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Abstract
In this paper an optimization-based method of

drift prevention is presented for learning control of
underdetermined linear and weakly nonlinear time-

varying dynamic systems. By defining a fictitious cost
function and the associated model-based sub-optimality
conditions, a new set of equations results, whose solution
is unique, thus preventing large drifts from the initial
input. Moreover, in the limiting case where the modeling

error approaches zero, the input that the proposed method
converges to is the unique feasible (zero error) input that
minimizes the fictitious cost function, in the linear case,
and locally minimizes it in the (weakly) nonlinear case.
Otherwise, under mild restrictions on the modeling error,
the method converges to a feasible sub-optimal input.

1. Introduction

Learning control is a method of control that feeds
the system inputs for a specific task repetitively and uses
the actual on-line measured response of the system to

evaluate the quality or goodness of the input. The actual
responses are used in a feedback loop in which the inputs
are adjusted to reduce measured errors in the output.

Example applications include robotics and manufacturing
where a certain output tracking task is to be performed
repeatedly. Usually the output is the position or veloeity
history of the robot’s joints although sometimes it also
includes measured forces at the end effecter (see Cheah
and Wang [3]).

Learning control has a history dating back to
1984 (see Arimoto et al [1]) when it was first applied to
robot motion control. Horowitz [10] gives a nice history
of the development and usage of learning controllers for

(rigid) robot manipulators. He compares and contrasts

different learning algorithms and also provides an
experimental demonstration of a robot that learns to make
its end effecter track a circular trajectory. He insightfully
points out that an open area of research is in finding

methods for robust optimal (e.g., minimum energy,
minimum vibration, or minimum time) trajectory

learning, as opposed to only finding a control history that

meets output requirements. Examples of work that have
empirical y investigated approaches to this problem
include Gorinevsky ([7], [8], and [9]), who considered the

use of the Levenberg-Marquardt optimization method for
least squares, and Sadegh and Driessen [11] who
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considered the use of gradient-based algorithms for
constrained optimization.

A method for underdetermined learning control

for nonlinear systems was presented in [Driessen, et al,
2000]. Arigorous proof of theconvergence tozero of the

output error under the associated mild assumptions was

provided. However, no method for drift prevention was
given. And, at least theoretically, the input vector could

drift large distances from the initial vector. The present
work presents an extension to that work but is presently
restricted to linear or weakly nonlinear time-varying

systems; for such systems, the method presented herein
prevents drift by imposing additional model-based sub-
optimality constraints based upon a fictitious cost
function. In the limiting case of no modeling error, the
method produces a feasible input that minimizes the
fictitious cost function. The method relies heavily upon
the theory and methods in [Driessen, et al, 1998] and
[Driessen, et al, 2000].

Herein we will present an overview and
motivation in section 2 for the iterative learning control
problem presented in section 3, present the method of

solution in section 4, explain why the method is also
applicable to weakly nonlinear systems in section 5, and
give conclusions in section 6.

2. Applications/Overview of Learning Control

Learning control is a method of output tracking
or point-to-point control that does not make any
assumptions about whether the system is minimum-phase
or non-minimum-phase nor any assumptions about
knowledge of the system’s order (number of state
variables). The method uses the actual measured system’s
response to an input in a feedback loop, in order to obtain
tracking robustness in the presence of large model
mismatch.

Example applications include robotics and
manufacturing where a certain output tracking task is to

be performed repeatedly. An initial guess of the inputs to
the system can be obtained off-line by using an
approximate model of the system. Then, in the learning
feedback loop, the actual output response errors are

measured. The gradients of these output errors with
respect to the inputs can be obtained from strictly the
approximate model or can be improved in accuracy by
calculating gradients based on the model but evaluated
along the actual measured trajectory of the system (see

Sadegh and Driessen [1 l]). The learning feedback loop is
continued at least until the actual system’s output error is

zero.
However, the learning feedback loop is often

continued after zero output error is achieved, in order to
obtain output tracking robustness against slowly varying
dynamics of the actual system. For example, the dynamic
properties of the joints of a robot may be changing over
time, and the learning feedback loop will maintain zero

output error in spite of these time-varying system
properties.

Mathematically, the iterative learning control

problem considered herein can be viewed as the Newton
Rhaphson problem illustrated in below

ti + (System) -+ F

where ~ denotes a vector of input values that define the

input over the time interval of interest and ~ denotes an

output vector which we desire to be zero. For example, ~

may be parameters that define a spline of the input history
over the interval. The inaccuracy of the Jacobian

/
J=dy

au is a result of the fact that we never have a

perfect model of the dynamic system.
Remark 2.1: The reader may be wondering why

we do not just calculate J(U) by numerically

differentiating the System. The reason is as follows. Let
N be the number of time steps in a digitally controlled

system; then, the number of variables (length of the vector
U) is proportional to N. Such numerical differentiation

would take Order( N* ) time. The number of variables can

be on the order of 100s to 10000s. Thus, the numerical
differentiation would not be practical. Banded matrix
methods that use the model of the system, on the other
hand, allow the user to calculate an approximate Newton
Rhaphson search direction pk in Order(IVl time. Thus,

while the model-based calculation of the search direction
is practical, the numerical differentiation approach is not.

Consider a problem of underdetermined learning
control of a linear time-varying discrete-time system.
Because the number of output requirements (constraints)
is less than the number of inputs, iterative learning
control (ILC) (see, for example [Driessen, et al, 2000]
with model-based (inexact) Jacobians could, at least
theoretically, lead to very large drifts of the input vector
from its starting value.

This is simply due to the non uniqueness of the

solution vector. A method for preventing such drift would
be desirable. Moreover, it would be nice if the method
converged to a truly optimal solution (e.g., minimum

energy solution) in the limit as the modeling error
(Jacobian error) goes to zero. The method should be
implementable in O(N) storage and O(N) time, where N is

the number of sampling periods or time steps. In the next
section, section 3, we will present a precisely-stated
problem statement whose solution, in section 4, satisfies
the requirements stated above.

3. Problem Statement

We are given a linear underdetermined input-
output relationship:

f= Jx-b (3.1)

where J E R“xn, m < ~ , and J has fill rank. However, J

is not known. Only an estimate, ~ # J, of J is available,

where ~ also has full rank. The value of f in (3.1) is
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available, by measurement, at any value of x. The
objective is to find an algorithm, which we will denote by

M, that uses f and ~ to drive f to zero while

preventing drift in the vector x, i.e.,

El~+~ +~li~fk =0
(3.2)

f+ + bounded drift of x

The algorithm M must be implementable in O(N)

storage and 0(N) time for linear time-varying discrete-
time (LTVD) dynamic systems, e.g., using banded matrix
methods (see [Driessen, et al, 1999] and [Wright, 1991 ].)
And, M must require only mildly stringent conditions on

the modeling error ~ – Y.

where

4. Method of Solution

Let us propose a fictitious cost function q :

q=;xTQx+cTx (4.1)

Q >0. Because J is not known, we cannot find a

truly optimal solution to the problem of minimizing q

subject to (3.1), at least not in O(N) time for the case of
LTVD problems. However, if we did know J, the
conditions for optimality:

Vq+JTA=O (4.2)

or,

QX+C+JTA=O (4.3)

and
f= Jx-b=() (4.4)

could be solved for x and A. The next best approach
seems to be to find an x and A that satisfy sub-optimality
conditions:

Qx+c+~’A=O (4.5)

and
f= Jx-b=() (4.6)

Since J is not available, we must use ~ as the
Jacobian of (4.6) in an iterative approach to solve (4.5)
and (4.6). The model-based Jacobian of (4.5)/(4.6) is:

[1
,.~=Q J’

JO
(4.7)

and we have a measurement of the error in (4.5)/(4.6),

i.e.,

‘=(Qx+7+~Ta)
The true Jacobian of (4.5)/(4.6) is:

[1~=Q ~’
JO

(4.8)

(4.9)

Using the theory and methodology presented in [Driessen,

et al, 1998] and [Driessen, et al, 2000] for nonlinear
systems, we can iteratively find a solution to (4.5)/(4.6) if

A and ~ satisfy the following conditions. There must
exist a y >0 such that

rnin(eigenvalues( 2T~)) 2 y> O (4.10)

and there must exist a 6>0 such that

min(eigenvalues( k-l 12 +~-TAT 12)) >6>0

(4.11)

Condition (4. 10) is satisfied since Q >0 and ~

was stated to have fill rank in the problem statement of

section 3. We notice that condition (4.11) is satisfied with

6= 1.0 if ~ = A, i.e., if ~ = J. Therefore, by the

continuity of the eigenvalues’ dependence upon fi-’, we
see that (4. 11) is a fairly mild requirement on the accuracy

of ~. If ~ is accurate enough that (4.11) is satisfied, then
the algorithm of [Driessen et al, 1998 and 2000] is

guaranteed to cause
lili~e~ = O (4.12)

so that
~+~fk=o (4.13)

as required in the problem statement of section 3. Also,
(4. 12) implies that

( )lim Qx, +c+~TA, = O (4.14)
k+-

The solution pair (x, A) to the equations

(4.5)/(4.6) is unique due to the nonsingularity of these
equations’ Jacobian, A, in (4.9). Therefore, the sequence
of iterates x~ cannot drift large distances fi-om the starting

point. Moreover, as ~ + .1, the solution to (4.5)/(4.6)
approaches the solution to (4.3)/(4.4), which implies that

as ~ -+ J, the converged solution x approaches the
unique optima of the quadratic program:

Min~xTQx+cTx (4.15)

subject to
f= Jx-b=() (4.16)

Thus, if ~ = J and we choose Q = 1 and c = O, for

example, then the sequence x~ converges to a feasible

solution (satis@ing (4.16)) that is nearly a minimum-
energy solution.

In summary, the solution algorithm M in (3.2) is
the application of the algorithm in [Driessen, et al, 1998]

and [Driessen, et al, 2000] to the fictitious-cost base
system of equations (4.5)/(4.6), in which the search
variables are x and A. Extension to the case of weakly

nonlinear systems is given in the next section.

5. Extension to Weakly Nonlinear Systems

The method of section 4 is also applicable to
nonlinear systems so long as the nonlinearity is small

enough. In particular, for a nonlinear system, J and ~
df

become dependent upon x, i.e., J = ~. So, ~ and A

become dependent upon x. The true Jacobian A of
(4.5)/(4.6) becomes



>-, .

‘=[:)“:’)1 (5.1)

where H is non constant since ~ depends upon x.

However, if the partial derivatives of ~ with x are small

enough, i.e., H = Q, then ~ in (4.7) can still be used and

conditions (4. 10) and (4. 11) are still satisfied (and must
be for all iterates x~ to meet the hypotheses in [Driessen,

et al, 1998 and 2000]); then, e~ -+ O* fk-+O is still

assured. As with the linear case, as the modeling error
approaches zero, the converged solution approaches a
local minima of the problem of minimizing q subject to

the nonlinear constraint f(x) = O, since e = O (in (4.8))

implies the pair (x, l,) is a Kuhn Tucker point (see

[Bazaraa]).

6. Conclusion

This work presented a method for preventing

drift in iterative learning control of underdetermined
linear and weakly nonlinear time-varying systems.
Through the insertion of a fictitious cost function and the
associated model-based sub-optimality conditions, the
problem is converted to one with a unique solution.
Under the stated mild conditions on the modeling error,
the method converges to an input with zero output error.
And, if the modeling error were to approach zero, the
point of convergence would approach the true optima of
the fictitious cost subject to zero output error, in the linear
case, and true local minima in the (weakly) nonlinear
case.
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