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Abstract

This report describes testing of prototype InfiniBand™ host channel adapters from Intel
Corporation, using the Linux® operating system. Three generations of prototype hardware
were obtained, and Linux device drivers were written which exercised the data movement
capabilities of the cards. Latency and throughput results obtained were similar to other SAN
technologies, but not significantly better.
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Introduction
This report describes work funded under the ASCI Problem Solving Environment (PSE) sub-
project High-Speed Interconnect (HSI).

When this work was begun in FY00, we had identified an emerging technology, the
InfiniBand™ Architecture (IBA), which had the potential to address Sandia needs in
massively parallel cluster computing.  In particular, it seemed to have the potential of
unifying the infrastructure for high performance messaging and high performance storage.
Since every major computing vendor was a member of the InfiniBand Trade Association,
there seemed to be some hope for InfiniBand to become a true commercial off-the-shelf
(COTS) technology, with interoperability and enough competition to keep prices low.

At the same time, we had identified a need for the Advanced Networking Department to have
more Linux® kernel expertise. We had observed, for example, that network throughput
didn’t seem to be increasing at the same rate that processing power and network bandwidth
were increasing, and the kernel (i.e. device drivers, protocol stacks) is where these meet.
Linux is the operating system of choice for scientific cluster computing, with a large
development community outside of Sandia. Although Linux development proceeds at a
furious pace, without local kernel expertise we have no choice but to wait for others to
develop solutions to our problems.  With local expertise, there is some hope of tracking the
latest developments and adapting them to meet Sandia’s needs.

Finally, we felt that the Advanced Networking Department had inadequate knowledge of
Portals, the underlying messaging technology used in various versions on Sandia’s Cplant™
and TFLOPS massively parallel computers.

In order to gain detailed knowledge of the InfiniBand Architecture, while addressing our
need to build Linux kernel expertise and learn more about the details of Portals, we
developed the following plan. We would obtain prototype InfiniBand hardware, write a
minimal Linux driver that exercised the data movement capabilities of the hardware, and
investigate the possibility of porting Portals over InfiniBand. This report describes what was
learned in the process of doing so.
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The InfiniBand Architecture
The definitive description of the InfiniBand Architecture is the InfiniBand Architecture
Specification, Volumes 1 and 2 [1]. As of this writing, the current release of the specification
is 1.0.a, and is available free of charge from the InfiniBand Trade Association. As the full
specification comprises 1500 pages, this report cannot hope to discuss all of the features of
IBA which are pertinent to this work, or to Sandia’s needs. The goal of this section is to
introduce enough of the concepts and terminology to make the rest of the report intelligible.
Interested readers should consult the full specification.

As a predecessor to the IBA specification, the Virtual Interface Architecture (VIA)
specification [2] contained many of the concepts found in IBA. It was succeeded and
expanded upon by the Next Generation I/O (NGIO) specification, which to my knowledge
was not publicly released. The NGIO supporters and those of a competing specification,
Future I/O (also not publicly released, to my knowledge), agreed to merge their
specifications around August or September 1999. The result was first called System I/O, and
ultimately became the InfiniBand Architecture. The first publicly available IBA specification
was released in October 2000.

The InfiniBand Architecture is a system area network technology based on a point-to-point,
switched fabric. End nodes in the fabric can be host computers, or I/O devices such as disk
controllers, network interfaces, graphics controllers, etc. The fabric comprises one or more
IBA switches, which may be cascaded as the size of the fabric is scaled up. End nodes
interface to the fabric using a channel adapter, of which there are two types. A host computer
uses a host channel adapter (HCA), which must support the full functionality of the IBA. I/O
devices may use a target channel adapter (TCA), which are only required to support a subset
of the functionality of the IBA.

The IBA specifies both copper and optical links. The signaling rate of all links for Release
1.0 of the specification is 2.5 Gb/s. Standard 8B/10B transmission encoding is used, which
results in a data rate of 250 MB/s. All links are full-duplex, and come in three widths, 1X,
4X, and 12X. A 1X link is one full-duplex link, or physical lane. A 4X link is four parallel
full-duplex physical lanes, and a 12X link is twelve parallel full-duplex physical lanes. For
the 4X and 12X links, data is byte-striped across the physical lanes. A 1X optical link has a
short-reach (SX) option, which operates at a wavelength of 850 nm, and a long-reach (LX)
option, which operates at 1300 nm. Optical 4X and 12X links have only an SX specification.

The InfiniBand Architecture specifies a transport mechanism that can support messaging
semantics, remote direct memory access (RDMA) semantics, and atomic operation
semantics. The transport services supported by the IBA are shown in Table 1. The IBA is
designed to support both reliable transport services and unreliable transport services. For
either reliable or unreliable transport, the IBA specifies both a connection-based transport
service, in which two endpoints communicate exclusively with each other, and a datagram-
based transport service, in which an endpoint can communicate with multiple other
endpoints.
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In addition, the IBA supports a raw datagram service. Two types of raw datagrams are
supported, IPv6 and Ethertype.  Raw datagrams can be sent to IBA routers that can forward
them to non-IBA destinations on a different fabric technology. In addition, the IBA also
provides a multicast service, where sending to a single destination multicast address results in
data arriving at multiple hosts.

The choice of the word “datagram” to designate a transport service in which an endpoint can
communicate with multiple other endpoints is perhaps unfortunate. In the Internet Protocol
(IP) arena, “datagram” is most often associated with the User Datagram Protocol (UDP) [3],
which is an unreliable transport (however, see RFC-1151 [4] and RFC-908 [5]). In the IBA
specification, however, both reliable and unreliable versions of the datagram transport
service are included.

Note that many features of the IBA are required for a device to be considered IBA-compliant,
but some are optional. For example, an HCA is required to support reliable connected,
unreliable connected, and unreliable datagram transport services, and may optionally support
reliable datagram service. On the other hand, a TCA is only required to support the unreliable
datagram transport service, and may optionally support any of the others.

The IBA specification uses the phrase Channel Interface (CI) to describe the presentation of
access to channel adapters, and a user of the Channel Interface is termed a Consumer. The
IBA specification describes the semantic behavior of an IBA-compliant host Channel
Interface through the Software Transport Verbs.

It is important to understand that the Verbs do not specify an application programming
interface (API). The Verbs only describe how a consumer interacts with a Channel Interface,
e.g. what sort of events can occur, and what data is needed to describe various events and
actions. The API used to access a Channel Interface is determined by the supplier of the
HCA and CI.

Also, the IBA specification does not specify the protocols that IBA devices use to exchange
data. For example, the IBA has nothing to say regarding how a host operating system
interacts with an IBA-connected RAID controller, except that it will involve some

Service Type Connection-based Reliable Transport

Reliable Connection yes yes IBA

Unreliable Connection yes no IBA

Reliable Datagram no yes IBA

Unreliable Datagram no no IBA

Raw Datagram no no raw

Table 1. InfiniBand Service Types



9

combination of IBA transport services, such as messaging and RDMA over a reliable
connection. However, other standards bodies may have efforts to standardize common
applications of InfiniBand.  For example, there is a draft standard in the National Committee
for Information Technology Standards (NCITS) technical committee T101 called “SCSI
RDMA Protocol” which addresses the transport of the SCSI protocol over InfiniBand.

Both the VIA and IBA specifications allow implementations to provide user-level access to a
HCA without kernel intervention. The IBA specification is clearest on this point, because its
Software Transport Verbs description spells out the level of access intended for consumers of
each Verb. Only nine Verbs are specified to allow user-level consumer access: Create
Address Handle2, Modify Address Handle, Query Address Handle, Destroy Address Handle,
Bind Memory Window3, Post Send Request, Post Receive Request, Poll for Completion, and
Request Completion Notification.  All other Verbs are specified to have privileged, or kernel-
level, consumer access.

A consumer moves data through a channel adapter using a send/receive work queue (WQ)
pair. For example, when a consumer is employing messaging semantics, it may queue a work
request on the send queue describing data to be sent, and a work request on the receive queue
describing where to land expected incoming data. For RDMA semantics, both RDMA read
and RDMA write requests are posted on the send queue. The channel interface transcribes
information from the work request that is posted by a consumer into a work queue element
that is accessible only to the channel interface and channel adapter.

Processing begins on work requests submitted to a single queue in the order that they were
submitted. In general, work requests submitted to a single queue complete in the order that
they were submitted, with some exceptions. Completion of RDMA and Atomic Operation
requests submitted to a single send work queue are subject to more complex ordering
requirements, as are reliable datagrams, and the interested reader should consult the
specification. There are no ordering requirements for work requests submitted to different
work queues.

A consumer can determine completion of work requests either by polling a completion queue
(CQ) that has been associated with a work queue, or by requesting notification when a new
completion occurs on a CQ. Completion polling is one area where VIA and IBA differ; in
VIA the consumer would poll a bit in the posted work request, while in IBA the consumer
polls a CQ for a new completion. When describing completion notification, the IBA
specification is very clear that only one completion queue event handler shall be registered
per HCA, and that registering the completion handler is a privileged operation. The
specification is also very clear that once a completion notification is generated, it is the
consumer’s responsibility to poll the indicated CQ for completions. What is not very clear
from the specification is how multiple consumers, of which some may be user-level and
others may be kernel-level, receive notification from the single completion handler.

                                                
1 See http://www.t10.org/drafts.htm/ .
2 Address Handles are used to specify a destination for unreliable datagrams, and so don’t concern us here.
3 Memory Windows are used to specify access rights to subsets of Memory Regions.



10

The standard does address how completion notifications are generated, since that is an
implementation issue. However, based on my experience with the Intel prototype InfiniBand
card, the process of completion notification will start with the card interrupting the processor.

The standard does state that completion notification is a one-shot event, in that once a
notification has been generated, the consumer must re-enable completion notification to
receive another notification. More completions can be added to a CQ after completion
notification has occurred, so a consumer must dequeue all completions on a CQ after
receiving a completion notification. The consumer must then enable completion notification,
and check the CQ for completions that arrived while completion notification was being
requested. Note that this process provides interrupt coalescing, since multiple completions
can be signaled by a single interrupt.

The memory referenced in a work request must be registered with the channel interface
before a work request is submitted to a work queue. Memory registration is only available to
privileged consumers, and either virtual or physical addressing may be used to specify the
memory region. Registering memory allows the channel interface to pin the address range
into physical memory, preventing the operating system from paging it out to disk.
Registering memory also allows the channel interface to provide the consumer with a local
key, L_Key, and a remote key, R_Key, for the memory region. The local key allows work
requests queued locally to access the memory region, and the remote key allows work
requests queued remotely to access the memory region. The memory keys also serve to
disambiguate memory references, since in some operating systems, e.g., Linux, each process
has its own mapping for the same virtual address space.

Although no aspect of the work reported here concerned management of an InfiniBand
network, it should be noted that the IBA specifies in detail the management mechanisms.
Some of the highlights are presented here, but the interested reader should consult the IBA
Specification, Volume 1 for details.

The unreliable datagram service is used to transport management information using
Management Datagrams (MADs). In order to be IBA compliant, each port must be able to
source and sink MADs. The unit of management is a subnet, and each subnet has exactly one
master subnet manager, and any number of slave subnet managers. The subnet manager is
responsible for topology discovery and maintenance, assignment of the Local Ids (LIDs)
used for addressing within the subnet, and programming of routes into switches, among other
duties. A subnet manager must be able to transfer control of a subnet to another manager of
higher priority, such as might occur when two operational subnets are merged.

A slave subnet manager must present the correct SM_Key to the master subnet manager
before the master will relinquish control to the slave. Every subnet manager must obtain its
SM_Key via out-of-band means.

A Subnet Management Agent (SMA) is the entity on each port responsible for sourcing and
sinking MADs. Each MAD contains an M_Key that the SMA uses to authenticate the MAD.
The subnet manager can initialize the M_Key for a port when it initializes the port.
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Note that this management model is significantly different from that of networking
technologies such as TCP/IP over Ethernet. In the IBA the subnet manager has complete
control over the management of all ports in a subnet, and the devices in which the ports
reside have none. It should be pointed out that none of the keys specified in the IBA use any
encryption mechanisms, so the implications of deploying a classified InfiniBand network
must be carefully considered.
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Drivers and Prototype Hardware
This section contains a narrative of experiences with three generations of prototype hardware
made available by Intel Corporation under a non-disclosure agreement. The first two
generations of hardware were based on the Next Generation I/O (NGIO) specification. The
third-generation cards were based on the InfiniBand Architecture specification. The first-
generation cards used firmware to provide all functionality, while the later generations used a
combination of hardware and firmware. All generations used copper cabling, with a signaling
rate of 1.25 GHz for the first generation, and 2.5 GHz for the later generations.

Several drivers were written for these prototype cards. The scope of these drivers was limited
to exercising the data movement capabilities of the cards, and to serving as learning vehicles
for the Linux kernel. The drivers were intended to explore how to provide the data movement
functionality needed to implement message-passing systems of interest to Sandia. More
specifically, in the driver used for the IBA prototype card, no attempt was made to provide
the management functionality as specified in the IBA specification. Thus, that driver could
not interoperate with an IBA-compliant subnet.

Since the functionality needed by these drivers does not map well onto existing system calls,
all drivers provided all functionality by implementing the ioctl() system call for the device.
The ioctl() system call allows arbitrary data structures to be passed from user space to a
driver in kernel space, so it can be used to provide any type of desired functionality.

 The drivers written for all of the prototype cards used only the reliable connected transport
service of the IBA (or the analogous functionality that existed in NGIO).  All drivers exposed
the underlying connection-based transport by providing ioctl() methods to establish and tear
down a connection with a remote process. All included ioctl() methods to register user
buffers with the driver, which allows the driver to pin the memory to prevent the operating
system from paging it out while a transfer is in progress, and to de-register user buffers. All
of the drivers used interrupt-signaled completions. None of the drivers for these prototype
cards allowed direct access to the work queues from user space; i.e. the driver interpreted
data movement requests, and queued the appropriate requests to the card.

First-Generation Prototype Cards
The first pair of prototype boards from Intel, referred to as San Juan boards, arrived in late
September 1999. Milt Clauser, 9227, played the key role in acquiring these boards as part of
an attempt to participate in an NGIO/Merced demonstration at Supercomputing ’99. Demo
Linux drivers for these boards arrived from Intel in early October, and hardware
documentation arrived at the end of October. In the end, we were unable to pull the
demonstration together. However, the effort did result in Sandia obtaining prototype
hardware and documentation, which launched my effort to develop a driver from scratch.

Original Test Driver
The first driver version used a send/receive transfer model, where both participants in a data
transfer make matching read/write calls to effect a transfer. Both blocking and non-blocking



13

versions of the read/write calls were implemented as ioctl() calls in the first driver. Since the
non-blocking calls return before the data transfer is completed, an ioctl() method to test for
completion of a pending transfer was implemented, also in blocking and non-blocking
versions.

This driver did not use the memory virtual addressing support provided by the hardware, for
several reasons. Since it was my first attempt to write a driver, I wanted to use the minimum
functionality of the card needed to transfer data between two hosts. Also, recall that the first
(and second) generation prototype cards were based on the NGIO specification, and so the
cards did not have support for the L_Key and R_Key of the IBA specification. At the time, I
didn’t understand how to disambiguate user-space virtual addresses using the functionality
provided by those cards.

Instead, this driver determined the physical address of the pages into which the user buffer
was mapped, and wrote the resulting scatter-gather list into the work request submitted by the
driver to the card. Since the length of the scatter-gather list supported by the card was
limited, if the user buffer spanned more pages than would fit into the scatter-gather list of a
single work request, the driver would submit multiple work requests.

The process of learning enough about the Linux kernel to write a driver, and the process of
designing the first driver itself, began in December 1999. By June 2000 I had the driver and
simple test programs written and running. In June, I began writing more complex test
programs designed to stress the driver and the hardware. These test programs sent multiple
messages over multiple channels through multiple ports on each card simultaneously. I found
that the driver had some sort of bug that caused it to occasionally miss a completion, which
caused my test programs to stall. By September 2000, I still had not found the root cause of
the problem, even after extensive consultation with Intel personnel. Their testing showed no
such problems, so evidently my driver was at fault. Since progress was stalled, I decided to
move on.

Second-Generation Prototype Cards
I was able to obtain second-generation prototype cards in early October, 2000. These cards
were also NGIO-based, but had much of their functionality implemented in hardware. The
first-generation cards had been implemented completely in firmware. There were only minor
programming differences between these two generations of the cards, related to the
differences between firmware vs. hardware implementation, so porting the first driver to this
card was completed with only minor difficulties. In the process of porting the driver to the
second-generation cards, I evidently fixed the bug that had stalled my efforts with the first-
generation cards.

By early December 2000, I was again running my test programs on the second-generation
cards, although I quickly ran into another problem. In order to provide the reliable transport
service, all of these cards transmit cells with sequence numbers that are generated on the
card. At least in the first two generations of cards, there is no facility provided to allow the
driver to affect the packet sequence numbers; it is all done on the card. However, when
transferring messages between cards in different machines, the card would detect sequence
number errors. I suspected signal integrity problems due to the 2.5 GHz signaling rate and
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design problems with the card. Although I could not get direct confirmation of this from my
Intel contacts, trial-and-error repositioning of the cards and cables had some beneficial effect.
Eventually, I discovered that having an empty PCI slot on each side of the card, and
relocating the internal Ultra-160 SCSI cable as far away as possible from the card, reduced
the possibility of packet sequence errors enough to allow some testing. This suggested that
whatever the problem, it was affected by electromagnetic field interference. In the end I was
able to make latency measurements and minimal throughput measurements, but I was not
able to repeat my earlier multiple-channel, multiple-port testing.

This driver was tested using two dual processor, 733 MHz PIII computers, each with one
prototype card1. The second-generation prototype cards can be run in either 32-bit/33 MHz,
64-bit/33 MHz, or 64-bit/66 MHz PCI slots. However, there was some incompatibility
between the cards and the motherboards (SuperMicro 370DL3) in the test systems. In that
motherboard, the cards would operate in its 32-bit/33 MHz slots, but not its 64-bit/66 MHz
slots.

Since each card has four ports, I typically cabled them such that there were two connections
between the two test machines, and one external loop-back connection on each machine. An
example of this configuration is shown schematically in Figure 1.

I measured latency using a typical ping-pong test program, where a message is passed back
and forth between two instances of the program. This test program used blocking sends, non-
blocking receives, and blocking completion checking for the receives. Recall that all of the
test drivers use user-space buffers, so all of the measurements are for user-space to user-
space transfers. For this testing, I used the external loop-back, where both instances of the
ping-pong test program ran on one computer, and a four-byte message making 100,000 round
trips. I measured a round-trip latency of 75 µs using a uniprocessor kernel, and 70 µs using
an SMP kernel with both processors.

Throughput testing was conducted using two machines, rather than an external loop-back. I
measured 62 MB/s maximum throughput 2. For this testing I also had a PCI bus analyzer
connected to one of the machines, which showed that the sender had 60% bus utilization, and

                                                
1 I could not find a record of exactly what version of the Linux kernel I was using at the time this testing was
performed, but it was something in the 2.4.0-test7 through 2.4.0-test11 range.
2 I could not find a record of what message size I used to obtain this throughput result, but it is likely that the
message length was long enough that increasing it wouldn’t have increased the throughput.

port 0
port 1
port 2
port 3

card 0
machine 0

port 0
port 1
port 2
port 3

card 1
machine 1

Figure 1. Example configuration for testing second-generation prototype cards.
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the receiver had 50% bus utilization. The CPUs on both sender and receiver were essentially
idle, at less than 1% utilization.

This level of performance for both latency and throughput was less than I had hoped to
achieve. For a data link at 2.5 GHz using 8B/10B encoding the raw data rate is 250 MB/s, so
even allowing for packet header overhead, my throughput result was less than a third of the
theoretical value. There didn’t seem to be any driver modifications to be made that would
increase throughput. For example, the driver already allocated the kernel memory needed to
queue work requests when the user pinned the message buffer, so they would be reused on
each send or receive call.

I attempted to characterize some of the latency sources in my driver by instrumenting it with
calls to the processor time stamp counter (TSC). This is a register on Intel Pentium Pro and
newer processors that is incremented once per processor clock cycle. I only used the TSC to
measure latencies when using a uniprocessor kernel. Although Linux synchronizes the TSC
between processors in a multiprocessor system, I don’t know the degree of synchronization,
and I didn’t want to introduce an additional source of uncertainty.

There were two sources of latency in which I was interested. One was a result of the way
Linux drivers are supposed to handle interrupt sources. Following the Linux philosophy of
interrupt handling, an interrupt service routine is supposed to read just enough information
from a device to allow a tasklet to be queued to process the information later. An interrupt
service routine is executed with hardware interrupts disabled, while a tasklet is executed with
hardware interrupts enabled, for the most part. So, this philosophy minimizes the time spent
with interrupts disabled, and increases overall performance and fairness of the machine.

In the first driver, my interrupt service routine would read the completion queues to discover
which work queues needed to be serviced, and then queue one tasklet for each work queue
that needed servicing. So, one source of latency I could measure easily is the time between
when the tasklet is queued in the interrupt handler, and when it actually begins running.
Another, related, source of latency is the interrupt latency itself, i.e., the time between when
the card raises its interrupt line and when the interrupt service routine actually begins
execution. At the time I was working with this card/driver combination I did not know how
to measure that latency. I later learned a way to do this, and will report some results in the
context of a later card/driver combination.

The second source of latency I could measure easily was the time required to wake up a
sleeping process. Recall that my latency tester used blocking sends and blocking completion
checking for the receives. One method used in Linux to implement a blocking call is to put
the current process on a wait queue, and then schedule to another process. Each time the
sleeping process is scheduled, it checks for the waking event, and schedules to another
process if the waking event has not occurred. Since the waking event must occur in some
other thread of execution, there is a scheduling latency between when the waking event
occurs, and when the process sleeping on that event is scheduled and begins execution.

Using a uniprocessor kernel and instrumented driver, I measured these two latencies to be
2000 clocks and 8400 clocks, respectively. For the 733 MHz processor in the test systems,
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this turns out to be 2.8 µs and 11.5 µs, respectively. To see what portion of the round trip
latency of 75 µs these two latencies can account for, consider Figure 2. That figure attempts
to show the sequence and temporal correspondence of events in the master and slave
processes of the latency tester.  The position of top and bottom of the box enclosing each
event indicates the relative timing of the start and end of the event. So, we see that the
master’s first non-blocking receive starts at roughly the same time as the slave’s first
blocking receive. Then, we see that the master’s first blocking send completes at roughly the
same time as the slave’s first blocking receive completes.

From Figure 2 we see that both the master and slave processes execute the same basic loop:
post non-blocking receive, post blocking send, post blocking receive notification. The non-
blocking receive is always posted before the send to ensure that a message is never sent
before the corresponding receive is posted. However, the user has to start the slave process
first to ensure this. The round-trip latency reported here is the time it takes either the master
or the slave to execute the loop, divided by the number of times through the loop. The
messaging latency is one-half of the round trip latency.

Now, consider a blocking send call. Recall that in this driver it is implemented as an ioctl()
call, which is a system call. So, the process traps into kernel mode, and a send work request
is constructed and queued on a send work queue. The process puts itself on a wait queue, and
schedules away to some other process.

Some time later, the send work request completes and generates an interrupt. The currently
running process is interrupted, and the interrupt service routine queues a tasklet to service the
completion on the send work queue. When the interrupt service routine completes, the kernel
checks to see if there is any other work to do before resuming the interrupted process. It finds
the queued tasklet and runs that. The tasklet finds the wait queue associated with the send
request process, and wakes any processes sleeping on the queue. Waking the process just
means setting the process’s state to run-able, so that it is a candidate to be selected by the

blocking send
wait on receive

blocking receivenon-blocking receive
blocking send

blocking send

blocking send

blocking send

blocking send

non-blocking receive

non-blocking receive

non-blocking receive

non-blocking receive

non-blocking receive

wait on receive

wait on receive

wait on receive

wait on receive

master process slave process
start-up:

loop for
trip count:

clean-up:

time

Figure 2. Sequence of events in a latency test program for first test driver.
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scheduler the next time it runs.

The tasklet then returns, and the kernel runs any other tasklets that may be queued. Finally,
when there is no more kernel-mode work to do, the kernel schedules a new process. I am not
sure of the details here, but at some point the scheduler will notice that the process that called
the blocking send is now run-able, and schedules it. That process has now been “awakened”,
and makes its next call, in this case to the ioctl() for blocking receive notification. The whole
process now repeats itself, except the work queue in question is the receive queue specified
in the earlier non-blocking receive call.

So, we see that the tasklet startup latency and the process wakeup latency each occur twice in
each loop iteration of the latency test program, for both master and slave. Since the driver
was implemented using a reliable transport service, a send request and its matching receive
request will complete at roughly the same time.  Thus, the tasklet scheduling and process
wake-up latencies for the sender and receiver occur roughly in parallel, rather than serially.
Depending on the amount of overlap, we should expect tasklet startup and process wakeup
latencies to account for at least 28.6 µs of the 75 µs roundtrip latency exhibited by this driver.

In February, 2001 I took delivery of several new dual processor, 1 GHz PIII computers,
based on the Intel SBT2 motherboard, to use as test hosts. These hosts were acquired because
they were certified by Intel as compatible with the upcoming third-generation, IBA-based
prototype cards. The third-generation cards would only be compatible with either PCI-X or
64-bit/66 MHz PCI slots. Since I had experienced compatibility problems with the second-
generation cards and my original test hosts, I felt it was advisable to procure hosts known to
be compatible with the new cards.

I installed the second-generation cards in the new hosts in 66 MHz slots, and found that they
worked perfectly, at least with respect to PCI compatibility. The packet sequence number
error problem was still present, confirming that it was a problem with the cards and not the
host, or host/card combination. As I write this report I was chagrinned to find that the only
test results with the 1 GHz hosts I had recorded at the time I received them was a 120 MB/s
throughput result.

However, since the 1 GHz hosts and cards were still available, for the sake of completeness I
reran my tests1. Results are presented in Table 2, where the round trip latency was measured
based on the elapsed time for 10,000 message round trips.  The “error” entries for the
throughput results between two hosts indicate the sequence number problem discussed
earlier. Although I didn’t record it in the table of results, I got sequence errors for throughput
testing between two hosts using 16 KB and 32 KB message buffers also. I cannot explain
why the problem does not occur at larger message buffer sizes.

Several trends can be identified in Table 2. The fact that results with a UP kernel are
generally better than results with an SMP kernel is most likely indicative of the extra locking
needed throughout the kernel in the latter case. Results for testing between two hosts, where
a single instance of the test program is running on each, are generally better than results from

                                                
1 This testing was performed using version 2.4.7 of the Linux kernel.
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testing with external loopback, where the two instances of the test program run on one host.
This could be due to the extra cost of scheduling two processes in the latter case, as well as
contention for resources on the card, or possibly some contention for the PCI bus. Note that
for the external loopback case, throughput on the PCI bus is twice the measured throughput,
since each message is both read and written across the same PCI bus.

It is also interesting to compare the limited results available from the testing on the 733 MHz
hosts to the results in Table 2. Although the processors in the test hosts are 36% faster, the
round trip latency using external loopback decreased by only 23% and 17%, respectively, for
UP and SMP kernels. This is expected if a non-negligible part of the latency is attributable to
the cards themselves. Note that the 733 MHz host testing results showed a lower latency on
an SMP kernel (70 µs) vs. a UP kernel (75 µs), while the 1 GHz host testing results showed
the same 58 µs latency. The lack of a difference between SMP and UP results in the latter
case is likely due to differences in the scheduler in the different versions of the kernel used
for the testing.

Also interesting is that the maximum throughput increased by a factor of two. Recall that the
PCI slots used in the 1 GHz hosts (64 bit/66 MHz) have a throughput larger by a factor of
four than those used in the 733 MHz hosts (32 bit/33 MHz). The fact that the maximum
throughput increased in direct proportion to the PCI bus frequency suggests that PCI
transaction handling in the card had a role in limiting the throughput achieved by the card.

external loopback between two hosts

UP SMP UP SMP

round-trip latency, µs
4 byte msg.

58 58 44 49

tasklet latency,
µs (clocks)

2.1
(2100)

n/a 1.8
(1800)

n/a

wakeup latency,
µs (clocks)

7.7
(7700)

n/a 4.1
(4100)

n/a

throughput, 106 B/s
4096 byte msg.

62 59 67 64

throughput, 106 B/s
8192 byte msg.

83 81 88 86

throughput, 106 B/s
65,536 byte msg.

121 120 error error

throughput, 106 B/s
131,072 byte msg.

112 112 120 119

throughput, 106 B/s
262,144 byte msg.

113 113 121 121

Table 2. Performance of first test driver with second generation prototype
cards in 1 GHz hosts.
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This driver was a valuable learning experience, but it had several shortcomings that I wanted
to address. First, its performance was less than expected, and although it was not altogether
clear whether the reason was due to software or hardware issues, I had identified latency
sources that were a direct result of implementation decisions. Second, it used only a limited
subset of the capabilities of the hardware. Third, the send/receive model of transfer was
limiting because of the requirements it places on data ordering.

This last shortcoming is a result of the design of the InfiniBand Architecture. There is no
mechanism for an incoming message to match up with a specific entry in the receive work
queue. The next available entry in a receive work queue is used to accept the next incoming
message. If the incoming message is longer than the buffer space provided by the next entry
in the receive queue, an error is generated.

In my test programs this was not a problem, because they were designed to enforce message
ordering. However, suppose the sender needed to send two different messages, say A and B,
and queued the send requests in that order. If the receiver queued the receive requests in the
order B, A, it would end up with the messages switched, assuming the lengths of the receive
work requests were large enough.

Revised Test Driver
By the beginning of March, 2001, I had a design for a second test driver. This revised driver
was intended to be a proof of concept for an implementation of Portals 3.0 over InfiniBand
[6,7]. As such, I wanted to model the “matching put” and “matching get” operations of
Portals.  I also wanted to attempt to minimize latency by minimizing interrupts, and by
eliminating the process wake-up latency inherent in blocking calls.

However, in the interest of simplicity I did not implement the full matching semantics of
Portals. In Portals a portal address comprises a process id, memory buffer id, offset, and a set
of match bits. My revised test driver design exposes to users only a memory buffer id, which
is obtained when a buffer is pinned. As mentioned earlier, the connection-oriented nature of
the underlying transport is exposed to users, so each end of the connection is directly
associated with a single process. Since the driver can support many processes/connections,
the process id is used internally by the driver to look up pinned buffers.

As discussed earlier, this driver supports ioctl() methods to register and de-register user
buffers, and to establish and tear down a connection. In addition, it supports ioctl() methods
to submit put and get requests to move data, and to request notification of data request
completion on a registered buffer.

Buffer registration has two effects: assignment of a tag to a buffer, and pinning the buffer in
memory.  Put/get requests reference a local buffer tag and a remote buffer tag.  If a remote
buffer has not been registered with a tag that matches the remote tag in the put/get request, no
data is transferred. Put/get requests are non-blocking in this driver, meaning that the request
returns before data transfer is completed.

In order to determine that a buffer is ready to be reused, or that new data has arrived, an I/O
completion notification may be registered on a data buffer. This takes the form of a user data
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structure that is associated with a data buffer when a completion notification is registered.
Either incoming notification or outgoing notification may be registered on a local buffer, but
not both simultaneously.  When the next appropriate I/O operation, either locally or remotely
initiated, completes on the associated local data buffer, the notification structure is updated
with the status and the association is broken between the notification structure and the data
buffer. Thus, completion notification is a one-shot event. The user process can poll this
notification structure to check for a change in the completion status.

Outgoing I/O completion notification occurs when data has left the local buffer. Receiving an
outgoing completion notification means that the local buffer is free for reuse, but it does not
signify that the data has safely arrived in the remote buffer. Incoming I/O completion
notification occurs when new data has arrived in the local buffer, and is ready for use. Note
that an incoming notification can occur as a result of either a locally initiated get request, or a
remotely initiated put request, and the converse is true for outgoing notification. As an
example, if an incoming notification is registered on a buffer, followed by a put request, the
notification will not occur until a remote process performs a put operation into that local
buffer.

Completion notification structures may be reused, i.e., re-associated with the same or a
different message buffer.  The memory used for the notification structures must be registered
with the driver, in the same way as data buffers. Also, a single larger buffer may be
registered, and then broken up into several notification structures.

The initiator of a put/get request may optionally request acknowledgement that the target has
responded to the request. For a put request, a successful acknowledgement means that the
target has safely stored the data in the remote buffer. For a get request, a successful
acknowledgement means that the data has arrived in the local buffer. An acknowledged
request is the only way for an initiator to be informed of error conditions on the target.

Put and get requests are implemented in this driver using a simple request/response
mechanism. The request initiator sends a simple protocol message containing information
describing the request, e.g, the tags for the local (initiator) and remote (target) buffers. The
request target responds by performing the data transfer operation.

Put and get requests have a long message implementation and a short message
implementation. In the long message implementation, data is transferred using an InfiniBand
RDMA request. In the short message implementation, data is embedded in a protocol
message, which has a fixed header size and a variable payload. Protocol messages are
transferred using the send/receive model. The maximum length of a protocol message, which
determines the crossover point between short and long messages, is a driver compile-time
option. Although protocol message buffers are allocated at this size, the number of bytes
transferred in a protocol message is just the size of a protocol header plus the message size.

The protocol messages and RDMA requests needed to implement the four types of data
transfer requests are shown in Figure 3. In every case, a data movement request starts with
the initiator sending a protocol message with the request to the target. In the short message
put request case, the user data is copied into this protocol message.
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When the target receives the request, it processes the request based on the request type. For
all request types, if acknowledgement was not requested, and the request cannot be fulfilled,
it is ignored. For example, the requested buffer may not have been registered on the target. If
acknowledgement was requested and the request cannot be fulfilled, a protocol message
containing the reason is constructed and sent as a response.

For a long message request, the target constructs and queues the appropriate RDMA work
request, if possible. If the request included an acknowledgement request, the target also sends
a response protocol message containing the acknowledgement. For the short message put
request case, the target copies the data out of the request message into the appropriate target
buffer, if it can; otherwise the data is discarded. In the short message get request case, the
target prepares a response protocol message by copying the target buffer into the response
message, and including acknowledgement information if requested.

targetinitiator

put request

find buffer

RDMA read

acknowledge
(optional)

time
long message put

targetinitiator

short message put

acknowledge
(optional)

find buffer
copy data

find buffer
copy data

put request

targetinitiator

get request

find buffer

RDMA write

acknowledge
(optional)

timelong message get

targetinitiator

short message get

data +
acknowledge
(optional)

find buffer
copy data

find buffer
copy data

put request

Figure 3. Protocol messages and RDMA requests for second test driver.
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As mentioned above, one of the goals for this test driver was to minimize latency, in part by
minimizing the number of interrupts. From Figure 3 we can see that to minimize latency we
want to begin processing a protocol message as soon as possible after it arrives. Thus, we
want to use interrupt-signaled completions for receive work queue entries that handle
protocol messages. Polling for completion of protocol messages on a receive work queue
would only reduce latency if the polling interval was shorter than the interrupt latency.

However, completions for send work queue entries that handle protocol messages are not
time critical, and we only need to process completions fast enough to ensure that there are
always send work queue entries available for new protocol messages. Thus, we can poll for
completions when convenient on the send work queue that handles protocol messages.

Another potential source of latency is the blocking of a protocol request by an RDMA
request that moves a large amount of data, since both types of requests are processed on a
send work queue. This can be accomplished by segregating protocol messages and RDMA
requests on separate send work queues.

The second test driver addresses both of these issues by using two queue pairs, one for
interrupt-signaled completions and the other for polled completions, on each of the target and
initiator. This is shown schematically in Figure 4. In the common case that both nodes in a
communication pair are both message initiators and message targets, the protocol messages
will still be separate from the RDMA requests. This is shown schematically in Figure 5.

As noted earlier, for this design put and get requests are non-blocking. Thus, they return as
soon as the appropriate work request is queued. Also, all of the protocol messages in this
driver are handled in the interrupt service routine. Thus, when a message is short enough to
be copied to/from a protocol message, this copying takes place in the interrupt service

recv WQn

send WQnrecv WQn

send WQn

recv WQm

send WQmrecv WQm

send WQm

initiator target

interrupt-signaled
completions

interrupt-signaled
completions

polled
completions

polled
completions

put/get requestsput/get requests

RDMA requests

acknowledge +
data requests

acknowledge +
data requests

Figure 4. Use of polled-completion and interrupt-signaled completion queue pairs by
message initiator and target in second test driver.



23

routine. This is directly counter to the Linux design philosophy for interrupt service routines,
because of the impact on other system components. However, it was done in this case to
achieve the minimum latency for this driver, regardless of the impact on the rest of the
system, and cannot be recommended for general practice.

During the course of developing this second test driver, I learned how to use a PCI bus
analyzer to measure the interrupt startup latency. I define this to be the time between when
the card asserts its interrupt line, and when the appropriate interrupt service routine begins
servicing the card. The timing of the first event can be determined by using the bus analyzer
to monitor the card’s interrupt line. The timing of the second event can be determined by
using the bus analyzer to monitor accesses of the card’s interrupt status register, since
normally the first action taken by an interrupt service routine is to read that register. With the
second-generation prototype card in a 66 MHz PCI slot of a 1 GHz host, running version
2.4.1 of the Linux kernel, I found this interrupt startup latency to be 4 µs.

Note that this second test driver design overcomes another of the shortcomings of the first
driver design mentioned earlier, in that it uses more of the features of the hardware. In
addition to using the send/receive capabilities, it also uses the RDMA capabilities provided
by the prototype cards. Also, although it is not directly relevant to the design issues discussed
above, the second driver used the virtual addressing capabilities provided by the hardware,
rather than relying on physical addressing as did the first test driver.

recv WQn

send WQnrecv WQn

send WQn

recv WQm

send WQmrecv WQm

send WQm

local host remote host

interrupt-signaled
completions

interrupt-signaled
completions

polled
completions

polled
completions

put/get requestsput/get requests

RDMA requests

acknowledge +
data requests

acknowledge +
data requests

put/get requests

acknowledge +
data requests

put/get requests

acknowledge +
data requests

RDMA requests

Figure 5. Use of polled-completion and interrupt-signaled completion queue pairs by local
and remote hosts in second test driver.
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Figure 6 shows attempts to show the sequence and temporal correspondence of events in the
master and slave processes of the latency test program written for the second test driver.
Again the master and slave execute the same basic loop: request incoming notification on a
message buffer, call the (non-blocking) message put function, and then poll the notification
structure until it is updated to indicate that a message has been received. The slave loops one
iteration less than the master, so that the number of puts and completions match up. Message
acknowledgements were not used in this test program. Instead, each process uses the fact that
it receives a message to know that the message it previously sent arrived. Note that each of
the master and slave processes only have a single message buffer, and the incoming
notification request and the message put calls apply to that same buffer.

In this test program, the completion notification polling loop contains two operations. The
first is to check the value of the completion member of the notification structure, and the
second is an invocation of the system call sched_yield(). The latter is required when running
the test program with external loopback on a uniprocessor kernel, where the master and slave
processes must share the processor. In that case, without the call to sched_yield(), it is
possible for one process to consume its time slice polling, even though the message it is
waiting on cannot be sent because the other process hasn’t been scheduled, so it can’t poll to
discover a message has arrived. Thus, latency is inflated due to process scheduling effects.

The latency tester was written in this fashion to minimize the number of interrupts generated.
If we compare the sequence of events in Figure 6 with the message diagrams of Figure 3 and
the work queue usage of Figure 5, we see that we will incur one interrupt each on the master
and slave for one message round trip, in the case where the message is short enough to be
copied into the request protocol message. This interrupt occurs when the request protocol
message arrives. In the long message case, where RDMA is used to transfer the data, the test

non-blocking putpoll for completion

request incoming notifyrequest incoming notify
non-blocking put

non-blocking put

non-blocking put

request incoming notify

request incoming notify

poll for completion

request incoming notify

request incoming notify

poll for completion

poll for completion

non-blocking put
poll for completion

poll for completion
non-blocking put

master process slave process

start-up:

loop for
trip count
(trip count–1
on slave):

clean-up:

time

Figure 6. Sequence of events in a latency test program for second test driver.
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program will incur two interrupts each on the master and the slave. The first interrupt occurs
when the request protocol message arrives, and the second occurs when the RDMA transfer
completes.

The implementation of this second driver design for the second-generation prototype cards
was completed by the beginning of May, 2001, along with the latency test program. Testing
was interrupted by the arrival of the third-generation cards in mid-May, so the results
presented here were generated at the time of the writing of this report, for the sake of
completeness.

One of the goals of testing this driver was to determine the appropriate value of the crossover
point between short and long messages. Unfortunately, the sequence number problem of the
second-generation prototype card seems to manifest itself in all RDMA transfers, i.e., I could
not get a single RDMA transfer to complete without a sequence number error occurring.
Consequently, all testing of this driver on second-generation cards used a 4096-byte protocol
message, which has a maximum payload of 4060 bytes. This sequence number problem also
precluded any throughput testing with this hardware/driver combination.

The results of this testing1 is shown in Table 3, where again the round trip latency was
measured based on the elapsed time for 10,000 message round trips. Comparing these results
with the latency results from the first driver, from Table 2, we see that the anticipated drop in
latency did not materialize. In fact, the round trip latency between two hosts increased
slightly. Evidently, the cost of preparing and interpreting the protocol packets in the second
driver offsets the cost of waking up a sleeping process in the first driver. We also see that
under SMP, this second driver exhibits more variability in its timings.

                                                
1 This testing was performed with version 2.4.7 of the Linux kernel.

round-trip latency, µs
between two hosts

message length,
bytes

UP SMP

4 51 47-51

32 52 47-51

256 61* 58*

2048 107 111

4060 156 162-166

4096 error error

* For this message length, the test program would hang if
more than 200 round trips were attempted.

Table 3. Performance of second test driver with second generation prototype
cards in 1 GHz hosts.
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Third-Generation Prototype Cards
As mentioned earlier, I received the third-generation prototype cards in mid-May, 2001.
These cards were the first prototypes based on the IBA specification. Porting of the second
driver to these cards was straightforward. The differences between this version of the
hardware and the previous version were driven by changes needed to adhere to the IBA
specification, and were not extensive. They included changes in the number and functionality
of control registers, changes in the format of the virtual addressing support, changes in
completion notification, and changes in port initialization. Porting of the driver was
completed by the beginning of August 2001.

This third generation of the hardware exhibited none of the difficulties of the earlier
generations. Testing was conducted with the cards installed in the dual processor 1 GHz
hosts. The third-generation cards support either PCI-X or 64-bit/66 MHz PCI, and were thus
installed in the 66 MHz slots in the test hosts. Testing was conducted between two SMP
hosts.

The latency test program for the second test driver was used to measure both latency and
throughput. Throughput was obtained by dividing the test message length by one-half of the
round trip latency. Latency and bandwidth results results are presented in Table 4, and
latency results are plotted in Figure 7. Again, the round trip latency was measured based on
the elapsed time for 10,000 message round trips.

Because the driver has short message and long message implementations, it is desirable to
know the optimal message length at which to switch from the short to the long message
implementation. If the short message implementation is used for messages that are too long,
extra latency will be incurred due to the cost of copying a long message into and out of the
protocol message. Conversely, if the long message implementation is used for messages that
are too short, extra latency will be incurred due to the cost of the extra protocol message
needed to make the transfer. When the optimal protocol message length is used, messages of
every length are transferred with minimum latency.

The optimal crossover point between short and long messages is that protocol message length
where the round trip latency for short and long messages is the same. To determine the
optimal crossover for this driver, I generated test results for 4096-byte protocol messages
(4060 byte maximum payload) and 64-byte protocol messages (28 byte maximum payload).
These results indicated an optimal protocol message length of 2048 bytes (2012 byte
maximum payload). As reported in Table 4, for 2048 byte protocol messages there are no
sudden increases or decreases in latency as the message length changes, indicating that every
message is transferred with minimum latency.

Note that the round trip latency for four byte messages on the third-generation prototype
cards, at ~36 µs, is much better than the ~50 µs recorded using the second-generation
hardware. Because of the differences in the programming interfaces to the cards, particularly
for completion notification, it is difficult to assign the improvement in latency to hardware
versus software changes. However, the drivers are essentially the same, so I would have to
attribute most of the improvement to differences in the cards.



27

Maximum throughput for the third-generation cards is still somewhat disappointing, at
138 MB/s. Consider the results for the driver using 64-byte protocol messages, and assume
that the round trip latency for 32-byte messages (the shortest message transferred using
RDMA) is representative of the software overhead of the driver and test program for long
messages. Under that assumption, 406 µs of the 473 µs round trip latency for 32,768 byte
messages could be attributed to hardware, resulting in a maximum throughput of 161 MB/s.
This suggests there is still some room for improvement in the hardware performance.

two SMP hosts,
64 byte protocol msg.

two SMP hosts,
2048 byte protocol msg.

two SMP hosts,
4096 byte protocol msg.

message
length,
bytes

round trip
latency

µs

throughput
106

bytes/sec

round trip
latency

µs

throughput
106

bytes/sec

round trip
latency

µs

throughput
106

bytes/sec
4 35.0 0.23 36.0 0.22 36.5 0.22

28 35.9 1.6

32 67 0.96 37.7 1.7 38.2 1.7

256 76 6.7 47.3 5.4 47.8 11

2012 94 43

2048 97 42 98 42 98 42

4060 151 54

4096 123 67 122 67 122 67

8192 173 95 173 95 173 95

16,384 272 120 272 120 272 120

32,768 473 139 474 138 474 138

1,048,576 15900 132 15900 132 15900 132

Table 4. Performance of second test driver with third generation, InfiniBand-based
prototype cards in 1 GHz hosts.
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Summary and Recommendations
This report describes work undertaken to explore InfiniBand, an emerging system-area
networking technology, and develop Linux kernel programming expertise. Three generations
of prototype hardware were obtained, and Linux device drivers were written which exercised
the data movement capabilities of the cards. Latency and throughput results obtained for a
1X InfiniBand link were similar to other SAN technologies, but not significantly better.

Due to the scope of the InfiniBand specification, a great deal of software is needed to
implement an InfiniBand-compliant network. It is probably not appropriate for Sandia to
undertake the implementation of the software needed to provide an InfiniBand-compliant
Channel Interface, but rather should obtain this from a vendor if we deploy an InfiniBand-
based solution. Any software Sandia develops should probably be written to a vendor’s
Channel Interface API.

Unfortunately, because the InfiniBand specification does not specify any APIs, different
vendors may develop different Channel Interface APIs, complicating our task of writing
platform-independent software. In fact, this may be one of the greatest issues facing
widespread deployment of InfiniBand. Although a great deal of effort has been put into
hardware interoperability, software is intended to be an opportunity for vendor “value-add”,
which may complicate true multi-vendor interoperability.

At the time this report was written, InfiniBand products were still not commercially
available, and will probably not begin to appear until mid-2002.
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