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Abstract

Understanding of saturation behavior is important to assess the performance of a high-

gain free-eIectron laser (FEL). In this paper we study the saturation mechanism using a

quasilinear approximation to the coupled Maxwell-VIasov equations. It is found that the

quasiIinear theory correctly describes the evolution of the radiation field from the smaIl

signal regime to reaching saturation.
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1. Introduction

The electron beam traveling through the long undulator is unstable with respect to the

longitudinal bunching at the frequency of the spontaneous undulator radiation in the

forward direction. For small bunching the system is linear, and the bunching grows

exponentially along the unduIator. But when the value of bunching becomes not so small,

the exponential growth stops. This phenomenon is referred to as “saturation.” The reason

for saturation is the obvious fact that the vake of bunching cannot exceed 1, as the

distribution function of particles is positive. In other words, the amplitude of the AC

component of the electron current cannot exceed its DC component more than twice.

From the point of view of the linear smaH-signaI theory, the growth of a particular

harmonic of the distribution function is limited by the nonlinear interaction with other

harmonics. Sometimes the interaction with the zero harmonics (the average) dominates.

The beam energy spread increases and therefore the bunching growth rate decreases. This

The submitted manuscript has been created
by the University of Chicago as Operator of

‘ Corresponding au[hor, email: \inokurov@ inp.nsk.su
Argonne National Laboratory (“Argonne”)
under Contract No. W-31 -109-ENG-38 with
the U.S. Department of Energy. The U.S.
Government retains for itself, aid others act-
ing on its behalf, a paid-up, nonexclusive,
irrevocable worldwide license in said article
to reproduce, prepare derivative works, dis-
tribute copies to the public, and perform pub-
licly and display publicly, by or on behalf of
the Government.



DISCLAIMER

This report was prepared as an account of work sponsored
by an agencytif the United States Government. Neither
the United States Government nor any agency thereof, nor
any of their employees, make any warranty, express or
implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute
or imply its endorsement, recommendation, or favoring by
the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States
Government or any agency thereof.



DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.



mechanism is well known in plasma physics as the quasilinear relaxation (see for

example [l]).

In this paper we derive the quasilinear equations for 1-D free-electron laser (FEL)

theory and solve them numerically. It is shown that for large enough initial energy spread

the maximum bunching is much less than one, and so the quasilinear approximation is

applicable until the saturation length.

2. Derivation of quasilinear equations

The FEL equations may be obtained from the Maxwell equations and continuity

equation in the phase space (Vlasov equation). To simplify the consideration we assume

the electromagnetic wave to be quasimonochromatic, i.e., having a narrow spectrum near

frequency Q. It is exactly true if we neglect radiation at higher harmonics of the

fundamental frequency (for weak undulator field, for example). Using the standard

approach [2] one can easily write down the following equations for the distribution

Here ~ = 2p kw z is the dimensionless longitudinal coordinate, kw is the undulator

wavenumber, p is the Pierce parameter, q = 6y/(yp) is the relative deviation of particle

Jenergy from the synchronous one y =(1+ K2)yll = (1+ K*) ~, K is the undulator
w

deflection parameter, and ~ = o [~(1+~)-t]istheslowtimevariable.

In this work we intend to show the applicability of the quasilinear approximation near

the saturation point. For further simplification we restrict our consideration to the case of

a monochromatic electromagnetic field. It is true for the case of amplification of the

monochromatic seed signal at frequency o. Then the field amplitude A does not depend

on time y, and the distribution function ~ is assumed to be periodic in ~



f(vfjn$<)= ~Z(?LO=”’and normalized as ~fi(q,~)dq=l. This msumptionalbved
n.-

us to write down the chain of equations for the harmonics of the distribution function:

(2)

Truncation of Eq.(2) for n22 gives the closed system of equations that may be solved

numerically:

(3)

3. Numerical solution

The numerical solution is based on the usage of the explicit centered difference

scheme. Some results for centered Gaussian initial distribution with standard deviation 1

are presented in Figs. 1 and 2. Figure 1 shows the dependence of the field amplitude on

the longitudinal coordinate. Note that the efficiency is –(q)= lA~. One can see that at

some value of < the exponential growth stops and the field amplitude reaches its first

maximum. The cause of this becomes clear after considering the behavior of the average

distribution function at different ~ (Fig. 2). The increase of the first harmonic in our

approximation leads to the growth of the energy spread, which causes the “saturation.”

Figure 3 shows the square of bunching f~dq 2. It may be seen that its value remains

significantly less than one until the first maximum of the field amplitude. This fact

confirms the statement that the quasilinear mechanism of saturation dominates at the first

stage.
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4. Values of higher harmonics

To verify the self-consistency of the proposed quasilinear approximation we need to

estimate the values of higher current

harmonic of the distribution function

harmonics. The approximate solution for the second

may be found from Eq. (2):

. (4)

Then the “improved” quasilinear system can be written as

(3’)

The first term on the right side of the first equation in Eq.(3’) is proportional to A, but the

second term is proportional to A3. Therefore the contribution of the last term to the value

offlis small at least at the first stage of saturation (before the first field maximum). The

second harmonic bunching is plotted in Fig. 3.

5. Conclusion

The quasilinear equations describe the saturation phenomena consistently. The calculated

normalized efficiencies –(q) for different values of normalized relative energy spread

CT= Jr)q2 are shown in Fig. 4. Further investigation on the applicability region of these

equations and its comparisons with other models (for example, [3]) is planned.
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Sciences, under Contract No. W-3 1-109-ENG-38.
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Modification of the distribution function at different stages of the “saturation”

(a) initial distribution (~= 0): (b) distribution at half of the distance before the
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first maximum (~= 10); (c) distribution at the first maximum of the field amplitude (~ =

15.3).



Figure 3. (1) square module of bunching ~fdq 2 and (2) second harmonic ~f2dq 2

versus distance.
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Figure 4. Dependence of the maximum normalized efficiency (~12)M on the normalized

relative energy spread (solid line). Dashed line was obtained using fitting formula [4].
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