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ABSTRACT

The thermal conductivity of 304 stainless steel has been
estimated from transient temperature measurements and
knowing the volumetric heat capacity. Sensitivity coefficients
were used to guide the design of this experiment as well as to
estimate the confidence interval in the estimated thermal
conductivity. The uncertainty on the temperature measurements
was estimated by several means, and its impact on the estimated

conductivity is discussed. The estimated thermal conductivity of
304 stainless steel is consistent with results horn other sources.
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position vector

temperature measurement for sensor i at time j, “C

D-optimality condition, see Eq. (8)

dimensionless D-optimality condition, see Eq. (9)
= Tmm - Tmin

data sample rate

thermal diffusivity, m2/s

density, Kg/m3

estimated standard deviation in parameter p, units of p

iteration counter

INTRODUCTION

Computational techniques for conduction heat transfer have

evolved to the point where the more significant numerical issues
have been resolved. There are any number of numerical
algorithms that can be used to accurately compute temperature
fields; these include finite difference, finite volume, and finite
element. The focus is beginning to turn toward validation of

these computational models. In the context of this paper, we
adopt the definition of Roache (1998) that validation is “solving
the right set of equations” as opposed to verification which is

“solving the set of equations right.” Validation of CFD models is
discussed in Stem et al. (1999) and the references contained
gherein. Our work is ultimately directed toward the validation of
thermal models of complex systems.

In order to make a quantitative statement about the level of
validation of a simulation, one must estimate the uncertainty in

both the simulations and the experiment. The experimental
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community is very familiar with the root-sum-of-squares
technique for propagation of experimental uncertain y; see
Coleman and Steele (1999) for a discussion of this
methodology. This same methodology can be used to propagate

uncertainty through a computational model; the computational
community is not as progressed as the experimental community
in applying these techniques. In the extension of the root sum-

of-squares methodology to computational models, sensitivity
coefficients of the various model parameters (material

properties, etc.) must be known, along with their corresponding
uncertainty, in order to perform an uncertainty analysis. In this
work sensitivity coefficients are defined as partial derivatives of
field variables (temperature in this case) with respect to model
parameters (thermal conductivity in this case); see Blackwell et
al. (1999) for a discussion of numerical techniques for

computing sensitivity coefficients in thermal problems. This
work focuses on estimating the thermal conductivity of 304

stainless steel and estimating the associated experimental
uncertainty and should be viewed as one of the first steps in
validating a computational model.

As an aside, the process of uncertainty estimation (both
experimental and computational) should not be viewed as an
attempt to quantify uncertainty that is accurate to n significant
digits (where n is known). Instead, a significant (and often
primary) benefit of the uncertainty analysis is to identify those
parameters that dominate the overall uncertainty and then take
appropriate steps to reduce the overall uncertainty to a

programatically acceptable 1 level. The uncertainty analysis
often leads to a road map on how to best spend project
resources; focus on those important parameters and be satisfied
with nominal or handbook values for those unimportant
parameters. A quotation by Dowdell (1982) summarizes these
sentiments: “There is a lot of uncertainty on uncertainty analysis
but some analysis is better than no analysis at all.”

Description of Experimental Hardware

A cutaway view of the experiment is shown in Fig. 1;
additional details have been presented in Blackwell et al.
(2000). The hollow staitdess steel cylinder has an outside
diameter of 8.89 cm (3.5 in), wall thickness of 0.508 cm (0.2
in), and length of 13.97 cm (5.5 in). A flange of 12.7 cm (5.0 in)
diameter by 0.635 cm (0.25 in) thickness is present on the upper
and lower cylinder ends. The top and bottom copper blocks are
each composed of two halves: the (solid) contact plate is 12.7
cm (5,0 in) diameter by 1.905 cm (0.75 in) thick; the body is
12.7 cm (5.0 in) diameter by 3.848 cm (1.515 in) and has
serpentine channels machined in it to enhance the heat exchange
effectiveness for the fluid circulated through it. The contact
plate and body are brazed together and are referred to
collectively as the copper block.

1. Each program or project will have its objectives and budget. The integra-
tion of objectives, budget, etc., will define programmatically acceptable level.
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Time dependent temperature measurements are provided by

thermocouples mounted in the top and bottom copper blocks
identified in Fig. 1. A single 30-gauge thermocouple (0.254
mm, 0.010 in diameter, Type K) measures the temperature of

each of the copper blocks; this thermocouple is located 4.483
cm (1.765 in) from the copper/stainless steel flange interface (in

the body) and at the bottom of a 6.35 cm (2.25 in) deep radial
hole. Two separate temperature controlled baths supply fluid to

the top/bottom (Oxygen Free High Conductivity, OFHC) copper

blocks. A simplified cross section of the heating/cooling blocks

and stainless steel cylinder is shown in Fig. 2.

Thermocouples are mounted in the stainless steel cylinder
walls at fourteen axial stations with a uniform spacing of 0.953
cm (0.375 in). Station 1 is near the top of the cylinder and is
located 0,795 cm (0.313 in) from the inside face of the flange.
Station 14 is located at a mirror image position near the bottom
flange. Stations 7 and 8 are located at M.475 cm (*0.187 in)
from the x = O position (axial midplane), respectively. At each
axial station along the stainless steel cylinder there are
thermocouples at four angular stations, each 90 degrees apart
for a total of 56 thermocouples mounted in the cylinder wall.
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Figure 1. Cutaway view of experiment
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Figure 2. Cross section of experimental apparatus

The thermocouples are arranged in four columns: two columns
(A and C) of Type K and two columns (B and D) of Type T, both
of 30-gage wire (0.254 mm or 0.010 in diameter).

The thermocouples were installed in a thermowell by drilling
1.17 mm (0.0461 in) diameter by 2.54 mm (O.1 in) deep holes in
the cylinder walls. Each thermocouple was formed by stripping
insulation from single strand wire, welding the junction, and
dipping the junction in a eutectic mix of iridium/tin. The
eutectic was also placed in the thermowells, and it remains
liquid and ensures good contact between the thermoelectric
elements and the stainless steel cylinder. The leads were
wrapped around the outside diameter of the cylinder for 1/8 th
turn and held down with KaptonTM tape so as to minimize
conduction losses along the lead wires.

A hollow cylinder was chosen because the hardware is also
used for a companion contact conductance experiment. Some
details of this experiment are given in Blackwell et al. (2000).
Two-dimensional axisymmetric simulations of the cross section
in Fig. 2 have demonstrated that the temperature profile in the

cross sections at Stations 1 and 14 is uniform. Consequently,
over the instrumented portion of the cylinder, heat conduction

3

can be considered one dimensional.

The vacuum system consists of a bell jar vacuum chamber, a

base plate with feed-through ports, and a complete vacuum
pumping system with controls and gaging. The nominal
dimensions of the glass bell jar vacuum chamber are 45.7 cm by

76.2 cm by 0.826 cm ( 18 in by 30 in by 0.325 in) wall thickness.
The system is composed of a high-speed roughing pump and a

four-stage diffusion pump capable of maintaining 10-7 Torr.

The data was acquired using the PC-based LabViewTM

software with a 16 bit A-D system; the sample interval was
approximately 1.5 seconds.

EXPERIMENTAL TEMPERATURE RESULTS

The thermocouple results for a pressure of roughly 4x10-5
Torr are shown in Fig. 3. Because of the symmetric placement
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Figure 3. Experimental temperature results for Run
032100.

of the thermocouples about the axial midplane of the cylinder
and the nominally symmetric boundary conditions on the two
ends, the experimental results should overlay as pairs of
thermocouples. The maximum difference in the top and bottom
copper block temperatures is of the order of 0.1 ‘C or less,
indicating very good end-to-end symmetry. The remaining
seven pairs (1: 14, 2:13, etc.) of thermocouples exhibit even
better symmetry. The results presented here are better than the
results presented in Blackwell et al. (2000) for three reasons.
First, larger capacity fluid baths were used, and consequently,

the temperature rise rate of the top and bottom copper blocks is
greater; this will produce larger thermal conductivity sensitivity
coefficients. Second, the fluid delivery system to the top and
bottom copper blocks was modified with the result being
significantly improved end-to-end symmetry of the temperature
profiles. Third, the thermocouple lead wire wrap was reduced
from 1 turn to 1/8 th turn; this reduces the thermal mass not
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accounted for in the model without introducing axial conduction
errors along the lead wires. While the fluid baths temperature
was measured, the results are not presented here since they were

not used in the data reduction procedure.

Standard emf-temperature calibration curves were used in the
data reduction process. In an attempt to remove bias,

approximately 39 s of thermocouple data (sampled at

approximately 1.5 s) was taken for which all thermocouples
should be at nominally the same temperature. This is termed a

data leader. The data leader was averaged and this result is
termed “global average initial temperature.” Next, each

individual thermocouple was averaged over this same 39 s
interval and this result is termed “local average initial
temperature.” The difference between the global and local

average initial temperature was applied to each individual
thermocouple as a bias correction for all measurement times.
These bias corrections for each of the 56 T/C’s are shown in
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Figure 4. Bias correction for each of 56 T/C’s, as
determined from the data leader.

Figure 4; Columns A and C are Type K and are consistently
lower than the global average whereas Columns B and D are
Type T and are consistently higher. As a result of this bias
correction, all thermocouples have the same average (over the
data leader) initial temperature.

The standard deviation in indicated temperature during the
data leader for a given sensor is an indicator of the best that one
could hope to do as there are no temperature gradients during
this time interval. These standard deviation results are presented
in Fig. 5 for the 56 thermocouples. If all 56 thermocouples are
lumped together, the standard deviation in temperature for the
data leader was estimated to be 0.0023”C.
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Figure 5. Standard deviation of data leader for
each of 56 T/C’s.

temperature, based on a sample size of four, was computed for
each of the axial stations, and the results are given in Fig. 6.
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Figure 6. Standard deviation in four circumferential
stations for axial Stations 1-14

Stations 1, 2, 13, and 14 exhibit (circumferential) standard

deviations that are larger by roughly a factor of two than the
remaining 10 stations. The maximum circumferential standard

deviation is approximately O.16°C. Stations 3-12 have a

;tandard deviation generally less than 0.06”C. Since the results
ifi Fig. 6 are taken in the presence of both time and spatial
temperature gradients, the standard deviations in Fig. 6 are
larger than those in Fig. 5 by an order of magnitude.

The temperature data at each of the 14 axial stations was an
average of 4 circumferential stations. The standard deviation in

4



There is a strong correlation between circumferential standard

deviation and both temperature rise rate and temperature
gradient. Fig. 7 presents the axial temperature gradient

(dT/dx), temperature rise rate (dT/dt), and circumferential

standard deviation (crT) for the experimental measurements at

Station 14. The temperature rise rate and the temperature
gradient for Station 14 were computed using the experimental
data and finite differences. The peak spatial temperature
gradient lags the peak temperature rise rate. The peak in the

standard deviation curve (taken fi-om Fig. 6 for Station 14)
occurs at a time between when the maximum time and spatial
temperature gradients occur. The maximum temperature
gradient at Station 14 is approximately 0.30°C/mm. For a
thermowell of 1.17 mm (0.0461 in) diameter, the position of the
0.254 mm (0.010 in) diameter wire pair could vary by as much
as ~().~ mm (~0.o17 in); this assumes that the two wires are

side by side in a direction perpendicular to the long axis of the
cylinder. Using the above (maximum) temperature gradient of
0.30°C/mm and the positional uncertainty of the center line of
the thermocouple wire, the maximum uncertainty in

temperature (due to positional uncertainty) is approximately

M. 13“C. This result does not consider that the presence of the
thermocouple alters the temperature one is trying to measure.
The maximum standard deviation in Fig. 6 and the estimated
error in temperature because of errors in thermocouple position
are consistent.

DESCRIPTION OF THERMOCOUPLE ERRORS

Thermocouple errors are numerous and have been discussed
by a host of others. It is not the intent of this work to review
thermocouple errors in general. However, it is appropriate to
discuss some of the thermocouple errors that are likely to be
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present in our experiment.

The thermoelectric elements of this experiment sometimes

operate in regions of nonuniform temperature. Elementary

thermoelectric theory assumes the junction is in a region of
uniform temperature. Consequently, the issue of conversion of a
voltage to temperature is clouded. These errors will be larger

when the axial temperature gradients are large.

Because of the manner in which the thermoelectric elements

are installed in the thermowell, there will be a time delay in the
thermal (and, hence, electrical) response of the thermocouple.
These errors are proportional to the time rate of change of the
temperature. During heat up the indicated temperature will be

low relative to the undisturbed temperature, while during cool
down the indicated temperature will be high.

The location of the thermowell, as well as the position of the
thermocouple in the thermowell, are uncertain, with the latter
being the larger of the two. The presence of the therrnowell will
also alter the temperature one is trying to measure.

Deviations of the composition of the actual thermoelectric
elements for the thermoelectric elements used in the calibration

of this thermocouple type will cause the emf-to-temperature
conversion to be in error.

The measurement of the thermocouple emf will have errors,

although this is quite small with modern data acquisition
systems. The manner in which the reference temperature

junction is handled will impact the temperature measurements.

To quantify these errors is difficult and challenging and at best
we will only be able to estimate them.

THERMAL CONDUCTIVITY ESTIMATION

The thermal conductivity is determined by use of nonlinear,
least squares parameter estimation techniques; see Beck and

Arnold (1977) for additional details. A two-dimensiona12
computational model of the experiment was developed with
thermal conductivity as a parameter. The thermal conductivity is
estimated from the experimental temperatures in Fig. 3 such that
the Ieast-squares error between the computational model of the
experiment and the experimental temperatures is minimized.
This sum of squares of temperature error is given by

N, N,

S = ~ ~ (Yij– Tii)2. (1)
i=t; =l

Using Newton’s method the iterative solution to this

minimization problem for a single parameter can be written as
..

Figure 7. Temperature gradient, temperature rise
rate, and circumferential standard deviation for
axial station 14, all experimentally based. 2. In reality the model could be 1-D,but it was implemented in a 2-D code
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(2)
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where Akv +1 is the correction to the estimated thermal

conductivity for iteration v + 1. We utilized software designed

specifically to compute both temperature and sensitivity
coefficient fields. Details of this methodology can be found in
Blackwell et al. (1999). This software utilizes a Control Volume

Finite Element Method to discretize the energy equation and
also the derived sensitivity partial differential equations. It is felt
that the sensitivity equation method is more accurate than finite

difference determination of sensitivity coefficients and requires
less user intervention to determine appropriate finite difference

step sizes. The communication between the analysis software
that evaluates the temperature and sensitivity coefficient fields
and the software that computes the next conductivity guess is
through external files and UNIXTM shell scripts. An outline of
this process is presented in Blackwell and Eldred (1997) and
Dowding and Blackwell (1998).

The computational model consisted of the walls of the

stainless steel cylinder. The end boundary conditions were the
experimentally measured temperatures at Stations 1 and 14;
these temperatures were assumed uniform at these cross
sections and to be errorless. The assumed boundary conditions
on the side walls of the cylinder were adiabatic. The adiabatic
assumption was confirmed by examining the steady state
temperature profile for a run. Theoretical arguments suggest a
Iinear temperature profile and the experimental results were
consistent with this. The estimated thermal conductivity was
14.57 W/m-K; this result compares favorably with other
measurements given in Table 1; the other measurements were

Table 1: Comparison of thermal conductivity of 304 Stain-
less Steel with other results. Units are W/m-K and are valid
for 31 ‘C; uncertainty bound is flrJ

This Work Taylor et al. (1997) Incropera and De Witt (1990)

14.57N.6 14.65* 1.5 14.97

linearly interpolated at a temperature of 31 ‘C, the average
temperature of Run 032100. The uncertainty statement
contained in Taylor et al. (1997) stated that the conductivity was
accurate to *5%. It is not known if this uncertainty bound was
10 or 20; it was assumed to be 10. The details of the uncertainty
analysis for this work are presented in a subsequent section.

Beck and Arnold (1977) emphasize the importance of

“sequential” estimation of parameters. Sequential estimation
considers the effect of sequentially adding data from one more
measurement time on the estimated parameter. If one assumes
that the sensitivity coefficients can be linearized about the

converged parameter value, then Eq. (2) can be utilized to study
this effect. If Nl in Eq. (2) is sequentially increased by one up to

its maximum value, then the sequentially estimated conductivity

can be evaluated and these results are shown in Fig. 8. There is a
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Figure 8. Sequentially estimated conductivity.

slight variation because of the addition of the cool down data.
The sequential results suggest that adding more information will
not substantially alter the final estimated conductivity value.

Earlier work from this same apparatus was presented in
Blackwell et al. (2000) and gave an estimated conductivity of

14.34 W/m-K. However, refinements of the apparatus have been
made, and we feel the current data is more reliable. These
refinements eliminated a minor heat loss that was not accounted
for in the parameter estimation model. Also, the end-to-end
symmetry was also significantly improved.

In parameter estimation it is important to study the residuals
to aid in evaluating the fitted model. Fig. 9 presents the
temperature residuals for the model using the estimated value of
thermal conductivity. Ideally these residuals should be

randomly distributed about zero. This is obviously not the case
in Fig. 9; the residuals for different stations are clearly
separated, and there are distinct time trends for each station’s
residuals including a pattern reversal at the point at which rapid

cooling is initiated. In part these patterns reflect the standard
deviation patterns in Fig. 6. The residuals are, however, quite
small for most practical purposes. The maximum absolute
residual is about 0.07°C, and the RMS of all the residuals is
about 0.03”C. These values should not be taken as prediction

elrors pertaining to temperatures in a repeat of this experiment
or in another similar experiment because the conductivity used
in the model calculations was obtained from the same data from
which the residuals are calculated.

The mean square error in temperature was estimated from the

6
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Figure9. Temperature residuals for Run 032100.

temperature residuals using

Note that Eq. (I) and Eq. (3) differ only by a constant.

(3)

In parameter estimation it is advisable to explore the sum of
squares function (or mean square error) in the neighborhood of

the converged point. Fig. 10 presents the residual based standard

0.35 t I

0.3 - Run 032100

0.25:+
I..,,

t
013

I I i

Then#al Conductivity, l&/m-K
16

Figure 10. Estimated standard deviation in temper-
ature vs. conductivity for Run 032100,

deviation as a function of the assumed thermal conductivity. In
close proximity to the minimum value, the space is relatively
flat. When the thermal conductivity becomes significantly

7

removed from the converged value, the standard deviation in

temperature is a strong function of thermal conductivity. We
believe the optimization process converged to a global
minimum.

EXPERIMENT DESIGN ISSUES

, The optimal design of experiments studies sensitivity

coefficients in order to make decisions on quantities, such as

experiment duration, sensor locations, sample rate, etc. In this
instance sensitivity coefficients are defined as partial derivatives
of temperature with respect to conductivity. We have found it
useful to utilize scaled sensitivity coefficients. For our
experiments the scaled thermal conductivity sensitivity

coefficient of interest is defined as

Tk(?, f,k) = k%. (4)

Note that the scaled sensitivity coefficient is a field variable just
like temperature, and it has the units of temperature. The scaling
of the sensitivity coefficient is important in that it allows
sensitivity coefficients to be directly compared to a

characteristic temperature rise of the experiment. For this
experiment the characteristic temperature rise is the rise from its
initial value. For constant thermal diffusivity one can

demonstrate that

3T aT

‘z = am’
(5)

Consequently, the two sensitivity coefficients can be used
interchangeably.

The scaled thermal conductivity sensitivity coefficients for
Run 032100, Stations 1-7 are presented in Fig. 11. Since the
boundary conditions for Stations 1 and 14 are quite similar, the
sensitivity coefficients for Stations 8-14 will be similar to those
for Stations 1-7. First, note that the sensitivity coefficient for
Station 1 is zero everywhere since it is a specified temperature
boundary condition. Once the experiment time exceeds about
150s, there is a clear trend of increasing sensitivity to thermal

conductivity as you move away from the specified temperature
boundary condition. Those sensors closest to the axial mid-
plane are more sensitive to the thermal conductivity. The time at
which each thermocouple has a maximum sensitivity coefficient
varies. At approximately 750s the upper copper block is

suddenly cooled; this time is greater than the time at which the
sensitivity coefficients are a maximum.

Note the magnitude of the scaled sensitivity coefficients
r;lative to the maximum temperature rise of approximately
13°C. The sensitivity coefficients for sensors near the axial mid-
plane are quite significant relative to the maximum temperature

rise.

The duration of the heating phase(750s)ofRun032100 (Fig.
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Figure Il. Scaled thermal conductivity sensitivity
coefficients (left scale) and Station 1 temperature
history (right scale).

3) was chosen based on the previous results of Blackwell et al.
(2000). The D-optimality condition discussed in Beck and
Arnold (1977) was used to guide this process. This condition
involves maximizing the determinant of the matrix

A = Det(X~X), (6)

where X is the N, Nf by NP sensitivity matrix; the number of

sensors is N~ the number of times is N~, and the number of

parameters is NP. In this particular application, we are only

estimating a single parameter, thermal conductivity of the
stainless steel; hence, NP = 1. There are 14 sensors on the

stainless steel cylinder, but since Stations 1 and 14 will be used
as boundary conditions, there are only 12 axial stations
contributing parameter estimation information; the sensitivityy
coefficients are zero at the specified temperature boundary
conditions. The number of measurement times will be treated as
variable through the relationship

t = NrAt , (7]

where t is the experiment duration and At is the data sample

rate; for all the results presented here, At =1 .5s. For this simple
case of a single parameter, the optimality conditions reduces to

(1)‘s ‘f aT 2
A=~~—

i=lj=l ak i,j

(8)

One could increase A by adding sensors or taking more

measurements, as long as d T/dk is nonzero. Furthermore,

because i37’/ak is typically related to the temperature range, a

8

larger temperature range causes A to increase. To eliminate
these dependencies, a normalized version of the optimality
condition was used in this study and is defined to be

N, N, aT 2

A+ =
1

[ )
ZZkZ 7

N,Nt(T,nux
(9)

-7’,~i~)2i = 1j= I i j

where (T,naJ, T,,in) is the (maximum, minimum) temperature

over time and sensor location. The quantity A+ can be viewed

as an information content per data sample, and we want to

choose the heating and cooling durations that maximize this

quantity. The time dependence of A+ comes through the

implicit dependence of Nt on time, Eq. (7).

Note the presence of the scaled thermal conductivity
sensitivity coefficients in Eq. (9). These scaled sensitivity
coefficients are precisely those shown in Fig. 11.

The D-optimality condition defined in Eq. (9) for Run 032100
is presented in Fig. 12. The heating duration for this experiment

0.25 I II II II II II I
Run 032100

i

Figure 12. D-optimality condition as a function of
time for Run 032100.

was 750 s; beginning at this time cooling fluid was circulated
through the top and bottom copper blocks. The cooling duration
can be treated as a variable to be selected based on the time at

which A+ in Fig. 12 is a maximum; this time is 850.5 s. Even

though the experiment was run for 1950 s, the majority of the
information about thermal conductivity is contained in the first

&O.5 s of the experiment. The data was reduced using a run
duration of 1950s.
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UNCERTAINTY IN ESTIMATED THERMAL DIFFUSIV-
ITY

Since time-dependent temperature data is used in the
parameter estimation process, the computational model requires
both thermal conductivity and volumetric heat capacity. The use
of temperature boundary conditions to drive the model

preciuded the possibility of estimating both conductivity and
volumetric heat capacity from the temperature measurements

presented here. The conductivity estimation process was
performed by assuming a value for the volumetric heat capacity
and then minimizing the least-squares error in Eq. (1). If the
volumetric heat capacity is arbitrarily changed, then the

resulting conductivity estimate will also change such that the
ratio (thermal diffusivity) is a constant. Consequently, the
parameter estimation process really estimates the thermal
diffusivity. The density and heat capacity values used in the data

reduction process were p = 7916*18 Kg/m3 (this work, 1o) and
c= 487.9*1O J/Kg-K (Taylor et al., 1997; given as 270 accuracy,

assumed to be 1o).

Beck and Arnold (1977) indicate that for additive,
uncorrelated errors with zero mean, the standard deviation in the
estimated thermal diffusivity is related to the standard deviation

in [he temperature measurements through

(lo)

This relationship points out why maximizing A is important in
terms of minimizing the errors in the estimated conductivity.
The dimensional and dimensionless A are related through Eq.
(8), and Eq. (9) and can be written as

N~NtAT2
A= . A+. (11)

cl’

The variance and standard deviation in the estimated thermal
diffusivity can be written as

The issue we are faced with now is how to estimate 6T. This

will be explored in more detail in the following section.

SUMMARY OF ESTIMATES OF STANDARD DEVIA-
TION IN TEMPERATURE MEASUREMENTS

Residuals for Run 032100 are presented in Fig, 9, and the

standard deviation in the temperature was estimated from Eq.

(3); it was found to be 0.0297”C. This estimate of 6T will be

termed “residual based.”

‘ From the results in Fig. 6, the maximum circumferential

standard deviation is approximately O.16°C for Stations 2 and
14. Since we averaged the four thermocouples at each axial
station, the estimated standard deviation must be reduced by

~. Using the maximum axial temperature gradient computed

from the experimental data, the thermocouple position

uncertainty of kOA4 mm (tO.017 in) translates to an estimated
temperature error of MI.13°C

In summary, the three temperature uncertainty estimates vary

by half an order of magnitude and lie in the approximate range

0.03< 5T c 0.13°C. These results are summarized in Table 2.

Table 2: Estimated standard deviation in temperature using
various methods

F====Rmaximum circumferential average

t/c position error of 0.44 mm (0.017 in) I 0.13 1

UNCERTAINTY IN ESTIMATED THERMAL CONDUC-
TIVITY

To account for the uncertainty in the estimated thermal
conductivity, we focus on the relationship between the thermal
conductivity, thermal diffusivity, density, and specific heat

k=cq)c. (13)

The uncertainty in the conductivity is related to the uncertainty
in the other parameters through

(14)

The estimated uncertainty in the thermal diffusivity can be
obtained from Eq. (12), yielding

(15)

Utilizing
standard

the most pessimistic estimate in Table 2 for the
deviation in temperature (O.13“C) and the other

parameters for this experiment, Eq. ( 15) yields

~k 2

,() T
= 1.3x10-9 +5.2x10-6 +4.0x104 . (16)
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It has been assumed that the confidence level of the various

uncertainties in Eq. (15) are the same. Clearly the uncertainty in
the specific heat dominates the uncertainty in the thermal

conductivity. The error in temperature measurement is not a
consideration because the temperature measurements were
assumed to be independent. A refined error analysis that

assumed correlated errors has been performed by one of us
(RGE), and while increasing the first term in Eq. (16) by a factor

of roughly 300, the temperature measurement error is still an
order of magnitude smaller than the next largest term. The final
estimated thermal conductivity and associated uncertainty is

k = 14.57* 0.6 W/m-K ( k 20 bounds) . (17)

Any significant reductions in uncertainty in thermal

conductivity estimate must be accompanied by a reduction in
the (2%) uncertainty in the specific heat.

SUMMARY

The experimental configuration for estimating thermal
conductivity of 304 stainless steel was axial heat conduction in
the walls of a hollow cylinder. Optimum experiment design
issues were discussed. Sensitivity coefficients and the D-

optimality condition were computed. The estimated thermal
conductivity at 31 ‘C was 14.57 W/m-K, which compares

favorably with other estimates. An uncertainty analysis on the
temperature measurements was performed using three different
methods with the results given in Table 2. The uncertainty in the
specific heat is the dominant factor in the conductivity
uncertainty. In order to further reduce the uncertainty in the
thermal conductivity, the uncertainty in the estimated heat
capacity will have to be reduced.
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