
“256’V
LA-UFF 99-
Approved forpubfic release;
distribution is unlimited.

Title:

Author(s):

Submitted to:

ANALYTICAL BENCHMARK TEST SET FOR CRITICALITY
CODE VERIFICATION

Avneet Sood
R. A. Forster
D. K. Parsons

Sixth International Conference on Nuclear Criticality Safety,
September 20-24, 1999, Palais des Congres,
Versailles, FRANCE

Los Alamos
NATIONAL LABORATORY

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S.
Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government
retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S.
Government purposas. Los Alamos National Laboratory requesta that the publisher identify this article as work performed under the
auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher’s right to
publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Form 836 (10/96)



ANALYTICAL BENCHMARK TEST SET FOR CRITICALITY
CODE VERIFICATION

Avneet Sood
North Carolina State University

Nuclear Engineering Department
Raleigh, NC 27695-7909

R. A. Forster
Los Alamos National Laboratory

Group X-CI MS F663 Los Alamos, NM 87545
email: raf@lanl.gov
fax: 505-665-3046

phone: 505-667-5777

D. K. Parsons
Los Alamos National Laboratory

Group X-CI MS F663
LOSAkunos, NM 87545

email: dkp@lanl.gov
fax: 505-665-3046

phone: 505-667-0504

Abstract

A number of published numerical solutions to analytic eigenvalue (lG.ff)and eigenfunction
equations are summarized for the purpose of creating a criticality verification benchmark test set.
The 75-problem test set allows the user to verify the correctness of a criticality code for infinite
medium and simple geometries in one- and two-energy groups, one- and two-media, and both
isotropic and linearly anisotropic neutron scattering. A three- and six-energy group infinite
medium problem are also included in the test set. The problem specifications will produce both
&fi = 1 and the quoted km to at least five decimal places. Additional uses of the test set for code

verification are also discussed. Los Alamos report LA–13511 contains the details of all 75 test
problems.

Introduction

This paper describes a set of benchmark problems with analytic eigenvalue (lqM) and
eigenfunction (flux) solutions to the neutron transport equation from peer-reviewed journal
articles. The purpose of the test set is to verify that transport algorithms and codes can correctly
calculate the analytic ~ff and fluxes to at least five decimal places. These test set problems from
the literature include infinite medium, slab, cylindrical, and spherical geometries in one- and two-



I energy groups, one- and two-media, and both isotropic and linearly anisotropic scattering. A

I three-group infinite medium and a six-group variant k ~ problem (unpublished) are also included

I in the test set.

Verification is defined as “the process of evaluating a system or component to determine
whether the products of a given development phase satisfy the conditions imposed at the start of
the phase’ or as a “proof of correctness.” Confirmation (proof) of correctness is “a formal
technique used to prove mathematically that a computer program satisfies its specified
requirements.l In contrast to verification, validation is defined as “the process of evaluating a
system or component during or at the end of the development process to determine whether it
satisfies specified requirements. * Thus, cotie verification checks that the intended calculations
have been executed correctly, while code validation compares the calculated results with
experimental data.

The objectives of the test set are to define and document a set of analytic benchmarks for
verifying criticality codes. Ben&mark is dlefined as “a standard against which measurement or
comparisons can be made. 1 Available benchmarks for code verification do not focus on
criticality problems.2 Validation benchmarks from critical experiments do exist, but are not
verification benchmarks.3 An initial effort to compile a benchmark test set for criticality
calculation verification was begun, but not completed.4’5 The analytic benchmarks described here
can be used to verify computed numerical solutions for l+ and the associated flux with virtually
no uncertainty in the numerical benchmark values.

1“ Why These Solutions Serve as a Test Set

All critical dimensions, Lff, and scalar neutron flux results quoted here are based on
numerical computations using the analytic solutions to the lGff eigenvalue (homogeneous)
transport equation for “simple” problems. The analytic methods used include Case’s singular
eigenfunction,s F~ and S~ methods?8 and Green’s functions.9 All of these test set problem
specifications and results are from peer-reviewed journals, and have, in some cases, been solved
numerically using more than one analytic solution. All calculated values for critical dimensions,
Kfi, and the scalar neutron flux are believed 10be accurate to at least five decimal places.

I Scope of the Criticality VerMcation Test Set

The verification test set was chosen to represent a “wide” range of problems from the
relatively small number of published soluticms. These problems include simple geometries, few
neutron energy groups, and simplified (isotropic and linearly anisotropic) scattering models. The
problems use neutron cross sections that are reasonable representations of the materials described.
These cross sections are not general purpose multi-group values. The cross sections are used
because they are extracted from the literature results and are intended to be used only to verify
algorithm performance and not to predict criticality experiments.

The basic geometries include arninfinite medium, slab, cylinder, and sphere with one- and
two-energy group representations of uniform homogeneous materials. The slab and cylinder
geometries are one-dimensional; that is, each is finite in one dimension (thickness for slab and
radius for the cylinders) and infinite elsewhere. The two-media problems surround each
geometry with a specified thickness of reflector.
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The emphasis of the test set is on the fundamental eigenvalue, bff. All & eigenvalues for
finite fissile materials are unity to at least five decimal places. The k ~ values for a uniform

homogeneous infinite medium are greater than unity. Few numerical eigenfunction solutions are
published; consequently, mainly one-group and uniform homogeneous infinite medium fluxes are
included in the test set results.

To assist in verification, each problem has a unique identifier. Since the test set includes
bare and multi-media problems, there are two forms of the identifier. The first form is for a bare
geometry:

Fissile Material - Energy Groups - Scattering- Geometry

The possible entries for each category are listed in Table I. The fissile materials and
identifier consist of Pu-239 (PU), U-235 (U), highly enriched uranium-aluminum-water assembly
(UAL), low enrichment uranium and DzO reactor system (UD20), and a highly enriched uranium
research reactor (URR). The identifier may be followed by a letter to differentiate between
different cross-section sets from nominally the same material. The table lists identifiers for the
reflector material (if any), number of energy groups, scattering order, and geometry. The
geometry is identified by the first two letters in the table. The exception is for the infinite slab
lattice cell which uses ISLC. An example of the one material form of the identifier is:

U-2-O-SP

which is the identifier for a bare U-235 reactor (no reflector), 2 energy groups, isotropic~ly
scattering, in spherical geometry.

The second form of the identifier includes the reflecting material. The reflectors are usually
H20 with an exception of a three region Fe, Na, Fe reflector. Although many of the reflectors are
identified as H20, the reflector cross sections are unique to each problem. Consequently, a letter
may follow H20 indicating the H20 cross section set used. The multi-media identifier form is:

Fksile Material - Reflecting Material (thickness) - Energy Groups - Scattering - Geometry

To separate multiple reflector thicknesses for the same fissile material, the thickness is given
in parenthesis in the title in units of mean free paths (mfp). For example,

UD2O-H2O(1O)-1-O-SL

is the identifier for a uranium and D20 reactor with a H20 reflector of 10 mean free path
thickness, one-energy group, isotropically scattering, in slab geometry. An “IN’ in parenthesis
after the H20 means an &finite water reflector.



TABLE I: Nomenclature for Problem Identifiers

Fissile Material Reflector Material Energy Groups Scattering Order Geometry
Pu bare 1 grcmp O-PO Isotropic ~finite
u H20 2 groups 1 – P{ Anisotropic &ab

UD20 Fe-Na 3 groups 2 – Pz Anisotropic ~linder
UAL 6 groups ~here
URR Infinite slab ~attice cell

Tables II, III, and IV summarize each of the 75 problems in the test set and give the page
number in Los Alamos report LA-13511.10 A mark in the “Flux” column ,appears if the
associated normalized spatial neutron fluxes or energy group flux ratio are given. There are 43
problems in the one-energy group case; 30 problems assume isotropic scattering and 13 have
anisotropic scattering. For the two-energy group problems, there are 30 problems subdivided into
26 isotropic scattering problems and 4 linearly anisotropic problems. Also included for an
infinite medium are a three-group and a six-group (2 coupled sets of three groups) isotropic
problem. The test set includes 24 infinite medium problems, 24 slabs, 9 one-energy group
cylinders, 14 spheres, and 4 infinite slab lattice cells.

TABLE II: Overview and Page Location for One-Energy Group Problem Identifiers

Number Problem Identifier Flux Page Number Scattering’
1 PUa- l-O-IN x 16 Isotropic
2 PUa-1-O-SL 16
3 PUa-H20(l)- 1-O-SL 17
4 PUa-H20(0.5)-l-O-SL 17
5 Pub- l-O-IN x 16
6 PUb-1-O-SL x 16
7 Pub-1 -o-cY x 16
8 Pub-1 -o-sP x 16
9 PUb-H20(l)-l-O-CY 17

10 PUb-H20( 10)-1-O-CY 17
11 Ua- l-O-IN x 18
12 Ua-1-O-SL x 18
13 Ua- 1-O-CY 18
14 Ua- 1-O-SP x 18
15 Ub- l-o-IN x 18
16 Ub-H20(l)-l-O-SP 19
17 Uc- l-o-IN x 18

22 UD20- 1-O-SL x 20
23 UD20-1-O-CY 20
24 UD20- 1-O-SP x 20



TABLE II (cont.)

roblem Idel :r Flux Paze 1Number I PI ntifie Wmber Scattering
25 / UD20-H20(1)-1-O-SL 20

I 26 I UD2O-H2O(1O)- 1-O-SL /, 20
27
9Q I

33 PUa-1-2-SL 22
34 PUb-1-l-SL 22
35 PUb- 1-2-SL 22
36 Ua- 1-1-CY 23
37 Ub-1-l-cY 23
38 UD20a- 1-l-IN 24
39 UD20a- 1-1-SP 24
40 UD20b- 1-l-IN 24
41 UD20b- 1-1-SP 24
42 UD20C- 1-l-IN 24
43 UD20C-1- 1-SP 24

TABLE III: Overview and Page Location for Two-Energy Group Problem Identifiers

Number Problem Identifier Flux Page Number Scattering
44 PU-2-O-IN x 27 Isotropic
45 PU-2-O-SL 27
46 PU-2-O-SP 27
47 u-2-o-IN x 28
48 U-2-O-SL 28
49 I U-2-O-SP 28

I 50 I UAL-2-O-IN 1X1 29 I I
51 UAL-2-O-SL 29
52 UAL-2-O-SP 29
53 URRa-2-O-IN x 30
54 URRa-2-O-SL x 30
55 URRa-2-O-SP 30
56 URRb-2-O-IN x 31
57 URRC-2-O-IN x 31
58 \ URRb-H20a(l)-2-O-SL 31
59 I URRb-H20a(51-2-O-SL I 31
60 URRb-H20a~I$-2-O-SL 31
61 URRc-H20a(IN)-2-O-SL 31
62 URRd-2-O-IN x 32
63 URRd-H20b(l)-2-O-ISLC 32



TABLE III (cont.)

:mIdentifier Flux Page Number Scattering

I 67 IT

(10)-2-O-ISLC 32
(’ 32

)msu-n~wc( 1O)-2-O-ISLC 32
I IJD20-2-O-lN x 33
! ——— -

!
. . , -- I

I 68 [ UD20-2-O-SL ?0 i
I I 3.I I

69 I UD20-2-O-SP 33 1

TABLE IV: Overview and Page Location for Three- and Six-Energy
Group Problem Identifiers

Number Problem Identifier Flux Page Number Scattering
74 URR-3-O-IN x 36 Isotropic
75 URR-6-O-IN x 38

Uses of the Criticality Verification Test Set

LA-135 11 provides all necessary problem definitions and published critical dimensions, ~ti,
and scalar neutron flux results to verify a criticality transport algorithm or code and associated
numerics such as random number generation and round-off errors. All material cross sections
provided are macroscopic, so the atom density used by the code should be unity. Not all of the
analytic solutions from the references are used, however, because the number of problems in the
test set becomes too large. LA-135 11 contains the complete list of 45 references.

The verification test set problems can be used in several ways. The user can choose to
simply calculate the problems and compare forward and adjoint hff and neutron flux results with
the benchmark solutions. However, there are several more verification processes that could be
included: For example, in Monte Carlo codes, two forms of cross-section representation can be
examined: multi-group and pointwise representation of multi-group data. In multi-group
problems, an alternative veriilcation procedure is to switch the energy groups when up-scattering
is allowed in the code. To examine the alpha eigenvalue or time-dependent neutron decay or
growth, the capture and total cross sections can be modified by ~/?J to represent subcritical and

supercritical systems.

Another part of code verification is testing different representations of the same geometry
(e.g., reflecting boundaries and lattices). An example is an infinite one-dimensional slab (finite in
one dimension and infinite in the other two dimensions), which could be modeled as a three-
dimensional cube with four reflective boundaries. Other geometry options can be tested by
constructing several smaller cubes inside of the three-dimensional representation of a one-
dimensional critical slab. The infinite medium problem can be represented by using large



geometric boundaries, reflecting boundaries, or infinite lattices of finite shapes. Infinite medium
problems can be used to verify constant scalar and angular flux in each energy group as well as
scalar flux ratios for more than one energy group. Three-dimensional geometric representations

of optically small objects can also be tested for k ~ in infinite medium problems.’* Purely

absorbing one-group infinite medium problems can provide faster code verification since

scattering does not alter the infinite medium km.

Different calculation capabilities of a code should be tested using these problems. For
Monte Carlo codes, different variance reduction methods such as analog or implicit capture and
geometric splitting or Russian roulette can be verified. Cycle-to-cycle correlations in the
estimated ~ff standard deviation must be taken into account to form valid ~ff confidence
intervals. Statistically independent runs can be made and analyzed if necessary. The magnitude
of any negative bias in ~ff, which is a function of the number of neutron histories per fission
generation, also needs to be considered and made smaller than 0.00001.12

Deterministic codes can assess convergence characteristics and correctness of & and the
flux as a function of space and angle representation. Various characteristics of discrete ordinates
numerics can also be checked such as the effects of eigenvalue search algorithms, angular
redistribution terms in curvilinear geometries, ray effects, and various alternative geometric
descriptions.

One-Group Example for Isotropic Cross Sections for U-235

TABLE V: One-Group Macroscopic Cross Sections (cm-l) for U-235 (c = 1.309

Material 1) Zf xc z, 2, c

U-235 (a) 2.70 0.065280 0.013056 0.248064 0.32640 1.30

Using the cross sections for U-235 (a) in Table V, km = 2.25 (problem 11) with a constant

angular and scalar flux everywhere. The critical dimension, rC,and spatial flux ratios are given in
Tables VI and VII for U-235 (a). The references are the same for both tables.

TABLE VI: Critical Dimensions, rC,for One-Group Bare U-235 (c = 1.30)

Problem Identifier Geometry r. (mfp) rC(cm) Reference.
12 ‘Ua-l-O-SL Slab 0.93772556 2.872934 13
13 U’a-l-O-CY Cylinder 1.72500292 5.284935 14,15
14 Ua-1-0-SP Sphere 2.4248249802 7.428998 13

TABLE VII: Normalized Scalar Fluxes for One-Group Bare U-235 (c= 1.30)

Problem Identifier Geometry r/rC= 0.25 r/rC= 0.5 rJrC= 0.75 r/rC= 1.0
12 Ua-1-O-SL Slab 0.9669506 0.8686259 0.7055218 0.4461912
14 Ua- 1-O-SP Sphere 0.93244907 0.74553332 0.48095413 0.17177706



Summary

We have described a 75 problem verification test set with precise results for the critical
dimensions, ~fi eigenvalue, and some eigenfunction (scalar neutronflux) results for infinite, slab,
cylindrical, and spherical geometries for one- and two-energy group, multiple-media, and both
isotropic and linearly anisotropic scattering. All test set problems specifications are from peer
reviewed journals, and have, in many cases, been solved numerically by more than one analytic
method. These calculated values for &ffand the scalar neutron flux are beiieved to be accurate to
at least five decimal places. Criticality codes can be verified using these analytic benchmark test
problems.
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