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Abstract 

Plasma reactors can be operated as a particulate trap or as a NO, converter. The soluble organic fraction 
(SOF) of the trapped particulates can be utilized for the oxidation of NO to NO2. The NO2 can then be 
used to non-thermally oxidize the carbon fraction of the particulates. This paper examines the energy 
density required for oxidation of the SOF hydrocarbons and the fate of NO;! during the oxidation of the 
particulate carbon. The energy density required for complete oxidation of the SOF hydrocarbons is 
shown to be unacceptably large. The reaction of NO2 with carbon is shown to lead mainly to 
backconversion of NO2 to NO. These results suggest that the use of a catalyst in combination with the 
plasma will be required to efficiently reduce the NO, and oxidize the SOF hydrocarbons. 

Introduction 

Plasma reactors can be operated as a particulate trap [ref. l-31 or as a NO, converter [ref. 4-71. 

Particulate trapping in a plasma reactor can be accomplished by electrostatic precipitation. Corona-type 
reactors operating as electrostatic precipitators for diesel soot are reported in refs. [l-2]. A ferroelectric 
pellet bed reactor, also operating as an electrostatic precipitator of diesel soot, is reported in ref. [3]. 
Plasma-based traps need periodic regeneration just like any other particulate trap. Regeneration by the 
plasma can be achieved in a thermal mode or a non-thermal mode. 

The plasma reactor can be operated occasionally in the arc discharge mode to thermally oxidize the 
particulates. In ref. [2], this mode is referred to as the self-cleaning phase of the electrostatic muffler. 
Thermal oxidation of the particulates precipitated on the electrode surface is achieved in very localized 
regions of high temperature near the tip of the arc microdischarges. 

The plasma reactor can also be operated in a non-thermal corona discharge mode to provide continuous 
oxidation of the particulates. The non-thermal oxidation is presumably accomplished by the 0 and OH 
radicals resulting from electron-impact dissociation of oxygen and water vapor molecules, or by 
negative hydronium cluster ions, [(&O&02-], resulting from electron attachment. Ref. [ 11 observed a 
self-cleaning effect in the corona mode that correlates with the production of CO and CO2. Ref. [8] 
reports on the oxidation of soot in a dielectric-barrier discharge. It was conjectured that OH radicals 
oxidized the soot; the soot reduction did not occur in the presence of large amounts of CO, presumably 
because the OH radicals were consumed by CO. 



Diesel particulates are composed mainly of the carbon fraction and the soluble organic fraction (SOF). 
The SOF could possibly be utilized for the oxidation of NO to NO2 in a plasma. As a NO, converter, the 
plasma requires hydrocarbons to achieve high oxidation efficiency with low electrical energy 
consumption. The NO2 can then be used to oxidize the carbon fraction, similar to that in a Continuously 
Regenerated Trap (CRT) [ref. 121. The use of NO2 for the oxidation of trapped particulates in CRT 
devices is fairly well established. In CRT, a precious metal catalyst is used to oxidize NO to NO2 
upstream of a particulate filter. The CRT method requires low sulfur fuel because the catalytic oxidation 
of NO to NO2 also leads to the oxidation of SO2 to SOa. The use of a plasma for the oxidation of NO to 
NO2 can make the process more tolerant to the sulfur content of the fuel. The fate of NO2 during the 
oxidation of carbon is important if one contemplates the use of plasma aftertreatment for the 
simultaneous removal of NO, and particulates. 

This paper examines the energy density required for oxidation of the SOF hydrocarbons and the fate of 
NO;! during the oxidation of the particulate carbon. 

Results 

Both chemical kinetics calculations and experimental measurements are presented in this section. We 
used propene as the hydrocarbon surrogate in the calculations because the chemical reaction database for 
propene is more established and facilitates comparison of the modeling to experiments. The plasma 
reactor used in the experiments is a pulsed corona discharge reactor consisting of a metal wire inside a 
metal cylinder. The plasma chemistry is not peculiar to this type of plasma processor; all electrical 
discharge plasma reactors accomplish essentially the same gas-phase plasma chemistry under the same 
gas conditions [ref. g-101. The important control parameter in the plasma reactor is the electrical energy 
density delivered to the plasma [ref. 9-l 11. 

Figure 1 shows the calculated concentration of aldehydes formed during plasma processing of 100 ppm 
NO in a simulated diesel exhaust at 200°C with a Cl/NO, of 6. Formaldehyde is the major product of the 
partial oxidation of propene in the plasma. Note that the electrical energy density required to convert NO 
to NO2 is much less than that required to fully oxidize the aldehydes. Whereas it is possible to convert 
100 ppm of NO to NO2 with less than 10 J/L, conversion of the resulting 50 ppm of formaldehyde to 
Hz0 and CO, requires more than 150 J/L. This result shows that the electrical power required by the 
plasma to completely oxidize the hydrocarbons is unacceptably large. 

Some of the minor products shown in Figure 1 include CH3CHCO and C2H3CHO. Species CH3CHCO is 
methyl ketene and species C2HsCHO is acrolien. Acrolien is experimentally observed as an intermediate 
product in the low temperature oxidation of propene [ref. 131. The addition of 0 atom to propene to 
form a biradical and its decomposition forms methyl ketene. The rate of this process is based on the 
current understanding of the 0 + propene reaction as reviewed in Ref. [ 141. Reactions to consume 
acrolien and methyl ketene by radical attack are included in the detailed chemical kinetic mechanism. 

Figure 2 shows the calculated concentration of other species formed during plasma processing of 100 
ppm NO in a simulated diesel exhaust at 200°C with a Ct/NO, of 6. Large amounts of CO are formed 
during the plasma oxidation of hydrocarbons. 
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Figure 1. Chemical kinetics calculation of the concentration of aldehydes formed during plasma 
processing of 100 ppm NO in a simulated diesel exhaust with 10% 02, 10% CO2,5% H20, balance N2. 
Propene additive, Cl/NO, = 6. Gas temperature = 200°C. 

Figure 2. Chemical kinetics calculation of the concentration of various species during plasma processing 
of 100 ppm NO in a simulated diesel exhaust with 10% 02, 10% CO2,5% H20, balance N2. Propene 
additive, Ct/N9, = 6. Gas temperature = 200°C. 



Figure 3 shows the comparison between the model predictions and experimental measurements of the 
concentration of formaldehyde and CO formed during plasma processing of 500 ppm NO in a gas 
mixture with 10% 02, balance N2, at 100°C with a Cl/NO, of 6. This level of NO is typical of that in 
heavy-duty diesel engine exhaust. There is fairly good agreement between the modeling and the 
experiment. With a Cl/NO, of 6, about 25 J/L is required to get maximum oxidation of NO to NOz. At 
this energy density, about 150 ppm of formaldehyde has already been formed. The amount of aldehydes 
increases further as the energy density is increased. Oxidation of these aldehydes will require very large 
electrical energy density input to the plasma. 

Energy Density (J/L) 

Figure 3. Experimental measurements (points) and modeling predictions (lines) of the concentration of 
formaldehyde and CO formed during plasma processing of 500 ppm NO in a gas mixture with 10% 02, 
balance N2. Propene additive, Cl/NO, = 6. Gas temperature = 100°C. 

The oxidation of the carbon by NO2 can lead to reduction of NO, or backconversion of NO2 to NO. The 
following experiments measure the NO, reduction efficiency and the amount of backconversion of NO;! 
to NO. 

Figure 4 shows the fate of NO;! during its reaction with carbon pellets at 250°C in a gas stream 
containing only N2. There is about 20% NO, reduction. The NO, remaining after the reaction is 
composed mostly of NO. 

Figure 5 shows the same type of experiment conducted in a gas stream containing 10% 02, balance N2. 
The oxygen seems to have promoted the NO, reduction efficiency to about 30%. Again the NO, 
remaining after the reaction is composed mostly of NO. 
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Figure 4. Oxidation of carbon by NO2 in N2. Gas temperature = 250°C. 
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Figure 5. Oxidation of carbon by NO2 in 10% 02, balance Nz. Gas temperature = 250°C. 
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Figure 6 shows the result of another experiment to simulate the effect of the volatile organic fraction of 
particulates on the NO2 reduction. The gas stream in this experiment contains 10% 02 and 1500 ppm Cl 
kerosene. The NO, reduction efficiency is about 35%, with the remaining NO, being composed mostly 
of NO. 
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Figure 6. Oxidation of carbon by NO2 in 10% 02 + 1500 ppm Ct kerosene. Gas temperature = 200°C. 

The results in Figures 4-6 show that even though the NO2 could be utilized for the oxidation of the 
carbon fraction of the particulates, the reaction with the carbon fraction cannot provide a high level of 
NOx reduction. Another means will have to be provided to achieve a high NO, reduction efficiency. If 
one is going to use plasma-assisted SCR for the NO, reduction, the regeneration of the particulate trap 
will have to be done without the NO2. A way to do this would be to operate the plasma reactor 
occasionally in the arc mode to thermally oxidize the carbon fraction of the particulates. Ref. [2] 
describes an example of the effectiveness of this technique and how it can be implemented. 

Conclusions 

The electrical energy density required for complete oxidation of hydrocarbons in a plasma is much 
greater than that required to achieve maximum NO, conversion. Aldehydes and CO will be formed. The 
energy density required to oxidize the aldehydes will be unacceptably large even for light-duty 
applications. A catalyst in combination with the plasma will be required to take care of the aldehydes 
and CO. 

The NO2 from the plasma can be used to non-thermally oxidize the carbon fraction of trapped 
particulates. However, the reaction of NO2 with carbon cannot provide a high level of NO, reduction 
and leads mostly to the backconversion of NO2 to NO. If one is going to use plasma-assisted SCR for 
the NO, reduction, the regeneration of the particulate trap will have to be done without the NOz. A way 
to do this would be to operate the plasma reactor occasionally in the arc mode to thermally oxidize the 
carbon fraction of the particulates. 
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