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Abstract 

Development Of Reservoir Characterization Techniques And 
Production Models For Exploiting Naturally Fractured Reservoirs 

For many years, geoscientists and engineers have undertaken research to characterize 
naturally fi-actured reservoirs. Geoscientists have focused on understanding the process of 
fracturing and the subsequent measurement and description of fiacture characteristics. Engineers 
have concentrated on the fluid flow behavior in the fracture-porous media system and the 
development of models to predict the hydrocarbon production from these complex systems. This 
research attempts to integrate these two complementary views to develop a quantitative reservoir 
characterization methodology and flow performance model for naturally fractured reservoirs. 

During the current reporting period, research has continued on characterizing and 
modeling the behavior of naturally fractured reservoir systems. Work has progressed on 
developing techniques for estimating fracture properties fiom seismic and well log data, 
developing naturally fractured wellbore models, and modifying a naturally fractured reservoir 
simulator. The research is currently on schedule as proposed. 

One aspect of this work involved modifying popular models in terms of crack density to 
one that depends upon crack porosity. This modification is important because crack porosity is 
also used in an estimate of the permeability of a reservoir. Simple crack models are used to 
estimate the “dry rock” properties of a fractured reservoir. The dry rock values can then be used 
to predict the effects of saturation upon fractured reservoirs. For rough cracks or cracks tilted 
slightly from the vertical, the S-waves were found to be sensitive to the saturation. Since the S- 
wave splitting increase is expected for near vertical signals, S-waves show the greatest 
exploration potential for detecting saturation in reservoirs. 

Software was developed to compute the seismic reflection coefficients. The software has 
been used to test some of the basic differences between a reservoir with a single fracture system 
and a reservoir with two fracture systems with different orientations, The results indicate that S- 
waves hold the key to working out some o€ the problems related to multiple fracture sets. 

A methodology for integrating the seismic and production tests has been developed. The 
strength of this approach is that no scaling is involved. Here we assume that the seismic scale and 
the production scale are the same. The goal then is utilize the influence of the crack porosity 
upon both the permeability and the seismic response. A genetic algorithm and software program 
has been developed to obtain fiacture density and aspect ratio through the inversion of fractured 
reservoir rock models using conventional well logs. The software is ready for further testing. 
Research suggests a need for logs and interne11 measurements of the frequency dependent 
attenuation of shear and compressional sound waves. 

Wellbore performance models for vertical and horizontal wells in naturally fractured 
reservoirs have been devoloped. These models have been incorporated into the naturally 
fiactured reservoir simulator but have not been tested. The development of the reservoir 
simulator continues in a timely manner. Previous problems related to material balance errors 
have been corrected by modifying the numerical solution of the flow equations. 
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Introduction 

Many existing oil and gas reservoirs in the United States are naturaily fractured. It is 
estimated that from 70-90% of the original oil and gas in place in such complex reservoir 
systems are stili available for recovery, provided new technology can be implemented to exploit 
these reservoirs in an efficient and cost effective manner. Enlianced oil recovery processes and 
horizontal drilling are two hdamental technologies which could be used to increase the 
recoverable reserves in these reservoirs by as much as 50%. This research is directed toward 
developing a systematic reservoir characterization methodology which can be used by the 
petroleum industry to implement infill drilling programs and/or enhanced oil recovery projects in 
naturally fractured reservoir systems in an environmentally sde and cost effective manner. It is 
anticipated that the results of this research program will provide geoscientists and engineers with 
a systematic procedure for properly characterizing a fractured reservoir system and a 
reservoirhorizontal wellbore simulator model which can be used to select well locations and an 
effective EOR process to optimize the recovery of the oil and gas reserves from such complex 
reservoir systems. 

The focus of the research is to integrate geoscience and engineering data to develop a 
consistent characterization of the naturally fractured reservoir. During the current reporting 
period effort has focused on relating seismic data to reservoir properties of naturally fractured 
reservoirs, scaling well log data to generate interwell descriptors of these reservoirs, enhancing 
and debugging a naturally fractured reservoir simulator, and developing a horizontal wellbore 
model for use in the simulator. 

Seismic studies can be used to compliment production tests and data regarding the 
development of fiactured reservoirs. Fracture aperture and porosity are the key parameters in this 
effort and are used for constructing elastic and permeability models of fractured reservoirs tied to 
production. The goal of this effort is the ability to map permeability variations with the seismic. 
Seismic mapping of saturation is another important tool for predicting the performance of a 
reservoir. As it turns out, the effect of saturation upon the elastic properties of rocks depends 
upon the anisotropy of the dry rock, P-wave studies of saturation in fractured reservoirs require 
long offsets- Some types of dry rock anisotropy can make the S-waves more sensitive to 
saturation in fractured reservoirs than the P-waves. This opens new exploration and development 
possibilities using S-waves. 

Seismic Amplitude Versus Offset (AVO) evaluation of fractured reservoirs requires the 
computation of the reflection coefficient between two arbitrary anisotropic media. Software has 
been developed for this purpose. Using this software a preliminary study has been made 
regarding AVO responses in the presence of multiple fracture systems. This study indicates that 
there are some techniques that can be used to find clues to the orientation of major fracture 
systems. The S-waves are the most indicative of these orientations. Integrating both the seismic 
and production data using the ideas developed in this project has lead to an improved 
methodology for predicting the performance of fractured reservoirs. Calibration methods using 
production tests have been developed to estimate important constants that can be used in 
mapping reservoir properties using the seismic data. 

Conventional well logs may be used for fracture detection since they often exhibit 
abnormal values in response to fractured zones within a borehole. Efforts have focused on 
obtaining quantitative description and characterization of naturally fractured reservoirs using 
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conventional w l l  Iogs. r-\ genetic algorithm has been uscd to obtain li.actLire density and aspect 
ratio through the inversion of fractured reservoir rock models. The model proposed by O’Connell 
and Budiansky (1977, 1984) has been implemented to develop the application of genetic 
algorithm to this problem. The software for determination of crack density and aspect ratio from 
conventional well Iogs is ready for further testing. Research suggests a need for logs and 
interwell measurements of the frequency dependent attenuation of shear and compressional 
sound waves. Investigation fiuther reveals that cross-well tomography measurements may offer 
such information. Data from multi-frequency measurements should enhance the information that 
can be extracted for the description of fractured reservoirs. 

DeveIopment of naturally fractured wellbore models for use in the reservoir simulator is 
an important element of this research. After a thorough literature review, it was decided to 
implement a wellbore system that assumes a horizontal wellbore open to flow along its total 
length and with a homogenous fluid flowing through it. Flow from both the fractures and matrix 
is allowed to occur and is considered through productivity indexes that are proportional to the 
equivalent fracture and matrix permeabilities, respectively. A similar approach has been 
implemented for the vertical well. 

Work has also progressed on developing a naturally fractured reservoir simulator for use 
in a PC environment. This work is ongoing and the simulator will be modified to incorporate 
methodologies developed in this research. Efforts have concentrated on correcting material 
balance problems and incorporating wellbore models within the program. One major 
complication with the work discussed in the last progress report was related to unacceptable 
material balance errors. This problem has commanded a large portion of the project time during 
the last six months. However, the problem has been solved and was related to the numerical 
solution of the mathematical model proposed by Evans (1 982). Additionally, steps continue to 
move the program from a mainfiame to a desktop computing environment. The modeling effort 
is proceeding in a timely fashion. 
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Rcsults and Discussion 

For many years, geoscientists and engineers have undertaken research to characterize 
naturally fractured reservoirs. Geoscientists have focused on understanding the process of 
fracturing and the subsequent measurement and description of fracture characteristics. Engineers 
have concentrated on the fluid flow behavior in the fracture-porous media system and the 
development of models to predict the hydrocarbon production from these complex systems. This 
research attempts to integrate these two complementary views to develop a quantitative reservoir 
characterization methodology and flow performance model for naturally fractured reservoirs. 

During the current reporting period, research efforts have focused on relating seismic data 
to reservoir properties, deterrning fracture properties and interwell descriptors from well log data, 
developing vertical and horizontal naturally fractured wellbore models, and enhancing a naturally 
fractured reservoir simulator for use in making performance predictions. Details of the work 
conducted for the various research tasks are discussed in the following sections- 

Task I. Characterize Fractured Reservoir Systems 
Seismic studies offer the potentia1 to map fractured reservoir properties. However, 

exploration and exploitation of fractured reservoirs is difficult because of the poorly understood 
relationship between the fractured reservoir properties and the seismic response. Research 
conducted during this reporting period address this problem. 

First a variation on a conventional fracture-modeling theme was adapted to model the 
elastic properties of fractured reservoirs in terms of the fracture apertures. The advantage of this 
approach to the parameterization of fracture systems is that it ties the seismic response to the size 
of the fracture aperture controlling the flow through the reservoir. 

Next, the effect of saturation upon reservoir properties has been investigated via the 
published results of Brown and Korringa (1975). This portion of the study yielded some 
important predictions regarding the sensitivity of shear waves to the saturation of fractured 
reservoirs. When the anisotropy of the dry rock breaks certain anisotropic symmetries, the shear 
waves can become more sensitive to the saturation than P-waves when conducting surface 
seismic studies. This is a very important conclusion for both development and exploration 
efforts. 

In order to study the seismic reflection coefficient from fractured reservoirs, special 
software was developed to compute the reflection coefficient between two anisotropic media. 
This software provides the ability to model the reflection coefficient between any two anisotropic 
media. This software forms the foundation for the modeling and seismic interpretation involved 
in the project. A description of the algorithm used is given in this report. 

The reflection coefficient modeling software has been used to model two basic fracture 
models. The simplest model consisted of a single set of fractures. The second model considered 
consisted of two fracture systems that are not parallel. Although the occurrence of multiple 
fracture systems can complicate the seismic response, there are still some seismic indicators that 
can be used to infer the direction of maximum permeability. This is an encouraging result when 
faced with the presence of multiple fracture systems. 

Combining the results, a methodology has been developed for correlating the seismic 
response with available production data. In this way, the seismic response can, in principle, be 
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used to predict the production performancc of wells. The remaining problem is a more cvinylctc 
characterization of the tie between the fracture porosity, the number of fracture systems involved 
and the permeabiIity of the fracture system. At present the simplifying assumption is made that 
the fracture permeability is simply related to the fracture porosity via a fimctiona! relationship. 
Future work will expand upon this idea. 

There are admittedly, many other aspects of fractured reservoirs that still need to be 
addressed. For example, the fluid coupling between the matrix and the fracture system is poorly 
quantified and completeIy ignored in the work accomplished thus far. In addition, the, frequency- 
dependence of the seismic properties has not been addressed. However, the goal was to first 
accomplish a method of addressing the foundation of the problem. The approach chosen is not 
pretty and it makes many assumptions, but it can be used to give a solution. The long-term goal 
is to move toward the method that takes account of the frequency dependence and the coupling 
between the fi-actures and the matrix. 

Relating Fracture Permeability to Seismic Response. One of the problems using conventional 
fracture models in practice is the inability to validate the parameters used in the model. In this 
section, an approach is described for relating the seismic response to the production tests within 
the reservoir. The section begins by examining the weakness of conventional fracture models. 
Then a method is developed that parameterizes the fractures in terms of fracture aperture. 
Fracture aperture can be directly related to the flow through the reservoir as well as the seismic 
response. 

Popular fracture model parameters used to predict elastic properties include the aspect 
ratio and the fracture density. The validation of these parameters is extremely difficult even with 
the availability of core and modem logs. Another problem is the separate treatment of 
mechanical and flow properties. For example, one might suggest that the small aperture cracks 
control the elastic properties that are studied via seismic methods while the large aspect ratio 
cracks control the reservoir permeability. In reality, it is highly unlikely that the effective crack 
parameters controlling the elastic properties are the same as those controlling the flow. Admitting 
the likelihood, how do we proceed to verify both a mechanical and a flow model for the 
reservoir? It may be possible in a laboratory environment but it will be virtually impossible in a 
production environment. 

One way to get around the problem of verifying fracture models is to express both the 
elastic model and the permeability model in terms of compatible parameters- Implicit in this 
approach is the assumption that the sane set of cracks controls both the permeability and the 
elastic properties. This over-simplified approach can be expanded to account for filled cracks and 
un-connected cracks. Some discussion of this expansion will be given in the next section. 

For the purposes of this report, the simplifying assumption is made that all of the cracks 
present are connected. Contrary to popular thinking, the same fracture system is assumed to 
control both the permeability and the elastic properties. A simple crack model for the elastic 
properties is described below in terms of the crack porosity. Next, the product of the crack 
porosity times the aperture raised to the second power is shown to control the crack pemeability 
for a simple crack model. Combining seismic and flow measurements can be used to estimate the 
effective aperture and crack porosity for the reservoir. 

The elastic compliance of a fractured rock can be computed using averages of strains and 
stresses over a selected volume (Horri and Nemat-Nasser, 1983). For example, Oda et al. (1 984) 
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iised this approach to derive an espression Cor the compliance of a fractured rock. 'fhe basic idea 
is to assume that the average or effective strain measured on the surface of a volume is due to the 
average strain over the matrix material that contains the fractures and the average strain over the 
volume of the fractures. 

EM + 
,3 

...................................................................................................................... 1 

Eq. 1 can be rewritten in the following form (Horri and Nemat-Nasser, 1983). 

................................................... 2 - M -  c -  M -  
€J = s, tTk/ + s, O H  = s, O M  + - 

where S,, with superscript M is the compliance of the matrix without fractures and Sijk, with 
superscript C is the excess compliance due to the presence of the fractures. These compliances 
are the inverse of the elastic stiffness constants typically used in geophysical exploration. The 6's 
in the above expression are the components of the displacement discontinuities across the cracks 
and the xi's represent the distance across the crack in the i-th direction. The xi's can be written in 
the following form 

where A is the aperture of the fracture and n, is the i-th component (i=I,2,3) of the normal to the 
fracture. Writing the integral in Eq. 2 as a summation and combining with Eq. 3 yields the 
following relationship for the average excess strain due to the N cracks 

The excess strain associated with each crack is multiplied times the volume of the crack 
in a weighted sum. Assuming a particular shape for the cracks can be used to assign the crack 
volumes in the above expression. The displacement discontinuity across a crack can be assumed 
to have a simple linear relationship to the traction applied to the crack. 

Si = k p p j  ...................................................................................................................... 5 

The constant k, in Eq. 5 is related in some way to the physical properties of the crack. For 
example, one can assume that the constant is proportional to the diameter of the crack, 0, when 
using penny-shaped cracks (Oda et al., 1984). 

k,  = k,D ...................................................................................................................... 6 
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Substitution oi'Eqs. 5 and 6 into Eq. 4 yields the expression 

If the cracks all have the same orientation, the above expression simplifies to the following form. 

where 2 is the specific impedance. The excess compliance due to the cracks is (modified from 
Schoenberg and Douma, 1998). 

............................................................................. 

Using the above notation, the specific impedance 2 can be written in the form 

DA y Crack 

Z = k ,  ............................................................................................................ 10 
VTOtd  

where an average is implied inside the bracket. A crack geometry commonly used is the penny- 
shaped crack where the area of the crack is 

The volume of the crack is the area times the aperture A of the crack. The product of the number 
of cracks per unit volume times the average of the cubic diameter is often used in the crack 
literature and is given the name of fracture density (e). I f  we absorb the extra constants into k,, 
the specific compliance for a system of aligned penny-shaped cracks can be written in the form 

Z = k,e .................................................................................................................... 12 

where 

e = N,,,,, (D' ) .................................................................................................................... 13 

Hudson ( I  980, 198 1) uses the radius rather than the diameter in the above expression. Eq. 
9 can be used to get a crack density for different crack shapes. However, the constants invoIved 
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in  ”crack dcnsitics” vary as the crack model and geometry varies. As it rt‘sjtilt, the term “crack 
density” is somewhat misused in the literature and there is no uniform definition of the term. 

Another major problem with this popular parameter, crack density, is that it is difficult to 
directly verify or validate by any other means than the seismic response. Neither the number of 
cracks per unit volume or the average diameter of cracks can be readily verified with well control 
and/or core. Thus we are stuck with a theory that cannot easily be validated. Some other 
parameterization of fractures is required that can be used to tie the seismic properties to an 
observable quantity. Using the apertures of fractures is suggested below. 

Changing the Crack Parameter Used To Model Aperture. One of the problems with 
current fracture models described above is that they depend upon parameters that cannot easily 
be obtained by any method. Fracture parameters such as aspect ratio and diameter or even the 
number of fractures in a unit volume are extremely difficult to verify. Aperture is not very easily 
obtained either. Admittedly apertures can be measured in cores and for very large apertures, 
certain logs might be used. However, in all of these cases, one has to wonder about the scaling 
issues required to accurately predict the flow at the scale of the production, There are some real 
problems validating any model used to describe the seismic response. However, of the fiactwe 
parameters available, the fracture aperture is the most easily visualized as having some control 
upon the permeability. 

Now in order to focus upon the association of elastic properties with permeability, we 
look for ways to get the aperture into our modeling of the elastic properties. One way to 
accomplish this is to assume a simple linear relationship between the aperture (A) and the 
diameter (D) for a crack. This idea is not a new one. For example, Vermilye and Scholz (1995) 
studied such a relationship. Thus if the diameter is proportional to the aperture of a fracture, Eq. 
6 can be written in the form 

1 

k, = k , A  .................................................................................................................... 14 

where k3 absorbs the constant of proportionality between the aperture and the diameter in Eq. 6 .  
Eq. 8 is again obtained by using Eqs. 5 and 13 with Eq. 7 with 2 defined to be 

rather than as defined in Eq. 9. The crack porosity is simpIy the crack pore space divided by the 
total volume of rock being considered. Admittedly, at this point, it is not apparent that anything 
has been gained by this approach. This will be more apparent when we discuss the approach to 
modeling the permeability. At this point the degree of fracture anisotropy is related to the crack 
porosity. Crack porosity then determines the strength of the anisotropy determined via seismic. 

The permeability of a crack system, assuming’they are all connected and can be modeled 
as parallel plates, can be found by summing the flow along the various fractures. For a single set 
of paralle1 fractures, the following equation can be obtained from results published by Oda 
(1 985) or a number of petroleum engineering texts. 

k. .  =- A 2 4 ,  (6, - ninj >...................................................................................................................16 
r /  12 
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Note that the crack porosity also occurs in this expression for the permeability. If the 
crack porosity is determined by seismic studies, then a production test andor production data 
indicating the permeability k can be used to estimate the aperture (A) for the fractures involved. 
Since Eq. 16 is based upon simplifying assumptions, it has to be changed to the following form 
(Brown and Bruhn, 1998). 

k,  = A,424c (S, -n inj  ) ................................................................................................................... 17 

where the factor h varies from zero to 1/12 depending upon the crack porosity. It is the 
determination of this parameter that makes any correlation of crack porosity to crack 
permeability. However, if this parameter can be determined, the problem of connecting the 
seismic response to production data is solved. This issue will discussed in more detail later in the 
report. 

In summary of this section, fracture aperture is a more useful approach to describing the 
strength of a fracture because it leads to the crack porosity rather than crack density as the 
controlling factor for seismic anisotropy. Crack porosity is no easier to validate than crack 
density. However, since both the crack permeability and the seismic response depend upon the 
crack porosity, there is a natural relationship between the two measurements that can be utilized 
by combining seismic and production tests. This relationship will be emphasized later in a 
discussion on correlating seismic data with production tests. 

Predicting Saturation Effects Upon Seismic Response From Fractured Reservoirs. This 
section presents a discussion of the effects of saturation upon fractured reservoirs. Using the 
modeling concepts described in the previous section, elastic models for dry fractured rocks 
(referred to here as dry rock models) can be constructed. Once the dry rock properties are known, 
the classical results of Brown and Korringa (1 975) can be used to predict the effects of saturation 
upon the dry rock model, A brief review is given of Brown and Korringa’s results (1975) and a 
discussion of the implications follows. The results have some important implications for shear 
waves. 

Brown and Korringa (1975) generalized the Gassmann equation and extended it to the 
anisotropic problem using relationships between partial derivatives. Their results for the 
anisotropic problem led to the following formula for the effective (*) compliance. 

(s; -s;xs,” -s,M) 
[(K, - K + ~ + ( K ,  -KJ s$ -sik, = ........................................................................................ 18 

The S,, with superscript A represent the dry rock or “drained” compliance. The Sijkl with 
superscript M represent the compliance of the “solid” rock. A discussion of why “solid” is placed 
inside of quotes will be given below. In order to compute the terns with two indices (subscripts 
A or M), the corresponding S,, with superscript A or M are contracted (reduced from four to two 
indices) using the following rule. 
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s!* = s$& = s;;ik .................................................................................................................. 1% 
!I 

SI;” = S&S,, = S,, A .................................................................................................................. 19b 

Finally, the scalar terms represent further contractions to describe simple hydrostatic 
pressure experiments. 

t 

K ,  = SA. .................................................................................................................. 20a Cu 

A4 K ,  =s, .................................................................................................................. 20b 

= s; ......................................................................................................... 2oc 

The last term is not directly related to the “solid” (M) or the dry rock (A) properties. 
Instead, the last term is the relative change of the pore volume with respect to a change in pore 
fluid pressure (keeping the differential stress constant). If the “solid” is homogeneous, this term 
is expected to be equal to the contraction of the “solid” (M) compliance as indicated. In practice, 
rocks are inhomogeneous and the accuracy of this approximation should be challenged. 

The 9 in Eq. 17 refers to the connected porosity. Connected porosity transmits pore 
pressure and is a measure of the portion of porosity through which flow is controlled. If all of the 
porosity of a rock is connected, then the “solid” compliance represents the compliance of the 
solid minerals or grains from which the rock is constructed. If some of the porosity is 
unconnected, then the “solid” (M) compliance is the effective compliance of the mineral M n s  
and the unconnected pore space. In addition, if there filled cracks, they have to be treated as a 
part of the “solid.” This is why the term 4 c ~ ~ l i d ”  is put in quotes. 

As outlined above, in order to apply the results of Brown and Komnga (1975) to fluid 
saturation studies, the dry rock or drained compliance (superscipt A) has to be determined as well 
as the compliance of the “solid” (effective grain modulus). The drained property of a rock is 
really frequency dependent and depends upon the fluid present. This topic will be discussed in 
hture reports. For now, we assume that we can treat the drained and dry properties as being 
equal. The simple crack models described in the first section of the report can be used to model 
the dry or drained rock compliance. For the “solid” we can make the simplifying assumption that 
its compliance is equal to that of the mineral grains (ignoring for now any unconnected or filled 
cracks). For the purposes of the discussion given here, the pore space compliance is assumed 
equal to the solid compliance. This is equivalent to assuming homogeneity for the “solid.” Once 
the important solid factors, i.e., the dry rock and “solid” rock, for the Brown and Komnga (1 975) 
equation are determined, the remaining factor to be determined is the compressibility of the 
saturating fluid. Generally the assumption is made that the fluid is a homogeneous mixture with 
an effective modulus determined by Wood’s equation. However, patchy saturation is believed to 
modify the properties from those predicted using a homogeneous fluid. For the purposes of this 
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report a homogeneous iluid is assumed. The assumptions and ideas discussed above are used to 
point to specific predictions regarding the effects of saturation upon fractured reservoirs. 

Vertically Aligned Fractures. An examination is made of the saturation effects upon the 
elastic properties of a fractured reservoir with a tight matrix. The fractures are vertically aligned 
in one direction. The saturation effects are based upon the assumptions previously discussed. 
The term “tight” matrix is used to indicate that there is no porosity in the matrix. All of the 
“connected” porosity is assumed to be fracture porosity. In this case the dry rock (A) compliance 
can be written in the form. 

t 

sc = 

Buckgroutid C s:, = s,, + S, .................................................................................................................. 21a 

- - 
2 0 0 0 0 0  
0 0 0 0 0 0  
0 0 0 0 0 0  
0 0 0 0 0 0  
o o o o z o  
0 0 0 0 0 2  

23 ......................................................................................................... 

s& =s/$ +siu .................................................................................................................. 21b 

where superscript C is the estimated excess compliance due to the fractures and superscript M is 
assumed here to be the solid mineral from which the matrix is constructed. The compliance with 
superscript C can be estimated using the results described earlier for fractures. In this way an 
estimate of the dry rock compliance is obtained. 

Eq. 18 equates the effective compliance to the dry rock compliance with a correction term 
for any fluid present in the connected pores. Substituting Eq. 21 leads to a fluid correction term 
in the form 

fluid - correction - term = - &E> ................................................................ 22 I(& -K+b+(Iy,  -K,)J 

This is an important result. It predicts that any saturation effects in a fractured reservoir with a 
tight matrix depend entirely upon the excess compliance due to the fractures. 

Now assume that a single set of aligned fractures exists with their normal pointed along 
the XI axis. The excess crack compliance for this system can be written in the 6 by 6 Voigt 
matrix form (e-g., Schoenberg and Sayers, 1995), 

where Z is the specific compliance of the crack system. 
The compliance in Eq. 23 therefore controls the effect of saturation upon the propagation 

through this simple fractured reservoir. A closer look at this expression gives us a clear picture of 
how saturation affects the tight matrix fractured reservoir being considered here. Because of the 
way in which the contraction process used in Brown and Korringa’s (1975) equation takes place, 
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thc upper left-hand quadrant of the crack compliancc controls the ef'f'ect of saturation upon 1'- 
waves. The upper right-hand and/or the lower left-hand quadrants (because of symmetry) control 
the effect of saturation upon S-waves. This allows certain predictions to be made from the form 
of the excess crack compliance in Eq. 23. 

~ 1st Saturation Example: The compliance 
Tight matrix /-- Components 
(same as ccsolid'') 

Only this 
term will have 
a non-zero numerator 
in the expression 
for the compliance 

in this box 
control P-wave 
saturation effects 

E O  ....+..*..*.I... 0 0: 0 0 Z ]  Thecompliance 
components 

due to fluid saturation 

controls P-wave 

cracks. 

.._. 

Perpendicular to saturation effects 

c 

As can be seen in the figure above, only one element of the portion of the compliance 
governing the effect of saturation upon P-waves (upper left hand quadrant) is non-zero. This 
element controls the P-wave velocity perpendicular to the cracks. Thus if we are interested in 
detecting fluid saturation effects with P-waves in a system of vertically aligned cracks, we must 
have long offset P-waves using surface seismic techniques or we can use crosswell signals in 
order to attempt to detect the saturation effect perpendicular to the fractures. 

Another prediction that can be made from the excess crack compliance concerns the S -  
waves. Since the quadrants that control the effects of saturation upon S-waves are zero, a 
classical result is predicted: S-waves are not sensitive to the saturation. In summary of the tight 
matrix example considered here, two important results have been pointed out. First, P-waves are 
not sensitive to the saturation of a fractured reservoir with a single set of aligned fractures unless 
the waves are traveling nearly perpendicular to the fractures. Second, S-waves are not sensitive 
to the saturation. 

Assymmetric Fractures. The nice aspect of Brown and Korringa's (1 975) extension of 
Gassmm's results is that the shear components are predicted, not assumed. In the previous 
example, the fact that S-waves are not sensitive to saturation was predicted directly. As pointed 
out, when the upper right and lower left quadrants of the excess crack compliance are zero (for a 
tight matrix), S-waves are not sensitive to saturation. It is the symmetry (or lack of it) of the dry 
rock that controls the effect of saturation upon S-waves. The symmetry of a system of vertically 
aligned fractures is responsible for the vanishing elements that control the effects of saturation 
upon S-waves. 
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What type of fracture system will introduce non-zero terms into the quadrants of thc 
excess crack compliance that control the effect of saturation upon S-waves? The answer is 
simple, one that will break the symmetry of the aligned fracture system described. In other 
words, a fracture system that introduces non-zero terms into the S-wave quadrants will cause the 
S-waves to be sensitive to the saturation of a fractured reservoir. 

In the picture below, two types of fracture systems are illustrated that can break the 
symmetry of the vertical system of cracks first discussed. One of the systems of cracks is simply 
tilted away from the vertical. The other is a rough crack. The rough crack can be mpdeled as a 
crack tilted away from the vertical. Both of these fracture models introduce a dry rock anisotropy 
that makes the S-wave sensitive to the saturation of the reservoir. This is an important result 
because it means that S-waves can potentially be used in fractured reservoirs to monitor the 
saturation of the reservoir. 

To compliment the above picture for S-waves, Hake et al. (1998) describes an example 
where an S-wave splitting anomaly was associated with the gas cap for a reservoir. Thus, 
contrary to the thinking of many people, S-waves can be sensitive to the presence of fluids within 
fractured reservoirs. 

In summary, the problem of saturation for fractured reservoirs depends upon the 
properties of the dry rock and the “solidt” In particular, it is the symmetry of the elements that 
controls the effect of saturation. Greater symmetry introduces more zeroes into the compliance 
matrix. An intuitive explanation of why the symmetry plays a role is that when the symmetry is 
broken, shear stresses applied to the rock act to apply both a normal and a tangential component 
of force or traction on the surfaces of the cracks. It is the normal component of the traction that is 
sensitive to the presence of the fluid. When the symmetry is not broken, and the appropriate 
quadrants in the excess crack compliance are zero, the traction applied to the cracks is primarily 
tangential and the presence of the fluid is not felt by the S-waves. This means that S-waves can 
be used to monitor saturation in fractured rocks previously thought to be insensitive to the 
presence of the saturating fluids and opens up a new avenue of exploration and development 
work. It means that S-wave “bright spots”, Le., anomalies of increased S-wave splitting, can 
potentially be used for exploration in the same way that gas bright spots have been used in areas 
such as the Gulf of Mexico. The advantage here is that the “bright spots” are in older and mature 
rocks such as those found in many of the major gas plays throughout the onshore in the USA. 
Specifically, this technology should apply to the midcontinent areas such as Oklahoma. 
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Seiswric Rrflectioir Coeflicieiots Bet~ureir Anisotropic iVledi(i. Now the methods dcscri bed can be 
used for predicting the dry rock and saturated elastic properties of fractured reservoirs. In 
addition, since aperture is the foundation for our models, permeability and the seismic response 
are linked via the crack porosity. Now we need to evaluate the seismic response to fracture 
models using the above ideas. One important aspect of the seismic signal is the reflection from 
the fractured reservoir. In this section the algorithm used for computing the reflection coefficient 
between two anisotropic media is described. 

Much of the theoretical foundation for the algorithm described here can found in the 
paper by (Rokhlin, 1986). However, the details of the computational procedures used by 
Rokhlin are not described in his paper. This section emphasizes some of the computational 
details. 

In order to consider the reflection problem for anisotropic media, Rokhlin (1986) 
emphasizes the following important features of anisotropic wave propagation that distinguish it 
from isotropic wave propagation. 

1) For an arbitrarily selected direction in an anisotropic material, the propagation of 
three different elastic wave is possible - a quasi-P wave and two quasi-SV waves. For 
special directions called acoustic axes, the velocities of two quasi-SV waves coincide. 

2) The polarization for each of the waves is uniquely determined by the direction of 
wave propagation. Only for propagation along acoustic axes can the SV wave be 
arbitrarily polarized as in an isotropic material. 

3) Each of the waves has different phase and ray velocities. The ray velocity is greater 
than or equal to phase velocity and its direction does not coincide with the wave 
normal. 

The Reflection Coefficient Problem. A plane wave is assumed to be incident upon a 
boundary between two general anisotropic media at a specific angle measured from the normal to 
the surface of the interface. The components of particle displacement can be expressed as: 

ik (n-r-m) 
Uk AP,e- ................................................................................................................... .24 

where u, is a component of the displacement vector, A is the amplitude factor of the wave, P, is 
the component of polarization vector, K = Kn = (o/v)n is the vector wave number, V = Vn is the 
phase velocity, n is the unit vector perpendicular to the plane wave fxont, and r is the position 
vector to the point of observation. 

A 5-step algorithm is described below for numerically calculating the reflection and 
transmission coefficients given the elastic properties of the incident and reflecting media. Here 
these media are assumed to have a general anisotropy. 

Step 1: Calculate the phase velocity of the incident wave 
The assumed direction of the incident plane wave is used to compute the components n, 

(i=l,2,3) of the normal to the wavefront, The Christoffel equation (Rokhlin, 1986) for general 
anisotropic case can be expressed in the summation-notation form. 

det(oJk,njn, - V 2 & ) =  O;i, j, k, 1= 1,2,3 ...................................................................................... 25 
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where V is the unknown phase velocity of thc incidence wave, and the allL, = cijL, /p rcpresent the 
elastic moduli (in tensor form) divided by the density. Thus, for a given wave direction (phase 
angle), the phase velocity can be obtained numericaily from solving the equation (2) which is 
basicalIy a cubic polynomial in the unkown phase velocity squared (V’). Some simplifying 
notation is introduced below so that the method for computing the coefficients of the cubic 
polynomial are more easily understood. 

1 .  Set (Bik) = (qjklnjn,), (i, j, k, 1 = 1,2, 3), then 
2. Expand Eq. 25 into the cubic polynomial form C 

3 3  
Bik = ~ ~ a g u n j n l  ............................................................................................................. 26 

j=1 I = 1  

C, +C,yZ +C2 ( Y 2 ) 2  +C3(Y2)3  = 0 ................................................................................ 27 

3. Solve for the phase velocity V of the incident wave fi-om the cubic polyniomial (Eq. 
27) using the following coefficients for the polynomial. 

...................... 28 

Given the phase velocity and nonnal to the incident wave front, the slowness vector 
(wave normal divided by the phase velocity) of the incident wave can be computed. The 
slowness vector of the incident wave is used below to find the slowness vectors of all the 
reflected and refracted waves. These slowness vectors represent the phase directions. The energy 
or ray directions have to be computed using methods to be described later. 

Step 2: Calculate the 3 reflected and 3 transmitted slowness vectors 
Given the incident slowness vector, the slowness vectors of the reflected and transmitted 

waves have to be determined. By requiring that all waves be in phase at the reflecting interface, a 
forrn of Snell’s law can be obtained that requires that the component of the slowness along the 
interface be the sarne for all waves. Since the incident wave slowness is known, the component 
of the incident wave slowness is therefore equal to the component of all other waves reflected 
and refracted from the surface. 

The assumption is made here that the reflecting interface is in the xbx2 plane. The 
nonnal to the interface is the x3 coordinate. Using this coordinate system, the vector slowness of 
a wave is described by the components m,, m2, m3. The m, and m, components of the slowness 
will be the same for all reflected and transmitted waves (Snell’s law). Our only problem is to find 
the m3 component of all of the waves. This is accomplished by using the known ml and m2 
components in a modified form of the Christoffel equation. 
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A = det ( L , , , ~ ~  I ~ z , ,  rn /  - b.,k ) = 0 ............................................................................................................ .29 

A sixth order polynomial has to be solved in this case. The six solutions represent six 
wave types. When the upper medium elastic properties are used in Eq. 29, only upgoing 
(reflected) waves are selected from the six possible solutions. When the lower medium elastic 
properties are used in Eq. 29, only the downgoing (refracted) waves are selected from the 
possible solutions. The reflected waves in the upper medium are numbered 1-3 while the 
transmitted waves are numbered 4-6. Both the upgoing and downgoing waves are placed in order 
of speed. In most cases studied, this will place the P-wave first. So, for example, m’ will indicate 
the slowness for the quasi-P wave, m2 the slowness for the fastest quasi4 wave and rn3 the 
slowness for the slowest quasi-S wave. In a like manner, m4 will be the refracted quasi-P wave 
and the S-waves arranged in decreasing velocity order as for the reflected waves. This simplistic 
view is used in order to clarify elements of the presentation. The issue of assigning an identity to 
the waves requires more explanation than can be given in this report. 

The third components m; (i = 1, ... 6) of the slowness vectors are the unknowns in the 
sixth-order polynomial (another form of the Christoffel equation) that can be obtained from Eq. 
29. The process used is to first calculate the coefficients of the sixth order polynomial 
represented in Eq. 29 and then solve this polynomial using readily available polynomial solving 
software. 

To create the sixth order polynomial, the following steps are proposed. 
1. Calculate the coefficients for quadratic polynomials that make up the determinate 

matrix in Eq. 29. First, note that each element of the matrix whose determinant is being evaluated 
in Eq. 29 can be written in the form of a polynomial. Using indices for the coefficients of the 
polynomials, each term in the matrix can be written in the following quadratic form (right hand 
side of equation). 

(aijk,rnjmI + &) =(Cikm: +D,m, +E& (i, k = 1, 2, 3) .................................................................... 30 

In order to build these polynomials, first calculate the Cik, Dik, and E, (3x3) matrices (of 
coefficients). This notation effectively collects the parameters of the different power of m3. The 
coefficients are computed using the following relations. 

C i k  = ai3x-3 .................................................................................................................. 3 l a  

D, = (ailk3 + ai3k, )m, + (aizk3 + ai3k2 )m2 ................................................................................... 3 1 b 

2 2 E,  = (ailk2 + a i 2 k l ) m l m ,  +ai lk ,m,  +ai2k2m2 +6, ..................................................................... 3 1 ~  

2. Next, expand Eq. 29 which can be written as Eq. 32 after the computation of the 
quadratic coefficients, Cik, Dik, and Eik. 
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The expansion of Eq. 32 is algebraically very complicated. To simplify the process of expanding 
the above determinant, a procedure is used to divide and conquer the expansion. First expand the 
determinant in the following form: t 

............................... * .................................................. 33 A = A(') +A( , )  + A ( , )  +A(4)  +A(s)  +A(6)  = o  

where 

A(') = (c,,m: -+ ~ , , m ,  +E,,  ) ( ~ ~ ~ m :  + ~ , , m ,  +E,, xC,,m: + ~~~m~ +E,, )...............................34a 

A(3)  = (C3,mi + O3,m3 +E3 ,  )(C2,nz: -t- D2,m, +E2 ,  1C32m: + D32m3 -I- Ej2  )..............................34~ 

= (C,,mi +D3,m, +E,, X-C,,m: -D2,m3 -E,,XC,,rn: +D13m3 + E l 3 )  ............................ 34d 

A(6)  = (C,,,mi +- D,,m3 + E,, )(C,,M: +- D,2m3 + E,, X-C,,mi - D,,m3 -E3, ) ........................... 34e 

Notice that each element A(') (i = 1, 2,. . *, 6 )  is a sixth order polynomial. Each can be expanded 
into a general sixth polynomial form. The notation used is as follows: 

The F, represent the polynomial coefficients used in Eq. 34 and the Gi are given below: 
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G:') = 6 I F23 F31 + F', F2, F3, + F, Fzz F7, + F1 I FZz F32 + F, FZ1 FJ2 + Fl I F,, F3) ........................... .36e 

G;" = 6 I Fzz F3, + FI2 F2,F3, + Fi,F2,Fj ,  ..................................................................................... 36f 

G:') = F,,F,,F', .................................................................................................................. 36g 
t 

3 .  Finally, collecting the coefficients for the different powers of m, in the A('% from Eq. 
33, the sixth order equation in m3 can be expressed as: 

i=l i=I i=l i=l i=l i=l 

which can be solved for the six values of rn3 (vertical component of slowness) from the sixth 
order polynomial function in Eq. 37, However, only the physical solutions (usually three out of 
the six) are used. These are the solutions that satisfy the condition of energy flow in the right 
direction. 

The above procedure must be carried out twice, once for the incident medium and the 
second time for the refracting medium, Assuming an incident wave propagating downward onto 
an interface, the energy flow for the three reflected slowness vectors should direct into the upper 
medium (with positive signs). The three transmitted waves should have energy pointed down 
into the lower medium (with negative signs). At the critical angle the appropriate ray (or energy 
flow vector) must be parallel to the interface (Henneke, 1972). After the above procedure has 
been used to compute vector slowness for each of the reflected and transmitted waves, the 
direction and phase velocity of the individual waves can be determined. Once these are known, 
the polarization of each of the waves needs to be determined. 

Step 3: Calculate the polarization of each wave 
In each direction for the reflected and transmitted waves (defined by slowness vector) n = 

dlrnl, three polarization vectors can be evaluated (one quasi-f and two quasi-transverse) 
corresponding to the three slowness vectors of the different wave modes in that particular 
direction. This extra work is not necessary for the quasi-P waves since there is seldom a problem 
with the polarity of quasi-P waves except for certain exceptional types of anisotropy. However, 
the extra work is desirable for the quasi-S wave polarizations since the polarization of the quasi- 
P wave can be used as a reference. These ideas will be expanded below. 

If a reflected or transmitted slowness vector m have been determined, the polarization of 
that wave mode can be calculated by determining eigenvectors from the following equation 
(similar to Eq. 29). 

(aijwmjm, -6jk = 0 .................................................................................................................... 38 

where the mj are the components of a slowness vector, qjkl = cjjkr /p (cijkl: elastic constant; p: 
density), P, is the polarization vector corresponding to the input slowness. 
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,. 1 he procedure used for calculating a polarization vector is as follo~vs: 
1. Compute the eigenvalue matrix. 

Set (Hik) = (aijktmjm,-6ik), (i, j ,  k, 1 = I ,  2. 3), then 

2. Compute the polarization component value. 

3 3  

H~~ = C aJkimjmi - sik .................................................................................................. 39 
j=I I=1 

Eq. 38 usually has two non-zero eigenvalues. This means that it has two non-linear 
equations that can be used for calculating polarization components. The third equation comes 
fiom the normalization of the polarization: ZP; = 1. Suppose the ith andjth (i, j c [ I?  2,3]; i # j )  
equations of Eq. 38 are non-linear (in the sense of vectors), then the equations chosen for 
computing the polarization vector are as follows. 

Hi,  4 + Hi2 Pz + H ,  P = 0 ............................................................................................................ 40a 

H .  P + H .  P + N,P = 0 ............................................................................................................ 40b 
I1 1 r2 2 

< 2  + P-'* + P32 = 1 .................................................................................................................. 4 0 ~  

The absolute value of the polarization components can be solved explicitly. 

41a 1 .................................................................................................................. 

.................................................................................................................. 41b 

.................................................................................................................. 41c 

where 

A, = ............................................................................................................... 42a 

42b A,  = .............................................................................................................. H j l  H ,  - Hi, H j 3  

ui3 j 2  - j 3  
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rI’he selection of the proper equations in Eq. 40 requires the equation-selection process 
described earlier (basically pivoting) to avoid numerical problems. The resulting solution (Eq. 
41) can be applied to directly compute the polarization vectors providing all wave phase 
velocities are different in the wave propagation direction. However, in some cases when the two 
transverse wave velocities coincide, three independent equations cannot be found and the 
solution can not be used for calculation of the polarization vector. Wave directions with this 
property are called acoustic axes, and the polarization vector of the quasi-transverse wave may 
not be uniquely determined. The quasi-S wave polarization in this case may have any direction in 
the plane perpendicular to the displacement direction of the quasi-P wave. 

In this situation, the desired displacement of the quasi-S wave has to satisfy only one 
condition: it must lie in the plane whose normal coincides with the displacement of the quasi-P 
wave. A rule was chosen to find the polarization vectors for the two quasi-S waves when this 
situation developed. The rule is based upon the assumption that the three polarization vectors 
(one quasi-P and two quasi-S) for a specific direction of propagation must be orthogonal to each 
other. Using this assumption, the following procedure was used. 

1. Find the quasi-P wave polarization P@) along the direction of quasi-transverse slowness 
rn by solving Eq. 40 for the quasi-P wave. 

2. Set one quasi-transverse wave polarization Pes') orthogonal to P(p) (parallel to the XY 
plane). 

- p p  
P,(”’) = .......................................................................................................... 43a 

(PI  2 (P) 2 J(4 ) +(P2 1 

.43 ’0 .......................................................................................................... p2(sl) = <(PI  

J(p)2 3. 

.................................................................................................................. 43c 

3. Find the other quasi-transverse wave polarization P(s2) by letting it be orthogonal to 
both P@) and P(”) (perpendicular to the XY plane). 

p’J0p;P) p = ...................................................... 44a 

p y )  = - P,(”’)eP) ..................................................... .44b 
(pz(sl)p,(P))2 + ( 4 ” p ” P ’ ) 2  + (451p2’P’ - pslp(P))? 

2 1  
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Step 4: Selecting the sign for the polarization components 
The numerical solution of the direction cosines associated with the polarity P, does not 

indicate that the numerical solution points in the direction that obeys conventions used in the 
literature. The correct signs must be selected for defining the polarization direction according to 
following rules: 

1. For the reflected and transmitted quasi-P waves, the positive polarization direction is 
selected such that the dot product of the P (polarization vector) and m (slowness vector) is 
positive . c 

P-m>O ................................................................................................................... .45 

2. For the reflected and transmitted quasi-transverse wave, the normal vector N to the 
incidence plane has to be found first. Then, the positive polarization direction is defined such that 
the dot product of P and N is positive. 

P.N>O 

N = m x n  

................................................................................................................. .46a 

................................................................................................................. .46b 

where n is the unit vector noma1 to boundary plane (2 = 0). 
In summary, for reflected and transmitted waves, we have to in general compute the 

polarization of all three wave types in the directions of the reflected waves in order to handle 
problems with acoustic axes where the quasi3 polarity can be anywhere in a plane. 

Step 5: Calculate reflection and transmission coefficients 
Assuming an incident wave with unit amplitude, the boundary conditions of continuity 

of displacement and stress across the interface can be written in the form of six linear algebraic 
equations for the reflection and transmission coefficients. 

6 eo +xR 'P , '  = 0;i = 1,2,3 .......................................................................................................... 47a 
V=l  

6 
0 0  P,  + R"C m;<' = 0; i = 1,2,3 ................................................................................. 47b J 3 M  

v=l 

where Pi are the polarization components and mi the slowness components. R" stands for a 
reflection or a transmission coefficients depending on the integral value of v between I - 6,  with 
the meaning: v = 0 - incidence wave; v = 1 - reflected quasi-P wave; v = 2 - reflected quasi-S 
wave 1; v = 3 - reflected quasi-S wave 2; v = 4 - transmitted quasi-P wave; v = 5 - transmitted 
quasi-SV wave I ;  v = 6 - reflected quasi-S wave 2. Cvj,,, is the elastic constant of incident 
medium (if v = 0, 1,2,3), or reflecting medium (if v = 4, 5,6). 

Following is the detailed procedure to build the six linear equations in matrix form. 
Set 
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(IlnO + I,,,,,R,,) = 0; (m, n= 1,2,. . .,6) ................................................................................................... 48 

equivalent to Eq. 47, then 

I,,,, = ; m = 1,2,3; n = 0,1,2,3 .................................................................................................... 49a 

I,, = -Pnnr ; = 1,2,3; n = 4,5,6 .................................................................................................... 49b 
c 

i=l k=l  

3 3  
m P .. m = 4,5,6; n = 0,1,2,3 ...................................................................... 49d 'nvi = -c ';:!3)3ki nk III J 

i=l k=1 

I 

The six reflection and transmission coefficients can be obtained from solving the six linear 
equations (Eq. 48) with every component expressed explicitly in Eq. 49 

The last quantity calculated for the reflected and transmitted waves is the energy flux 
vector. The energy flux E is a vector having the direction of maximum energy flow at a point 
with a magnitude equal to the mount of energy flowing per unit area perpendicular to E. The 
energy flux E and can be expressed as: 

Ei =o8Zij .................................................................................................................... SO 

A FORTRAN90 subroutine has been written to calculate the reflectiodtransrnission 
coefficients quasi-P wave and quasi4 waves when provided a incident angle (and the wave 
mode) upon a boundary between two anisotropic media. The energy-flux vector is used for 
checking to verify conservation of energy for the reflection and transmission coefficients. It is 
also used to verify critical refraction (horizontal propagation of energy). 

In summary, the algorithm described here and the associated software can be used to 
compute reflection and transmission coefficients between general types of anisotropic media. 
This will be especially useful in circumstances when the beds containing the fractures are 
dipping and/or multiple fracture systems are present. AVO methods cannot be accomplished 
without the benefit of a general reflection coefficient algorithm such as that described in this 
report. 

AVO Studies of Two Simple Fracture Models. Now the methods described can be used for 
predicting the dry rock and saturated elastic properties of fractured reservoirs. In addition, since 
aperture is the foundation for our models, permeability and the seismic response are linked via 
the crack porosity. Now we need to evaluate the seismic response to fracture models using the 
proposed ideas. One important aspect of the seismic signal is the reflection from the fractured 
reservoir. In this section the algorithm used for computing the reflection coefficient between two 
anisotropic media is described. 

A review is given on studies of simple fracture systems in order to investigate the 
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complexity introduced by ~nultiple lkacture systems. One of the problem hciiig modern seismic 
exploration is the use of P-wave AVO analysis for characterizing fractured reservoirs. Cores and 
well logs offer methods of describing fractures but these approaches often suffer from scale 
effects. The seismic method offers the best approach to characterizing the reservoir at 
approximately the same scale as that required for predicting reservoir properties. 

Since the elastic (seismic) problem is our only concern here, the popular concept of 
fiactwe density is used in the model as the controlling factor for the fracture compliance. In 
addition, the assumption will be used that the excess compliance due to different crack sets can 
be added. 

The emphasis then is an examination of the azimuthal AVO effects of two fi-actured 
models using the general-anisotropic reflection coefficient program developed during this 
project. Model 1 is designed containing a single vertical fracture set and Model 2 contains two 
fi-acture sets with different orientations. The interesting result here is that the single fracture set 
model presents a stronger azimuthal variation in the AVO- A number of problems are identified 
with the interpretation of multiple fracture sets. 

One useful approach in the geophysical literature for describing crack models is via the 
use of crack or fracture "sets" (e.g., Schoenberg and Sayers, 1995). Each set is a number of 
parallel cracks that all have the same normal. The results of each crack set (compliance or 
permeability) is then simply added (neglecting any interaction) as if the results were additive. 
This approach offers a simple solution that can easily be used in an exploration and development 
environment. 

The excess compliance for cracks can be written in the form (modified from Schoenberg 
and Sayers, 1995 and Oda, 1983) 

z 
4 

s;, = -[6!]nknj +6,ka,nj +8jrn,nj +&jknlni]  ..................................... . ............................ -..- ..... -51 

where 2 is the specific crack impedance described earlier. In the models presented here, the 
specific crack impedance is chosen to give values in agreement with those presented by Hudson 
(1980, 1981) where Z is expressed as being proportional to the crack density (e). As a reminder, 
the crack density (e) is the number of cracks per unit volume multiplied times the diameter (D) 
cubed. 

Two models of fractured reservoirs have been set up for a synthetic azimuthal AVO 
study. The matrix material of the reservoir is assumed to be a carbonate (calcite) with 10% 
porosity, and the overlying seal layer is shale. Both incident and transmitted layers are assumed 
isotropic before fracture sets are added to the models. Table 1 lists the petrophysical parameters 
used as the background infomation of the models. All these parameters are set within the range 
of the lithology based upon laboratory measurements and empirical relationships between V,, V, 
and p (Castagna, et. al., 1993). 

All fracture sets are assumed vertical while the horizontal reflection surfaces are 
in the (X,-X,) pIane. Model 1 is assumed to contain one set of fractures with an azimuth of 0" 
(normals along the direction of X, axis pointing east). Model 2 is a set having two sets of 
fractures at azimuths of 0" and 60". Figures la  and lb  show the X,Xz-plane sketches of Models 1 
and 2. The crack density of the fracture set in Model 1 is set equal to 0.1. For the purpose of 
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comparison study, the total crack density in model 2 is also set as 0.1, with the crack density of 
each fracture set equal to 0.05. Table 2 lists all the fracture information described above. 

X; 

T I 

Figure 1 a. X,X,-plane sketch of single fracture orientation in Model I. 

t 

Figure lb. X,X,-plane sketch of model with the two-fracture system used in Model 2 
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Table 1. Model Matrix Information 

Parameter Reservoir Matrix 
vp,  I d s  5877 
vs, m/s 3039 

Density, g/cc 2.44 
Porosity IO% 

Overiying Shale 
3700 
1982 
2.41 

Table 2. Model Fracture Information 

Model Fracture Set Crack Density Azimuthal Angle 
1 1 0.10 0 
2 1 0.05 0 
2 I 2 0.05 60 

Dip Angle 
90 
90 
90 

For the purposes of this study an incident P-wave is assumed. The three expected 
reflections are a quasi-P wave (PP), a quasi-in-plane4 wave (PSI), and a quasi-out-plane-S wave 
(PSO). The incident phase angle for the study is set to range from 0" to 45". The azimuthal AVO 
is observed at four different azimuth angles, O", 30", 60"and go", respectively. According to 
Hudson ( I  980, 198 11, one vertical set of the fractures can introduce transverse isotropy with a 
horizontal symmetry axis (HTI), while multiple sets of fractures cause an arbitrary anisotropy. 

Figures 2 and 3 show the exact azimuthal PP reflection from Models I and 2, 
respectively. First of all, comparing these two figures, there are only slight differences in the 
normal-incidence PP reflection coefficients, showing that the total crack density may be the only 
key factor related to fiactures that influences the zero-offset PP reflections. 

Secondly, the azimuthal variations of the PP reflection can be only clearly observed of 
the models when the incident angle is greater than 25". Note, however, that Model 1 (with only 
one fracture set) shows more azimuthal AVO variation than Model 2 (with 2 fracture sets). It is 
also noticed that, in Figure 3, the azimuth 0" AVO curve is identical to the azimuth 60" AVO 
curve. At these two azimuths, the incident plane happens to be along the orientation direction of 
one of the fracture sets. The P-wave sees the sme  fractured property because the two fracture 
sets are the same assumed with the model. This can potentially be a usefbl means of identifying 
separate fracture sets. 
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Figure 2. Azimuthal P-wave reflection coefficients for Model 1. 
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Figure 3. Azimuthal P-wave reflection coefficients for Model 2. 

Figures 4 and 5 show the out-of-plane shear reflection coefficients for Models 1 and 2, 
respectively. Compared with Figure 2 and 3, the azimuthal variation of the converted PS 
reflections is much more sensitive to fractures than PP reflections. Even for small angles of 
incidence, Figures 4 and 5 show a more salient azimuthal AVO variation for both Models 1 and 
2. 
Also, the normal incidence reflection coefficients are always zero for all quasi4 waves because 
all the fi-acture sets are vertical. In other words, there is no converted shear wave when the P- 
wave is normally incident and the axis of symmetry for the anisotropy is vertical. 

In Figure 4 for Model 1, notice that the reflected amplitudes for azimuths of 0" and 90" 
are zero. With only one set of vertical fractures at an azimuth of O", the reservoir model can be 
treated as an HTI medium (Hudson ,1480, 1981). This modeling work shows that shear wave 
reflection may be useful in finding the orientation of the fracture set under the restrictive 
condition that only one fracture system exists. 

In Figure 5 for Model 2, a zero-reflection curve is also observed. This reflection curve 
happens at the azimuthal 30", which is right on the dividing line between the azimuths of 0" and 
60" for the two fracture systems present. Notice aiso that the two reflection curves for the 
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azimuths of 0” and 60” show up as mirror images of each other corresponding to the curvt‘ at a n  
azimuth of 30”. 

These observations indicate that the 30” azimuth plane acts as a symmetry plane. 
However, it is not parallel or perpendicular to any of the fracture sets present. In this multiple 
fracture model, the plane with an azimuth of 30” can be misinterpreted as an “apparent” or 
“effective” orientation of a single fracture set. 
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Figure 4. Azimuthal out-of-plane component S-wave reflection coefficients for Model 1 . 
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Figure 5 .  Azimuthal out-of-plane relection coefficients for Model 2. 

Figures 6 and 7 show the quasi in-plane shear reflections for Models 1 and 2, 
respectively. Once again, as with the out-of-plane S-wave, the in-plane S-wave reflection curves 
show strong azimuthal variations for fxacture models under small incidence angle conditions. 
Even more, the azimuthal AVO are both larger than those of the out-of-plane S-wave curves 
(compare to Figures 4 and 5). Another observation is that the azimuthal variation of the AVO 
from the single fracture set model (Model I )  is larger than those of two fracture set model 
(Model 2). 
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Figure 7. Azimuthal variation of in-plane S-wave reflection coefficients for Model 2. 

The azimuthal variation of the converted PS reflections is more sensitive to fractures than 
the PP reflections. The studies presented here indicate that under small incident angle conditions, 
S-wave reflection curves still show a distinct azimuthal AVO. However, the azimuthal variations 
of the PP reflection due to fiactures can only be clearly observed when incidence angles are large 
(>25" in this synthetic study). This means that converted S waves are clearly the exploratory tool 
of choice if all other factors are equal. 

It is also found that when comparing two models with the same total crack density the 
model containing a single fracture set presents the largest variation on azimuthal AVO. Multiple 
fracture sets tends to weaken the azimuthal anisotropic effects. With large offset data, the large 
azimuthal variation in P-wave reflections may indicate the existence of fiacture zones. Large 
azimuthal variations in P-AVO are an indication of a single fi-acture system. The question 
remains as to how to interpret this information in a quantitative mode. 

The out-plane S-wave azimuthal AVO can be used to find any vertical symmetry planes 
that may indicate an orientation direction of one fracture set. However, the symmetry plane, 
under particular situations, may not directly be related to any orientation directions of the 
fracture sets. Theoretically, in a fractured area, if there is no IPS reflection at the normal incident 
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angle, the fracture sets should be vertical to the retlection boundary. I n  conclusion, the AVO 
modeling using the reflection coefficient program has provided a great deal of insight into how to 
seismicaIIy probe fractured reservoirs. 

Refuting The Seismic Response To Prucicrction. In an earlier discussion of an aperture-based 
approach to fractures, a Z factor, a specific compliance factor, was found that depends upon the 
crack porosity rather than the more conventional crack density. Although neither crack density 
nor crack porosity are easy to validate or observe with well control, crack porosity (9,) has the 
distinct advantage of being one of the terms that controls both the permeability and the elastic 
porosity as shown below. 

ku = AA2q5c (Sij - ninj ................................................-........-................................................................................52 ) 

s.. c =- k34c (njn,6,  -+ njnkS, + njn,S, + njn,S,)  ......................................................................................... 53 I/w 4 

Since production tests and/or production histories provide estimates of permeability, the 
product of the aperture squared times the crack porosity times an unknown multiplicative factor 
(A) can be obtained from such tests (hA2$,). It is a difficult task to determine either the actual 
crack porosity or the aperture required for this product using logs or cores. The unknown 
multiplicative factor (A) has prevented any successful effort to tie porosity to permeability. 

Seismic studies near the same well can produce information on the specific compliance 
(k3(+) of the crack system (assuming a single fracture system for the discussion). If a specific 
model for the crack is used (e.g., Hudson, 1980, 1981), the value of k, is known. Thus seismic 
studies can yield the crack porosity when the value of k, is known. However, there are a number 
of assumptions used when dealing with ideal crack models that may not apply to the problem 
being studied. This complicates matters even more because both h and k3 are unknown. In this 
case some way of calibrating both of these important constants has to be found. 

If the above constants are unknown, some known environment has to be used for 
calibration. For example, suppose that a well is available with seismic and that well tests have 
been conducted to determine the permeability. If the well is producing from a “sweet spot” with 
incredible production, it is probably safe to assume under this circumstance that the h factor for 
the permeability is equal to 1/12 (the maximum value assuming excellent connectivity and flow 
through the fractures). The measured permeability then places a constraint upon the product of 
the crack porosity and the aperture. If core or other data are available on the fracture apertures, 
then an estimate of the fiacture porosity is obtained from the permeability and aperture estimates. 

Once the crack porosity of a site is known, the specific crack impedance detennined from 
the seismic data can be used to determine the elastic constant k3 from knowledge of 2 and $c (see 
Eq 15). Once the factor k, is known for an area, the seismic response at a well can be used to get 
an independent estimate of the crack porosity. If the crack porosity is determined at another well 
via seismic, one has a first step toward predicting the permeability at the w d .  

The next part of the equation is the estimation of the multiplicative parameter h that plays 
a role in the measured permeability. Brown and Bruhn (1 998) suggest that h can be related to the 
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crack density in a simple functional relationship varying from 0 to 1 / I  2. In terms of the models 
discussed in this report, the crack density would be replaced by the crack porosity. In this way, 
the seismic can be used to map permeability throughout the field. However, if h depends upon 
other variables, then additional work will be required. For example, some measures of the 
anisotropy andor the lack of it, may have to be used in order to better evaluate the connectivity 
of the systems of cracks. 

In summary, a methodology is now in place for calibrating the seismic response to 
production tests. The procedure is expected to work best when some experience, e.g., in a trend, 
is available. In this circwmstance, the elastic constant k, and even the permeability control 
h c t i o n  h may be known. The real challenge to this approach is the development of accurate 
assernent of the value of h.. 

Task 11. Develop Interwell Descriptors of Fractured Reservoir Systems 
Characterization of naturally fiactured reservoirs requires the integration of well, 

geoIogic, engineering, and seismic data. Some of the data is available on a reservoir scale, such 
as the seismic data, while other data are available at the macroscale, such as well log data. In this 
task, it is desired to take localized fracture information and scale it for use in characterizing a 
naturally fractured reservoir and provide input parameters for reservoir simulation studies. To 
date, effort has been focused on estimating well-based fracture parameters from well log data, 

During previous reporting pe’ridds, an algorithm and software to estimate the fracture 
index from conventional well logs have been developed. In addition, an algorithm for prediction 
of fracture densityhtensity from the simultaneous interpretation of various porosity and acoustic 
logs has been developed. 

Work is currently in progress related to scaling well-based parameters and seismic data to 
develop interwell descriptors. During the current reporting period, a procedure for using a genetic 
algorithm for the inversion of O’Connell and Budiansky (1 984) self-consistent physical model 
using well log infomation has been developed to obtain fracture density and aspect ratio. 

This model considers a solid permeated with two classes of porosity: crack like, 
characterized by a crack density with fluid presswe equal to the applied normal stress on the 
crack face, and pore like (tubes or spheres) characterized by a volume porosity, with fluid 
pressure substantially less than the applied hydrostatic stress. Fluid flows between cracks at 
different orientation and between cracks and pores in response to pressure differences. 

The model assumes elliptic cracks and spherical pores in order to estimate the strain of a 
composite rock. The parameters of this model are: 

The crack density, defined by: 

.........*....................................**........*...~*........*..............................~........... ... 54 2 A2 
Z P  

E = N * - (-) 

where N is the number of cracks per unit volume, A is the area in plain-form of the crack, and P 
is the perimeter of the crack. 

The porosity of the spherical pores, $. 
The bulk modulus offluid, I&. 
The bulk and shear moduli of the uncracked non porous matrix material, KO and Go. 
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'I'he jieyuency, w. 
The charucreristicfi-aqusncy for fluid flow between cracks, w,. This parameter can be 

estimated as: 

.................................................................................................................... 55 

where h is the viscosity of the fluid, arid c/a is the aspect (thickness to diameter) fatio of the 
crack. 

The modulus is a function of frequency, w, and is a complex number, the real part 
representing an effective elastic modulus, and the imaginary part representing anelastic energy 
dissipation. The complex bulk modulus, K, is obtained using Eq. 56. 

K 
K O  

= I -  

( ")[3( - -  1 - v )  +- 1 6 ( 1 - v 2 )  - - E ) 
KO 2 1 - 2 ~  9 1 -2v  1+iQ ( I + -  K , ( l - p v ) j p  - + [ 1 6 ( 1 - v 2 p  - - -- E ] 

2K 1 - 2 ~  9 1-2v K 1+iQ 

4 -  ........................................................ 56 

with 

16 1 - v 2  KO w Q=- - -- 57 ................................................................................................................. 
9 0 1-2v K ws 

The shear modulus G is determined using the following relation. 

1 5 ( 1 - ~ ' )  32(1-~') (-+ 1 '). .................................................................... 58 
GO 7 - 5v' 4 -  45 l+iQ' 2-v' 
G = I -  - 

K' = I - -  3 ( 1 - v ' )  - -- l6(1-vt2)(  - - E ) ............................................................................ 59 
K',  2' 1 -2v'  9 1-2v' r+inl 

where v' is a fictitious Poisson ratio that satisfies the following. 

3K'-2G v' = 
6K'+2G 

.................................................................................................................... 60 

The same expression relates the moduli and Poisson ratio of the porous solid. 

3K-2G 
V =  

6 K  + 2G 
.................................................................................................................... 61 
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Since w, can be approximated by Eq. 55, then the ratio w/w, is given by: 

where: 

................................................................................................................... -63 

Then Eq. 57 can be rewritten as: 

16 1 - v 2  KO Asp Q = -  - -- .64 .............................................................................................................. 
9 0 I - 2 ~  K K 

And R’ is also given by: 

16 1 - vt2 K ,  Asp n’=- - -- 65 ............................................................................................................. 
9 0 1 - 2 ~ ’  K’ K 

If shear and compressional wave velocities are given, then the real part of the bulk and shear 
moduli (K, and G,) can be directly obtained from the following equations: 

K, = pb * (Vt-  4/3 V:) / 10 6.,................................*........................................................................ 64 

G, = Pb * (v:) 104 .................................................................................................................... 67 

where p,is in gr/crn3, V, and V, are in d s ;  Gr and Kr in GPa. 
The inversion of O’Connell and Budiansky self consistent model to obtain crack density, 

e and aspect ratio (da) can be seen as an optimization problem, where the goal is to minimize an 
objective fiinction. If the red part of the moduli (K, and G,) are known, the inversion of the 
model consists of obtaining the parameters e and (da )  that will minimize an objective function 
given by: 

F = IK, - K,,I + IG,, - Grca,I ......................................................................................................... 68 

where Lai and Grca, are the calculated moduli obtained from O’Connell and Budiansky model. 
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Since the inverse problem is not straightforward, and the equations involved are very 
complex, this problem is not suitable to be solved through the conventional gradient optimization 
methods. Instead, a genetic algorithm approach is implemented and programmed in Fortran. 

Genetic algorithms (GAS) are a stochastic global search method that mimics the metaphor 
of natural biological evolution. GAS operate on a population of potential solutions to a problem 
by applying the principle of survival of the fittest to produce improved approximations to a 
solution. At each generation, a new set of approximations is created by the process of selecting 
solutions according to their level of fitness in the problem domain and combining them together 
using operators borrowed from natural genetics. This process leads to the evolution of 
populations of individual solutions that are better suited to their environment than the roots that 
they were created from, just as in the natural adaptation. This process allows an examination of a 
large sample space of potential solutions and yield near optimal solutions. The GA is teminated 
when some preselected criteria is satisifed such as total number of iterations, a specified point in 
the search space is reached, or mean deviation in the population is achieved. Details of GA 
methods can be located in several references (examples are Goldberg, 1989; Man et al-, 1.999). 

GA differs substantially from traditional search and optimization methods. The most 
significant differences are: 
1. 
2. 

3. 
The chromosome of the GA was formed by a 6 by 8 bit binary string representing 6 variables 
(K'r, K'c, Kc, Gc, Asp, E) each with an eight-bit resolution. One point crossover and uniform 
mutation were applied with operation rates of 0.75 and 0.01 respectively. The population size of 
30 was found to work well. For each evolution cycle 29 new offspring were generated while the 
best chromosome was kept for the next generation. While the program has been developed, it 
still requires testing. 

GAS search a population of solutions in parallel, not sequentially. 
GAS do not require derivative information or other auxiliary knowledge about the functions 
involved in the problem. 
GAS work on encoding of the parameter set rather than the parameter set itself. 

Task 111. Develop Wellbore Models for Fractured Reservoir Systems 
During the last project period, work has focused on developing a horizontal wellbore 

model to use in the naturally fi-actured reservoir simulator. After a thorough literature review, it 
was decided to implement a wellbore system that assumes a horizontal wellbore open to flow 
along its total length and with a homogenous fluid flowing through it. Flow from both the 
fkactures and matrix is allowed to occur and is considered through productivity indexes that are 
proportional to the equivalent fracture and matrix penneabilities, respectively. A similar 
approach has been implemented for the vertical well. 

Wellbore hydraulics is taken into account by writing the flow equations in a form similar 
to the reservoir equations. The diffusivity equation that describes oil phase is given by 

d kpkrop &+f 
dl POPBOP dl 

0.006328 - [ -- ] --- - d", (h ?) + 5.615 Qo - (4, + 4 0 ~ )  ............................................. 69 
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where I denotes the coordinate along the wellbore and p indicates that properties are evaluated at 
the conditions inside of the horizontal pipe, which in the case of PVT properties indicates they 
are evaluated atpwJ: For water, one has a similar equation 

The following relationship can be written for the gas phase accounting for gas solubility in both 
the oil and water. 

--r[Ac%+%L+!LL)]+Qg - - (qg+q lEf )  
at Bw B O P  B W P  ................................................................... 71 

The “effective permeability in the pipe” is calculated from a mechanical energy balance 
where the kinetic and gravity effects are assumed negligible. After writing the homogenous fluid 
velocity in the wellbore in a form similar to the Darcy velocity of fluids through a porous media, 
the following expression is obtained for the effective permeability, kp. 

I 

kp  = 9.2931 x I O 9  
........................................................................................... -72 

On the other hand, the pressure drop within the wellbore can be directly calculated from the 
mechanical energy balance according to the following equation. 

@wf f P  It: 
a - = -2.8914 x IO-“ ~ 

rw 73 ........................................................................................................ 

By substituting Eq. 73 into Eq. 72, a more convenient expression for kp is obtained. 

............................................................................................................ 74 

Several terms are involved in Eq. 74 and are explained in the following. The homogenous 
fluid properties are obtained as saturation weighted averages according to 
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p = PTLSV -k G J v  -k P,sQ ............................................................................................................. 75 

- 

P = P$%,l, f P,v/,S,,p f cl,,s, ........................................................................................................... -76 

The assumption of homogenous fluid is good as long as density and viscosity of phases can be 
represented by the average mixture properties. 

The “equivalent wellbore porosity” is calculated as the ratio of the wellbore vo iwe  to the 
total grid-block (bulk) volume, V. 

z r,’Al & =y ................................................................................................................... .77 

The traditional Fanning friction factor,J is also required in Eq. 74. For laminar flow (NRe < 
2100), the friction factor is a function of the Reynolds number according to the following 
relation. 

f=- 16 

&e .................................................................................................................... 78 

For turbulent flow, the friction factor depends on the roughness of the pipe and the Reynolds 
number. Among several correlations available in the literature, Aziz et al. recommended the 
equation proposed by Colebrook 

- = dog( 2) + 3.48 - 4Zog 
79 

I 
47 e ........................................................................ 

The actual in-situ velocity, vp, is calculated by dividing the Darcy velocity by the 
equivalent wellbore porosity 

The solution of Eq. 74 requires an implicit evaluation. Sharma et al. suggested an explicit 
evaluation using the average in-situ velocity given by Eq. 80. They pointed out that this is a good 
approximation since pressure gradients and fluid properties do not significantly change between 
time steps under pseudo-steady-state wellbore flow conditions. 

In Eqs. 69-71, linear relative permeability curves are assumed for homogenous flow 
according to 
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.................................................................................................................... 81 

.................................................................................................................... 82 

.................................................................................................................... 83 

The boundary conditions connect the wellbore model with the reservoir model. The fluid 
C 

transfer term between the matrix and the wellbore is defined as follows. 

qi=g  v O, w9 g 84 I =  ................................................................................................................. 

where % is the flow rate per unit volume of the phase i used as source/sink term in Eqs. 91-93 
and Vis the grid-block volume. Similar expression can be written for the fluid transfer between 
the fractures and the wellbore. 

Peaceman’s approximation was implemented to calculate flow rates from the matrix into 
the wellbore. For the oil phase, the rate is from the matrix to the wellbore is calculated by 

.................................................................................................................. 85 

while the following equation is used to calculate the rate from the fracture to the wellbore. 

............................................................................................................ 86 

where the well indexes, I, are calculated fiom 

k, AI I = 0.00708 
In PI L?- + s  

................................................................................................................... 87 

The radius ro may be estimated from the Peaceman’s formula 
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r, = 0.28 

The fracture index, .IJ; requires fracture characteristics such the permeability scalar tin the grid 
block and fracture haIf length to calculate the appropriate value. 

1% I *I If = 0.00708 

.............................................................................................................. 89 

On the other hand, Qi correspond to the imposed injectiodproduction rates frodinto the 
horizontal well. Finally, an auxiliary equation describing the volumetric balance within the 
horizontal pipe is required. 

S*+Sog+Swp=I ............................................................................................................... ..*..90 

The previous formulation was coded into the naturally fiactwed simulator but has not 
been tested. The testing will be conducted during the next reporting period. 

Task IV. Reservoir Simulations DeveloprnentRefinement and Studies 
During this period, modifications to a generalized naturally fiactured reservoir simulator 

developed by Ohen and Evans (1 990) based on work proposed by Evans (I 982) continued. The 
simulator is a three-dimensional, three-phase black oil simulator developed to describe fluid flow 
in a naturally fiactured reservoir. Efforts have concentrated on updating the program and 
incorporating wellbore models within the program, Additionally, steps continue to move the 
program from a mainframe to a desktop computing environment. The modeling effort is 
proceeding in a timely fashion. 

One major complication with the work discussed in the last progress report was related to 
unacceptable> material balance errors. This problem has commanded a large portion of the project 
time during the last six months. However, the problem has been solved and was related to the 
numerical solution of the mathematical model proposed by Evans. Several solutions were 
explored with a final solution being the modification of the matrix and fractured media relations. 

The resulting relations for flow of oil, water, and gas through the matrix are as follows: 
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AD)]=-”(&) -qw -r,,. ..................................... 92 
144 dl B,” 

c 

The matrix permeability is a zero-nondiagonal tensor given by 

r;l% ;y ;] 
.................................................................................................................... 94 

The fluid interaction term that takes into account the mass transfer from the primary rock 
matrix into the fractures per unit time per unit volume of the medium is described by the 
following steady-state approximations for oil, water, and gas. 

r, = C””(P! - Pf) 
P O B O  .................................................................................................................... 95 

rw = C“-(p, - pf - cowl + cOwr) .............................................................................................. 96 
O W  

+PI - Pf + e@- e& ) 4- -(PI - Pf ) 

+-(PI - Pf - C o w l  f COWJ 1 .97 

R S A O  krg 
J%B, P O  B o  

RJnV 
r, = c 

............................................................... 1 P W B W  
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I n  Eqs. 95-97, the fluid transfer constant, C, is given by 

km4, 
r,l L, 

9s C = 0.006328 - .................................................................................................................... 

where k, is an average matrix permeability obtained from Eq. 94. 
The fractured system is modeled as an anisotropic media in which fluids floy according 

to Dacy's law. In the original model proposed by Evans (1 982) an additional acceleration term 
was included in the equations of motion. However, numerical experiments indicate that the 
acceleration term contributes with a negligible pressure drop along the fracture. The difhsivity 
equation that describes the flow through the fractures for oil, water, and gas are as follows. 

- - 
0.006328 V[ -( k,  k, 4pf - &D)] = -$[ 4, %) - qof + ro ................................................. 99 

Pq Bo/ 144 4 

r= 

Apj + hp,,, -"AD) + 
144 

I 

k, k, 
Po. Rf 144 

0.006328 V R ,  -( Ap, - &AD) + 

.................................................................... 101 

The fracture permeability is modeled as a nondiagonal tensor given by 

.................................................................................................................. 102 
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Avila el  ul. (2000) showed that Eq. 102 can be written in a more convenient form. They 
stated that the fracture permeability tensor can be obtained as a product of two independent 
functions 

- 
k/ = Ik, / [kr]  .................................................................................................................. 103 

The unit permeability tensor, [';,I, is calculated at specific points in the reservoir' where the 
orientation of the fractures are known. After interpolating/extrapoIating fracture orientation in the 
reservoir domain, the permeability tensor is obtained by multiplying the unit permeability tensor 
by the permeability scalar, lkII. In regions of the reservoir where no fractures are present the 
model exhibits a numerical instability that is overcome by multiplying the unit permeability by 
the average matrix permeability, k,. 

Auxiliary equations are required to solve this system of equations include the requirement 
that the saturations in the matrix and the fractures must equal one. 

104 sg + s, + sw = I .................................................................................................................. 

Sd + soy 3- s, = I .................................................................................................................. 105 

In addition, independent capillary pressure relationships for the matrix and the fiactwes 
are required as functions of saturation. 

- -  - 
p m ~ i  - I4 P w  - f ( s w )  ................................................................................................................ 106 

Pcg0I = Pg -P* = f cs,, ................................................................................................................. 107 

PL.f = P/ - PWI = f (s,) ............................................................................................................. 10s 

= P&f - Pj = fV,) .............................................................................................................. 109 

In the general case, the reservoir is modeled as a rectangular parallelepiped with an 
external no-flow boundary but a constant potential boundary can be easily implemented. The 
inner boundary condition is either constant rate or pressure as described in the fornulation of the 
wellbore system. The previous partial differential equations were solved using a finite difference 
formulation and IMPES solution scheme. 

After making 
simulator capabilities 
characteristics. 

these changes, the material 
were enhanced. The naturally 

balance errors disappeared and reservoir 
fractured simulator now has the following 
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1. 

2. 

4. 
5 .  

3 
3. 

7. 
8. 
9. 
10. 
11. 
12. 
13. 
14. 

15. 

Numerical simulation of oil and/or gas recovery by fluid expansion, displacement, gravity 
drainage, and imbibition mechanisms. 
Rectangular grid-blocks with variable dimensions. 
Zero transmissibility option (inactive grid blocks). 
Simulation of tilted reservoirs by specifying the elevations to top of grid-blocks. 
Porosity and permeability distributions for matrix and fracture systems. For fracture 
permeability, the model requires a diagonal tensor. 
Different relative permeability and capillary pressure tables for matrix and fracture 

t 

6. 
systems. 

Pore matrix and fracture compressibility table. 
Oil-water-gas PVT tables for reservoir fluids. 
Bubble point pressure tracking scheme. 
Pressure and saturation initialization for both porous media. 
Automatic time-step control. 
Option for automatic control of LSOR acceleration parameter. 
Material balance check on solution stability. 
Vertical and horizontal wells with specification of rate or pressure constraints on well 
performance. 
Capabilities to add wells during the time period represented by the simulation. 

Task V. Technology Transfer 
Technology transfer is an important element of this research project. During reporting 

periods, informal monthly meetings have been held to share information between the researchers 
and other interested parties in engineering, geology, and geophysics. Participants have included 
students, faculty, and researchers from the University of Oklahoma and industry. In addition, one 
of the principal investigators has developed a fractured reservoir e-mail list server to M s h  
interested parties regular updates on various topics related to these reservoirs 

In July, a paper was be presented before the Society of Exploration Geophysicsts. In 
addition, several abstracts and papers have been accepted for presentation during 2001 related to 
the current research project. A one-day seminar was held in December 2000 on naturally 
fractured reservoirs in Norman. This workshop focused on the progress of the current research. 
Presenters included the research team. Another one-day seminar will be scheduled for 2001. 

The following is a listing of presentations and papers the research team presented during 
the current reporting period. 

Brown, R.L., Wiggins, M.L., and Gupta, A.: ‘‘FractUre Roughness: The Key to Relating 
Seismic Velocities, Seismic Attenuation and Permeability to Reservoir Pressure and Saturation,” 
SEG Annual Meeting and International Exposition, Calgary, August 6- 1 1,2000. 

Conclusion 

During the current reporting period, research has continued on characterizing and 
modeling the behavior of naturally fractured reservoir systems. Work has progressed on 
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developing techniques for estimating fracture properties fi-om seismic arid well log data, 
developing naturally fractured wellbore models, and modifying a naturally fractured reservoir 
simulator. The research is currently on schedule as proposed and no obstacles are anticipated for 
the next six month reporting period. 

One aspect of this work involved modifying popular models in terms of crack density to 
one that depends upon crack porosity. This modification is important because crack porosity is 
also a used in an estimate of the permeability of a reservoir.simple crack models are used to 
estimate the "dry rock" properties of a fiactured reservoir. The dry rock values can tben be used 
in the results of Brown and Korringa (1998) to predict the effects of saturation upon fiactured 
reservoirs. For vertical cracks aligned in a single direction, this approach predicts that only P- 
waves are sensitive to the saturation of the reservoir. However, the P-waves are most sensitive to 
the saturation when traveling perpendicular to the cracks. This means that very long offsets will 
have to be used. Since long offsets are difficult to record in some areas, this may preclude the use 
of P-waves for saturation studies. For rough cracks or cracks tilted slightly from the vertical, the 
S-waves were found to be sensitive to the saturation. Since the S-wave splitting increase is 
expected for near vertical signals, S-waves show the greatest exploration potential for detecting 
saturation in reservoirs. 

In order to study reflections from fiactured reservoirs, software was developed to 
compute the reflection coefficients. This software has been used to test some of the basic 
differences between a reservoir with a single fracture system and a reservoir with two fracture 
systems with different orientations. The results indicate that S-waves hold the key to working out 
some of the problems related to multiple fiacture sets. 

A methodology for integrating the seismic and production tests has been developed. The 
strength of this approach is that no scaling is involved. Here we assume that the seismic scale and 
the production scale are the same. The goal then is utilize the influence of the crack porosity 
upon both the permeability and the seismic response. The difficult part will be the 
characterization of the multiplicative factor that modifies the permeability. This may not be the 
solution to the problem, but it is definitely a solution that can be used to get answers when other 
data are sparse. 

A genetic algorithm and software program has been developed to obtain fracture density 
and aspect ratio through the inversion of fractured reservoir rock models using conventional well 
logs. The software is ready €or fiu-ther testing. Software based on neural networks was develped 
in prior reporting periods to determine fracture probability from well logs. Fracture probability is 
an important interwell descriptor of fiactwes that can be implemented in the definition of 
permeability tensors. Research suggests a need for logs and intenvell measurements of the 
frequency dependent attenuation of shear and compressional sound waves. Investigation further 
reveals that cross-well tomography measurements may offer such information. Data from multi- 
frequency measurements should enhance the infomation that can be extracted for the description 
of fractured reservoirs. 

Wellbore performance models for vertical and horizontal wells in naturally fractured 
reservoirs have been devoloped. These models have been incorporated into the naturally 
fractured reservoir simulator but have not been tested. The development of the reservoir 
simulator continues in a timely manner. Previous problems related to material balance errors 
have been corrected by modifying the numerical solution of the flow equations. The simulator is 
ready for testing. 
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Research efforts for the next reporting period wili concentrate on testing the proposed 
methods with actual data and formalizing a naturally fractured reservoir characterization 
methodology. Issues related to upscaling reservoir parameters for reservoir simulation studies 
and the development of performance models for incorporation into the reservoir simulator will 
also be addressed. In addition, plans wiH be made to conduct a one-day technology transfer 
workshop in mid-200 1. 

45 





References 

Brown, S.R., and Bruhn, R.L., 1998, Fluid permeability of defomable fracture networks: J. of 
Geophys. Res., 103 (B2), 2489-2500 

Brown, R.J.S., and Korringa, J., 1975, On the dependence of the elastic properties of a porous 
rock on the compressibility of the pore fluid: Geophysics 40,608-61 6.  

e 

Evans, R.D., 1982, A proposed model for multiphase flow through naturally fractured reservoirs: 
SPEJ, October, 669-80. 

Gassmann, F., 1951, Uber die Elastizitat poroser Medien: Vierteljahrschrift der 
Naturforschenden Gessellschaft in Zurich, 96, 1-23. 

Goldberg, D.E., 1989, Genetic Algorithms in Search, Optirnizution and Machine Learning: 
Addison Wesley Publishing Company. 

Hake, J.H., Gevers, E.C.A., van der Kolk, C.M., and Tichelaar, B .W., 1998, A shear experiment 
over the Natih field in Oman: pilot seismic and borehole data: Geophysical Prospecting: 46,6 17- 
646. 

Henneke 11, E.G., 1972, Reflection-refraction of a stress wave at a plane boundary between 
anisotropic media: J. Acoust. SOC. Am. 5 1,2  10-21 7. 

Horii, H., and Nemat-Nasser, S., 1983, Overall moduli of solids with microcracks: load-induced 
anisotropy : J. Mech. Phys. Solids, 31 (2), 155-171. 

Hudson, J.A., 1980, Overall properties of a cracked solid: Math. Proc. Camb. Phil. SOC. 88,371- 
3 84. 

Hudson, J.A., 198 1 , Wave speeds and attenuation of elastic waves in material containing cracks: 
Geophys. J-R. Astr. SOC. 64,133-150. 

Man, K.F., Tang, K.S, and Kwong, S., 1999, Genetic algorithms, concepts and designs: 
Springer. 

O’Connell, R.J. and Budiansky, B-, 1977, Viscoelastic properties of fluid-saturated cracked 
solids: J. of Geophys. Res. 82(36), 57 19-5733. 

O’Connell, R.J., 1984, A viscoelastic model of anelasticity of fluid saturated porous rocks: 
Physics and Chemistry of Porous Media, AIP Conf. Proceedings, 166- 175. 

Oda, M., 1983, A method for evaluating the effect of crack geometry on the mechanical behavior 
of cracked rock masses: Mechanics of Materials, 2, 163- 17 1. 

47 



Oda, M., Suzuki, K. and Maeshibu, T., 1984, Eiastic compliance for rocklike materials with 
random cracks: Soils and Foundations, 24 (3), 27-40. 

Oda, M., 1 985, Permeability tensor for discontinuous rock masses: Geotechnique, 35,483-495. 

Oda, M., 1986, An equivalent continuum model for coupled stress and fluid flow analysis in 
jointed rock masses, Water Resources Research, 22 (1 3), 1 845-1 856. 

t 

Ohen, H. and Evans, R.D., 1990, Improved simulation of gadoil drainage and water/oil 
imbibition in a naturally Eractured reservoir: Report to National Institute for Petroleum and 
Energy Research, Contract 16042 1. 

Rokhlin, S.I., Bolland, T.K., and Adler, L., 1986, Reflection and refkction of elastic waves on a 
plane interface between two generally anisotropic media: J. Acoust. SOC. Am. 79(4) 906-91 8. 

Schoenberg, M., and Douma, J., 1988, Elastic wave propagation in media with parallel fractures 
and aligned cracks: Geophysical Prospecting 36,571 -590. 

Schoenberg, M. and Sayers, C.M., 1995, Seismic anisotropy of fractured rock: Geophysics 60, 
204-2 1 1. 

Vermilye, J.M., and Scholz, CH,, 1995, Relation between vein length and aperture: Journal of 
Structural Geology, 17 (3), 423-434. 

48 


	Abstract
	Introduction
	Results and Discussion
	Develop Interwell Descriptors of Fractured Reservoir Systems
	Develop Wellbore Models for Fractured Reservoir Systems
	Reservoir Simulations DevelopmentRefinement and Studies
	Technology Transfer

	Conclusion
	References

