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A Abstract 

The objectives of this research remain as stated in our proposal of November 1997. We report 

on progress in the quantification of uncertainty and prediction, with applications to flow in 

porous media and to shock wave physics. 
The main strength of this work is an innovative theory for the quantification of uncertainty 

based on models for solution errors in numerical simulations. We also emphasize a deep 

connection to application communities, including those in DOE laboratories. 

. . - ~  ... . . 

.. . - .. 
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B Uncertainty Quantification 

DOE laboratory collaborators for this work include Merri Wood, Peter Adams, and David 

Sharp. 

The goal includes, but goes beyond error bars for simulations. The goal is to assess the 

entire scientific environment: data, theory, 'equations, physics parameters, and simulation, 

and to arrive at predictions for possible outcomes, with an associated likelihood based on 

scientific reasoning [17, 181. Included in this objective are problems such as climate forecast- 

ing, for which the deterministic answer many not be unique. That is, the answer many be a 

probability distribution of possible outcomes. 

This pp~*, %?hi& y ; ~  &\&ped within -this -pr~jgct- 2nd -y:2~ &cussed i~ n m i r i n i i c  r-- * ---- 
progress reports, has now been applied to problems within the LANL DP programs, using 

separate funding [l]. 

We consider the context of prediction of petroleum production from an oil reservoir. This 

problem is well known not to have well defined deterministic predictions, due to incomplete 

information. We also consider uncertainty quantification for shock physics problems. Uncer- 

tainty quantification complements and completes the code validation process, as it pertains 

to the entire science package associated with the code, including physics models, data and 

parameters as well as numerical and physics approximations in the solution. It offers not just 

error bars for simulation results, but probabilistic confidence intervals in cases that deter- 

ministic bounds are not feasible in view of insufficient information. The general framework, 
outlined below, applies to both situations as well as to many others. 

I 
There are three components to our approach to uncertainty quantification. 

a Scale up to achieve rapid simulation of many coarsely gridded problems 

0 Error analysis to estimate solution error 

0 Bayesian analysis to compare simulation to data and to arrive at a prediction with 
quantified uncertainty. 

.) 
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C Scaleup Models - -  and Methods - 

C. 1 

DOE laboratory collaborators for this work include: David Sharp; Shuling Hou, and Tim 

Walls t rom . 

Scaleup for Petroleum Reservoirs 
~- 

Our main results are in the stochastic-analysis relating up scaled, or averaged, flow to 

the statistically-described small length-scale fluctuations in the geology. For these nonlinear 

flow problems, a renormalization group approach to the fractional flow functions and relative 

permeabilities is required. We follow the scaleup approach of our collaborators [19]. The 

stochastic aspects of scaleup were studied in Ref. [15]. Scaleup modifies the hyperbolic 

aspects of the  probvXEturat ion-dependent  wave speeds). Depending on the degree of 

heterogeneity of the reservoir, the-upscaled equations are either deterministic, but different 

from the primitive ones, or they are random, but with a decreased degree of randomness 

relative to the primitive equations. 

C.2 Averaged Equations for Multiphase Flow 

Our DOE collaborators for this task include: David Sharp, Baolian Cheng, and John Grove. 

Chaotic fluid mixing is a major challenge to computational science. We study turbulent 
fluid mixing layers that form in the late stages of acceleration-driven hydrodynamic instabil- 

ities, such as the Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) interface instabilities. 

These instabilities play a central role in laser implosion of inertial confinement fusion targets. 
The statistical properties of these flows are of primary interest, since the mixing layers are 
chaotic, with sensitive dependence on initial data. 

Our work has the following elements: 

0 

0 

0 

new averaged equations 

models for the motion of the edges of the mixing zone 

DNS simulations, in agreement with experiment, for validation of the averaged equa- 
tions 

We have developed a model [16, 21 of averaged multiphase flow equations which avoids 
well known pitfalls for multiphase equations. These equations are well-posed mathematically, 
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free from physical assumptions concerning underdetermined thermodynamical equilibration 

processes associated with chunk mixed material thermodynamics. The equations have an 

analytic solution, in closed form, for ~ one-dimensional incompressible flow. 

~ - - _  - 

We developed a zero parameter prediction model, in full agreement with all experimental 
data and theoretical constraints, for the motion of the edges of the mixing zone. The model 

is a buoyancy drag ODE, and is the first these ODES to have complete agreement with 

data. Edge motion models are the main input into our multiphase flow equations [4]. The 

experimental data contains four independent quantities, namely the growth rate constants 

for the light and heavy fluid edges (bubbles and spikes) for both RT and RM instabilities. An 

ODE based on buoyancy and drag has one undetermined parameter, a drag coefficient, for 

each edge of the mixing zone ( i e .  a bubble drag coefficient and a spike drag coefficient). The 
drag coefficient (with its density or Atwood number dependence) is determined from the RT 

solution of the edge motion. In [5], we give a theoretical calculation of the RT bubble mixing 
rate, in agreement with experimenal data, through a Renormalization Group bubble merger 

model. This calculation determines the bubble drag coefficient in the ODE. A principle of 

nearly constant Center of Mass (COM) for the RT mixing process establishes a link between 

the RT bubble and spike growth rates [3], thereby giving the RT spike mixing rate and the 

spike drag coefficient. With the drag coefficients thus parameterized, the ODE is sufficient 
to determine the RM mixing zone growth constants, in agreement with experiment. The 

buoyancy drag ODE is solved in closed form for Rayleigh-Taylor and Richtmyer-Meshkov 

mixing [SI. In the latter case, dependence on initial amipltude is explicit in the leading order 

-~ - ~ 

8 asymptotics of the solution, 
We study the microphysics through direct numerical simulation (DNS). These simula- 

tions will allow validation of the multiphase flow models, such as the one described above. 
We have a definitive success in DNS simulations of acceleration driven fluid instabilities in 

agreement with experiment. These simulations used our Front Tracking code FronTier. We 

also conducted similar simulations using an untracked level set code, and duplicated the re- 
sults of other groups who found a mixing rate for late tim’e 3D RT simulations below the 
range of experimental uncertainty [2,9]. Through this comparison of algorithms 191, we have 
identified numerical dissipation of interfacial vorticity and density differences (viscosity and 

mass diffusion) as the principal differences between these algorithms and the presumed cause 

of the low growth rates. 
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We have completed an axi-symmetric capability for FkonTier. - Promising _ _ _ _  results for ax- 
isymmetric simulations have been obtained [ll, lo]. These studies will be the basis of a 
continued study of chaotic mixing in a spherical geometry. 

D Error Models for Scale Up and for Numerical Sim- 
ulation 

D.l  Error Analysis for Oil Reservoir Simulation 

Our DOE collaborators for this task include: David Sharp, Shuling Hou, and Tim Wallstrom. 

We developed p r o b a b i l i s ~ i ~ Q r m o d s ~ Q p ~ e d i c t  the- accuracy of scaled up solutions of 
flow in petroleum reservoirs [13, 12, 14l.-The basic method is a nonparametric error model 
defined by a simulation study afnmmrkbn h m d e l i e g  errors associated with the use of a 
coarse, or under resolved grid. The error 

is the difference between a fine (regarded as exact) and coarse grid solution for a stochastically 

determined realization, indexed by j. Let ii? = (l/N) ej  be the mean error. We assume that 

the oil to water production ratio (the oil cut) at the producing well is the primary production 
observable; the well pressures are also possible observables used in history matching. Thus 

the e j ,  fj and c, are all oil to water production fractions, as a function of time t. The sample 
error covariance 

N 1 
cS(t1,t2) = C ( e j ( t l )  - ~j(tl))(ej(tz) - ~(t2) )  

j=l 

defines a Gaussian measure on observable outcomes of the simulation. The purpose of the 
solution error model is to define a meaningful measure of the accuracy to be used in the fit 

to data in a search for possible correct geologies. 
A data based study of solution errors must include a more accurate solution as well as 

the solution of primary interest. For this reason, such studies will be expensive, and cannot 
be conducted routinely in realistic situations. Thus we assume that the data used to define 

the error model is itself limited. The statistical consequences of this fact were explored. First 
a projection onto a finite dimensional space reduces the complexity of the error model to a 

level consistent with the data. The choice of this dimension and the advantage of smoothing 
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the data were investigated. Moreover, the covariance used to define the Gaussian error model 

is itself uncertain and the statistics of this choice was explored, through appeal to a suitable 
Wishart distribution of possible covariance and precision matrices. 

~ - .. - _. 

Comparison results to maximum likelihood and simpler parametric error models were 
obtained. 

D.2 Simulation Error Analysis for Shock Physics 

Our DOE collaborators for this task include: David Sharp, John Grove, Karen Pao, Barbara 

DeVolder, and Tim Wallstrom. 

We studied an ensemble of one diemsnional shock wave interaction problems. The en- 

semble was generated from a base case interaction to allow &lo% variation in selected input 

~ parameters +I7- In this way we investigated a stochastic version of the Riemann problem. 

We believe that the stochastic Riemann problem and its higher dimensional analogues, the 

stochastic shock polars, will be fundamental in the error analysis for general problems in 

shock physics, just as the deterministic version of the Riemann problem is fundamental for 

~ 

simulation and analysis of (determinsitic) shock wave physics. 

Our main conclusion is to identify various functionals as satisfying approximate Gaussian 
statistics. These solution functionals include experimentally measurable quantities, such as 

wave location and arrival times and local space time averages of solution variables. Remark- 

ably, the averaging region required for an approximate Gaussian behavior of the statistics 

was not very large; a few mesh bolcks sufficed. In contrast, purely local quantities, when eval- 
c uated within a propagating solution wave, displayed poor statistical properties, a reflection 
no doubt of the lack of convergence in the L,  norm for numerical approximations. 

E Stochastic Prediction 

E.l Prediction for Reservoir Flow 

Our DOE collaborators for this task include: David Sharp, Shuling Hou, and Tim Wallstrom. 
We take one fine grid solution f jo(s) ,  as data, for some time interval 0 5 s 5 so, defined 

as the past. With this knowledge, but without knowing the value of j o  or the geology it 

defines, we predict the future, fjo(s), for so 5 s 5 sl. So we consider all possible solutions in 

the ensemble, the f’ or more realistically the affordable cj.  We demand agreement (within a 
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tolerance) with past data and hope foragreemeat in the future. . _. 

Returning to the simulation study based on Darcy’s law in a fully 2D reservoir cross 
section, and with the the coarse grid upscaled solutions cj (s )  only available for a prediction 

study, we used a Bayesian approach to define a revised probability in the ensemble of reser- 
voirs, $.e. the index space of j’s .  The original probability €or the reservoirs is called the prior 

distribution. The posterior distribution is obtained from it by multiplication by a likelihood 

which reflects the likelihood of a mis-match or solution error in comparing the trial solution 

C j ( S )  to the data fj,(S). 

We found an ability to improve on the prior distribution predictions of oil production 

with a reduction of errors by 30%, Considerable attention was paid to the development 

of a general methodology, which can be used for other prediction problems. One of our 
main results was the determination-d~&m-mtmvals-f~rediction. We determined 

the 5%, 95% confidence intervals for prediction of future oil production. These intervals are 

dependent on the reservoir selected as exact, and are thus a random variable. Mean values of 

the upper and lower limits as a per cent of the prediction were determined. These limits were 

determined for the finely gridded simulations (the “exact” numerics and modeling) and for 

different levels of upscaling. We found surprisingly small degradation of prediction precision 
with upscaling from a fine 100 x 100 grid to upscaled 20 x 20 or 10 x 10 grids, and somewhat 

larger loss of precision for a very aggressive upscaling to a 5 x 5 grid. We view this study 
as the most definitive methodology for assessemnt of upscaling which we are aware of. See 

[13, 12, 141. 

- --I- _-  

We also considered a simplified, analytically solvable, reservoir model. In this context, 
a large number of solutions were possible, and the statistics could be fully explored. Re- 
markably, we found a Markov property for the solution fj(S). Prediction of the future with 

knowledge of the past was no more accurate than prediction with knowledge of the present 
only. A manuscript is in preparation [7]. 

33.2 Prediction for Shock Physics Problems 

Our DOE collaborators for this task include: David Sharp, Peter Adams, Merri Wood, 

Charles Nakleh,Karen Pao, Barbara DeVolder, and John Grove. 

On the basis of our analysis of solution errors [8], we determined that the spread in 

solution wave width due to solution error is smaller than that due to the ensemble variation, 
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assuming a &lo% ~ variation _ _  in key input parameters in - _ _  the defining ensemble. This fact will 
enable useful prediction and Bayesian analysis on the basis of observations. The prediction 

step will be taken in the future. 
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