
upwinding of the advective terms and explicit
node coupling to couple pressures at
neighboring nodes. The diffusion terms are
difference by means of a simple and novel
scheme that also couples solution variables at
neighboring nodes.

Transport equation differencing is
illustrated by consideration of a generic
conservation equation for mass-specific
quantity Q:

s v

where p is the gas density, u the gas velocity,
points on the surface S of control volume V
move with velocity v, DQ is the diffisivity,
and SQ is a source term. The CHAD
difference approximation to this equation is the
following:

‘z(PD~)a(VQ)~+l A&+l+(sQ)”+’fTn+lVva

where At is the computational timestep, the
superscripts denote time levels of numerical
approximation, and the face variables are
evaluated by methods we now describe.

The quantities pa and Qa are difference
using the variable explicithplicit method
detailed in O’Rourke and Sahota [1998]. As
mentioned in the introduction, this scheme
employs a time-accurate explicit scheme when
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the local material speed Courant number is less than
one. In this case streamline upwinding is used, and
advected quantities are evaluated at time level tn +
At/2, resulting in an advective scheme that is
second-order accurate. When the local Courant
number is greater than one, a variable amount of
implicitness is used to maintain stability and
monotonicity. In this latter case, the difference
scheme retains second-order spatial accuracy, but
becomes first-order accurate in time.

The quantity $a is the exact volume swept out
by face ot in moving from its time-n to its time-
(n-i-l) position, divided by At, and is positive if
volume is added to volume Vv by such motion.

The cell-face velocity Ua is evaluated by a
modified form of the method of Rhie and Chow
[1983]:

‘+’-+u;:’u,

[

u :+1+ U::l
Ua = + Va– z

. *:+1

2 1A;+l
[

(3)
——
A“+l 2 2At”n (vp):+l-‘pf+l;Vp::’

a P; ‘Pva 1

The quantity ya is the rate at which volume would
be swept out by face cxif the mesh moved with the
fluid velocity; thus in a Lagrangian calculation, in
which Vv = Uv, in the limit of small At we would
have ~a = @u. The pressure gradient terms in Eq.
(3) are defined below. These can be interpreted as
introducing a fourth-order pressure node-coupler
[0’Rourke and Sahota, in preparation].

The cell-face gradient (VQ) ~ is defined by
averaging nodal gradients, and correcting to ensure
that the component of the gradient in the direction
of the associated edge, is consistent with the
difference between Qv and QVU: \

L

( VQV-I-VQva . ~ da ‘4)
_F Qva–Qv–

2 )–a lda~

where

da=xva–xv .

The nodal gradients are defined by

VQv=+~Qva; QvAa
Va

This cell-face madient amxoximation

(5)

differs
from the normal ftite-ele’ient approximation;
but it gives equally accurate results in test
calculations we have performed and can be
used with an edge-based data structure and
hexahedral elements.

The system of coupled, nonlinear fmite-
difference equations that results from applying
Eq. (2) to the gas-phase equations, is solved
by an adaptation of the SIMPLE method, with
individual equations solved by GMRES.

Il. EXAMPLE CALCULATION:
COLD FLOW IN A 4-VALVE
DIESEL ENGINE

Steady flow is being simulated in an engine
in which flow measurements are being
performed at Sandia National Laboratories and
at Ricardo Inc. The engine and its geometry
are illustrated in Fig. 3. The engine is of the
four-valve-per-cylinder type, with a swirl type
port provided by Ricardo. Flow through the
port and cylinder assembly is driven by a
specified pressure drop. The CHAD
calculations are performed with a mesh of
200,000 hexahedral elements provided by the
University of Wisconsin. The calculations
performed to date have used the K/s turbulence
model, although we plan to use sub-grid scale
turbulence models in fidnre calculations.

The computational results show the
formation of three jets resulting from the
interaction of flows through the two inflow
ports. These are illustrated in the velocity
magnitude plot of Fig 4. Rotating jets B and
C result from flows that enter from each of the
two ports without interacting with flow from
the other port. Jet A forms along the center-
plane of the engine and results from the
interaction of the flows through the two ports.
Because the flows are counter-rotating when
they meet on the center-plane, there is swirl
cancellation and very little rotation associated
with jet A.
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Fig. 4. Velocity magnitude plot in a plane through the two
intake valves.

The calculations are performed on an SGI Origin
2000 computer, and Fig. 5 shows parallel speed-
up results for runs on multi-processors of this
machine. It is seen that parallel speed-up is super-
Iinear up to four processors, and scales linearly
with processor number above four processors.
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