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Abstract

Exact analytic solutions for steady-state magnetized

ing ideal magnetohydrodynamics (MHD) formalism

plasma flow (MPF) us-

are presented. Several

cases are considered. When plasma flow is included, a finite plasma pressure

gradient Vp can be maintained in a force-free state J x B = O by the gra-

dient of the velocity. Both incompressible and compressible MPF examples

are discussed for a Taylor-state spheromak B field. A new magnetized noz-

zle solution is given for compressible plasma when U IIB. Transition from a

magnetized nozzle to a magnetic nozzle is possible when the B field is strong

enough. No physical nozzle would be needed in the magnetic nozzle case.

Diverging-, drum- and nozzle-shaped MPF solutions when U 1 B are also

given. Electric field is needed to balance the U x B term in Ohm’s law.

Electric field can be generated in the laboratory with proposed conducting

electrodes. If such electric fields also exist in stars and galaxies, then these

solutions can be candidates to explain single- and double-jets.

PACS numbers: 52.30. -q;
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I. INTRODUCTION

High-speed plasma wind and cosmic jets are welI-known phenomena in the universe [1,2].

In fusion experiments, when external energies and/or momentum. are used to drive the

plasma, plasma motion, such as rotation [3-5] and flow along the magnetic fields [6], is

observed routinely [7–9]. These diverse phenomena are examples of plasma flow within

magnetic field: the magnetized plasma flow (MPF). MPF can be described by the magne-

tohydrodynamics (MHD) equations with the plasma momentum term included.

MPF is also used to address technology concerns. Using a magnetic field instead of a

physical boundary to guide the plasma fluid flow in a converging-diverging configuration

leads to the concept of a “magnetic nozzle” [10,11]. Magnetically-nozzled plasma flow is

more desirable over the materially-nozzIed flow because of potentiality longer life time and

more controllable operation in the first case. Magnetic nozzles certainly can be used for

propulsion and material processing [12].

Theoretical studies of MPF began in the mid 1950s [13–15]. Approximate axially sym-

metric steady-stat e solutions were obtained by Morozov and Solov’ev [16]. Exact incom-

pressible solutions were given for a generalized symmetry with one ignorable spatial coordi-

nate [17). Special axisymmetric, non-steady MPF was studied by Colwell

without certain type of symmetry, the MPF problem is too complicated.

methods have to be used [19,20].

We have obtained several exact solutions to axisymmetric MPF under

[18]. In general,

Computational

various assump-

tions. Section II briefly presents the formulation of axisymmetric MPF. The formalism

introduced will be used in Section 111B, where purely rotating MPF will be discussed, and

in Section V, where a class of MPF solutions with purely poloidal flow and toroidal magnetic

field will be derived. In Section III, based on known solutions, force-free MPF solutions with

finite pressure are given. Application of the solutions to a special force-free magnetic state

– a Taylor-state spheromak [21–24] – is discussed for both incompressible and compressible

flows.
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General compressible MPF formalism was discussed in detail by Morozov et al. [321.

Transonic MPF with translational symmetry along the z axis were studied by Lifshitz and

Goedbloed [25] and works cited therein. We demonstrate existence of a new axisymmetric

magnetized nozzle solution in Section IV, and discuss the transition of a magnetized nozzle

to a magnetic nozzle. The distinction between a magnetized nozzle and a magnetic nozzle is

that the former relies on a material boundary – the physical nozzle in the conventional sense –

to accelerate plasma, while the latter solely relies on the converging-diverging magnetic field

to confine the plasma flow. One distinction between a magnetized nozzle and a conventional

nozzle is that the former has magnetic field within the flow. Another distinction between a

magnetized nozzle and a conventional nozzle is that the conventional nozzIe usually operates

with neutral gas, and a magnetized nozzle operates most effectively using plasmas, or ionized

gases.

In Section V, using the mathematical formalism introduced in Section II, new MPF

solutions with purely poloidal flow (MPF does not cross the r-z plane) and purely toroidal

magnet ic field are obtained. Realization of the flow in laboratory settings using conducting

boundaries are emphasized. Three specific examples are given. Analytic solutions derived

here may also be used to bench-mark new computational codes.

II. PROBLEM FORMULATION

Steady-state MHD equations with flow have been studied in both fusion and astrophysics

contexts. Ideal incompressible plasma flow was studied by many authors [26–31]. Ideal MHD

flow equations were also derived by several authors independently [32–36]. The steady-state

ideal MPF’ can be described by the ideal MHD equations with

included. These equations are Faraday’s law in steady-state

VXE=O,

3

plasma fluid momentum term

(1)

Ampere’s law



VxB=poJ, (2)

divergence-free law for magnetic field

V- B=O, (3)

ideal Ohm’s law

E+ UXB=’0, (4)

steady-state single-fluid momentum equation

pU. VU=–Vp+Jx B, (5)

and the steady-state continuity equation

v - (pu) = o, (6)

where p is the mass density, U represents the flow velocity and other symbols have their usual

meanings. By assuming axisymmetry in a cylindrical coordinates (r, (3, z), O is ignorable.

(The symmetry need not be chosen to be cylindrical [32].) From Faraday’s Law Eqn. (l),

the electric field can be expressed as as the gradient of a potential E = –V@. The azimuthal

electric field I?e is zero from axisymmetry.

For axisymmetric configurations, the magnetic field can be generally expressed in terms

of two scalar functions T and 1 where [38] B = VV x V6’ + lVO. Since B . VT = O, Q =

constant defines a magnetic flux surface. Similarly, from the continuity equation Eqn. (6)

the velocity U can be expressed in terms of scalar functions< and r as U = ~V~ x VO+l_’VO,

where & = constant defines a plasma-flow surface or so-called streamline.

Introduction of the functions 0, @, 1, ~, and r modify the ideal MHD equation set in the

following ways: Eqns. (1), (2), (3) and (6) are satisfied automatically. Eqns. (1) - (6) reduce

to Eqn. (4), the Ohm’s law, and Eqn. (5), the momentum equation. This set of equations is

not complete without inclusion of an equation of state relating pressure p and mass density

P-
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We can write a general form of the remaining equations by defining the Poisson’s bracket

for any two quantities T and 1 as [V, 1] = ~ ~ – ~ ~. Then the radial and axial Ohm’s

laws can be expressed as

–v@+ + – 1—Vl$= o,
/27-2

: [w,q = o.
P

(7)

(8)

The momentum Eqn. (5) becomes two equations, one for axial momentum and the second

a description of conservation of angular momentum

(9)

[or] = ~ [v,q. (lo)
Po

Here the equation of state is assumed to be of the form Vw = ~ with w is usually known

as the enthalpy. The generalized operator A~l with kernel p is defined as

()

v< 2 8(
A~l[=v” ~ –p~” (11)

III. FORCE-FREE MPF

Force-free states are defined as plasma states within which the electromagnetic force J x B

vanishes. Force-free condition are believed widely applicable in astrophysical environments

because forces other than electromagnetic are comparatively much smaller. Force-free states

can also appear within a conducting boundary, a so-called flux conserver, in a laboratory

environment. A typical example is a relaxed spheromak state, also known as a Taylor

state [39]. A force-free equilibrium with mass flow and finite pressure exists for a constant

density p [40]. Here another type of force-free MPF with finite pressure profile is given.

Assume E = O within a plasma. From the ideal Ohm’s law (4), one obtains LJ x B = O.
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That is, in a ideal MPF within which the electric field vanishes, the flow has to align with

the magnetic field. This is also the known as the “frozen-in law”. A general incompressible

solution V . U = O was worked out by Tataronis and Mend [41] where

B
u=—

m

for B – aligned plasma flow and a finite pressure sustained by the flow, and

puz
p + ~ = constant.

(12)

(13)

From the incompressible and B-aligned U conditions, it can be shown that p is a function

of flux surfaces only, p - p(Q). This solution was first derived for the J x B # O case [41].

The well-known solution for a constant-density plasma with flow along a magnetic field due

to Chandrasekhar [26] is a special case. We now apply the solution Eqns. (12) and (13)

to the force-free case, and point out the solution implies a finite plasma pressure with flow.

In addition, we will find out that the flow supported pressure gradient is usually different

from the magnetic flux gradient. Therefore, equal-pressure surfaces do not coincide with the

magnetic flux surfaces.

A. Incompressible MPF with finite pressure

Eqns. (12) and (13) give a finite pressure profile for any force-free state,

B2 B:
—+p. — +Po,
2/uo 2po

(14)

where B. and p. are integration constants that have magnetic field unit and pressure unit re-

spectively. This solution implies that the pressure distribution is independent of the density

distribution. The shapes of equal-pressure surfaces are shown in Fig. 1 using a spheromak

equilibrium magnetic field satisfying V x B = AB and constant ~. The boundary condition

was chosen to be a perfectly conducting cylinder with radius I?. and heights extending from

–Z. to 2.. The pressure and magnetic surfaces are no longer coincident with each other.

There is a significant displacement between the axis of these surfaces. The displacement
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between magnetic surfaces and pressure surfaces also exists for a different kind of plasma

flow [36]. Assume that the ideal gas law p = pkBT/M is valid for the present case, where

kB is the Boltzmann constant, T is the plasma temperature, and M is the ion mass. Since

the plasma density is a function of magnetic flux surfaces, and the plasma pressure is not

a function of the flux surface, the plasma temperature T is generally not a function of flux

surface.

B. Compressible MPF with finite pressure

A rotation-only force-free MPF is defined by a flow with vanishing poloidal flow compo-

nent ~ = O and solely with finite toroidal rotational component r # O. Ohm’s law Eqn. (8)

is satisfied identically. Ohm’s law Eqn. (7) implies that @ = O(w), and

where @~ stands for the first order differentiation of@ with respect to V. Using the forcefree

condition, the only non-trivial equation left is the momentum equation (9)

()U2
v ~+w –$vr=o.

It can be proved for non-trival solutions, that is, Q # V(r), it is required

r

rz
— = Wo,

(16)

(17)

where W. is a constant angular velocity. This is the law of isorotation first discovered by

Ferraro [37], and discussed by many authors later on [27]. In general, W. may be a function

of the magnetic flux surface. However, in the force-free case discussed here, only constant

W. throughout the plasma is allowed for T # V(r). Since we assumed p = p(p) here, we can

use the usual adiabatic or iso-thermal equation of state of the form

7
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with ~ = ~ for the adiabatic case and -y = 1 for the isothermal case. The pressure profile is

given by

for ~ # 1, and

‘=pOexp(w:’2~w’r’)

(19)

(20)

for ~ = 1, the isothermal case. In either case, both the pressure and the density are only

functions of radius only. An example of the equal-pressure surfaces is shown together with

a Taylor state magnetic equilibrium in Figure 2. Again, it is noticeable that the pressure

and magnetic surfaces are no longer coincident with each other. A difference from that of

incompressible situation is that the equal pressure surfaces are open-ended.

IV. NOZZLE-TYPE MPF

According to the well-known gas-dynamics theory, the continuity equation Eqn. (6),

Bernoulli’s equation ~ + J ~ = constant and the equation of state Eqn. (18) together, when

integrated over streamlines in a flow region of area A, give rise to the Hugnoit equation

(U2 – C:) ~ = ho%, this leads to a nozzle type of soIution for the flow only when the gas is

compressible. Below we demonstrate one kind of magnetized nozzle solution for MPF. We

will consider systems of ionized gas – plasma – flow, not neutral gas flow, so that magnetic

field can be effectively confining to ions and electrons. Substantial external energy, either in

the form of DC electric energy, Radio frequency wave energy, or any other form, is needed

to maintain a gas in a plasma state. In another scenario, once a plasma is created upstream

of the nozzle, if the plasma transit time through the nozzle system is much less than the

electron-ion recombination time, then no extra energy is needed along the flow to maintain

8
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A. Magnetized nozzle

In this subsection, we identify magnetized compressible steady flow conditions so that

the equation of state Eqn. (18), and Bernoulli’s equation ~ + J $ = constant along the

streamlines are still valid. Assume the flow is magnetic-field-aligned, U IIB. U dotted into

the momentum equation Eqn. (5) gives

u.v(:+p)=o) (21)

which means the Bernoulli’s equation is still valid along the stream-Iines. To satisfy the

continuity equation and the divergence free condition for magnetic field, one solution is that

(22)

with A. is a constant. Therefore: Eqn. (22), together with the continuity equation, Bernoulli’s

equation and adiabatic equation of state form a complete set of solutions for magnetized

nozzles.

Concentrate on the case when the internal plasma current during the flow vanishes, and

leave a general discussion of non-vanishing internal plasma current to future works. In the

special case of vanishing internal plasma current, J = O, one have further that mass density

gradient is along the flow Vp x B = O. The continuity equation (6), the equation of state

Eqn. (18), and Bernoulli’s equation govern the physical boundary that forms a nozzle-shaped

object. Due to the absence of the electric current within the plasma, the magnetic field

described is entirely produced by external current sources, such as electric current flowing

9

in conducting coils. Also due to the absence of the electric current within the plasma, there

is no acceleration effect from the electromagnetic force in this type of magnetized nozzle.

The inclusion of a background magnetic field, however, may be beneficial to lower the heat

load on nozzle walls due to the magnetic confinement of charged particles.
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B. Magnetic nozzle

A magnetic nozzle is defined as a “nozzle” that uses the magnetic field instead of a

physical boundary (a mechanical nozzle) to confine the fluid flow [12]. A nozzle type of flow

solution is possible if the magnetic field is shaped in a conventional converging-diverging

nozzle configuration, with plasma flow along the magnetic field. When the magnetic field is

strong enough (i. e. & -+ 00 in the Eqn. (22)), then the conventional physical boundary

is no longer needed in a magnetized nozzle, and we therefore achieve the magnetic nozzle

operation. One requirement on the strength of the magnetic field is that the ion gyroradius

be much less than the smallest dimension of the magnetic nozzle system. However, due to

the fact that an electron gyroradius is much less than an ion gyroradius, charge separation

between ions and electrons could induce large electric fields that would eventually prevent

the charge separation. In other words, ambipolar diffusion will be set up in steady state.

Therefore, to expect that the ion gyroradius be much less than the smallest dimension of the

magnetic nozzle system is too strong a statement [42]. For the magnetic field to be effectively

confining, the particle diffusion time across the magnetic field must be much greater than

the transit time along the magnetic field, that is,

R2 L=
— >> —,
D C.

(23)

in which R and L. are characteristic dimensions in the radial and axial direction respectively.

D is the averaged cross-field diffusion coefficient, and C. is the sound speed at the nozzle

throat. In an ideal case, one can use the classical diffusion coefficient D = rfcvie, where ric =

= is the singly-charged ion gyroradius and .vi~= n=e4 in A

3C: /m ‘
while all the symbols

have their usual meanings in plasma physics, e is the electron charge, ne is the plasma

density, etc.. Eqn. (23) implies ~C~ >>
w=%, z = ‘e ‘s a characteristic

temperature, Bo is an average magnetic

mechanism depends on many aspects of

of the injection plasma in the upstream

field, p = nemi is the mass density. Since diffusion

the problem, such as the initial spatial distribution

region of the nozzle and the boundary conditions,
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using the classical diffusion coefficient here only serves to demonstrate the concepts [42]. In

real experiments, it should not be surprising when other diffusion forms of the coefficient

work better. An additional constraint is that the plasma must be collisional enough (the

density high enough) for the fluid approximation to be valid. Otherwise, if the plasma

is collisionless both along and across the magnetic field, a magnetic nozzle turns into a

mirror-t ype magnetic confinement device, where the total particle energy and the magnetic

momentum are conserved for each ion. Since the cross-field diffusion time is much greater

than the transit time along the magnetic field, least requirement on plasma collisionality is

that plasma is collisional across the magnetic field, (radial diffusion time is much greater

than the collision time) while it may be collisionless along the magnetic field [42].

V. MPF WITH POLOIDAL FLOW AND TOROIDAL MAGNETIC FIELD

Now we consider cases of MPF with poloidal flow only. ”Some emphasis is put on how to

realize these flows in a laboratory environment using conducting electrodes. Assume that

the plasma flow is perpendicular to the magnetic field,

7- J* B=O. (24)

Using the axisymmetric formulation with stream function ~, poloidal electric current 1 and

plasma rotation r, and further assuming that the poloidal magnetic flux W = O, one can

obtain that 171= O. We also requires that 1 is non-zero, therefore I’ = O. Solutions with 1

non-zero but constant for this type of MPF were obtained previously [36]. In the present

case, our solutions are more general.

A. Equation reduction

Ohm’s law (7) under the above assumptions

Va? + A7t
P-2

gives

– o,—
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which means @ = @(~), and --$ = –@~. Combining this new form of Ohm’s law and the

equation of motion (9), one obtains

Therefore

U2 12
~+w+— = G(f)

P0Pr2

is a function of ~ only. Therefore Eqn. (26) can be written in a scalar form:

(26)

(27)

(28)

B. Solutions

Assume the plasma fluid is incompressible with constant density p. Eqn. (28) reduces

to

(29)

This equation can have so-called self-similar solutions [17,43] by introducing a new variable

t E r2w, (30)

where w a w(z) is a function of z only, and the streamline function is a function of t only,

c = ~(t) ~ &(r2U). Substituting this expression into Eqn. (29), one has

(31)

in which, & stands for differentiation of ~ with respect to t, and ‘so forth. Now seek the

solution of. the following form

()w= 2
—= aw+b+~+$. (32)
W w

Differentiate this equation with respect to z to obtain

12
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(33)

Using expressions (32) and (33) for (5)2 and ~, and collecting terms with equal power of

U, we find that Eqn. (31) corresponds to four ordinary differential equations

(34)

b(& + t&J = O, (35)

-& ++) =*,

and

(36)

(37)

From Eqn. (34) and (35), it can be proved that if b # O, then we must have <t = O, which is

a trivial soiution with zero flow velocity throughout. For non-trivial solutions we conclude

that b = O. From Eqn. (34), the solution for & is obtained as

co

‘“m” (38)

There is an additive integration constant labeling streamlines that can be set to zero. It is

aIso understood from the self-similar solution assumption that t = r2w (z) with an arbitrary

dependence on z. The velocity field is described by

u= $t’v (T2W) x Ve.

The solution to the total energy G(f) isl

(39)

(40)
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where Go is a integration constant. The electric potential is described byz

(41)

Both @o and F. are integration constants.

Three examples of this type of MPF are shown: in Fig. 3, for diverging t =

(%)2 exp (– $), in Fig. 4, for drum-shaped t = (%)2 cosh (–$), and in Fig. 5, for nozzle

shaped t = (~) 2exp (– ( :)2). These flow configurations could be realized in a laboratory

environment by setting up conducting boundaries, which are both stream-lines and equal

potential surfaces at the same time. The conducting electrode boundaries are marked in

the figures. Solutions may also be used to explain astrophysics jets. Diverging configura-

tion corresponds to single jet case, nozzle configuration corresponds to the double jets case.

Then the laboratory electrode boundary conditions could be replaced by internal electric-

field-generation processes within stars or galaxies.

VI. SUMMARY

Magnetized Plasma Flow (MPF) is formulated using steady-state ideal MHD equations.

Exact” MPF solutions are obtained under various assumptions. When one assumes that the

plasma fluid is in a equi-potential state, the internal electric field E vanishes. Then MPF is

restricted to be along the the magnetic field, U IIB. When a finite electric field is produced

by external electrodes at different electric potential or by internal processes within a star or

a galaxy, the flow velocity U does not need to align with magnetic field.

Based on known solutions to incompressible steady-state MPF, we discussed force-free

magnetic field MPF with finite pressure gradients, which can be sustained by velocity gradi-

ents. Both incompressible MPF and compressible MPF examples are given for a Taylor-state
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spheromak magnetic structure. In the incompressible case, pressure surfaces are closed con-

centric axisymmetric toroids offset from the flux surface. In the compressible case, the

pressure surfaces are open-end concentric cylinders.

Magnetized nozzle solutions is obtained with magnetic field relating to mass density and

flow velocity as B = AopU. A. is a constant proportionality parameter. A very special

case that the magnetic field is entirely generated by external currents outside the plasma,

J = O, and that plasma flow is compressible is discussed in detail. Transition from a

magnetized nozzle to a magnetic nozzle, i, e. , from one with a material confining boundary

(mechanical nozzle) to one without it, is possible when the magnetic field is strong enough

and shaped in a converging-diverging configuration. This type of magnetic nozzle relies

on the internal energy to accelerate particles to supersonic speed with no electromagnetic

energy consumption. Electromagnetic force effect in the derived general nozzle solution with

non-vanishing plasma current J will be topics of future work.

MPF solutions are also given when the magnetic field is purely toroidal, that is, only Be

is non-vanishing in cylindrical symmetry, and the flow is purely poloidal, that is, only in the

r-z plane under cylindrical symmetry. Three representative cases, termed diverging-shaped,

drum-shaped, and nozzle-shaped solutions are given explicitly. The way to realize these

flows in a laboratory environment is to shape the conducting electrodes at different electric

potentials. We expect that when the electric field can be generated by the internal processes

of a star or galaxy, these MPF may explain observed astrophysical flow phenomena.
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Figure Captions

Figure 1. Cross-section of the magnetic flux surfaces

Taylor-state spheromak with incompressible flow parallel

Figure 2. Cross-section of the magnetic flux surfaces

and equal pressure surfaces for a

to magnetic field, U]IB.

and equal pressure surfaces for a

Taylor-state spheromak with purely toroidal rotation of compressible flow.

Figure 3. Cross-section of an ideal diverging axisymmetric MPF. Streamlines are shown

with diverging-conducting-electrode boundaries (marked inner and out electrode). t =

(k)2exp(-$)- I?O, 20 are characteristic dimensions.

Figure 4. Cross-section of an ideal drum-shaped axisymmetric MPF. Conducting bound-

(r)’ ( ‘)
aries and streamlines are marked. t = ~ cosh —~ . &, 20 are characteristic dimen-

sions.

Figure 5. Cross-section of an ideal nozzle-shaped axisymmetric MPF. Conducting bound-

2
aries and streamlines are marked. t = (~) exp [—( ~)’]. Ro, 20 are characteristic dimen-

sions.



Pressure surfaces
Magnetic Flux surfaces /

zo

c
o.—
-G

e
N

z-0

R () 0 R.. 0
radius -



.

Magnetic flux surfaces

zo

c
o.—
z
e
N

z-0
R0

I Pressure Surfaces

0
radius



zo

u).—
x
(’6
N

Streamlines Inner electrode
# /

0
Ro

-J

Ro
raaus



C/3-—
x
m
N

Streamlines Inner electrode

z
o

z
‘o Ro

radus



zo

u).—

go
N

7

Stre~ml~n,es in~er electrode

O.. Ro
radius


