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Abstract

Geostatistical simulation is used to extrapolate data derived from site characterization
activities at the MIU site into information describing the three-dimensional distribution of
hydraulic conductivity at the site and the uncertainty in the estimates of hydraulic
conductivity.  This process is demonstrated for six different data sets representing
incrementally increasing amounts of characterization data.  Short horizontal ranges
characterize the spatial variability of both the rock types (facies) and the hydraulic
conductivity measurements.  For each of the six data sets, 50 geostatistical realizations of
the facies and 50 realizations of the hydraulic conductivity are combined to produce 50
final realizations of the hydraulic conductivity distribution.  Analysis of these final
realizations indicates that the mean hydraulic conductivity value increases with the
addition of site characterization data.  The average hydraulic conductivity as a function of
elevation changes from a uniform profile to a profile showing relatively high hydraulic
conductivity values near the top and bottom of the simulation domain.  Three-
dimensional uncertainty maps show the highest amount of uncetainty in the hydraulic
conductivity distribution near the top and bottom of the model.  These upper and lower
areas of high uncertainty are interpreted to be due to the unconformity at the top of the
granitic rocks and the Tsukyoshi fault respectively.
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Introduction

Site characterization is the process by which information is obtained regarding the
physical properties of a site.  This process is most often conducted by drilling holes into
the subsurface and obtaining samples of the material at different depths.  The goals of site
characterization can be to simply learn more about the site (e.g., defining the local
stratigraphy), to map or define areas of special interest within the subsurface (e.g.,
regions of hydraulic conductivity below 1x10-12 m/s), and/or to define regions of
uncertainty with respect to a site performance measure.  This latter goal is often used to
optimize any additional characterization efforts with the objective of reducing the amount
of uncertainty.

The amount of site characterization that can be accomplished is constrained by several
factors.  The main difficulty in site characterization activities is that there are never
enough resources to collect all the data that are necessary to eliminate uncertainty in the
spatial distribution of properties within the subsurface.  The amount of material that is
sampled in site characterization boreholes is typically only 1x10-6 to 1x10-9 of the total
site volume (Journel and Alabert, 1989).  This limited amount of sampling leads to
uncertainty in the spatial distribution of material properties and to uncertainty in
decisions that must be made with respect to those properties.

One approach for modeling the uncertainty in the spatial distribution of rock properties is
geostatistical simulation.  Geostatistical simulation defines the spatial uncertainty in rock
properties by creating multiple, equiprobable realizations of the rock properties.  Each
realization is conditioned to the available characterization data and each realization is a
possible description of the actual distribution of rock properties in the subsurface.
Consideration of multiple realizations makes it possible to define the uncertainty in the
distribution of rock properties.  The geostatistical simulation approach to modeling rock
properties has previously been applied to both site characterization and performance
assessment problems at nuclear waste repositories in the United States (Rautman and
McKenna, 1997; Lavenue and RamaRao, 1992).

The main objective of this report is to apply geostatistical simulation techniques to define
the spatial distribution of hydraulic conductivity in the subsurface at the MIU site.
Analysis of the geostatistical simulations will also be conducted to examine the
uncertainty in the spatial distribution of the hydraulic conductivity distributions.  Specific
goals of this study are to examine the changes in the mean (average) estimate of the
hydraulic conductivity and in the uncertainty in the hydraulic conductivity values as a
function of increasing amount of characterization data.  These specific goals are
accomplished by creating six sets of geostatistical simulations using six different subsets
of characterization data from both the region surrounding the MIU site and from within
the MIU site boundaries.
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Site Description

The MIU site is located near the town of Mizunami in central Japan.  The site has been
chosen as the location for the construction of an underground research facility by JNC.
Site characterization for the underground research facility has begun and construction of
the main shaft of the research facility is scheduled to begin in 2001.  The MIU site will be
constructed in the Toki granite that lies below the Mizunami Group, a series of
sedimentary rocks.  There is an unconformity separating the sedimentary and granitic
rocks.  More details of the geology in the vicinity of the MIU site can be found in Yusa,
and others (1992).

For the geostatistical modeling efforts described in this report, it was necessary to define
a three dimensional, rectangular volume that would surround the MIU site.  This volume
and the number of gridblock cells necessary to discretize this domain in the geostatistical
modeling is shown in Figure 1.  The total number of gridblocks is 712,472.  Each
gridblock is 8.0 by 8.0 by 6.5 meters.  The gridblock size was chosen to best represent the
volume of aquifer examined by a single packer test.  The majority of the packer tests
were conducted with a packer interval of 6.5 meters.  The origin of the domain (lower,
front-left corner) is located at the coordinates: 5256.0, -69008.0, -786.0.  The z
coordinate is the elevation with respect to mean sea level.

Figure 1.  Description of the three-dimensional domain surrounding the MIU site used
for the geostatistical modeling done in this report.

nx = 58

ny = 83

nz=148

464 meters
664
meters

(∆z = 6.5m)

(∆x = 8m)

(∆y = 8m)
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The upper boundary of the site is the unconformable contact between the Cretaceous
granite and the overlying Miocene sedimentary rocks.  The elevation of this contact
varies across the site.  For the modeling done in this report, the elevation of this contact is
defined using data from a number of uranium exploration boreholes.  The contact
information in these boreholes is interpolated onto a regular grid as shown in Figure 2.

Figure 2.  Elevation (in meters above sea level) of the contact between the granite and
sedimentary rock in the area surrounding the MIU site.  The “+”’s denote the locations of
the uranium exploration boreholes used to create this map.  The boundary of the MIU site
is shown as a solid line.

The contact between the two formations provides the upper boundary of the MIU site for
modeling purposes.  The lateral extent of the MIU site is defined by the boundary lines
provided by JNC and shown in Figure 2.  In order to use this boundary in the
geostatistical modeling, it is necessary to redefine this boundary in terms of the
gridblocks in the geostatistical simulations. The lateral extent of the MIU site as defined
on these gridblocks is shown in Figure 3.

A goal of this modeling exercise is to examine the changes in the hydraulic conductivity
estimates and the uncertainty about those estimates as a function of increasing site
characterization data.  In order to achieve this goal, six different data sets are defined.
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The first data set includes information from only the 14 boreholes outside of the MIU site
boundary.  This original data set includes information from TH-2, TH-3, TH-4, TH-5,
TH-6, TH-7, TH-8, AN-6, SN-4, DH-5, DH-6, DH-7, DH-8, and DH-9.  Each additional
data set contains the original 14 boreholes, plus an additional borehole from within the
MIU site boundary.  The definition of these data sets is given in Table 1.

Figure 3.  Lateral extent of the MIU site as discretized within the geostatistical-modeling
domain.

Table 1.  Definition of data sets used in site characterization exercise.

Data Set Additional Borehole
14 holes Original Data Set
15 holes AN-1
16 holes AN-3
17 holes MIU-1
18 holes MIU-2
19 holes MIU-3
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Available Data

There are three types of data that can be used in the geostatistical descriptions of the
hydraulic conductivity at the MIU site: The locations of the packer test intervals, the
values of hydraulic conductivity measured in the test intervals and geophysical logs
obtained in the boreholes.  Ideally, all of these different pieces of subsurface information
can be combined into a coherent picture of the subsurface hydraulic conductivity
distribution.  Each of these different data sets is described below.

Location of Test Intervals
The choice of hydraulic testing intervals within each different borehole are based on
several different factors including loss of circulation during drilling, the results of
borehole flowmeter surveys, temperature logs, borehole televiewer logs, geological
judgement, and, to a lesser degree, the geophysical logs.  At this time, there is not a
completely objective process for determining the locations of the hydraulic test intervals.
The locations of the test intervals, based on the above information, are used in the
indicator geostatistical simulations to define the locations of high and low hydraulic
conductivity granite.

For each of the six data sets, the fraction of the total borehole length that is contained
within the hydraulic test intervals is shown in Table 2.  The values in Table 2 show that
the fraction of the boreholes within test intervals is just less than 25 percent of the total
borehole lengths.  Extension of these one-dimensional data to the three dimensional
subsurface indicates that the hydraulic conductivity values measured within these
intervals applies to 25 percent or less of the subsurface material.  The remaining 75
percent of the material has not been tested.

Table 2.  Fraction of the data sets within hydraulic conductivity test intervals.

Data Set Fraction of Total Length
within Test Intervals

Fraction of Total Length
outside Test Intervals

14 holes 0.232 0.768
15 holes 0.243 0.757
16 holes 0.235 0.765
17 holes 0.218 0.782
18 holes 0.217 0.783
19 holes 0.254 0.746

Hydraulic Conductivity Measurements

The full hydraulic conductivity data set provided by JNC was examined to determine the
number of single-hole hydraulic conductivity tests performed within the granite.  All tests
performed within the sedimentary rocks overlying the granite were removed from the
data set.  A total of 208 single-hole slug tests were conducted in packed off intervals
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within the granite both within the MIU site and in the region surrounding the MIU site.
The probability density function (histogram) of these data (the 19 hole data set) is shown
in Figure 4.  The parametric distribution that best defines these hydraulic conductivity
data is a lognormal distribution with a mean of –8.19 and a standard deviation of 1.66 in
log10 space.

Figure 4.  Probability density function (histogram) of the 208 hydraulic conductivity
values measured with slug tests in the Toki granite.

The distribution of the hydraulic conductivity data changes as a function of the number of
boreholes in the data set.  The parameters describing the distribution of hydraulic
conductivity for each data set are given in Table 3.  It is interesting to note that as the
number of boreholes increases, the mean of the hydraulic conductivity data also
increases.  This increase is approximately one-half order of magnitude from the 14 hole
data set to the 19 hole data set.  This increase may be due to the site characterization team
becoming more proficient at selecting zones of high hydraulic conductivity as the site
characterization progressed.  The standard deviation of the hydraulic conductivity data
also increases with increasing boreholes, but the 14 hole and 19 hole data sets have the
same standard deviation values.  The distribution of hydraulic conductivity shown in
Figure 4 is only representative of the granite that was tested, not the entire subsurface.

Geophysical Logs

A full suite of geophysical logs has been collected in DH boreholes and in the boreholes
within the MIU site.  These geophysical logs include gamma, resistivity, neutron, single-
point resistivity, density and sonic logs as well as temperature logs.  Borehole televiewer
logs have also been collected and these can be used to count different classes of fractures
within the boreholes.

0.0
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Table 3.  Parameters describing the hydraulic conductivity data for each data set.

At this point, the geophysical logs are not used to constrain the geostatistical simulations
of hydraulic conductivity within the MIU site.  In the future, it would be desirable to
extract as much information as possible from the geophysical logs regarding the
hydraulic conductivity and use this information to constrain the hydraulic conductivity
simulations.  A proposed approach to extract this information, using neural networks, is
outlined in the Discussion section of this report.

Geostatistical Simulations

A thorough introduction to geostatistical techniques is beyond the scope of this report.
This report assumes that the reader has some basic knowledge of geostatistics including
the concepts of variograms and stochastic simulation.  Additional information on the
basic theory and practice of geostatistics can be found in Journel and Huijbregts (1978),
Isaaks and Srivastava (1989) and Goovaerts (1997).  This report uses the geostatistical
algorithms coded into the GSLIB software.  The GSLIB book (Deutsch and Journel,
1998) provides an excellent introduction and user's manual for these algorithms.

For each data set, it is necessary to calculate and model variograms for both the indicator
data, defining the locations of the high and low hydraulic conductivity granite, and the
hydraulic conductivity data.  The variograms are calculated using the equation:

∑
=

+−=
n

i
ii hxx

hn
h

1

2))((
)(2

1
)(γ

where x and x+h are two hydraulic conductivity values separated by the distance h.  The
γ(h) value on the left-hand side of the equation can be stated as: “one-half the average
squared difference between all data values located a distance h away from each other”.
The values of γ(h) are plotted as a function of h.  This type of plot is known as the
“experimental variogram”.  In order to use the variogram information within the
geostatistical simulation software, it is necessary to fit a model to the experimental
variogram.

For each data set defined in Table 1, a total of 100 geostatistical simulations are created.
50 of these realizations are indicator realizations describing the spatial distribution of the

Data Set Mean Median Standard
Deviation

Number of
Data

14 Holes -8.68 -8.62 1.66 94
15 Holes -8.53 -8.61 1.68 126
16 Holes -8.35 -8.46 1.71 150
17 Holes -8.27 -8.43 1.72 170
18 Holes -8.21 -8.38 1.72 190
19 Holes -8.19 -8.33 1.66 208
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granite that is of a high enough hydraulic conductivity to be tested.  These simulations are
conditioned to the locations of the test intervals as measured in the different boreholes. It
is necessary to divide the granite into two "facies" through this indicator transform
because only 21 to 25 percent of the rock is tested hydraulically and the hydraulic
conductivity values derived from the tests only apply to that fraction of the rock.  The
lower hydraulic conductivity facies is not tested and therefore the hydraulic conductivity
values from the tests do not apply to this portion of the granite.  In this report, it is
assumed that all high hydraulic conductivity facies that intersect a borehole were tested
hydraulically.  The other set of 50 simulations for each data set defines the spatial
distribution of the hydraulic conductivity as measured in the test intervals.

The two sets of simulations are combined to produce 50 three-dimensional models of the
spatial distribution of hydraulic conductivity within the MIU site for each of the 6 data
sets.  It is these 300 final hydraulic conductivity models that are analyzed to determine
the mean hydraulic conductivity maps and the uncertainty maps for each data set.  The
process of creating the geostatistical simulations and combining them together into the
final models of hydraulic conductivity is described in the following pages.

Indicator Simulations

The presence of the test intervals along each borehole is defined using an indicator
transform.  At each location along the borehole, the location is assigned a “1” if that
location is within a test interval or a “0” if that location is outside of a test interval.  This
indicator classification process can be seen as defining two “facies” within the granitic
rock: the presumably higher conductivity facies that is tested hydraulically and the
presumably lower conductivity facies that is not chosen for hydraulic tests.  The
distribution of the two facies within the boreholes of the MIU site is shown in Figure 5.

Variogram analysis is done on the indicator data for each of the six different data sets
(see example variograms in Figure 6).  A short initial range of approximately 20 -50
meters in both the vertical and horizontal directions characterizes the indicator
variograms.  The vertical variogram then shows a slow climb to a final range (roughly
1500 meters) that is greater than the vertical dimension of the MIU site domain.  The
horizontal variogram has a final variogram range value in the 100 to 400 meter range (see
example in Figure 6).  These variograms are fit with a nugget value of 0.05 and two
nested spherical models.  The first model defines the short-range variability and the
second model defines the larger range and the final sill value.  The spherical model was
chosen as it is the easiest variogram model to interpret and it has proven to be a robust
model for small data sets in previous studies.  All variograms in this report were
calculated and modeled using the vario and variofit packages in the UNCERT software
(Wingle et al, 1999).  The variofit package allows for several automatic variogram-fitting
options; however, all variogram models shown in this report were fit by manually
adjusting the variogram model parameters.



15

A typical example of these models fit to experimental indicator variograms in the vertical
and horizontal directions is shown in Figure 6.  A single isotropic horizontal variogram
was used.  It is possible that the hydraulic conductivity data have some directions of
preferential correlation (anisotropy), but there are not enough boreholes to determine
whether or not this horizontal anisotropy exists.

These variogram models are used to create conditional stochastic realizations of the
distribution of high and low permeability facies throughout the three-dimensional domain
shown in Figure 1.  An example realization of the facies distribution is shown in Figure 7.
This realization was created with the 19 hole data set.  Note that the proportion of high
hydraulic conductivity facies in Figure 7 is 25 percent and the proportion of the low
hydraulic conductivity facies is 75 percent.  The somewhat random distribution of the
high hydraulic conductivity facies is a result of the relatively short range in the horizontal
variogram.

Figure 5.  Distribution of the test intervals within the MIU site model domain.  Red
indicates a test interval and blue indicates zones that were not tested.  These data provide
the basis for the indicator simulations of high and low conductivity facies.

AN-3

MIU-1MIU-2
MIU-3

AN-1



16

Figure 6.  Indicator variograms for the vertical (upper image) and horizontal (lower
image) directions as calculated on the 17 hole data set.  These variograms are shown as
typical examples of all the indicator variograms.  Each experimental variogram (red dots)
is fit with a double-nested spherical variogram model (blue line).
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Figure 7.  Example indicator simulation showing the distribution of high conductivity
(red ) and low conductivity (blue) facies within the granite.  This example is realization
number 1 created with the 19 hole data set.



18

Hydraulic Conductivity Simulations

Single-hole hydraulic conductivity tests were completed in a total of 208 test intervals
within the Toki granite in the area around and within the MIU site.  The spatial
distribution of these hydraulic conductivity measurements for only the boreholes within
the MIU site is shown in Figure 8.  It is important to keep in mind that these
measurements only define the hydraulic conductivity within the class of rock that has
been subject to testing—the high hydraulic conductivity facies.  There is also uncertainty
in the actual values of the hydraulic conductivity due to interpretation of the slug tests;
however, for the geostatistical simulations conducted in this report, this uncertainty is not
taken into account.

Prior to the variogram analysis, it is necessary to transform the hydraulic conductivity
data distribution into a standard normal distribution.  The standard normal distribution
has a mean of 0.0 and variance of 1.0.  This transform is necessary in order to use the
Guassian geostatistical simulation algorithm, sgsim, in the GSLIB software library.  This
transformation is done for each of the six different data sets using the nscore-transform
software included in GSLIB (Deutsch and Journel, 1998). The simulation algorithm,
sgsim, completes the geostatistical simulation in the standard-normal space and then
transforms the data back to the raw hydraulic conductivity space.  The entire
transformation process is transparent to the user with the exception of the requirement to
model the variograms in standard-normal space.

The normal-score transformed hydraulic conductivity variograms are similar to the
indicator variograms in that they are characterized by a short initial range (the first
spherical model) in both the vertical and horizontal directions.  The vertical variogram
then shows a slow climb to a final range that is approximately equal to the vertical
dimension of the MIU site domain (approximately 1000 meters).  The horizontal
variogram has a final variogram range value in the 100 to 300 meter range.  These
variograms are fit with a nugget value of 0.10 and two nested spherical models.  The first
model defines the short-range variability and the second model defines the larger range
and the final sill value.  A typical example of these models fit to the normal-score
experimental variograms in the vertical and horizontal directions is shown in Figure 9.  A
single isotropic horizontal variogram was used.  It is possible that the hydraulic
conductivity data have some directions of preferential correlation (anisotropy), but there
are not enough boreholes to determine whether or not this horizontal anisotropy exists.

These variogram models are used to create conditional stochastic realizations of the
distribution of hydraulic conductivity values throughout the three-dimensional domain
shown in Figure 1.  Each realization is conditioned to the measured hydraulic
conductivity values at their respective locations.  An example realization of the hydraulic
conductivity distribution is shown in Figure 10.  This realization was created with the 19
hole data set.  The somewhat random distribution of the hydraulic conductivity is a result
of the relatively short range in the horizontal variogram.
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Figure 8.  Distribution of the hydraulic conductivity measurements within the MIU site
model domain.  The color legend indicates the log10 hydraulic conductivity in m/s.
These data provide the basis for the hydraulic conductivity simulations.
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MIU-3
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Figure 9.  Normal-score variograms for the vertical (upper image) and horizontal (lower
image) directions as calculated on the 17 hole data set.  These variograms are shown as
typical examples of all the normal-score transformed hydraulic conductivity variograms.
Each experimental variogram (red dots) is fit with a double-nested spherical variogram
model (blue line).
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Figure 10.  Example log10 hydraulic conductivity simulation showing the spatial
distribution of hydraulic conductivity throughout the model domain based on the test
interval hydraulic conductivity data.  This example is realization number 1 created with
the 19 hole data set.  The color legend defines the value of log10 hydraulic conductivity
in m/s.
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Combined Simulations

The final step in the creation of the hydraulic conductivity simulations is the combination
of the indicator facies model with the Gaussian simulation of hydraulic conductivity.  For
the high-hydraulic-conductivity facies (indicator value = 1), the hydraulic conductivity is
obtained from the hydraulic conductivity simulation at the same grid cell location.  For
the low-hydraulic-conductivity facies (indicator = 0), the hydraulic conductivity value is
drawn randomly from an assumed low-hydraulic-conductivity distribution (defined
below).  This combination is done as a simple mapping operation as outlined in
pseudocode in Figure 11.

Figure 11.  Pseudocode representation of the combination process used to create the final
hydraulic conductivity values.

The low-hydraulic-conductivity distribution is chosen such that the values in the
distribution lie below the lowest log10 measured hydraulic conductivity value of –12.0.
For this work, the mean and standard deviation of the low-hydraulic-conductivity
distribution are set to be –13.0 and 0.5 respectively.  The measured hydraulic-
conductivity distribution (the high hydraulic conductivity distribution) and the assumed
low hydraulic conductivity distribution for the untested portion of the granite are shown
as cumulative distributions in Figure 12.  Only small amounts of groundwater flow are
expected to occur in the low hydraulic conductivity material.  For this reason, the
unknown spatial correlation of hydraulic conductivity within the low hydraulic
conductivity facies was not modeled.  All of the low hydraulic-conductivity-values were
drawn randomly, no spatial correlation, from the specified distribution.  If necessary, it
would be possible to determine the importance of the spatial correlation of the low
hydraulic conductivity values to groundwater flow through a groundwater flow modeling
sensitivity analysis, but such an analysis is beyond the scope of this study.

Loop over all grid cells
If the indicator value = 1 (the high conductivity facies)

Assign the simulated K value to the final model
Else (the indicator value is a 0 representing the low K facies)

Draw a random number from 0 to 1
Draw the corresponding K value from the low K distribution
Assign this K to final model

End loop
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Figure 12.  Cumulative distributions of hydraulic conductivity used in the creation of the
final hydraulic conductivity models.  The red line is the distribution of the 208 measured
hydraulic conductivity values used for the high-conductivity facies and the blue line is
the distribution assigned to the low-conductivity facies.

A total of 50 final hydraulic conductivity models were created from each of the six data
sets.  Each of these 50 models results from the combination of 50 different indicator
models and 50 different hydraulic conductivity models as added together using the
process outlined in Figure 11.  For the entire study, 300 indicator simulations, 300
hydraulic conductivity simulations and 300 final, combined, models of hydraulic
conductivity were created.  These 300 final hydraulic conductivity models are analyzed
in the next section to determine the effects of the additional data on the reduction of
uncertainty and on the estimate of the mean hydraulic conductivity.

An example result of the combination process is shown in Figure 13.  This final hydraulic
conductivity image is created through a combination of the indicator and Gaussian
realizations shown in Figures 7 and 10 respectively.  From examination of Figure 13, it
can be seen how the spatial distribution of the facies controls the final spatial distribution
of the hydraulic conductivity.
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Figure 13.  An example realization of the final hydraulic conductivity models.  This
example was created with the 19 hole data set.  The facies and hydraulic conductivity
realizations that were combined to create this final model are shown in Figures 7 and 10.
The color legend defines the log10 hydraulic conductivity values in m/s.
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Analysis of Models

The two specific goals of this study were to determine how increasing the amount of site
characterization data changes the estimate of the mean hydraulic conductivity and how
this increase in site characterization data changes the uncertainty surrounding the
estimates of the spatial distribution of hydraulic conductivity.  These two objectives are
met by analyzing the 50 realizations created with each data set and comparing the results

Estimate of Mean Hydraulic Conductivity

The first comparison is the change in the mean estimate of the hydraulic conductivity as a
function of the increasing amount of characterization data.  This comparison is made by
calculating the average (geometric mean) hydraulic conductivity for each of the 148
layers in the model and then plotting these average values as a function of the elevation.
It is noted that each average is a double average: first, the average hydraulic conductivity
value is calculated across all 4814 cells within the layer.  Then the average value for each
layer is averaged across all 50 realizations.  The results of these average calculations are
shown in Figure 14.

There are several interesting points to notice in Figure 14.  First of all, the average values
range between –12.1 and –11.4.  This range is considerably lower than the average value,
-8.19, of the measured hydraulic conductivities.  These values are due to inclusion of the
assumed values for the low-hydraulic conductivity regions.  An estimate of the final
average hydraulic conductivity, in log10 space, for the entire model domain can be
calculated as a linear average of the two mean hydraulic conductivity values weighted by
the fraction of each facies in the model:

19.8*0.13* −+−= highlowavg FractionFractionK

Using the fractions of the two facies in Table 2, this calculation results in a mean
hydraulic conductivity range from –12.0 to –11.8.  This simple calculation provides a
good single-value match to the results shown in Figure 14 for the data sets created with
14, 15, and 17 boreholes, but it does not describe the vertical variability seen in the
average values constructed with the 17, 18 and 19 borehole data sets (lower image,
Figure 14).  These final three data sets show relatively higher hydraulic conductivity
values near the top of the model and the bottom of the model.  The middle elevations in
these models are still within the range of –12.0 to –11.8.

The reasons for the vertical variability in the mean estimate of the hydraulic conductivity
were not initially clear.  However, discussions with the staff at the TGC indicated that the
Tsukyoshi fault may have some influence on the vertical variation in the hydraulic
conductivity.  The average hydraulic conductivity profiles calculated from the
realizations created with 14, 15 and 16 boreholes indicate a relatively constant average
hydraulic conductivity (upper image, Figure 14).  These profiles come from models
created with the 14 boreholes outside the MIU site, and the same 14 boreholes with the
addition of AN-1 and AN-3.  None of these boreholes intercept the Tsukyoshi Fault.
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Figure 14.  Mean hydraulic conductivity in each layer as a function of elevation for the
size different data sets.
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The addition of the MIU-1 borehole to the data set (17 hole data set, lower image, Figure
14) begins to change the shape of the average hydraulic conductivity profile.  The 17 hole
data set shows significantly higher hydraulic conductivity at the top and the bottom of the
model domain with lower conductivity in the middle of the domain.  This pattern is
repeated in the 18 and 19 hole data sets (lower image, Figure 14).

The reason for the increase in permeability at the top of the model is unknown.  It is
speculated that this is due to some alteration or weathering of the granite near the
unconformity.  Another possibility is that the fracture frequency increases near the top of
the granite due to stress unloading during the period of erosion prior to the deposition of
the sedimentary rocks on top of the granite.  However, this trend is not seen with the 14,
15 and 16 hole data sets.

The increase in hydraulic conductivity near the bottom of the model domain appears to be
directly related to the presence of the Tsukyoshi Fault.  Observations of fracture
frequency and hydraulic conductivity in boreholes at the MIU site and in the Tono mine
show that the Tsukyoshi Fault follows the fault model developed by Caine and others
(1996).  In this fault model, a higher permeability damage zone surrounds a lower
permeability fault core.  The fault core is the center of the fault where the alteration of the
host rock has been the most extreme.  The presence of fault gauge and chemical alteration
has reduced the hydraulic conductivity of the fault core.  The damage zone surrounding
the fault core is the area of greatest stress relief.  The damage zone contains a dense,
well-connected network of fractures that enhance the permeability of this zone relative to
the host rock.  In the specific case of the Tsukyoshi Fault, the core is roughly 10 meters
thick and the damage zone may extend out up to 35 meters on either side of the fault
core.

The profiles of average hydraulic conductivity in the lower image of Figure 14 suggest
that the MIU-1 borehole (17 hole data set) just intercepts the top of the damage zone
creating the higher hydraulic conductivity values in the bottom of the model.  Addition of
the MIU-2 borehole (18 hole data set), increases the hydraulic conductivity values at the
bottom of the model domain even further than did the MIU-1 borehole.  This additional
increase is attributed to the MIU-2 borehole intercepting even more of the Tsukyoshi
Fault damage zone.  Addition of the MIU-3 borehole (19 hole data set) creates a
hydraulic conductivity profile with an increase in hydraulic conductivity to a maximum
value of approximately –11.45 and then a decrease in hydraulic conductivity at the
bottom of the model domain.  It is possible that this increase and then decrease in the
average hydraulic conductivity is the result of the borehole intercepting the damage zone
and then the fault core.

Uncertainty Mapping
Geostatistical simulation results in one hydraulic conductivity value at every location
within the model domain for each realization created.  Through the creation of multiple
realizations, a distribution of hydraulic conductivity values is constructed for every
location in the model.  The average of this distribution is the mean estimate of hydraulic
conductivity at that location.  The spread of this distribution, as defined by the range of
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the distribution (maximum-minimum simulated value), the interquartile range (75th

percentile – 25th percentile), or the standard deviation is a measure of the uncertainty in
the estimate of hydraulic conductivity at each location.  For this study, the standard
deviation of the hydraulic conductivity distribution at each location in the model domain,
as calculated over 50 realizations, is used as a measure of the uncertainty on the hydraulic
conductivity value.  These standard deviation values can be displayed as a two or three-
dimensional map to identify areas of greatest uncertainty.

In order to examine the change in the standard deviation as a function of the increasing
amount of characterization data, a vertical cross-section of the model was chosen along
the X = 30 gridblock.  This cross-section contains the AN-3 and MIU-1 boreholes.  The
values of the standard deviation of the hydraulic conductivity across this cross-section are
shown in Figures 15 and 16 for the different data sets.

Figures 15 and 16 exhibit an interesting change in the uncertainly of the hydraulic
conductivity as a function of increasing site characterization data.  In general, uncertainty
should be the lowest at the borehole locations and the greatest at locations that are the
furthest away from the boreholes.  However, this is not always the case in these
simulations of the MIU site.  Figure 15 shows the uncertainty maps for the case of the 14
boreholes outside the MIU boundary and then for the case of these same 14 boreholes
and the addition of the AN-1 borehole, which does not fall along this cross-section.  The
uncertainty is distributed evenly in the left image of Figure 15.  The right image of Figure
15 shows some layering in the standard deviation values near the top of the model.  This
layering is a direct result of the incorporating the AN-1 borehole into the data set.

Figure 15. Cross-section of the model at the x =30 grid block showing the standard
deviation in hydraulic conductivity values for the 14 (left) and 15 (right) hole data sets.
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Figure 16.  Cross-section of the model at the x =30 grid block showing the standard
deviation in hydraulic conductivity values for the 16 (upper left), 17 (upper right), 18
(lower left) and 19 (lower right) hole data sets.
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The upper left image of Figure 16 shows the uncertainty along this cross-section with the
addition of the AN-3 borehole (the 16 hole data set).  The location of the AN-3 borehole
is obvious in the upper left side of this upper left image.  In the immediate vicinity of the
AN-3 borehole the uncertainty is reduced.  This reduction in uncertainty remains
relatively localized due to the short range of the variograms.

The upper right image of Figure 16 shows the uncertainty map after the addition of the
MIU-1 borehole to the site characterization data set.  The location of the MIU-1 borehole
within the cross-section is obvious as the vertical line of relatively lower standard
deviation values down the center of the cross-section.  It is interesting to note that at the
bottom of the cross-section, the uncertainty is highest in the vicinity of the MIU-1
borehole (upper right image, Figure 16).  This area of higher standard deviation remains
in the same location and becomes even larger with the addition of the MIU-2 and MIU-3
boreholes to the data set (lower images, Figure 16).

The increase in the uncertainty along the cross-section with the addition of the MIU
boreholes is due to the conceptual model used in the geostatistics not being consistent
with the hydraulic conductivity data collected near the bottom of the site domain.  The
addition of boreholes MIU-1, MIU-2 and MIU-3 to the data set provides increasing
amounts of information on the hydraulic conductivity structure of the Tsukyoshi Fault.
The geostatistical model employed in this study does not explicitly include the Tsukyoshi
Fault and this leads to large uncertainty in the simulated hydraulic conductivity models in
the vicinity of the fault.  For example, in the damage zone surrounding the fault, the
hydraulic conductivity is high and this zone should be included in the high conductivity
facies defined from the locations of the packer tests.  However, the geostatistical model is
not defined to include all of this zone as a high hydraulic conductivity facies in every
simulation.  The reality of the hydraulic conductivity values being increased by the
Tsukyoshi Fault is in conflict with the simpler geostatistical model that assumes
statistical stationarity across the simulation domain.  This conflict between the data and
the model leads to increased uncertainty in these areas.

The increased uncertainty in the area of the Tsukyoshi Fault can be viewed as an
important site characterization tool.  The increased uncertainty is caused by uncertainty in
the conceptual model for the lower portion of the simulation domain.  This is not the
usual cause of uncertainty in geostatistical models, but it demonstrates how a
geostatistical approach can be used to check the validity of a conceptual model.  If the
location and the structure of the Tsukyoshi Fault was not known prior to this modeling,
these areas of high uncertainty would be a warning that something outside the conceptual
model was occurring and more characterization should be focussed in this area.  A three-
dimensional map of areas with the highest uncertainty (standard deviation) values is
shown in Figure 17.  The high uncertainty near the bottom of the domain is due to the
Tsukyoshi Fault not being included in the conceptual basis for the geostatistical models.
The high uncertainty near the top of the model is interpreted as being due to alteration or
increased fracturing due to unloading during erosion, which is also not included in the
conceptual model.
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Figure 17.  Three-dimensional view of the highest standard deviation values in the
simulation domain.  Standard deviation values greater than 3.0 are shown in blue, the
borehole locations are shown in red.  This map was created from the geostatistical
realizations using the 19-hole data set.
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Discussion

Several issues were identified during this work that require further discussion.  One
finding of this work is that the spatial correlation of both the test intervals and the
hydraulic conductivity measured in these intervals has a very short range.  Two reasons
are discussed that may contribute to these short ranges.  There are three additional issues
that need to be covered in this work:1) Plans for construction of a second-phase of
models; 2) a proposal for extracting information from the geophysical logs that can be
more readily used in the site characterization process and 3) further discussion of
approaches to optimizing the locations of additional boreholes.

Variogram Ranges
Figures 6 and 9 show typical variograms created with the indicator and the hydraulic
conductivity data respectively.  These variograms are distinctive in that the majority of
the total variability occurs at relatively short lag spacings.  For the variograms calculated
in the horizontal directions (lower images of Figures 6 and 9) it is difficult to define the
variogram at short lag spacings due to the lack of experimental variogram points between
100 and 300 meters.  Additionally, the experimental variogram points that do exist at 100
and 300 meters have a small number of data pairs defining the variogram at those
locations.  A possible solution for this problem is discussed below in the Borehole
Optimization section.

Another reason for high variability in the hydraulic conductivity variograms (Figure 9)
may be that the hydraulic conductivity values are not from a single population.
Examination of the cumulative distribution of the log10 hydraulic conductivity data
(Figure 12) shows a distinct break in the slope of the distribution at a hydraulic
conductivity value of approximately -9.3.  A break in the slope of a cdf often indicates
two different statistical populations combined into a single data set.  In the case of the
log10 hydraulic conductivity for the MIU site, it appears that the cdf follows a log-
normal distribution above values of -9.3 and a uniform distribution for the values below
-9.3.  A uniform distribution of values is often indicative of a random process behind the
generation of those values.  If random values are included in the data set, then variability
in the variogram will be increased.

It is interesting to compare the vertical variograms for the indicator and hydraulic
conductivity data (upper images of Figures 6 and 9).  The variograms are very similar in
overall shape, but the experimental variogram for the hydraulic conductivity (upper
image Figure 9) shows considerably more scatter than the indicator variogram.  This
additional variability may be due to combining two populations of hydraulic conductivity
data into a single variogram, especially if one of the distributions is generated from a
random process.  Prior to any additional models being created, the potential of two
hydraulic conductivity populations will have to be examined.
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Second-Phase Models
Discussion between SNL and JNC regarding construction of a second set of geostatistical
simulations of hydraulic conductivity for the MIU site has already begun.  These models
will explicitly incorporate the conceptual model of the Tsukyoshi Fault.  The conceptual
model will be implemented as subjective, or "soft", information to better constrain the
geostatistical simulations.  One approach being considered is to constrain the mean
values of the hydraulic conductivity within the fault core and the damage zone to values
based on the packer tests in those areas and agreed upon by the site characterization team
at TGC.  Changing the mean value of hydraulic conductivity within the fault core and
damage zone will constrain the simulated values to be near the specified mean values in
those regions, but this approach will still allow for spatial variability in the simulated
values.

An additional observation regarding the hydraulic conductivity simulations was the
apparent periodic nature of the choice of intervals within the MIU site for hydraulic
conductivity testing.  Evidence for this periodicity, or layering, occurs in a vertically
oriented indicator variogram calculated on the test interval data for the five boreholes
within the MIU boundary (Figure 18).  The notable feature of this variogram is the "hole-
effect" or sine wave appearance of the experimental variogram as it approaches the sill.
This characteristic of the variogram is indicative of layering in the data used to create the
variogram.  In this case, the data are the indicator transforms of the test interval locations
(1 = inside interval; 0 = outside interval) and the layering is caused by the choice of
locations for test intervals.

Application of the variogram equation to the test interval data results in comparison of
data values within the same type of material (2 points within the same test interval) and
relatively lower variability.  As the variogram lag distance increases, the two points being
compared will come from inside and outside the test interval creating higher variability.
As the lag distance increases again, values from one test interval are compared with
values from within another test interval (both indicator values of 1) and they are similar,
thus reducing variability.  This pattern continues and creates the sine-wave pattern in the
variogram.  The peaks in the variogram can be conceptualized as resulting from
differences in values arising from comparison of data in the center of one layer with data
in the center of a different layer.  Therefore, one-half the distance between peaks (or
troughs) is the average layer thickness.

The variogram in Figure 18 presents five well-defined peaks in the data for lag distances
greater than 100 meters.  These peaks are consistently 60-65 meters apart.  This
frequency in the peaks is the direct result of layering in the data where the layers are one-
half the thickness of the spacing between peaks.  For the test interval spacing within the
MIU site, the average layering is 30-32 meters.  In discussions at TGC in January, 2000,
corroborating evidence for this layering in the form of layering in the fracture frequency
within several of the boreholes was presented (Goto, personal communication).  In the
next iteration of geostatistical models of the hydraulic conductivity, this apparent layering
will be explicitly modeled.  The layering in the test intervals being a direct result of
layering in the fracture frequency still needs to be verified by checking the data.  If there
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is a strong relationship between the fracture frequency and the hydraulic conductivity,
then this relationship needs to be exploited in the next round of models.  One way to do
this is to create geostatistical models of the fracture frequency and then use these fracture
frequency models to constrain the models of hydraulic conductivity.  There is
considerably more fracture frequency data than there is hydraulic conductivity data, and
it would be worthwhile to try and use these data.

Figure 18.  Indicator variogram of the test interval locations within the MIU site.  This
variogram was created using only data from the five boreholes within the MIU site.  The
prominent hole-effect indicates apparent layering in the test intervals.

Geophysical and Borehole Televiewer Logs

All of the DH boreholes and all of the boreholes within the MIU site have a full suite of
geophysical logs.  These logs have not yet been used in the geostatistical models of
properties at the site.  Additionally, it is felt that these logs could be used more efficiently
in determining physical properties of the granite, especially hydraulic conductivity, and
in locating hydraulic test intervals within new boreholes.

It is proposed to develop a flexible technique to extract the pertinent information from the
geophysical logs and borehole televiewer logs for a number of applications.  These
applications may include identification of test intervals, prediction of relative hydraulic
conductivity (high, medium, low), or prediction of absolute values of hydraulic
conductivity.  Neural networks appear to be the best way to create such a flexible tool.
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Neural networks can be considered as nonlinear functions where multiple inputs to the
function are used to derive one or more outputs.  The function itself, the neural network,
is adjusted by training the network with an existing data set.  The existing data set must
contain an adequate number of inputs and outputs to train the network as a robust
estimator of the output for additional inputs that will be encountered outside of the
training set.  A number of authors have created neural networks to operate as facies
classification functions in sedimentary environments (Baldwin, et al., 1989; Dowla and
Rogers, 1995; Rogers et al., 1992).  More recently, other authors have used neural
networks to actually predict values of permeability in sedimentary formations
(Mohaghegh et al., 1996; Wong and Shibli, 1998).  It should be possible to extend these
ideas to the problem facies classification and hydraulic conductivity estimation in
fractured rocks at the MIU site.  The previous works in sedimentary environments have
used only geophysical logs as input to the neural network.  For the MIU site, it will also
be possible to extract information regarding fracture frequency from the borehole
televiewer logs and information on the alteration of the rock from the geologists
description of the core samples.

Borehole Optimization

This report has documented how a geologic property, such as hydraulic conductivity, can
be simulated using geostatistical techniques.  A direct result of the simulation process is
that the uncertainty in the property can be readily determined from the distribution of
simulated values at every location.  This uncertainty can be used to guide further site
characterization.  Areas with the highest uncertainty should be targeted for the next round
of characterization.  The characterization should continue until the uncertainty is reduced
to an acceptable level.  Results in this report indicate that the uncertainty in the hydraulic
conductivity values is highest in the vicinity of the Tsukyoshi Fault.

The work done in this report only considers uncertainty in the hydraulic conductivity at
each location.  In many cases, it is the uncertainty with respect to a performance-based
question that is of most importance.  As an example, the hydraulic conductivity
realizations created in this report could be used as input to a groundwater flow and
particle-tracking model.  Running this model on each of the 300 hydraulic conductivity
realizations would produce a distribution of groundwater travel times from a starting
location in the center of the site to the site boundary.  The goal of the characterization
program has now changed from reducing uncertainty in the values of hydraulic
conductivity at each location, to reducing the uncertainty in the groundwater travel time.
The optimal location to drill the next borehole will not be the same for the two different
characterization goals.  This example points out the concept of performance-based, or
question-specific, site characterization.

The results of any uncertainty estimates are only as good as the underlying model used to
create those estimates.  In the case of a geostatistical approach to site characterization, the
variogram models must represent the spatial variability at the site.  In many cases, there
are not enough data to adequatly define the variogram.  This is the case for the horizontal
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variograms at the MIU site shown in this report.  One solution to this problem of little
data at short-range spacings is to arrange the site characterization boreholes in more
efficient spiral pattern.  A spiral pattern for the boreholes would provide more data points
in the experimental variograms at short ranges.  This approach has been suggested
previously by Saegusa and others (1999), but has not been applied at the MIU site.

Summary

This report presents a geostatistical approach to modeling the spatial distribution of
hydraulic conductivity at the MIU site.  This approach is a stochastic approach that
allows for the determination of the uncertainty associated with the estimated hydraulic
conductivity at every location.  A two-stage approach was used in this work.  In the first
step, the distribution of high and low conductivity regions, or facies, was simulated using
indicator geostatistical simulation.  These indicator simulations are conditioned to the
locations of the test intervals and define the regions of the three-dimensional domain that
contain "testable" rock.  The second stage involved simulation of the hydraulic
conductivity values conditioned to the values of hydraulic conductivity measured in the
test intervals.  These two types of simulations were then combined by retaining the
simulated hydraulic conductivity values in the areas of the high conductivity rock as
defined by the indicator simulation.  In the areas defined as low conductivity rock,
hydraulic conductivity values were drawn from a different hydraulic conductivity
distribution with a lower mean and smaller variance than that of the measured
distribution.

The effects of the data set on the final mean and uncertainty of the hydraulic conductivity
models were examined by creating the models with six different data sets.  For each of
the six data sets, a total of 50 realizations of the hydraulic conductivity field were created.
For each data set, the mean hydraulic conductivity of each layer in the model was
calculated and graphed as a function of the elevation.  These graphs show that with
increasing amounts of data, the mean hydraulic conductivity of the model increases.  As
the data from the three MIU holes are added to the data set, the shape of the mean
hydraulic conductivity profile changes to show increased hydraulic conductivity at the
top and the bottom of the model domain.  This change in the shape of the profile is
attributed to increased fracturing near the top of the model due to alteration of the granite
near the unconformity and/or unloading of lithostatic stress by erosion prior to deposition
of the sedimentary units.  The increase in mean hydraulic conductivity near the bottom of
the model is attributed to the MIU boreholes intercepting the damage zone around the
Tsukyoshi Fault.  Both of these features that cause increases in hydraulic conductivity at
the top and bottom of the model were not explicitly included in geostatistical models.
This lack of explicit inclusion in the geostatistical model leads to large values of
uncertainty, large standard deviations, in the hydraulic conductivity estimates at these
locations.  Results of this modeling indicate that the highest uncertainty is at the top and
bottom of the model domain and based on these results, hydraulic conductivity testing
should be focussed in these areas.  Furthermore, these results indicate that more
characterization is necessary to determine a stable estimate of the mean hydraulic
conductivity within the MIU site.
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Several ideas have been proposed for additional work involving geostatistical models of
the hydraulic conductivity at the MIU site.  Indicator variogram analysis of the test
interval locations within the MIU site indicates that these intervals were chosen in a
layered pattern where the average thickness of each layer is approximately 30 meters.
Analysis of several of these boreholes by JNC staff indicates that fracture frequency may
have a similar layered pattern and may be the cause of the layering in the test interval
locations.  This layered pattern will be incorporated into future models of the hydraulic
conductivity within the MIU site.  It is desirable to make better use of the geophysical
and borehole televiewer logs for conditioning the geostatistical simulations.  One idea is
to extract more information from these logs by constructing a neural network to estimate
values of hydraulic conductivity based on the geophysical and borehole televiewer logs.
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