AUR- 00=3065

Approved for public release;
distribution is unlimited.

Title: | Effect of Data Truncation in an Implementation of Pixel
Clustering on a Custom Computing Machine

Author(s): | Miriam Leeser, James Theiler, Michael Estlick, Natasha Kitaryeva,
John J. Szymanski

Submitted to: | SPIE Photonics East Conference
November 5-8, 2000
Boston, MA

Los Alamos
NATIONAL LABORATORY

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S.
Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government
retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S.
Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the
auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher’s right to
publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Form 836 (10/96)

g e o=y w——y—— gy ot ety — e vt e A Tt A, A S g,y

DISCLAIMER

This report was prepared as an account of work sponsored
by an agency of the United States Government. Neither
the United States Government nor any agency thereof, nor
any of their employees, make any warranty, express or
implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute
or imply its endorsement, recommendation, or favoring by
the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States

Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original

document.

Effect of Data Truncation in an Implementation of Pixel
Clustering on a Custom Computing Machine

Miriam Leeser?, James Theiler?, Michael Estlick?, Natasha Kitaryeva® and John J. Szymanski®

%Department of Electrical and Computer Engineering
Northeastern University, Boston, MA

RECEIVED
bSpace and Remote Sensing Sciences Group

Los Alamos National Laboratory, Los Alamos, NM DEC 13 zmm

OSTI
ABSTRACT

We investigate the effect of truncating the precision of hyperspectral image data for the purpose of more efficiently
segmenting the image using a variant of k-means clustering. We describe the implementation of the algorithm
on field-programmable gate array (FPGA) hardware. Truncating the data to only a few bits per pixel in each
spectral channel permits a more compact hardware design, enabling greater parallelism, and ultimately a more rapid
execution. It also enables the storage of larger images in the onboard memory. In exchange for faster clustering,
however, one trades off the quality of the produced segmentation. We find, however, that the clustering algorithm
can tolerate considerable data truncation with little degradation in cluster quality. This robustness to truncated
data can be extended by computing the cluster centers to a few more bits of precision than the data. Since there
are so many more pixels than centers, the more aggressive data truncation leads to significant gains in the number
of pixels that can be stored in memory and processed in hardware concurrently.

Keywords: hyperspectral, k-means, image segmentation, image processing, field-programmable gate array (FPGA)

1. INTRODUCTION

There is an increase in multispectral and hyperspectral image data available from a variety of sources, including
commercial and government satellites, as well as airborne and ground-based sensors. This is due to an increase in
spatial resolution of satellite imagery as well as an increase in the number of spectral channels. Multispectral images
can have from a few to a few tens of channels per pixel, while hyperspectral data contains hundreds of spectral
channels per pixel. In this paper we apply an unsupervised clustering algorithm to AVIRIS data sets.! A single
AVIRIS image contains 614 x 512 pixels with 224 16-bit channels, or approximately 140 MB of data.

The image analyst’s challenge is to identify the important and useful features in the image without being over-
whelmed by the sheer volume of the data. One response to this challenge is provided by algorithms which segment
the image by clustering pixels into classes, based on the spectral similarity of each pixel to other members of the class.
As well as providing the analyst with a picture summarizing the spatial organization of the different spectral types,
these clustering algorithms also provide a very real compression of data. Each pixel in the image is represented by
a pointer to the spectral class associated with that pixel. For 8 classes, 3 bits per pixel suffice to completely specify
the image. The resulting image can be represented by 75K bytes — a compression factor of over three orders of
magnitude.

As well as reducing the data for quicklook views, clustering also provides an organization of the data that can be
useful for further downstream processing.? Several authors have shown that clustering the data beforehand increases
the performance of algorithms which attempt to “learn” features from a small number of examples.®* Schowengerdt®
suggests the use of image segmentation for change detection: a change in‘the segmentation is more likely to indicate
an actual change on the ground, since the segmentation is relatively robust to changes in sensor performance and
atmospheric conditions. It has also been demonstrated that the matched-filter detection of weak spectral signatures
in cluttered backgrounds can be enhanced by first clustering the background and then employing a separate matched

For further information, email: mel@ece.neu.edu

MRS S TR A AT

filter for each spectral class®; since the within-class variance is generally much smaller than the variance over the
whole image, the within-class signal-to-clutter ratios can be improved by treating individual clusters separately.

Although there are clear advantages to clustering high-dimensional data sets, workstation implementations of
clustering algorithms are notoriously slow. Most algorithms, such as k-means, are iterative and require many passes
through the data before convergence is achieved. Each iteration requires a computation of distance from every
data point to every cluster center, and each distance requires a calculation involving every spectral channel. This
type of computation lends itself to implementation in reconfigurable hardware, where the inherent parallelism of
the algorithm can easily be exploited. An FPGA (Field Programmable Gate Array) implementation also allows us
the flexibility to consider variants of the algorithm as well as of its implementation. FPGAs are particularly well
suited to this application because the amount of parallelism and processing element bitwidths can adapt to the task,
allowing the designer to take maximum advantage of the hardware at hand.

In general, implementing an algorithm in hardware involves a different set of design tradeoffs than implementing
the same algorithm in software. For example, a software implementation may attempt to employ intelligent branching
and extrapolations to avoid some computations or to reduce the number of iterations. But in hardware, our goals
are to simplify the underlying operations as much as possible in order to speed up the calculations and to be able
to provide more parallelism. A simpler operation translates to a smaller area datapath which in turn translates to
more versions of the datapath replicated on the chip. Ideally, a good design will employ both kinds of optimizations
with only the necessary computations performed, and those performed in a massively parallel circuit.

In a previous paper’ we investigated the use of alternative distance metrics (such as the Manhattan metric, the
Max metric, and a linear combination of the two) which were faster, cheaper, and used less real estate than the
Euclidean distance. These metrics did not produce as high quality clusters, but could be implemented with less chip
area and narrower datapaths.

In this paper we investigate a more direct form of bitwidth reduction. In order to process an AVIRIS data set
with reconfigurable hardware, methods to reduce the amount of data to be handled are required. We conducted a
series of experiments to measure the effects of truncating the number of data bits used on the results of the algorithm.
The hypothesis being tested is that the result of clustering AVIRIS data with the most significant bits from each
channel of each pixel will not differ very much from the results of clustering with the complete data set.

To test this hypothesis, two sets of experiments were devised. In the first set, data-independent experiments
were conducted to determine the effect on total within-class variance of truncating the precision of the input bits on
the clustering of high dimensional data sets. The second set of experiments tested the same hypothesis using some
AVIRIS data cubes.

In the next section we present the k-means algorithm. Next we present results from the data-independent
experiments and from the data-dependent experiments using AVIRIS data cubes. In Section 3 we present our
current implementation of the k-means algorithm on the Annapolis Wildstar board.

2. K-MEANS: THE ALGORITHM

Given a set of N pixels, each composed of D spectral channels, and represented as a point in D-dimensional Euclidean
space (that is, x, € RP, with n = 1,..., N); we partition the pixels into K clusters with the property that pixels
in the same ‘cluster are spectrally similar. Each cluster is associated with a “prototype” or “center” value which is
representative of (and close to) the pixels in that class. One measure of the quality of a partition is the within-class
variance; this is the sum of squared (Euclidean) distances from each pixel to that pixel’s cluster center.

For a fixed partition, the optimal (in this sense of minimum within-class variance) location for each center is the
mean of all pixels in each class. And for a fixed choice of centers, the optimal partition assigns each pixel to the cluster
whose center is closest. The k-means clustering algorithms (there are several variants) provide an iterative scheme
that operates over a fixed number (K) of clusters, while attempting to simultaneously optimize center locations and
pixels assignments.

From an initial sampling, the algorithm loops over all the data points, and reassigns each to the cluster whose
center it is closest to. After the pass through the data, the cluster centers are recomputed. Note that other
variants of k-means update the cluster centers each time a point is reassigned to a new cluster. This leads to faster
convergence, but is more difficult to implement in hardware. Each iteration reduces the total within-class variance
for the clustering, so it is guaranteed that after enough iterations, the algorithm will converge, and further passes

B r s S RAE &7 7 TN LIS SIS P4 AR A QY i RS A v AT 3 MR U R 0 o) AT 2 32 P g e A OIS S BRI) NS S N RS TV

will not reassign points. It bears remarking that this is a local minimum. In addition, the final convergence can be
very sensitive to the initialization of the algorithm.

Points are assigned to the cluster centers to which they are closest; for the minimum-variance criterion, “closest”
is defined in terms of the Euclidean distance. Consider a point x and cluster center ¢ where ¢ indexes the spectral
components of each. The Euclidean distance is defined as:

[l — cf|? = Z |z: — el (1)

As described in an earlier paper,” one can instead employ the Manhattan distance, defined as
llx—ell = la: —ail 2

to assign cluster centers. In simulations with AVIRIS data, we found that clusters produced using this distance metric
were slightly less compact than the clusters produced by the Euclidean metric. The total within-class variance, for
the AVIRIS data cubes we measured, increased from 2% to slightly over 30% for Manhattan vs. Euclidean distance,
with most of the images exhibiting less than a 6% increase.

The advantage of using the Manhattan distance is that it eliminates the need for multiplications, which simplifies
the implementation considerably; for AVIRIS data, the distance between one pixel and one center would require
D = 224 multiplications. In addition the bitwidths required in the datapath are reduced. Euclidean distance
requires 2B + loga D bits in the data path (assuming no square root is implemented) for the total distance, where B
is the bits required for the coordinate differences. Using the Manhattan distance, only B + log, D bits are required.

2.1. Bitwidth Truncation

Implementing the Manhattan distance results in significant savings in datapath area, and thus allows for more
parallelism in a reconfigurable implementation. However, given the size of the dataset being investigated, more
drastic measures were considered to further reduce the size of the calculation of each pixel.

Recall that an AVIRIS data cube contains pixels with 224 channels, 16 bit per channel. Data cubes in this format
are obtained from JPL.! The actual data, however, is in the range of 12 bits per channel. Since there are so many
bits per pixel (12 x 224 when considering the true dynamic range), the hardware saved by reducing the number of
bits used per channel, even by a small amount, is potentially dramatic. Therefore, we formulated the hypothesis
that the quality of the resulting clusters would not be greatly affected if we truncated the number of input bits used,
and only used the most significant bits in each band to assign pixels to classes.

In this discussion we use B to denote the number of bits in a data word, and p to denote the precision; p is the
difference between adjacent truncated values. For example, for the B = 12 bits in an AVIRIS channel, the data
values are integers between 0 and 4095, and the precision is p = 1. If data are truncated to B = 8 bits, then there
are only 2% = 256 distinct values, but range is still 0 to 4095, so only multiples of p = 16 are permitted. In general,
for our 12-bit data sets, we have p = 212—B

If the pixel data is truncated to a precision p and if it is within p of the border that separates two centers, then it
is possible that the pixel will be misassigned. This is illustrated in Figure 1 where the two plus signs represent centers
and the dark areas the volume of spectral space in which a pixel will be misassigned. This volume is proportional
to p; thus the rate of misclassification is expected to scale linearly with p. If the centers themselves are inaccurate,
the effect will be to increase the volume of this region of misclassification. The error due to center truncation is also
expected to scale linearly with the precision to which the centers are truncated, though not necessarily with the same
coefficient.

If a pixel is misassigned due to truncation error, that means the pixel had to be near the border between two
centers. It follows that the effect of such a misclassification on the total within-class variance will be relatively
small; in fact it will scale linearly with p. Multiplying this error by the misclassification rate, we find that effect of
imprecision on total within-class variance scales as p®. This suggests that we can impose a small truncation error on
the data without having a large impact on the within-class variance.

IR AN ER L o a0 S SRV RIS - SR N S LY S X R /82 Py i N Y A B

<

4

p<—

Figure 1. This figure illustrates the region on the border between two centers, represented here as plus signs. Pixel
values that are truncated to precision p are effectively moved to the center of the square in which they originally
resided. For those points in the shaded region, this movement puts them on the other side of the border which means
that they will be misclassified. It is clear that the area of this region of misclassification scales linearly with the
precision p.

To test this hypothesis we did two sets of experiments. The first set of experiments tested the hypothesis using
an idealized model of D dimensional space. The second set ran experiments on data cubes of AVIRIS data.

Note that our experiments involve truncating the input data, or, in other words, using less than the full dynamic
range of the data to calculate the result. Since the number of bits of input data is reduced, the number of bits for
all intermediate calculations is also reduced. Clearly the size of the cluster centers can also be truncated. Since each
channel gets compared to each cluster center, we experimented with two scenarios:

o Truncate the pixel data to B bits; truncate the centers to the same bitwidth, B.

¢ Truncate the pixel data to a bitwidth B; truncate the centers to B + 2 bits of precision.

2.2. Data Independent Assessment of Truncating Bitwidths

The purpose of the “data independent” assessment is to obtain generic results that do not depend on the details of
a particular data set, and to confirm the scaling of misclassification and in-class variance with precision p that was
discussed above. These results are based on Monte-Carlo experiments that correspond to a single iteration of the
k-means algorithm applied to random data. We have previously describe a similar data-independent experiment? for
assessing choice of distance metric.

A single Monte-Carlo trial is defined as follows. First, K + 1 points are placed at random on the surface of a
D dimensional sphere with unit radius. One of the points is treated as the data point that is being classified, and
the other K points are treated as cluster centers. The center to which the data point is closest is identified as the
“true classification” for that data point. The data and centers are then truncated to a precision p, and again the
(truncated) center which is closest to the (truncated) data point is identified. If the closest center found with the data
truncated differs from the “true” center, then a misclassification is recorded. The “excess in-class variance” is also
computed — this is the difference of two squared distances: the distance between the data point and the misidentified
center, and the distance between the data point and the correctly identified center, with both distances computed
using the full precision (non-truncated) data. The excess variance is normalized by dividing by the average (over
many trials) of the squared distance of a point to its nearest center.

For these data independent experiments, all data values range from zero to one due to the fact that all points are
placed on a D dimensional sphere with unit radius. The precision p is therefore less than one for these experiments
(p =1 would correspond to no information at all in the data; while p = 0.25 for instance would correspond to data
truncated to two bits of precision after the decimal point).

The experiment was repeated for different values of D, K and p. Results for K = 2 are shown in Figures 2. It
is seen that, as argued above, misclassification rate scales linearly with p, and excess variance scales like p?>. Both
measures also increase with larger dimension D, with a scaling that appears to grow as v/D; this factor can be

MR B B A R I A A INE RTINS i LS o X S TN Y 55577 SN S st B v ts S A S S sl e O Crer Do L8 C IR APt
X D A A A R NI N A

() (b)

10° LU B R R LI B AR ELLLL N AR R L) aut et A 2L

10"

0.1 10°

0.01

misclassification rate
excess in-class variance

0.001

Wiy IRl BRALE. ILALLL BRI ILALL IR AL ML
aeved soonad vovd soened saenad soovmd soiumd srread 2gp

0.0001

Dool® o venpnd g woepenl g oppepend o gesend

0.0001 0.001 0.01 0.1 0.0001 0.001 0.01 0.1 1
precision, p precision, p

(d)

-

0.5

0.4

.

0.3

0.2

scaled excess variance

0.1

excess in-class variance
-
o
), %),
L) llllﬂ L) llllq 1 lllq ¥ Illlﬂ ¥ IIII1 L) IHH ¥ Illlq LR Ll

PSRN S BT ET ST ST NTUT U U T AU SR ST AN N AN A

| IEETTIT IEETTT IRRTIT ATIT BT AT IR

0.0001 0.001 0.01 0.1 1 0.0001 0.001 0.01 0.1 1
precision, p precision, p

Figure 2. (a) The misclassification rate is plotted against the precision p for dimensions D which are powers of two
in the range from 2 to 256. The bottom curve corresponds to D = 2 and the top curve to D = 256. Here the centers
were computed to full precision, and misclassification is seen to increase linearly with p and roughly as the square
root of D. (b) The cost of misclassification is measured by the change in the in-class variance. This excess in-class
variance is seen to scale quadratically with p, and again with v/D. (c) In this panel we plot excess variance divided
by p*>v/D; this corresponds roughly to the coefficient of the observed scaling. The solid lines correspond to the same
data as in (b); this illustrates the scaling with p® and +/D. The dashed lines correspond to the values obtained when
the centers are truncated to the same precision as the data. (d) The previous three panels employed the standard
Euclidean distance metric to assign points to centers. If the Manhattan metric is instead employed, the same overall
scaling is observed for larger values of p, but for smaller values of p the situation becomes more complicated. In some
cases, the errors introduced by the Manhattan metric and by precision truncation appear to cancel.

explained by the fact that the data is normalized to a unit sphere: (z;2) = 1/D since 2,2 +... + zp? = 1. Further
numerical results (not shown) suggest that these error measures increase roughly with vV K.

On the whole, these results suggest that we can get good quality classification with fairly severe truncation of
the input data.

2.3. Data Dependent Assessment of Truncated Bitwidths

Since we are interested in applying bit truncation to hyperspectral image sets, we also did experiments with AVIRIS
data cubes and measured the effect. Here a reference classification was obtained by using full precision data, and
our experiments examined the effect of truncating bits by comparing to that reference classification. We looked at
within-class variance ~ which was measured using the full precision data, even though the clustering was done with

PR CIIC Do P I B S S YO T e r S AT R

the truncated data. Within-class variance is what k-means seeks to minimize, and it is our bottom-line measure
of cluster quality. We also counted the number of pixels which were classified differently in the full-precision and
the low-precision clusterings. A large difference means that the analyst will be presented with a picture that looks
qualitatively different, but it doesn’t necessarily mean that the clustering is of lower quality.

The experiment was run on four different AVIRIS cubes. The total within-class variances are shown in Figure 3.
For each data cube we varied precision of the data and precisions of the centers. We ran all experiments with two
different initializations, since results are sensitive to the the initializations. The same initialization is used for all
combination of truncation exercises. Manhattan distance was used as the metric for choosing cluster centers. For
these experiments, the difference in pixel classification was also recorded, as shown in Figure 4. In this case, a pixel
is recorded as different if the class it is assigned to differs from the the class it would have been assigned to using the
full bitwidth of data, full bitwidth of cluster centers, and Manhattan distance. This difference provides a measure of
the qualitative differences seen in the results of classification of the images with different amounts of truncation.

X 1012 f970801 X 1012 970701
8 y ¥ T ™ 10 T T T T
0 fractional bits #1 1
2 fractional bits #1
6l 0 fractional bits #2 | 8t
2 fractional bits #2
8 g 6
8 4} - 8
g g 4t
2 . o
1 m”
Ll ,
0 4 6 8 0 4 6 8
truncated bits truncated bits
x 102 1960323 x 10" 970620
1 0 M T T T 10 T T
8t 1 1 81
8 6 - 3 6
c [s
8 Ko
$ 4} - $ 4t
2f 1 21
0 4 6 8 0
truncated bits truncated bits

Figure 3. Total within-class variance for AVIRIS data cubes. Four different AVIRIS images were used. Each graph
shows the total variances for one image. 16 clusterings were run on each image and total variance was recorded
for each. There were two sets of experiments per image, each corresponding to a different initialization. For each
initialization, 8 clusterings were run. Four different bitwidths of the input data were used, with 0, 4, 6 and 8 bits
truncated, respectively. For each truncation, two cluster center sizes were used; one with the center the same bitwidth
as the truncated pixel, the second with the center containing two bits more than the truncated pixel.

970801 970701
80 T 100 T
0 fractional bits #1 [
2 fractional bits #1 - 1
6ol a 0 fractional bits #2 _— 801 I .
*8' 2 fractional bits #2 "g
X S 60f
401 £
g 40
< g
201 ' 20|
0 _ | o _ |
0 4 6 8 0 4 6 8
truncated bits truncated bits
960323 f970620
100 T T 100 .
80t] 80+
S 60} S 60} i
kel ©
[I=
g 4of 8 407
[0} ©
Q. o
20t | 20}
0 e -‘ 0 —
0 4 6 8 0 4 6 8
truncated bits truncated bits

Figure 4. Different classification rates for AVIRIS data cubes. These show results for the same four images and

the same 16 experiments per image as the variances. A pixel is classified as different if it ends up in a different class
than the case of 0 bits truncated, 2 extra bits used for centers.

T o ey
HYARRN Ny

S R SIS S LN HEREr YOS i S ET)

Our first observation is that cluster quality is maintained even with considerable truncation. Little variation in
total within-class variance is observed, even when only half the input bits (B = 6) are used. Another empirical
observation is that it makes sense to truncate the data more aggressively than the centers. For instance, it is better
to truncate the data to 6 bits but keep the centers at 8 bits than to truncate both to 6 bits. This is good both for
reducing memory requirements and processing bandwidth. Using 6 bits per channel reduces the size of the data cube
by 50%.

3. HARDWARE IMPLEMENTATION OF K-MEANS

We have implemented k-means clustering on a Wildstar board from Annapolis Microsystems. The particular board,
a member of the WS/XCV1000 family, has three Virtex 1000s, each with over 1 Million gate equivalents.® These
Virtex chips are referred to as processing elements (PEs 0, 1 and 2). In addition 40 Megabytes of onboard RAM is
available, which is used for pixel storage in our application.

The k-means algorithm consists of two stages: the first iterates over all the pixels and determines the new cluster
number to which each pixel is assigned. Accumulated values for clusters are kept during this stage. The second is
run once per image iteration and determines the new cluster center values. We implement the first stage on the
Virtex chips and the second on the host. The design works as follows:

1. Calculate initial mean table on host using a small subset of image pixels and a hierarchical initialization
methodology.

. Download the image to memory on the Wildstar board.

. Download the mean table to PE1.

. Communicate statistics to host for new mean table calculation.

2
3
4. Calculate new cluster numbers for all image pixels, and accumulate statistics.
5
6. Calculate new mean table on host.

7

. If termination condition is not met then go to 3, else done.

There are several possible termination conditions: one may run for a fixed number of iterations; or one may run
until the algorithm fully converges, which is detected by the lack of change in center values from one iteration to the
next; or one may aim for near-convergence based on a heuristic criterion. For maximum flexibility, the termination
is currently determined by the host.

It is important to note that the image data is downloaded once to the Wildstar board and never needs to be
uploaded. Due to the large quantity of image data (134 Megabytes for a full data cube), moving it from one location
to another is time consuming and is avoided in our implementation. The information that must be uploaded to the
host after each iteration is the minimum set required to calculate the new means. This includes the number of pixels
assigned to each class and accumulated values for each channel for each class calculated during pixel assignment.
The result of clustering is an image with each pixel represented by a pointer to the class to which it is assigned.
This image requires 75K bytes for a full AVIRIS data cube, and is uploaded once to the host after all iterations are
complete.

Our current, working implementation of k-means works on the full 12 bit data range per channel, but uses a
reduced data cube. We cluster 256 x 256 pixel images, each with 10 channels of 12 bit data, using 8 means. This
implementation produces considerable speed up over a host PC running the same algorithm. The Wildstar completes
50 iterations of the clustering algorithm on a dataset in 63 msec running at 40MHz, compared to 14.7 seconds for
the same algorithm run on a 500MHz Pentium. The Wildstar implementation runs over 200 times faster than the
workstation version.

Extrapolating these results, we expect to be able to fit 20 channels of truncated 6 bit data clustered to 8 means on
a Virtex 1000, and plan to handle higher dimensions. Our current implementation is fully pipelined, and additional
area can be saved by doing some operations sequentially rather than in parallel. Recently announced Virtex chips,
such as the Virtex 3200 from Xilinx, will allow us to triple the number of channels of data that can be handled.?

RSN AR SO X o A TR 0 A T W2 S T MR RN KO I o 1 i

Our current implementation of k-means uses only a single Virtex chip (PE1) to do the actual pixel clustering.
Another chip (PE0) is dedicated to interfacing with the host and downloading the image to the memory on the
Wildstar board. The third chip (PE2) is currently unused, but could be used either to do pixel clustering on a
different part of the data cube and thus double the parallelism of the first stage of the implementation, or to do the
mean calculation that is currently done by the host. Both these scenarios are being investigated.

4. DISCUSSION

We have shown that considerable speed up in k-means clustering can be obtained by implementing the clustering on
reconfigurable hardware. This speed up is obtained partly by applying transformations that specifically accelerate
a hardware implementation of k-means. These transformations result not from peep-hole optimizations, such as
implementing a multiplier with shifts and adds, but rather from global optimizations that involve changes to the
algorithm being implemented. The criteria for these optimizations is that they do not unduly compromise the quality
of the results.

We employ a standard design flow for programming the Wildstar board. We describe the hardware in VHDL,
and used Synplicity design tools® and Xilinx place and route tools!® to generate the final design. Currently, more
efficient designs can be obtained by manually designing the datapath. For example, in a companion project at Los
Alamos,!? a very efficient implementation of the PPI (pixel purity index) algorithm on reconfigurable hardware was
obtained through manual design of the datapath.

In the future, as FPGA capacities become larger and experienced hardware designers rarer, such manual ap-
proaches will be employed less and less. Several researchers are investigating compilers that target reconfigurable
computing and start from programming languages similar to C'23 or from Matlab descriptions.!* The success of
such approaches will enable efficient designs to more rapidly be implemented on reconfigurable hardware. They will
make our approach both easier to apply and more important. If one were to take a k-means algorithm written in
C for implementation on a RISC processor and translate it directly to hardware, the resulting design would contain
many multiplication operations and either would not fit on the available hardware or would be slow due to the seri-
alization of operations required to share the hardware that can fit. Only by optimizing the algorithm is an efficient
implementation realizable. Compilers that generate efficient hardware free the designer of reconfigurable systems to
focus on the best algorithm or variant to implement that will make best use the available resources.

In this paper, we focus on data reduction by truncating the input data bitwidths. Tools that determine the
bitwidths required for intermediate calculation will allow more dense implementation of algorithms. For example,
the Bitwise tool'S determines the bits needed for intermediate calculations assuming precise bitwidths of operators
were not specified by the designer. This and similar approaches free the designer from specifying details of the im-
plementation without sacrificing efficient hardware implementation. They complement our approach, which involves
examining the data and determining how much of the input data set is significant with respect to affecting the results
of the algorithm being applied.

Our immediate goal is to apply the results of our data truncation experiments to the k-means implementation to
segment larger data sets in hardware. We expect to be able to handle full AVIRIS data cubes using a combination
of input data truncation and more serialization of the hardware implementation. Since our current design provides
a speed up factor of 200 when implementing the design in hardware, some serialization can be implemented while
still obtaining significant speed up in hardware.

ACKNOWLEDGMENTS

We would like to thank Annapolis Microsystems for their support, and Synplicity and Xilinx Corporations for their
donations to the Rapid Prototyping Laboratory at Northeastern University.

R SR N LTI S R QU L O I X S AP S e R i B e T L k2 T

B
> A

12,

13.

14.

15.

REFERENCES

NASA, 1999. http://makalu. jpl.nasa.gov/avaris.html.

P. M. Kelly and J. M. White, “Preprocessing remotely-sensed data for efficient analysis and classification,” in
Artificial Intelligence 1993: Knowledge-Based Systems in Aerospace and Industry, U. M. Fayyad and R. Uthu-
rusamy, eds., Proc. SPIE 1963, pp. 24-30, 1993.

V. Castelli and T. M. Cover, “On the exponential value of labeled samples,” Pattern Recognition Lett. 16,
pp. 105-111, 1995.)

P.-F. Hsieh and D. Landgrebe, “Statistics enhancement in hyperspectral data analysis using spectral-spatial
labeling, the EM algorithm, and the leave-one-out covariance estimator,” Proc. SPIE 3438, pp. 183-190, 1999.

. R. A. Schowengerdt, Technigues for Image Processing and Classification in Remote Sensing, Academic Press,

Orlando, 1983.

. C. Funk, J. Theiler, D. A. Roberts, and C. C. Borel, “Clustering to improve matched-filter detection of weak

gas plumes in hyperspectral imagery,” Tech. Rep. LA-UR 00-3673, Los Alamos National Laboratory, 2000.

. J. Theiler, M. Leeser, M. Estlick, and J. J. Szymanski, “Design issues for hardware implementation of an

algorithm for segmenting hyperspectral imagery,” in Imaging Spectrometry VI, M. R. Descour and S. S. Shen,
eds., Proc. SPIE 4132, 2000.

. Xilinx Corporation, 2000. http://www.xilinx.com/products/virtex.htm.
. Synplicity Corporation, 2000. http://www.synplicity.com.

10.
11,

Xilinx Corporation, 2000. http://www.xilinx.com/products/software/software.htm.

D. D. Lavenier, J. Theiler, J. J. Szymanski, M. Gokhale, and J. R. Frigo, “Fpga implementation of the pixel
purity index algorithm,” in Reconfigurable Technology II: FPGAs and Reconfigurable Processors for Computing
and Applications, J. Schewel, P. M. Athanas, C. H. Dick, and J. T. McHenry, eds., Proc. SPIE 4212, 2000.

B. Draper et al., “Compiling and optimizing image processing algorithms for FPGAs,” in Workshop on Computer
Architecture for Machine Performance, 2000.

M. B. Gokhale, J. M. Stone, J. Arnold, and M. Kalinowski, “Streams-oriented FPGA computing in the Streams-
C high level language,” in IEEE Symposium on FPGAs for Custom Computing Machines, 2000.

P. Banerjee et al., “A MATLAB compiler for distributed, hetergeneous, reconfigurable computing systems,” in
IEEE Symposium on FPGAs for Custom Computing Machines, 2000.

M. Stephenson, J. Babb, and S. Amarasinghe, “Bitwidth analysis with application to silicon compilation,” in
Proceedings of the SIGPLAN conference on Programming Language Design and Implementation, June 2000.

